Скорость света. Скорость света точное значение


Скорость света — Википедия РУ

Ско́рость све́та в вакууме — абсолютная величина скорости распространения электромагнитных волн в вакууме[Прим. 2]. В физике традиционно обозначается латинской буквой «c{\displaystyle c}» (произносится как «цэ»). Скорость света в вакууме — фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства геометрии пространства-времени в целом[3]. Из постулата причинности (любое событие может оказывать влияние только на события, происходящие позже него и не может оказывать влияние на события, произошедшие раньше него[4][5][6]) и постулата специальной теории относительности о независимости скорости света в вакууме от выбора инерциальной системы отсчета (скорость света в вакууме одинакова во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга[7]) следует, что скорость любого сигнала и элементарной частицы не может превышать скорость света[8][9][6]. Таким образом, скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.

Точные значения Метров в секунду Планковских единиц Приблизительные значения километров в секунду километров в час астрономических единиц в день Приблизительное время путешествия светового сигнала Расстояние один метр один километр от геостационарной орбиты до Земли длина экватора Земли от Луны до Земли от Солнца до Земли (1 а. е.) от Вояджера-1 до Земли Один световой год один парсек от Проксимы Центавра до Земли от Альфы Центавра до Земли от ближайшей галактики (Карликовой галактики в Большом Псе) до Земли через Млечный Путь от Галактики Андромеды до Земли от самой удалённой известной галактики до Земли
Солнечному свету требуется в среднем 8 минут 17 секунд[Прим. 1], чтобы достигнуть Земли
299 792 458
1
300 000
1,08 млрд
173
Время
3,3 нс
3,3 мкс
119 мс
134 мс
1,255 с
8,3 мин.
19 часов и 5 минут (на январь 2017)[1]
1 год
3,26 лет
4,24 лет
4,37 лет
25 000 лет
100 000 лет
2,5 млн лет
13 млрд лет[2]

В вакууме (пустоте)

  Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с

Наиболее точное измерение скорости света 299 792 458 ± 1,2 м/с на основе эталонного метра было проведено в 1975 году[Прим. 3].

На данный момент считают, что скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, или 1 079 252 848,8 км/ч. Точность значения связана с тем, что с 1983 года метр в Международной системе единиц (СИ) определён, как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды[11].

В природе со скоростью света распространяются (в вакууме):

Массивные частицы могут иметь скорость, приближающуюся почти вплотную к скорости света[Прим. 4], но всё же не достигающую её точно. Например, околосветовую скорость, лишь на 3 м/сек меньше скорости света, имеют массивные частицы (протоны), полученные на ускорителе (Большой адронный коллайдер) или входящие в состав космических лучей.[источник не указан 212 дней]

В современной физике считается хорошо обоснованным утверждение, что причинное воздействие не может переноситься со скоростью, большей скорости света в вакууме (в том числе посредством переноса такого воздействия каким-либо физическим телом). Существует, однако, проблема «запутанных состояний» частиц, которые, судя по всему, «узнают» о состоянии друг друга мгновенно. Однако и в этом случае сверхсветовой передачи информации не происходит, поскольку для передачи информации таким способом необходимо привлечь дополнительный классический канал передачи со скоростью света[Прим. 5].

Хотя в принципе движение каких-то объектов со скоростью, большей скорости света в вакууме, вполне возможно, однако это могут быть, с современной точки зрения, только такие объекты, которые не могут быть использованы для переноса информации с их движением (например — солнечный зайчик в принципе может двигаться по стене со скоростью большей скорости света, но никак не может быть использован для передачи информации с такой скоростью от одной точки стены к другой)[13] .

В прозрачной среде

Скорость света в прозрачной среде — скорость, с которой свет распространяется в среде, отличной от вакуума. В среде, обладающей дисперсией, различают фазовую и групповую скорость.

Фазовая скорость связывает частоту и длину волны монохроматического света в среде (λ=cν{\displaystyle \lambda ={\frac {c}{\nu }}} ). Эта скорость обычно (но не обязательно) меньше c{\displaystyle c} . Отношение скорости света в вакууме к фазовой скорости света в среде называется показателем преломления среды.

Групповая скорость света определяется как скорость распространения биений между двумя волнами с близкой частотой и в равновесной среде всегда меньше c{\displaystyle c} . Однако в неравновесных средах, например, сильно поглощающих, она может превышать c{\displaystyle c} . При этом, однако, передний фронт импульса все равно движется со скоростью, не превышающей скорости света в вакууме. В результате сверхсветовая передача информации остаётся невозможной.

Арман Ипполит Луи Физо на опыте доказал, что движение среды относительно светового луча также способно влиять на скорость распространения света в этой среде.

Фундаментальная роль в физике

  Фактор Лоренца (Лоренц-фактор) γ{\displaystyle \gamma }  как функция скорости. Он растет от 1 (для нулевой скорости) до бесконечности (с приближением v{\displaystyle v}  к c{\displaystyle c} ).

Скорость, с которой световые волны распространяются в вакууме, не зависит ни от движения источника волн, ни от системы отсчёта наблюдателя[Прим. 6]. Эйнштейн постулировал такую инвариантность скорости света в 1905 году[14].Он пришел к этому выводу на основании теории электромагнетизма Максвелла и отсутствия доказательств существования светоносного эфира[15].

Инвариантность скорости света неизменно подтверждается множеством экспериментов[16]. Существует возможность проверить экспериментально лишь то, что скорость света в «двустороннем» эксперименте (например, от источника к зеркалу и обратно) не зависит от системы отсчёта, поскольку невозможно измерить скорость света в одну сторону (например, от источника к удалённому приёмнику) без дополнительных договоренностей относительно того, как синхронизировать часы источника и приёмника. Однако, если применить для этого синхронизацию Эйнштейна, односторонняя скорость света становится равной двусторонней по определению[17][18].

Специальная теория относительности исследует последствия инвариантности c{\displaystyle c}  в предположении, что законы физики одинаковы во всех инерциальных системах отсчёта[19][20]. Одним из последствий является то, что c{\displaystyle c}  — это та скорость, с которой должны двигаться в вакууме все безмассовые частицы и волны (в частности, и свет).

Специальная теория относительности имеет много экспериментально проверенных последствий, которые противоречат интуиции[21]. Такие последствия включают: эквивалентность массы и энергии (E0=mc2){\displaystyle (E_{0}=mc^{2})} , сокращение длины (сокращение объектов во время движения)[Прим. 7] и замедление времени (движущиеся часы идут медленнее). Коэффициент γ{\displaystyle \gamma } , показывающий, во сколько раз сокращается длина и замедляется время, известен как фактор Лоренца (Лоренц-фактор) γ=11−v2c2{\displaystyle \gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}} , где v{\displaystyle v}  — скорость объекта. Для скоростей гораздо меньших, чем c{\displaystyle c}  (например, для скоростей, с которыми мы имеем дело каждый день) разница между γ{\displaystyle \gamma }  и 1 настолько мала, что ею можно пренебречь. В этом случае специальная теория относительности хорошо аппроксимируется относительностью Галилея. Но на релятивистских скоростях разница увеличивается и стремится к бесконечности при приближении v{\displaystyle v}  к c{\displaystyle c} .

Объединение результатов специальной теории относительности требует выполнения двух условий: (1) пространство и время являются единой структурой, известной как пространство-время (где c{\displaystyle c}  связывает единицы измерения пространства и времени), и (2) физические законы удовлетворяют требованиям особой симметрии, которая называется инвариантность Лоренца (Лоренц-инвариантность), формула которой содержит параметр c{\displaystyle c} [24]. Инвариантность Лоренца встречается повсеместно в современных физических теориях, таких как квантовая электродинамика, квантовая хромодинамика, стандартная модель физики элементарных частиц и общая теория относительности. Таким образом, параметр c{\displaystyle c}  встречается повсюду в современной физике и появляется во многих смыслах, которые не имеют отношения собственно к свету. Например, общая теория относительности предполагает, что гравитация и гравитационные волны распространяются со скоростью c{\displaystyle c} [25][26]. В неинерциальных системах отсчёта (в гравитационно искривленном пространстве или в системах отсчёта, движущихся с ускорением), локальная скорость света также является постоянной и равна c{\displaystyle c} , однако скорость света вдоль траектории конечной длины может отличаться от c{\displaystyle c}  в зависимости от того, как определено пространство и время[27].

