Синусоидальный ток и его характеристики. Синусоидальный переменный ток
Переменный синусоидальный ток
Колебания маятника также подчиняются закону синуса. Если записать проекцию траектории движения математического маятника на движущуюся бумажную ленту — получится синусоида.
Синусоидальным током называется периодический переменный ток, который с течением времени изменяется по закону синуса.
Синусоидальный ток — элементарный, то есть его невозможно разложить на другие более простые переменные токи.
Переменный синусоидальный ток выражается формулой:
, где
— амплитуда синусоидального тока;
— некоторый угол, называемый фазой синусоидального тока.
Фаза синусоидального тока изменяется пропорционально времени .
Множитель , входящий в выражение фазы — величина постоянная, называемая угловой частотой переменного тока.
Угловая частота синусоидального тока зависит от частоты этого тока и определяется формулой:
, где
— угловая частота синусоидального тока;
— частота синусоидального тока;
— период синусоидального тока;
— центральный угол окружности, выраженный в радианах.
Зависимость синусоидального тока от времени
Зависимость синусоидального тока от угла ωt
Периоду соответствует угол , половине периода угол и так далее…
Исходя из формулы , можно определить размерность угловой частоты:
, где
— время в секундах,
— угол в радианах, является безразмерной величиной.
Фаза синусоидального тока измеряется радианами.
1 радиан = 57°17′, угол 90° = радиан, угол 180° = радиан, угол 270° = радиан, угол 360° = радиан, где радиан; — число «Пи», ° — угловой градус и ′ — угловая минута.
Формула описывает случай, когда наблюдение за изменением переменного синусоидального тока начинается с момента времени при . Если не равен нулю, тогда формула для определения мгновенного значения переменного синусоидального тока примет следующий вид:
, где
— фаза переменного синусоидального тока;
— угол, называемый начальной фазой переменного синусоидального тока.
Начальная фаза переменного тока
Начальная фаза переменного тока
Если в формуле принять , то будем иметь
, и .
Начальная фаза — это фаза синусоидального тока в момент времени .
Начальная фаза переменного синусоидального тока может быть положительной или отрицательной величиной. При мгновенное значение синусоидального тока в момент времени положительно, при — отрицательно.
Если начальная фаза , то ток определяется по формуле . Мгновенное значение его в момент времени равно
, то есть равно положительной амплитуде тока.
Если начальная фаза , то ток определяется по формуле . Мгновенное значение его в момент времени равно
, то есть равно отрицательной амплитуде тока.
9. Идеальные элементы электрической цепи синусоидального тока
11. Неразветвленная цепь синусоидального тока. Резонанс напряжений
Резонанс напряжений - резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.
Описание явления
Пусть имеется колебательный контур с частотой собственных колебаний f, и пусть внутри него работает генератор переменного тока такой же частоты f.
В начальный момент конденсатор контура разряжен, генератор не работает. После включения напряжение на генераторе начинает возрастать, заряжая конденсатор. Катушка в первое мгновение не пропускает ток из-за ЭДС самоиндукции. Напряжение на генераторе достигает максимума, заряжая до такого же напряжения конденсатор.
Далее: конденсатор начинает разряжаться на катушку. Напряжение на нем падает с такой же скоростью, с какой уменьшается напряжение на генераторе.
Далее: конденсатор разряжен до нуля, вся энергия электрического поля, имевшаяся в конденсаторе, перешла в энергию магнитного поля катушки. На клеммах генератора в этот момент напряжение нулевое.
Далее: так как магнитное поле не может существовать стационарно, оно начинает уменьшаться, пересекая витки катушки в обратном направлении. На выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе противоположного знака, причем с той же скоростью, с какой катушка заряжает конденсатор.
Далее: катушка перезарядила конденсатор до максимального напряжения. Напряжение на генераторе к этому моменту тоже достигло максимального.
Возникла следующая ситуация. Конденсатор и генератор соединены последовательно и на обоих напряжение, равное напряжению генератора. При последовательном соединении источников питания их напряжения складываются.