Считается, что фундаментальные константы, такие как c{\displaystyle c} , имеют одинаковое значение во всём пространстве-времени, то есть они не зависят от места и не меняются со временем. Однако некоторые теории предполагают, что скорость света может изменяться со временем[28][29]. Пока нет убедительных доказательств таких изменений, но они остаются предметом исследований[30][31].

Кроме того, считается, что скорость света изотропна, то есть не зависит от направления его распространения. Наблюдения за излучением ядерных энергетических переходов как функции от ориентации ядер в магнитном поле (эксперимент Гугса — Древера), а также вращающихся оптических резонаторов (эксперимент Майкельсона — Морли и его новые вариации), наложили жёсткие ограничения на возможность двусторонней анизотропии[32][33].

В ряде естественных систем единиц скорость света является единицей измерения скорости[34]. В планковской системе единиц, также относящейся к естественным системам, она служит в качестве единицы скорости и является одной из основных единиц системы.

Верхний предел скорости

Согласно специальной теории относительности, энергия объекта с массой покоя m{\displaystyle m}  и скоростью v{\displaystyle v}  равна γmc2{\displaystyle \gamma mc^{2}} , где γ{\displaystyle \gamma }  — определенный выше фактор Лоренца. Когда v{\displaystyle v}  равна нулю, γ{\displaystyle \gamma }  равен единице, что приводит к известной формуле эквивалентности массы и энергии E=mc2{\displaystyle E=mc^{2}} . Поскольку фактор γ{\displaystyle \gamma }  приближается к бесконечности с приближением v{\displaystyle v}  к c{\displaystyle c} , ускорение массивного объекта до скорости света потребует бесконечной энергии. Скорость света — это верхний предел скорости для объектов с ненулевой массой покоя. Это экспериментально установлено во многих тестах релятивистской энергии и импульса[35].

  Событие A предшествует событию B в красной системе отсчёта (СО), одновременно с B в зелёной СО и происходит после B в синей СО

Вообще информация или энергия не могут передаваться в пространстве быстрее, чем со скоростью света. Один из аргументов в пользу этого следует из контринтуитивного заключения специальной теории относительности, известного как относительность одновременности. Если пространственное расстояние между двумя событиями А и В больше, чем промежуток времени между ними, умноженный на c{\displaystyle c} , то существуют такие системы отсчёта, в которых А предшествует B, и другие, в которых B предшествует А, а также такие, в которых события А и B одновременны. В результате, если объект двигался бы быстрее скорости света относительно некоторой инерциальной системы отсчёта, то в другой системе отсчёта он бы путешествовал назад во времени, и принцип причинности был бы нарушен[Прим. 8][37]. В такой системе отсчёта «следствие» можно было бы наблюдать раньше его «первопричины». Такое нарушение причинности никогда не наблюдалось[18]. Оно также может приводить к парадоксам, таким как тахионный антителефон[38].

История измерений скорости света

Античные учёные, за редким исключением, считали скорость света бесконечной[39]. В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер, Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.

Первую оценку скорости света дал Олаф Рёмер (1676). Он заметил, что, когда Земля и Юпитер находятся по разные стороны от Солнца, затмения спутника Юпитера Ио запаздывают по сравнению с расчётами на 22 минуты. Отсюда он получил значение для скорости света около 220 000 км/с — неточное, но близкое к истинному. В 1676 году он сделал сообщение в Академии, но не опубликовал свои результаты в виде формальной научной работы, в результате чего научное сообщество приняло идею о конечной скорости света только в 1727 году[40].

Спустя полвека, в 1728 году, открытие аберрации позволило Дж. Брэдли подтвердить конечность скорости света и уточнить её оценку: полученное Брэдли значение составило 308 000 км/с[41][42].

Впервые измерения скорости света, основанные на определении времени прохождения светом точно измеренного расстояния в земных условиях, выполнил в 1849 году А. И. Л. Физо. В своих экспериментах Физо использовал разработанный им «метод прерываний», при этом расстояние, преодолеваемое светом, составляло 8,63 км. Полученное в результате выполненных измерений значение оказалось равным 313 300 км/с. В дальнейшем метод прерываний значительно усовершенствовали и использовали для измерений М. А. Корню (1876 г.), А. Ж. Перротен (1902 г.) и Э. Бергштранд[sv]. Измерения, выполненные Э. Бергштрандом в 1950 году, дали для скорости света значение 299 793,1 км/с, при этом точность измерений была доведена до 0,25 км/с[41].

Другой лабораторный метод («метод вращающегося зеркала»), идея которого была высказана в 1838 году Ф. Араго, в 1862 году осуществил Леон Фуко. Измеряя малые промежутки времени с помощью вращающегося с большой скоростью (512 об/с) зеркала, он получил для скорости света значение 298 000 км/с с погрешностью 500 км/с. Длина базы в экспериментах Фуко была сравнительно небольшой — двадцать метров[42][41][43][44][45]. В последующем за счёт совершенствования техники эксперимента, увеличения используемой базы и более точного определения её длины точность измерений с помощью метода вращающегося зеркала была существенно повышена. Так, С. Ньюком в 1891 году получил значение 299 810 км/с с погрешностью 50 км/с, а А. А. Майкельсону в 1926 году удалось понизить погрешность до 4 км/с и получить для скорости величину 299 796 км/с. В своих экспериментах Майкельсон использовал базу, равную 35 373,21 м[41].

Дальнейший прогресс был связан с появлением мазеров и лазеров, которые отличаются очень высокой стабильностью частоты излучения, что позволило определять скорость света одновременным измерением длины волны и частоты их излучения. В начале 1970-х годов погрешность измерений скорости света приблизилась к 1 м/с[46]. После проверки и согласования результатов, полученных в различных лабораториях, XV Генеральная конференция по мерам и весам в 1975 году рекомендовала использовать в качестве значения скорости света в вакууме величину, равную 299 792 458 м/с, с относительной погрешностью (неопределённостью) 4·10-9[47], что соответствует абсолютной погрешности 1,2 м/с[48].

Существенно, что дальнейшее повышение точности измерений стало невозможным в силу обстоятельств принципиального характера: ограничивающим фактором стала величина неопределённости реализации определения метра, действовавшего в то время. Проще говоря, основной вклад в погрешность измерений скорости света вносила погрешность «изготовления» эталона метра, относительное значение которой составляло 4·10-9[48]. Исходя из этого, а также учитывая другие соображения, XVII Генеральная конференция по мерам и весам в 1983 году приняла новое определение метра, положив в его основу рекомендованное ранее значение скорости света и определив метр как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды[49].

Сверхсветовое движение

Из специальной теории относительности следует, что превышение скорости света физическими частицами (массивными или безмассовыми) нарушило бы принцип причинности — в некоторых инерциальных системах отсчёта оказалась бы возможной передача сигналов из будущего в прошлое. Однако теория не исключает для гипотетических частиц, не взаимодействующих с обычными частицами[50], движение в пространстве-времени со сверхсветовой скоростью.

Гипотетические частицы, движущиеся со сверхсветовой скоростью, называются тахионами. Математически движение тахионов описывается преобразованиями Лоренца как движение частиц с мнимой массой. Чем выше скорость этих частиц, тем меньше энергии они несут, и наоборот, чем ближе их скорость к скорости света, тем больше их энергия — так же, как и энергия обычных частиц, энергия тахионов стремится к бесконечности при приближении к скорости света. Это самое очевидное следствие преобразования Лоренца, не позволяющее массивной частице (как с вещественной, так и с мнимой массой) достичь скорости света — сообщить частице бесконечное количество энергии просто невозможно.

Следует понимать, что, во-первых, тахионы — это класс частиц, а не один вид частиц, и во-вторых, тахионы не нарушают принцип причинности, если они никак не взаимодействуют с обычными частицами[50].

Обычные частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой, в отличие от безмассовых частиц, называемых люксонами. Люксоны в вакууме всегда движутся со скоростью света, к ним относятся фотоны, глюоны и гипотетические гравитоны.

В планковской системе единиц скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.

C 2006 года показано, что в так называемом эффекте квантовой телепортации кажущееся взаимовлияние частиц распространяется быстрее скорости света. Например, в 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесённые на 18 км в пространстве запутанные фотонные состояния, показала, что это кажущееся «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый «парадокс Хартмана[en]» — кажущаяся сверхсветовая скорость при туннельном эффекте[51]. Анализ этих и подобных результатов показывает, что они не могут быть использованы для сверхсветовой передачи какого-либо несущего информацию сообщения или для перемещения вещества[52].

В результате обработки данных эксперимента OPERA[53], набранных с 2008 по 2011 год в лаборатории Гран-Сассо совместно с ЦЕРН, было зафиксировано статистически значимое указание на превышение скорости света мюонными нейтрино[54]. Сообщение об этом сопровождалось публикацией в архиве препринтов[55]. Полученные результаты специалисты подвергли сомнению, поскольку они не согласуются не только с теорией относительности, но и с другими экспериментами с нейтрино[56]. В марте 2012 года в том же тоннеле были проведены независимые измерения, и сверхсветовых скоростей нейтрино они не обнаружили[57]. В мае 2012 года OPERA провела ряд контрольных экспериментов и пришла к окончательному выводу, что причиной ошибочного предположения о сверхсветовой скорости стал технический дефект (плохо вставленный разъём оптического кабеля)[58].

См. также

Комментарии

  1. ↑ От поверхности Солнца — от 8 мин. 8,3 сек. в перигелии до 8 мин. 25 сек. в афелии.
  2. ↑ Скорость распространения светового импульса в среде отличается от скорости его распространения в вакууме (меньше, чем в вакууме), и может быть различной для разных сред. Когда говорят просто о скорости света, обычно подразумевается именно скорость света в вакууме; если же говорят о скорости света в среде, это, как правило, оговаривается явно.
  3. ↑ В настоящее время наиболее точные методы измерения скорости света основаны на независимом определении значений длины волны λ{\displaystyle \lambda }  и частоты ν{\displaystyle \nu }  света или другого электромагнитного излучения и последующего расчёта в соответствии с равенством c=λν{\displaystyle c=\lambda \nu } .[10]
  4. ↑ См. например «Частица Oh-My-God».
  5. ↑ Аналогом может быть посылка наудачу двух заклеенных конвертов с белой и чёрной бумагой в разные места. Открытие одного конверта гарантирует, что во втором будет лежать второй лист — если первый чёрный, то второй белый, и наоборот. Эта «информация» может распространяться быстрее скорости света — ведь вскрыть второй конверт можно в любое время, и там всегда будет этот второй лист. При этом принципиальная разница с квантовым случаем состоит только в том, что в квантовом случае до «открытия конверта»-измерения состояние листа внутри принципиально неопределённо, как у кота Шрёдингера, и там может оказаться любой лист.
  6. ↑ Однако, частота света зависит от движения источника света относительно наблюдателя, благодаря эффекту Доплера
  7. ↑ В то время как движущиеся измеряемые объектов оказываются короче по линии относительного движения, они также выглядят повёрнутыми. Этот эффект, известный как вращение Террелла, связан с разницей во времени между пришедшими к наблюдателю сигналами от разных частей объекта.[22][23]
  8. ↑ Считается, что эффект Шарнхорста позволяет сигналам распространяться немногим выше c{\displaystyle c} , но особые условия, при которых эффект может возникать, мешают применить этот эффект для нарушения принципа причинности[36]