Следовательно, в следующем полупериоде на катушку пойдет удвоенное напряжение (и от генератора, и от конденсатора), и колебания в контуре будут происходить при удвоенном напряжении на катушке.
В контурах с низкой добротностью напряжение на катушке будет ниже удвоенного, так как часть энергии будет рассеиваться (на излучение, на нагрев) и энергия конденсатора не перейдет полностью в энергию катушки). Соединены как бы последовательно генератор и часть конденсатора.
studfiles.net
Переменный синусоидальный ток
Переменный ток - это ток, который периодически изменяется как по модулю, так и по направлению. Появляется переменный ток благодаря электромагнитной индукции. Электромагнитная индукция это явление возникновения тока в замкнутом контуре при изменении магнитного потока проходящего через него. Чтобы понять, как именно возникает ток, представим себе рамку (кусочек проволоки прямоугольной формы), которая находится под воздействием магнитного поля B.
Пока рамка находится в покое, тока в ней нет. Но как только мы начнём её поворачивать, электроны, которые находятся в рамке, начнут перемещаться вместе с ней, то есть двигаться в магнитном поле. Вследствие этого магнитное поле начинает действовать на электроны, заставляя их двигаться по рамке. Чем больше линий магнитного поля пронизывает рамку, тем сила действующая на электроны больше, следовательно, и электрический ток тоже. Получается, что ток достигает максимума в момент, когда рамка перпендикулярна магнитному полю (наибольшее количество линии пронизывает рамку) и равен нулю, когда параллельна (наименьшее количество линии пронизывает рамку). Соответственно и сила, которая действует на электроны, тоже изменяется. После прохождения момента, когда рамка параллельна вектору магнитной индукции B, ток в ней начинает течь в обратную сторону.
Ток, который получается при вращении рамки, изменяясь во времени, описывает синусоиду, то есть является синусоидальным. Переменный синусоидальный ток является частным случаем периодического переменного тока. Закон, описывающий изменение тока, имеет вид:
Амплитуда Im – это наибольшая абсолютная величина, которую принимает периодически изменяющийся ток.
Начальная фаза ψ - аргумент синусоидального тока (угол), отсчитываемый от точки перехода тока через нуль к положительному значению.
Время, за которое ток в проводнике дважды изменяет своё направление, называют периодом T. Период измеряется в секундах.
Циклической частотой f называется величина обратная периоду . Измеряется в Герцах, в домашней розетке циклическая частота тока равна 50 Гц, её также называют промышленной частотой. При такой частоте период тока равен , это значит, что за две сотых секунды ток в нашей розетке меняет свое направление два раза.
Угловая частота ω показывает с какой скоростью изменяется фаза тока и определяется как
Среднее значение Iср синусоидального тока за период Т определяют из геометрических представлений: площадь прямоугольника с основанием T/2 и высотой Iср приравнивают площади ограниченной кривой тока:
После упрощения получаем формулу:
Действующее значение синусоидального тока определяется из энергетических представлений: действующий ток равен по величине такому постоянному току I, который в активном сопротивлении R за период Т выделяет такое количество энергии, как и данный ток i. То есть действующее значение, это своеобразная аналогия между переменным и постоянным током.Для синусоидального тока действующее значение определяется по формуле:
или
Это основное что нужно знать о переменном синусоидальном токе.
Читайте также - Мгновенная мощность
electroandi.ru
Переменный (синусоидальный) ток и основные характеризующие его величины.
Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.
В быту для электроснабжения переменяется переменный, синусоидальный ток.
Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):
Рисунок 1Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:
- амплитуду тока обозначают lm;
- амплитуду напряжения Um.
Период Т— это время, за которое совершается одно полное колебание.
Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с-1)
f = 1/T
Угловая частота ω (омега) (единица угловой частоты — рад/с или с-1)
ω = 2πf = 2π/T
Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.
Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)
В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.
Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).
Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).
electrikam.com
Синусоидальный ток и его характеристики
Синусоидальный ток и основные характеризующие его величины.
Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):
Максимальное значение функции называют амплитудой. Амплитуду тока обозначают . Период Т — это время, за которое совершается одно полное колебание.