Примечания

  1. ↑ Where Are the Voyagers - NASA Voyager. Voyager - The Interstellar Mission. Jet Propulsion Laboratory, California Istitute of Technology. Проверено 12 июля 2011. Архивировано 3 февраля 2012 года.
  2. ↑ New galaxy 'most distant' yet discovered
  3. ↑ Is The Speed of Light Everywhere the Same?
  4. ↑ Начала теоретической физики, 2007, с. 169.
  5. ↑ Неванлинна, 1966, с. 122.
  6. ↑ 1 2 Чудинов Э. М. Теория относительности и философия. — М.: Политиздат, 1974. — С. 222—227.
  7. ↑ Эволюция физики, 1948, с. 167.
  8. ↑ Начала теоретической физики, 2007, с. 170.
  9. ↑ Неванлинна, 1966, с. 184.
  10. ↑ Сажин М. В. Скорость света // Физика космоса. Маленькая энциклопедия / Гл. ред. Р. А. Сюняев. — 2-е изд. — М.: Советская энциклопедия, 1986. — С. 622. — 783 с.
  11. ↑ ГОСТ 8.417-2002. Государственная система обеспечения единства измерений. Единицы величин.
  12. ↑ Abbott B. P. et al. (LIGO Scientific Collaboration, Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL) Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A // The Astrophysical Journal. — 2017. — Vol. 848. — P. L13. — DOI:10.3847/2041-8213/aa920c. исправить
  13. ↑ Болотовский Б. М., Гинзбург В. Л. Эффект Вавилова — Черенкова и эффект Допплера при движении источников со скоростью больше скорости света в вакууме // УФН. — 1972. — Т. 106, № 4. — С. 577—592.
  14. ↑ Stachel, JJ. Einstein from "B" to "Z" – Volume 9 of Einstein studies. — Springer, 2002. — P. 226. — ISBN 0-8176-4143-2.
  15. ↑ Einstein, A (1905). «Zur Elektrodynamik bewegter Körper» (German). Annalen der Physik 17: 890–921. DOI:10.1002/andp.19053221004. English translation: Perrett, W On the Electrodynamics of Moving Bodies. Fourmilab. Проверено 27 ноября 2009. Архивировано 1 февраля 2013 года.
  16. ↑ Александров Е. Б. Теория относительности: прямой эксперимент с кривым пучком // Химия и жизнь. — 2012. — № 3.
  17. ↑ Hsu, J-P. Lorentz and Poincaré Invariance / J-P Hsu, Zhang. — World Scientific, 2001. — Vol. 8. — P. 543ff. — ISBN 981-02-4721-4.
  18. ↑ 1 2 Zhang, YZ. Special Relativity and Its Experimental Foundations. — World Scientific, 1997. — Vol. 4. — P. 172–3. — ISBN 981-02-2749-3.
  19. ↑ d'Inverno, R. Introducing Einstein's Relativity. — Oxford University Press, 1992. — P. 19–20. — ISBN 0-19-859686-3.
  20. ↑ Sriranjan, B. Postulates of the special theory of relativity and their consequences // The Special Theory to Relativity. — PHI Learning, 2004. — P. 20 ff. — ISBN 81-203-1963-X.
  21. ↑ Roberts, T What is the experimental basis of Special Relativity?. Usenet Physics FAQ. University of California, Riverside (2007). Проверено 27 ноября 2009. Архивировано 1 февраля 2013 года.
  22. ↑ Terrell, J (1959). «Invisibility of the Lorentz Contraction». Physical Review 116 (4): 1041–5. DOI:10.1103/PhysRev.116.1041. Bibcode: 1959PhRv..116.1041T.
  23. ↑ Penrose, R (1959). «The Apparent Shape of a Relativistically Moving Sphere». Proceedings of the Cambridge Philosophical Society 55 (01): 137–9. DOI:10.1017/S0305004100033776. Bibcode: 1959PCPS...55..137P.
  24. ↑ Hartle, JB. Gravity: An Introduction to Einstein's General Relativity. — Addison-Wesley, 2003. — P. 52–9. — ISBN 981-02-2749-3.
  25. ↑ Hartle, JB. Gravity: An Introduction to Einstein's General Relativity. — Addison-Wesley, 2003. — P. 332. — ISBN 981-02-2749-3.
  26. ↑ The interpretation of observations on binary systems used to determine the speed of gravity is considered doubtful by some authors, leaving the experimental situation uncertain; seeSchäfer, G. Propagation of light in the gravitational filed of binary systems to quadratic order in Newton's gravitational constant: Part 3: ‘On the speed-of-gravity controversy’ // Lasers, clocks and drag-free control: Exploration of relativistic gravity in space / G Schäfer, Brügmann. — Springer, 2008. — ISBN 3-540-34376-8.
  27. ↑ Gibbs, P Is The Speed of Light Constant?. Usenet Physics FAQ. University of California, Riverside (1997). Проверено 26 ноября 2009. Архивировано 17 ноября 2009 года.
  28. ↑ Ellis, GFR (2005). «‘c’ is the speed of light, isn’t it?». American Journal of Physics 73 (3): 240–7. arXiv:gr-qc/0305099. DOI:10.1119/1.1819929. Bibcode: 2005AmJPh..73..240E. “The possibility that the fundamental constants may vary during the evolution of the universe offers an exceptional window onto higher dimensional theories and is probably linked with the nature of the dark energy that makes the universe accelerate today.”
  29. ↑ An overview can be found in the dissertation of Mota, DF (2006), "Variations of the fine structure constant in space and time", arΧiv:astro-ph/0401631 [astro-ph] 
  30. ↑ Uzan, J-P (2003). «The fundamental constants and their variation: observational status and theoretical motivations». Reviews of Modern Physics 75 (2). arXiv:hep-ph/0205340. DOI:10.1103/RevModPhys.75.403. Bibcode: 2003RvMP...75..403U.
  31. ↑ Amelino-Camelia, G (2008), "Quantum Gravity Phenomenology", arΧiv:0806.0339 [gr-qc] 
  32. ↑ (2009) «Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level». Physical Review D 80 (100): 105011. arXiv:1002.1284. DOI:10.1103/PhysRevD.80.105011. Bibcode: 2009PhRvD..80j5011H.
  33. ↑ Lang, KR. Astrophysical formulae. — 3rd. — Birkhäuser, 1999. — P. 152. — ISBN 3-540-29692-1.
  34. ↑ Tomilin K. A. Natural Systems of Units: To the Centenary Anniversary of the Planck System (англ.). Proc. of the XXII Internat. Workshop on high energy physics and field theory (June 1999). Проверено 22 декабря 2016.
  35. ↑ Fowler, M Notes on Special Relativity. University of Virginia (March 2008). Проверено 7 мая 2010. Архивировано 1 февраля 2013 года.
  36. ↑ Liberati, S (2002). «Faster-than-c signals, special relativity, and causality». Annals of Physics 298 (1): 167–85. arXiv:gr-qc/0107091. DOI:10.1006/aphy.2002.6233. Bibcode: 2002AnPhy.298..167L.
  37. ↑ Taylor, EF. Spacetime Physics / EF Taylor, Wheeler. — W. H. Freeman, 1992. — P. 74–5. — ISBN 0-7167-2327-1.
  38. ↑ Tolman, RC. Velocities greater than that of light // The Theory of the Relativity of Motion. — Reprint. — BiblioLife, 2009. — P. 54. — ISBN 978-1-103-17233-7.
  39. ↑ Гиндикин С. Г. Рассказы о физиках и математиках. — издание третье, расширенное. — М.: МЦНМО, 2001. — С. 105—108. — ISBN 5-900916-83-9.
  40. ↑ Стюарт, 2018, с. 178.
  41. ↑ 1 2 3 4 Ландсберг Г. С. Оптика. — М.: Физматлит, 2003. — С. 384—389. — 848 с. — ISBN 5-9221-0314-8.
  42. ↑ 1 2 Бонч-Бруевич А. М. Скорость света // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 548—549. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  43. ↑ Léon Foucault Détermination expérimentale de la vitesse de la lumière ; description des appareils (фр.) // Comptes rendus hebdomadaires des séances de l'Académie des Sciences. — Paris, 1862. — Vol. 55. — P. 792—796.
  44. ↑ Léon Foucault Détermination expérimentale de la vitesse de la lumière ; parallaxe du Soleil (фр.) // Comptes rendus hebdomadaires des séances de l'Académie des Sciences. — Paris, 1862. — Vol. 55. — P. 501—503.
  45. ↑ Léon Foucault Experimental Determination of the Velocity of Light: Description of the Apparatus (англ.) // Philosophical Magazine. Fourth Series. — London, 1863. — Vol. 25. — P. 76—79.
  46. ↑ Evenson K. M., Wells J. S., Petersen F. R., Danielson B. L., Day G. W. Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser (англ.) // Phys. Rev. Lett.. — 1972. — Vol. 29, no. 19. — P. 1346—1349. — DOI:10.1103/PhysRevLett.29.1346.
  47. ↑ Указанное число представляет собой утроенное стандартное отклонение.
  48. ↑ 1 2 Рекомендованное значение скорости света (англ.) Резолюция 2 XV Генеральной конференции по мерам и весам (1975)
  49. ↑ Определение метра (англ.) Резолюция 1 XVII Генеральной конференции по мерам и весам (1983)
  50. ↑ 1 2 Введение в рассмотрение полевой квантовой природы этих сверхсветовых частиц, возможно, позволяет обойти это ограничение через принцип переинтерпретации наблюдений.
  51. ↑ Давидович М. В. О парадоксе Хартмана, туннелировании электромагнитных волн и сверхсветовых скоростях // Успехи физических наук. — М., 2009 (апрель). — Вып. 179. — С. 443.
  52. ↑ И. Иванов. Проведены новые эксперименты по проверке механизма квантовой запутанности. Элементы.ру.
  53. ↑ Oscillation Project with Emulsion-tRacking Apparatus
  54. ↑ OPERA experiment reports anomaly in flight time of neutrinos from CERN to Gran Sasso
  55. ↑ OPERA Collaboration (Adam T. et al.) (2011), "Measurement of the neutrino velocity with the OPERA detector in the CNGS beam", arΧiv:1109.4897  .
  56. ↑ И.Иванов. Эксперимент OPERA сообщает о наблюдении сверхсветовой скорости нейтрино. Элементы.ру, 23 сентября 2011 года.
  57. ↑ ICARUS Collaboration et al. Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam // Physics Letters B. — 2012. — Vol. 713 (18 июля). — P. 17–22. — arXiv:1203.3433. — DOI:10.1016/j.physletb.2012.05.033.
  58. ↑ Эксперимент OPERA окончательно «закрыл» сверхсветовые нейтрино.

Литература

  • Александров Е. Б., Александров П. А., Запасский В. С., Корчуганов В. Н., Стирин А. И. Эксперименты по прямой демонстрации независимости скорости света от скорости движения источника // Успехи физических наук. — 2011. — Вып. 12..
  • Физические величины: Справочник./А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; под ред. И. С. Григорьева, Е. З. Мейлихова М.: Энергоатомиздат, 1991, — 1232 с — ISBN 5-283-04013-5
  • Эйнштейн А., Инфельд Л. Эволюция физики. — М.: ОГИЗ, 1948. — 267 с.
  • Медведев Б. В. Начала теоретической физики. — М.: Физматлит, 2007. — 600 с.
  • Неванлинна Р. Пространство, время и относительность. — М.: Мир, 1966. — 229 с.
  • Иэн Стюарт. Математика космоса. Как современная наука расшифровывает Вселенную. = Stewart Ian. Calculating the Cosmos: How Mathematics Unveils the Universe. — Альпина Паблишер, 2018. — 542 p. — ISBN 978-5-91671-814-0..

Ссылки

http-wikipediya.ru

Скорость света — Википедия

Точные значенияМетров в секундуПланковских единицПриблизительные значениякилометров в секундукилометров в часмиль в секундумиль в часастрономических единиц в деньПриблизительное время путешествия светового сигналаРасстояниеодин футодин метродин километродна статутная миляот геостационарной орбиты до Землидлина экватора Землиот Луны до Землиот Солнца до Земли (1 а. е.)от Вояджера-1 до ЗемлиОдин световой гододин парсекот Проксимы Центавра до Землиот Альфы Центавра до Землиот ближайшей галактики (Карликовой галактики в Большом Псе) до Земличерез Млечный Путьот Галактики Андромеды до Землиот самой удалённой известной галактики до Земли
Солнечному свету требуется около 8 минут 19 секунд, чтобы достигнуть Земли

299 792 458

1

300 000

1,08 млрд

186 000

671 млн

173

Время

1,0 нс

3,3 нс

3,3 мкс

5,4 мкс

119 мс

134 мс

1,255 с

8,3 мин.

18 часов и 18 минут (на июль 2015)[1].