Частота равна числу колебаний в 1 с (единица частоты — герц (Гц) или
Угловая частота (единица угловой частоты — рад/с или )
Аргумент синуса, т. е. называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени
Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.
В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.
Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ).
Рис. 3.1
Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их и
Синусоидальный ток
Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.
Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Названа в честь ученого Герца. Величина обратная частоте называется периодом колебания T=1/f. Период измеряется в секундах. Определение периода звучит так период это время полного колебания. Если представить себе маятник часов то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.
Амплитуда синусоидального тока это максимальное значение тока, которое он достигает за период колебания. Опять же если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.
Начальная фаза синусоидального тока это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.
Рисунок 1 — Графическое представление синусоидального тока
Математически синусоидальный ток описывается уравнением:
i=Im*sin(wt+j)
где
i мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.
Im амплитуда тока.
j начальная фаза
w угловая частота выражается как
studfiles.net
Синусоидальный ток и его характеристики
Синусоидальный ток и основные характеризующие его величины.
Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):
Максимальное значение функции называют амплитудой. Амплитуду тока обозначают . Период Т — это время, за которое совершается одно полное колебание.
Частота равна числу колебаний в 1 с (единица частоты — герц (Гц) или
Угловая частота (единица угловой частоты — рад/с или )
Аргумент синуса, т. е. называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени
Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.
В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.
Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ).
Рис. 3.1
Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их и
Синусоидальный ток
Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.
Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Названа в честь ученого Герца. Величина обратная частоте называется периодом колебания T=1/f. Период измеряется в секундах. Определение периода звучит так период это время полного колебания. Если представить себе маятник часов то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.
Амплитуда синусоидального тока это максимальное значение тока, которое он достигает за период колебания. Опять же если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.
Начальная фаза синусоидального тока это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.
Рисунок 1 — Графическое представление синусоидального тока
Математически синусоидальный ток описывается уравнением:
i=Im*sin(wt+j)
где
i мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.
Im амплитуда тока.
j начальная фаза
w угловая частота выражается как
studfiles.net
синусоидальное переменное напряжение ток | Электрознайка. Домашний Электромастер.
Действующее значение синусоидальногопеременного напряжения – тока.
data-ad-client="ca-pub-5076466341839286"data-ad-slot="1404500382">♦Переменный электрический ток в нашей бытовой электросети представляет собой синусоиду, как на рисунке 1.
Напряжение меняет свою величину от 0 до + Umax и от 0 до — Umax . Полный цикл этих изменений называется периодом.Период измеряется в секундах и обозначается буквой Т.Количество периодов переменного тока за 1 секунду, есть частота f.Частота переменного тока f измеряется в герцах .
f = 1 / T.
Например.Частота в нашей электрической сети 50 Гц. Период этих колебаний будет равен:
T = 1 / f = 1 / 50 = 0,02 сек.
Наибольшее значение изменяющегося переменного напряжения – тока называется амплитудным значением или амплитудой.
Umax = Ua и Imax = Ia
За один период напряжение принимает эти значения два раза: + Ua и — Ua .
♦ Если подключить в цепь переменного напряжения какую-нибудь активную нагрузку, например паяльник, в цепи потечет переменный электрический ток, так же принимающий значения +Ia и — Ia, и повторяющий форму синусоиды.На нагрузке выделяется электрическая мощность в виде тепла. Неважно какой ток течет в цепи — переменный или постоянный. Выделение тепла не зависит от направления тока в цепи.Выделенное тепло будет равно той энергии, которую затрачивает электрический ток при прохождении по сопротивлению нагрузки.Введено понятие действующего значения переменного напряжения Uд и тока Iд.
Действующее значение переменного тока — это такое значение величины постоянного тока, который проходя по сопротивлению нагрузки за тот же промежуток времени, выделит такое же количество тепла, что и переменный ток.
♦ Переменный ток оказывает такое же тепловое действие, как и постоянный ток, если амплитуда синусоидального переменного тока превышает величину постоянного тока в 1,41 раз.Следовательно действующее (или эффективное) значение переменного тока будет равно:
Iд = Ia / 1,41 = 0,707 Ia. – действующее значение переменного тока
Uд = Ua / 1,41 = 0,707 Ua — действующее значение переменного напряжения
На все эти теоретические размышления можно посмотреть иначе!
♦Имеем синусоиду переменного напряжения длительностью в 1 период как на рисунке 1.После выпрямительных диодов оно принимает вид как на рисунке 2.
Нижняя половинка синусоиды перевернута вверх, чтобы удобнее было представить процесс преобразования.
♦На рисунке приняты обозначения:
Um = Ua = 1 — амплитудное значение величины переменного напряжения. Значение Ua примем за единицу.
Из формулы приведенной выше Uд = 1 / 1,41 = 0,707 — действующее напряжение равно 0,707 от амплитудного значения Ua = 1.Заштрихованная часть синусоиды обозначает затраченную на нагревание паяльника электрическую энергию. В промежутках между половинками синусоид ток по цепи не протекает, а следовательно и не выделяется электрическая мощность.♦Проведем линию, обозначающую Uд = 0,707.Она отсекает верхнюю часть половинок синусоид.Если эти отсеченные вершинки синусоиды уложить в провалы между полупериодами, получится полностью заполненная площадь соответствующая значениям постоянного напряжения U и тока I.Получается, что мощность синусоидального переменного тока с амплитудными значениями Ua и Ia равна мощности действующего значения Uд и Iд переменного тока и равна мощности постоянного тока со значениями U и I.Одна и та же электрическая мощность, выраженная в трех видах.
P = Ua х Ia = Uд х Iд = U х I
♦ Электрические приборы для измерения переменного напряжения и тока отградуированы на отображение действующих значений Uд и Iд.В нашей бытовой электросети действующее, эффективное, напряжение переменного тока Uд равно 220 вольт.Максимальное, амплитудное значение напряжения в сети равно:Um = Ua = Uд х 1,41 = 220 х 1,41 = 310,2 вольт.
Процесс поэтапного преобразования переменного напряжения в пульсирующее напряжение, а затем в постоянное напряжение, наблюдается в схемах выпрямителей.
data-ad-client="ca-pub-5076466341839286"data-ad-slot="1404500382">
domasniyelektromaster.ru
Синусоидальный переменный ток - Большая Энциклопедия Нефти и Газа, статья, страница 1
Синусоидальный переменный ток
Cтраница 1
Синусоидальные переменные токи обычно описываются с помощью векторов действующих или амплитудных значений, в свою очередь векторы могут изображаться в комплексной плоскости. [1]
Синусоидальным переменным током называется ток, величина и направление которого периодически изменяются по закону синуса ( фиг. [2]
Синусоидальным переменным током называют ток, периодически изменяющий свою величину и направление по закону синуса ( фиг. [3]
Амплитуда синусоидального переменного тока равна 5 а. [4]
Амплитуда синусоидального переменного тока равна 5 А. [5]
При синусоидальном переменном токе расчет ведется по амплитудному значению тока и потока. [6]
При синусоидальном переменном токе концентрации св и с0 изменяются при замедленной диффузии и реакции по синусоидальному закону без дополнительных вторичных колебаний. [7]
В случае синусоидального переменного тока по этой формуле получается эффективное значение напряжения. [8]
Среднее значение синусоидального переменного тока за период равно нулю. То же справедливо и для несинусоидальных токов, если равны площади их положительных и отрицательных полуволн. Если же кривая i ( t) такова, что площади положительной и отрицательной частей графика на протяжении периода неодинаковы, то среднее значение тока за период будет отлично от нуля. [9]
Широкое использование синусоидального переменного тока в технике и народном хозяйстве связано со многими его преимуществами, в частности с удобством его преобразования с помощью трансформаторов и с исключительной простотой повсеместно применяемых асинхронных двигателей. [10]
Испытание производится практически синусоидальным переменным током частотой 50 гц. [12]
Наряду с простым синусоидальным переменным током в технике широко используется трехфазный ток. [13]
Наряду с простым синусоидальным переменным током в технике широко используется так называемый трехфазный ток. [14]
В промышленности используется синусоидальный переменный ток частотой / 50 гц. [15]
Страницы: 1 2 3 4
www.ngpedia.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.