1 год

3,26 лет

4,24 лет

4,37 лет

25 000 лет

100 000 лет

2,5 млн лет

30 млрд лет[2]

Ско́рость све́та в вакууме — абсолютная величина скорости распространения электромагнитных волн в вакууме[3]. В физике традиционно обозначается латинской буквой «c» (произносится как «цэ»). Скорость света в вакууме — фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства геометрии пространства-времени в целом[4]. По современным представлениям, скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.

В вакууме (пустоте)[править]

Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с.

Наиболее точное измерение скорости света 299 792 458 ± 1,2 м/с на основе эталонного метра было проведено в 1975 году[Прим. 1].

На данный момент считают, что скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, или 1 079 252 848,8 км/ч. Точность значения связана с тем, что с 1983 года метр в Международной системе единиц (СИ) определён, как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды[6].

В природе со скоростью света распространяются (в вакууме):

Массивные частицы могут иметь скорость, приближающуюся почти вплотную к скорости света[Прим. 2], но всё же не достигающую её точно. Например, околосветовую скорость имеют массивные частицы, полученные на ускорителе или входящие в состав космических лучей.

В современной физике считается хорошо обоснованным утверждение, что причинное воздействие не может переноситься со скоростью, большей скорости света в вакууме (в том числе посредством переноса такого воздействия каким-либо физическим телом). Существует, однако, проблема «запутанных состояний» частиц, которые, судя по всему, «узнают» о состоянии друг друга мгновенно. Однако и в этом случае сверхсветовой передачи информации не происходит, поскольку для передачи информации таким способом необходимо привлечь дополнительный классический канал передачи со скоростью света[7].

Хотя в принципе движение каких-то объектов со скоростью, большей скорости света в вакууме, вполне возможно, однако это могут быть, с современной точки зрения, только такие объекты, которые не могут быть использованы для переноса информации с их движением (например — солнечный зайчик в принципе может двигаться по стене со скоростью большей скорости света, но никак не может быть использован для передачи информации с такой скоростью от одной точки стены к другой)[8].

В прозрачной среде[править]

Скорость света в прозрачной среде — скорость, с которой свет распространяется в среде, отличной от вакуума. В среде, обладающей дисперсией, различают фазовую и групповую скорость.

Фазовая скорость связывает частоту и длину волны монохроматического света в среде (λ = c/ν). Эта скорость обычно (но не обязательно) меньше c. Отношение фазовой скорости света в вакууме к скорости света в среде называется показателем преломления среды.

Групповая скорость света определяется как скорость распространения биений между двумя волнами с близкой частотой и в равновесной среде всегда меньше c. Однако в неравновесных средах, например, сильно поглощающих, она может превышать c. При этом, однако, передний фронт импульса все равно движется со скоростью, не превышающей скорости света в вакууме. В результате сверхсветовая передача информации остаётся невозможной.

Арман Ипполит Луи Физо на опыте доказал, что движение среды относительно светового луча также способно влиять на скорость распространения света в этой среде.

Фундаментальная роль в физике[править]

Фактор Лоренца (Лоренц-фактор) γ как функция скорости. Он растет от 1 (для нулевой скорости) до бесконечности (с приближением v к c).

Скорость, с которой световые волны распространяются в вакууме, не зависит ни от движения источника волн, ни от системы отсчёта наблюдателя[Прим. 3]. Эйнштейн постулировал такую инвариантность скорости света в 1905 году[9].Он пришел к этому выводу на основании теории электромагнетизма Максвелла и отсутствия доказательств существования светоносного эфира[10].

Инвариантность скорости света неизменно подтверждается множеством экспериментов[11]. Существует возможность проверить экспериментально лишь то, что скорость света в «двустороннем» эксперименте (например, от источника к зеркалу и обратно) не зависит от системы отсчёта, поскольку невозможно измерить скорость света в одну сторону (например, от источника к удалённому приёмнику) без дополнительных договоренностей относительно того, как синхронизировать часы источника и приёмника. Однако, если применить для этого синхронизацию Эйнштейна, односторонняя скорость света становится равной двусторонней по определению[12][13].

Специальная теория относительности исследует последствия инвариантности c в предположении, что законы физики одинаковы во всех инерциальных системах отсчёта[14][15]. Одним из последствий является то, что c — это та скорость, с которой должны двигаться в вакууме все безмассовые частицы и волны (в частности, и свет).

Специальная теория относительности имеет много экспериментально проверенных последствий, которые противоречат интуиции[16]. Такие последствия включают: эквивалентность массы и энергии , сокращение длины (сокращение объектов во время движения)[Прим. 4] и замедление времени (движущиеся часы идут медленнее). Коэффициент γ, на которое сокращается длина и замедляется время, известен как фактор Лоренца (Лоренц-фактор) , где V — скорость объекта. Для скоростей гораздо меньших, чем c (например, для скоростей, с которыми мы имеем дело каждый день) разница между γ и 1 настолько мала, что ею можно пренебречь. В этом случае специальная теория относительности хорошо аппроксимируется относительностью Галилея. Но на релятивистских скоростях разница увеличивается и приближается к бесконечности с приближением V к c .

Объединение результатов специальной теории относительности требует выполнения двух условий: (1) пространство и время являются единой структурой, известной как пространство-время (где c связывает единицы измерения пространства и времени), и (2) физические законы удовлетворяют требованиям особой симметрии, которая называется инвариантность Лоренца (Лоренц-инвариантность), формула которой содержит параметр с[19]. Инвариантность Лоренца встречается повсеместно в современных физических теориях, таких как квантовая электродинамика, квантовая хромодинамика, стандартная модель физики элементарных частиц и общая теория относительности. Таким образом, параметр c встречается повсюду в современной физике и появляется во многих смыслах, которые не имеют отношения собственно к свету. Например, общая теория относительности предполагает, что гравитация и гравитационные волны распространяются со скоростью c[20][21]. В неинерциальных системах отсчёта (в гравитационно искривленном пространстве или в системах отсчёта, движущихся с ускорением), локальная скорость света также является постоянной и равна c, однако скорость света вдоль траектории конечной длины может отличаться от c в зависимости от того, как определено пространство и время[22].

Считается, что фундаментальные константы, такие как c, имеют одинаковое значение во всем пространстве-времени, то есть они не зависят от места и не меняются со временем. Однако некоторые теории предполагают, что скорость света может изменяться со временем[23][24]. Пока нет убедительных доказательств таких изменений, но они остаются предметом исследований[25][26].

Кроме того, считается, что скорость света изотропна, то есть не зависит от направления его распространения. Наблюдения за излучением ядерных энергетических переходов как функции от ориентации ядер в магнитном поле (эксперимент Гугса — Древера), а также вращающихся оптических резонаторов (эксперимент Майкельсона — Морли и его новые вариации), наложили жёсткие ограничения на возможность двусторонней анизотропии[27][28].

Верхний предел скорости[править]

Согласно специальной теории относительности, энергия объекта с массой покоя m и скоростью v равна γmc2, где γ — определенный выше фактор Лоренца. Когда v равна нулю, γ равен единице, что приводит к известной формуле эквивалентности массы и энергии E = mc2. Поскольку фактор γ приближается к бесконечности с приближением v к c, ускорение массивного объекта до скорости света потребует бесконечной энергии. Скорость света — это верхний предел скорости для объектов с массой покоя. Это экспериментально установлено во многих тестах релятивистской энергии и импульса[29].

Событие A предшествует событию B в красной системе отсчёта (СО), одновременно с B в зелёной СО и происходит после B в синей СО.

Вообще информация или энергия не могут передаваться в пространстве быстрее, чем со скоростью света. Один из аргументов в пользу этого следует из контринтуитивного заключения специальной теории относительности, известного как относительность одновременности. Если пространственное расстояние между двумя событиями А и В больше, чем промежуток времени между ними, умноженный на c, то существуют такие системы отсчёта, в которых А предшествует B, и другие, в которых B предшествует А, а также такие, в которых события А и B одновременны. В результате, если объект двигался бы быстрее скорости света относительно некоторой инерциальной системы отсчёта, то в другой системе отсчёта он бы путешествовал назад во времени, и принцип причинности был бы нарушен[Прим. 5][31]. В такой системе отсчёта «следствие» можно было бы наблюдать раньше его «первопричины». Такое нарушение причинности никогда не наблюдалось[13]. Оно также может приводить к парадоксам, таким как тахионный антителефон[32].

История измерений скорости света[править]

Античные учёные, за редким исключением, считали скорость света бесконечной[33]. В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер, Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.

Первую оценку скорости света дал Олаф Рёмер (1676). Он заметил, что когда Земля и Юпитер находятся по разные стороны от Солнца, затмения спутника Юпитера Ио запаздывают по сравнению с расчётами на 22 минуты. Отсюда он получил значение для скорости света около 220 000 км/с — неточное, но близкое к истинному. Спустя полвека, в 1728 году, открытие аберрации позволило Дж. Брэдли подтвердить конечность скорости света и уточнить её оценку: полученное Брэдли значение составило 308 000 км/с[34][35].

Впервые измерения скорости света, основанные на определении времени прохождения светом точно измеренного расстояния в земных условиях, выполнил в 1849 году А. И. Л. Физо. В своих экспериментах Физо использовал разработанный им «метод прерываний», при этом расстояние, преодолеваемое светом, составляло 8,63 км. Полученное в результате выполненных измерений значение оказалось равным 313 300 км/с. В дальнейшем метод прерываний значительно усовершенствовали и использовали для измерений М. А. Корню (1876 г.), А. Ж. Перротен (1902 г.) и Э. Бергштранд[sv]. Измерения, выполненные Э. Бергштрандом в 1950 году, дали для скорости света значение 299 793,1 км/с, при этом точность измерений была доведена до 0,25 км/с[34].

Другой лабораторный метод («метод вращающегося зеркала»), идея которого была высказана в 1838 году Ф. Араго, в 1862 году осуществил Леон Фуко. Измеряя малые промежутки времени с помощью вращающегося с большой скоростью (512 об/с) зеркала, он получил для скорости света значение 298 000 км/с с погрешностью 500 км/с. Длина базы в экспериментах Фуко была сравнительно небольшой — двадцать метров[35][36][37][38]. В последующем за счёт совершенствования техники эксперимента, увеличения используемой базы и более точного определения её длины точность измерений с помощью метода вращающегося зеркала была существенно повышена. Так, С. Ньюком в 1891 году получил значение 299 810 км/с с погрешностью 50 км/с, а А. А. Майкельсону в 1926 году удалось понизить погрешность до 4 км/с и получить для скорости величину 299 796 км/с. В своих экспериментах Майкельсон использовал базу, равную 35 373,21 м[34].

Дальнейший прогресс был связан с появлением мазеров и лазеров, которые отличаются очень высокой стабильностью частоты излучения, что позволило определять скорость света одновременным измерением длины волны и частоты их излучения. В начале 1970-х годов погрешность измерений скорости света приблизилась к 1 м/с[39]. После проверки и согласования результатов, полученных в различных лабораториях, XV Генеральная конференция по мерам и весам в 1975 году рекомендовала использовать в качестве значения скорости света в вакууме величину, равную 299 792 458 м/с, с относительной погрешностью (неопределённостью) 4·10-9[40], что соответствует абсолютной погрешности 1,2 м/с[41].

Существенно, что дальнейшее повышение точности измерений стало невозможным в силу обстоятельств принципиального характера: ограничивающим фактором стала величина неопределённости реализации определения метра, действовавшего в то время. Проще говоря, основной вклад в погрешность измерений скорости света вносила погрешность «изготовления» эталона метра, относительное значение которой составляло 4·10-9[41]. Исходя из этого, а также учитывая другие соображения, XVII Генеральная конференция по мерам и весам в 1983 году приняла новое определение метра, положив в его основу рекомендованное ранее значение скорости света и определив метр как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды[42].

Сверхсветовое движение[править]

Из специальной теории относительности следует, что превышение скорости света физическими частицами (массивными или безмассовыми) нарушило бы принцип причинности — в некоторых инерциальных системах отсчёта оказалась бы возможной передача сигналов из будущего в прошлое. Однако теория не исключает для гипотетических частиц, не взаимодействующих с обычными частицами[43], движение в пространстве-времени со сверхсветовой скоростью.

Гипотетические частицы, движущиеся со сверхсветовой скоростью, называются тахионами. Математически движение тахионов описывается преобразованиями Лоренца как движение частиц с мнимой массой. Чем выше скорость этих частиц, тем меньше энергии они несут, и наоборот, чем ближе их скорость к скорости света, тем больше их энергия — так же, как и энергия обычных частиц, энергия тахионов стремится к бесконечности при приближении к скорости света. Это самое очевидное следствие преобразования Лоренца, не позволяющее массивной частице (как с вещественной, так и с мнимой массой) достичь скорости света — сообщить частице бесконечное количество энергии просто невозможно.

Следует понимать, что, во-первых, тахионы — это класс частиц, а не один вид частиц, и во-вторых, тахионы не нарушают принцип причинности, если они никак не взаимодействуют с обычными частицами[43].

Обычные частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой, в отличие от безмассовых частиц, называемых люксонами. Люксоны в вакууме всегда движутся со скоростью света, к ним относятся фотоны, глюоны и гипотетические гравитоны.

В планковской системе единиц скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.

C 2006 года показано, что в так называемом эффекте квантовой телепортации кажущееся взаимовлияние частиц распространяется быстрее скорости света. Например, в 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесённые на 18 км в пространстве запутанные фотонные состояния, показала, что это кажущееся «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый парадокс Хартмана — кажущаяся сверхсветовая скорость при туннельном эффекте[44]. Анализ этих и подобных результатов показывает, что они не могут быть использованы для сверхсветовой передачи какого-либо несущего информацию сообщения или для перемещения вещества[45].

В результате обработки данных эксперимента OPERA[46], набранных с 2008 по 2011 год в лаборатории Гран-Сассо совместно с ЦЕРН, было зафиксировано статистически значимое указание на превышение скорости света мюонными нейтрино[47]. Сообщение об этом сопровождалось публикацией в архиве препринтов[48]. Полученные результаты специалисты подвергли сомнению, поскольку они не согласуются не только с теорией относительности, но и с другими экспериментами с нейтрино[49]. В марте 2012 года в том же тоннеле были проведены независимые измерения, и сверхсветовых скоростей нейтрино они не обнаружили[50]. В мае 2012 года OPERA провела ряд контрольных экспериментов и пришла к окончательному выводу, что причиной ошибочного предположения о сверхсветовой скорости стал технический дефект (плохо вставленный разъём оптического кабеля)[51].

В фантастическом рассказе «Светопреставление» Александр Беляев описывает ситуацию, когда скорость света снижается до нескольких метров в секунду.

  1. ↑ Where Are the Voyagers - NASA Voyager. Voyager - The Interstellar Mission. Jet Propulsion Laboratory, California Istitute of Technology. Проверено 12 июля 2011. Архивировано из первоисточника 3 февраля 2012.
  2. ↑ New galaxy 'most distant' yet discovered
  3. ↑ Скорость распространения светового импульса в среде отличается от скорости его распространения в вакууме (меньше, чем в вакууме), и может быть различной для разных сред. Когда говорят просто о скорости света, обычно подразумевается именно скорость света в вакууме; если же говорят о скорости света в среде, это, как правило, оговаривается явно.
  4. ↑ Is The Speed of Light Everywhere the Same?
  5. ↑ Сажин М. В. Скорость света // Физика космоса. Маленькая энциклопедия / Гл. ред. Р. А. Сюняев. — 2-е изд. — М.: Советская энциклопедия, 1986. — С. 622. — 783 с.
  6. ↑ ГОСТ 8.417-2002. Государственная система обеспечения единства измерений. Единицы величин.
  7. ↑ Аналогом может быть посылка наудачу двух заклеенных конвертов с белой и чёрной бумагой в разные места. Открытие одного конверта гарантирует, что во втором будет лежать второй лист — если первый чёрный, то второй белый, и наоборот. Эта «информация» может распространяться быстрее скорости света — ведь вскрыть второй конверт можно в любое время, и там всегда будет этот второй лист. При этом принципиальная разница с квантовым случаем состоит только в том, что в квантовом случае до «открытия конверта»-измерения состояние листа внутри принципиально неопределённо, как у кота Шрёдингера, и там может оказаться любой лист.
  8. ↑ Болотовский Б. М., Гинзбург В. Л. Эффект Вавилова — Черенкова и эффект Допплера при движении источников со скоростью больше скорости света в вакууме // УФН. — 1972. —,. —.
  9. ↑ Einstein from "B" to "Z" – Volume 9 of Einstein studies. — Springer, 2002. — P. 226. — ISBN 0-8176-4143-2.
  10. ↑ Einstein, A (1905). «Zur Elektrodynamik bewegter Körper» (German). Annalen der Physik 17: 890–921. DOI:10.1002/andp.19053221004. English translation: Perrett, W On the Electrodynamics of Moving Bodies. Fourmilab. Проверено 27 ноября 2009. Архивировано из первоисточника 1 февраля 2013.
  11. ↑ Александров Е. Б. Теория относительности: прямой эксперимент с кривым пучком // Химия и жизнь. — 2012. —.
  12. ↑ Hsu J-P. Lorentz and Poincaré Invariance. — World Scientific, 2001. — Vol. 8. — P. 543ff. — ISBN 981-02-4721-4.
  13. ↑ 13,013,1 Zhang YZ. Special Relativity and Its Experimental Foundations. — World Scientific, 1997. — Vol. 4. — P. 172–3. — ISBN 981-02-2749-3.
  14. ↑ d'Inverno R. Introducing Einstein's Relativity. — Oxford University Press, 1992. — P. 19–20. — ISBN 0-19-859686-3.
  15. ↑ Sriranjan B. Postulates of the special theory of relativity and their consequences // The Special Theory to Relativity. — PHI Learning, 2004. — P. 20 ff. — ISBN 81-203-1963-X.
  16. ↑ Roberts, T What is the experimental basis of Special Relativity?. Usenet Physics FAQ. University of California, Riverside (2007). Проверено 27 ноября 2009. Архивировано из первоисточника 1 февраля 2013.
  17. ↑ Terrell, J (1959). «Invisibility of the Lorentz Contraction». Physical Review 116 (4): 1041–5. DOI:10.1103/PhysRev.116.1041. Bibcode: 1959PhRv..116.1041T.
  18. ↑ Penrose, R (1959). «The Apparent Shape of a Relativistically Moving Sphere». Proceedings of the Cambridge Philosophical Society 55 (01): 137–9. DOI:10.1017/S0305004100033776. Bibcode: 1959PCPS...55..137P.
  19. ↑ Hartle JB. Gravity: An Introduction to Einstein's General Relativity. — Addison-Wesley, 2003. — P. 52–9. — ISBN 981-02-2749-3.
  20. ↑ Hartle JB. Gravity: An Introduction to Einstein's General Relativity. — Addison-Wesley, 2003. — P. 332. — ISBN 981-02-2749-3.
  21. ↑ The interpretation of observations on binary systems used to determine the speed of gravity is considered doubtful by some authors, leaving the experimental situation uncertain; seePropagation of light in the gravitational filed of binary systems to quadratic order in Newton's gravitational constant: Part 3: ‘On the speed-of-gravity controversy’ // Lasers, clocks and drag-free control: Exploration of relativistic gravity in space. — Springer, 2008. — ISBN 3-540-34376-8.
  22. ↑ Gibbs, P Is The Speed of Light Constant?. Usenet Physics FAQ. University of California, Riverside (1997). Проверено 26 ноября 2009. Архивировано из первоисточника 17 ноября 2009.
  23. ↑ Ellis, GFR (2005). «‘c’ is the speed of light, isn’t it?». American Journal of Physics 73 (3): 240–7. DOI:10.1119/1.1819929. Bibcode: 2005AmJPh..73..240E. “The possibility that the fundamental constants may vary during the evolution of the universe offers an exceptional window onto higher dimensional theories and is probably linked with the nature of the dark energy that makes the universe accelerate today.”
  24. ↑ An overview can be found in the dissertation of Mota, DF (2006), "Variations of the fine structure constant in space and time", arΧiv:astro-ph/0401631 [astro-ph] 
  25. ↑ Uzan, J-P (2003). «The fundamental constants and their variation: observational status and theoretical motivations». Reviews of Modern Physics 75 (2). DOI:10.1103/RevModPhys.75.403. Bibcode: 2003RvMP...75..403U.
  26. ↑ Amelino-Camelia, G (2008), "Quantum Gravity Phenomenology", arΧiv:0806.0339 [gr-qc] 
  27. ↑ (2009) «Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level». Physical Review D 80 (100): 105011. DOI:10.1103/PhysRevD.80.105011. Bibcode: 2009PhRvD..80j5011H.
  28. ↑ Lang KR. Astrophysical formulae. — 3rd. — Birkhäuser, 1999. — P. 152. — ISBN 3-540-29692-1.
  29. ↑ Fowler, M Notes on Special Relativity. University of Virginia (March 2008). Проверено 7 мая 2010. Архивировано из первоисточника 1 февраля 2013.
  30. ↑ Liberati, S (2002). «Faster-than-c signals, special relativity, and causality». Annals of Physics 298 (1): 167–85. DOI:10.1006/aphy.2002.6233. Bibcode: 2002AnPhy.298..167L.
  31. ↑ Taylor EF. Spacetime Physics. — W. H. Freeman, 1992. — P. 74–5. — ISBN 0-7167-2327-1.
  32. ↑ Tolman RC. Velocities greater than that of light // The Theory of the Relativity of Motion. — Reprint. — BiblioLife, 2009. — P. 54. — ISBN 978-1-103-17233-7.
  33. ↑ Гиндикин С. Г. Рассказы о физиках и математиках. — издание третье, расширенное. — М.: МЦНМО, 2001. — С. 105-108. — ISBN 5-900916-83-9.
  34. ↑ 34,034,134,2 Ландсберг Г. С. Оптика. — М.: Физматлит, 2003. — С. 384—389. — 848 с. — ISBN 5-9221-0314-8.
  35. ↑ 35,035,1 Бонч-Бруевич А. М. Скорость света // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 548—549. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  36. ↑ Léon Foucault Détermination expérimentale de la vitesse de la lumière ; description des appareils (фр.) // Comptes rendus hebdomadaires des séances de l'Académie des Sciences. — Paris, 1862. — Vol. 55. — P. 792—796.
  37. ↑ Léon Foucault Détermination expérimentale de la vitesse de la lumière ; parallaxe du Soleil (фр.) // Comptes rendus hebdomadaires des séances de l'Académie des Sciences. — Paris, 1862. — Vol. 55. — P. 501—503.
  38. ↑ Léon Foucault Experimental Determination of the Velocity of Light: Description of the Apparatus (англ.) // Philosophical Magazine. Fourth Series. — London, 1863. — Vol. 25. — P. 76—79.
  39. ↑ Evenson K. M., Wells J. S., Petersen F. R., Danielson B. L., Day G. W. Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser (англ.) // Phys. Rev. Lett.. — 1972. — Vol. 29,. — P. 1346-1349. — DOI:10.1103/PhysRevLett.29.1346.
  40. ↑ Указанное число представляет собой утроенное стандартное отклонение.
  41. ↑ 41,041,1 Рекомендованное значение скорости света  (англ.) Резолюция 2 XV Генеральной конференции по мерам и весам (1975)
  42. ↑ Определение метра (англ.) Резолюция 1 XVII Генеральной конференции по мерам и весам (1983)
  43. ↑ 43,043,1 Введение в рассмотрение полевой квантовой природы этих сверхсветовых частиц, возможно, позволяет обойти это ограничение через принцип переинтерпретации наблюдений.
  44. ↑ Давидович М. В. О парадоксе Хартмана, туннелировании электромагнитных волн и сверхсветовых скоростях // Успехи физических наук. — М., 2009 (апрель). —. —.
  45. ↑ И. Иванов. Проведены новые эксперименты по проверке механизма квантовой запутанности. Элементы.ру.
  46. ↑ Oscillation Project with Emulsion-tRacking Apparatus
  47. ↑ OPERA experiment reports anomaly in flight time of neutrinos from CERN to Gran Sasso
  48. ↑ OPERA Collaboration (Adam T. et al.) (2011), "Measurement of the neutrino velocity with the OPERA detector in the CNGS beam", arΧiv:1109.4897  .
  49. ↑ И.Иванов. Эксперимент OPERA сообщает о наблюдении сверхсветовой скорости нейтрино. Элементы.ру, 23 сентября 2011 года.
  50. ↑ ICARUS Collaboration et al. Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam // Physics Letters B. — 2012. — Vol. 713 (18 июля). — P. 17–22. — arΧiv: 1203.3433. — DOI:10.1016/j.physletb.2012.05.033.</span>
  51. ↑ Эксперимент OPERA окончательно «закрыл» сверхсветовые нейтрино.
  52. </ol>

www.wiki-wiki.ru

Скорость света - Квантуз - просто о науке

Получив множество благодарностей от изголодавшегося по науке населения этой страны, мы решили продолжить ликбез для тех, кто в детстве мечтал стать ученым, но как-то не сложилось. Назло всем специалистам и кандидатам, нарушая все до единой методологии и правила хорошего научного текста, мы пишем доступным языком об открытиях современной (и не очень) науки и прилагаем к этому случайные картинки из интернета.Сегодня мы поговорим о скорости света, почему она постоянная, почему все "бегают" с этой скоростью и удивляются оной, и что вообще, черт побери, происходит.

Собственно говоря, скорость света начали пытаться измерить еще очень давно. Всякие там Кеплеры и прочие считали, что скорость света бесконечна, а Галилей, например, полагал, что скорость определить можно, но трудно, так как она очень большая.Прав оказался Галилей и иже с ним. В 17 веке некто Рёмер неточно рассчитал скорость света, когда наблюдал затмения спутников Юпитера. Ну а в дальнейшем научно-технический прогресс окончательно все расставил по местам, и выяснилось, что скорость света равна приблизительно 300 000 километров в секунду.

Но что же такого в этом значении? Почему эта скорость так важна? Скорость моего лисапеда тоже можно подсчитать, но никто ж над ней не размышляет о вечности и структуре мироздания.

А подвох в том, что скорость света ВСЕГДА равна 300 000 километров в секунду.Исходя из собственного опыта путешествия на лисапедах, представим ситуацию: вы с другом едете на велосипедах: ваш друг чуть быстрее, а вы чуть медленнее. Допустим со скоростями 20 и 15 км/час соответственно. И если вы, двигаясь со своей скоростью, решите измерить (как-нибудь) скорость друга, то вы вычислите, что ваш друг двигается относительно вас со скоростью 5 км/час.

Ну, это простые правила сложения скоростей. Тут то, надеемся, все понятно. Если вы увеличите скорость до 20 км/час и нагоните друга, то относительно вас ваш друг будет иметь скорость равную нулю.

Это логично и следует из жизненного опыта. Скорость моторной лодки которая, движется по течению также складывается из собственной скорости лодки и скорости течения реки.

А теперь попробуем проделать тот же фокус со светом. Ваш друг внезапно аннигилировал и превратился в луч света. Вы решили погнаться за ним и сильно для этого постарались. Вы разогнались до скорости довольно близкой к скорости света. И чисто ради прикола, из научного, так сказать, любопытства, решили тоже замерить скорость вашего бывшего друга. Разумеется, вы уверены, что получите решение равное скорости света за минусом вашей собственной скорости.

И вот тут вас ждет сюрприз. Расчетно-опытном путем вы выясните, что относительная скорость вашего лучевого приятеля по-прежнему 300 000 м/сек. С какой бы скоростью не двигались лично вы, независимо от направления: параллельно движению света, навстречу свету, перпендикулярно и т.д. – скорость света всегда будет равна 300 000 м/сек.

Впервые вот эту нестыковочку заметили в начале XX века пара ученых Майкельсон и Морли.

Множество опытов впоследствии подтвердили: как не измеряй скорость света, она при любых условиях относительного движения равна своему постоянному значению. Многие люди до сих пор отказываются в это верить и шарлатаны от науки задвигают теории опровержения постоянства скорости света. До 1905 года никто не мог объяснить, почему скорость света не хочет быть относительной, пока не пришел Эйнштейн и не догадался, что происходит.

Скорость света, как оказалась, порадовала нас еще несколькими внезапными чудесами. Эйнштейн, ничтоже сумняшеся, поведал миру о других странностях высокоскоростных режимов.

Дело в том, что чем больше наша скорость, тем медленнее идут наши часы. Время замедляется при увеличении скорости. Если вы думаете, что это теоретические и математические шутки, не имеющие реального подтверждения, то вы застряли в Средневековье.

Увы, но реальные опыты были проведены еще в прошлом веке. Брали очень точную пару часов, показывающих одинаковое время. Один экземпляр часов брали на борт реактивного самолета, а вторые часы оставались на земле. Первые часы на огромной скорости пару раз прокатили вокруг планеты. А затем сверили время. Часы из самолета отставали.

И чем ближе кто-то двигается к скорости света, тем медленнее идут его часы (сам-то он этого не замечает и считает, что его часы идут правильно, но это уже парадоксы теории относительности, мы сейчас не о них рассказываем).

Таким образом, если бы кто-нибудь с часами разогнался до скорости света, то время для него бы остановилось. Как говорят физики: часы на фотоне не идут.И если бы была возможность превысить скорость света, то математика нам сообщает, что в таком случае время пойдет в обратную сторону. Это одна из причин невозможности сверхсветовых скоростей – нарушится причинно-следственная связь, знаете ли. Вы разогнались до скорости 400 000 км/с и оказались в прошлом….

Но разогнаться до скорости света нам мешают более серьезные причины, чем замедление времени. Все, что имеет массу, не может лететь со скоростью света, увы. Как только мы начинаем ускоряться, наша масса увеличивается и, чем мы ближе к скорости света, тем наша масса больше. И тем больше требуется энергии, чтобы нас разгонять. При значениях очень близких к скорости света наша масса становится практически бесконечной и соответственно для нашего дальнейшего разгона нам требуется бесконечная энергия. В математике это выглядит как деление на ноль.

А почему же фотон летит со скоростью света? – спросит любознательный и смекалистый читатель. Потому что у него нет собственной массы (знатоки, молчите о разнице между массой покоя, инертной массе и прочих нюансах – мы упрощаем, а не загружаем).

Да-да, когда в этих ваших коллайдерах разгоняют электрон, то даже его малюсенькую массу нельзя пульнуть со скоростью света.

Не можем не процитировать какой-то учебник: "Если скорость частицы всего лишь на 90 км/с меньше скорости света, то ее масса увеличивается в 40 раз. Мощные ускорители для электронов способны разгонять эти частицы до скоростей, которые меньше скорости света лишь на 35—50 м/с. При этом масса электрона возрастает примерно в 2000 раз. Чтобы такой электрон удерживался на круговой орбите, на него со стороны магнитного поля должна действовать сила, в 2000 раз большая, чем можно было бы предполагать, не учитывая зависимости массы от скорости." Поразмыслите об этом, прежде чем строить планы по созданию машины времени.

Поэтому когда вы в очередной раз читаете, что кто-то открыл что-то, превышающее скорость света, и теперь продает на основе этой технологии торсионные препараты от несварения желудка, вспомните нашу статью.Скорость света это удивительная физическая величина. Если, например, время умножить на скорость света (получив "метрические" значения), то получится та самая четвертая ось четырехмерного пространства, которым оперирует вся теория относительности: длина, ширина, высота, время. Это крайне зубодробительная теория, но выводы из нее шикарны и до сих пор поражают неокрепшие умы юных физиков.

Отметим, что современная физика не отрицает возможность преодоления скорости света. Но все эти предположения касаются не преодоления скорости "в лоб". Речь идет о перемещении в пространстве за время меньшее, чем его преодолеет свет. А это может быть в результате всякого рода неоткрытых или неразгаданных взаимодействий (типа квантовой телепортации), или за счет искривления пространтства (типа гипотетических кротовых нор), или существования частиц, у которых время идет в обратном направлении (типа теоретических тахионов).

На этом у нас все. Написано по заказу организаций, взламывающих духовные скрепы и пропагандирующих распространение б-гомерзкой науки супротив познавательных передач на этих ваших РЕН-ТВ и ТНТ. Спасибо за внимание. Продолжение следует.

NB: Все изображения взяты из гугла (поиск по картинкам) - авторство определяется там же.Незаконное копирование текста преследуется, пресекается, ну, и сами знаете...

quantuz.livejournal.com


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.