Закон Ома. Сопротивление проводников. Сопротивление в проводнике


определения и основы, опыт Юнга

Сопротивление проводника – способность материала препятствовать протеканию электрического тока. Включая случай скин-эффекта переменных высокочастотных напряжений.

Физические определения

Материалы делятся классами согласно удельному сопротивлению. Рассматриваемая величина – сопротивление – считается ключевой, позволит выполнить градацию всех веществ, встречающихся в природе:

  1. Проводники – материалы с удельным сопротивлением до 10 мкОм м. Касается большинства металлов, графита.
  2. Диэлектрики – удельное сопротивление 100 МОм м — 10 ПОм м. Приставка Пета используется в контексте пятнадцатой степени десятки.
  3. Полупроводники – группа электротехнических материалов с удельным сопротивлением в диапазоне от проводников до диэлектриков.

Удельным сопротивление называется, позволяя охарактеризовать параметры отреза провода длиной 1 метр, площадью 1 квадратный метр. Чаще цифрами пользоваться неудобно. Сечение реального кабеля намного меньше. К примеру, для ПВ-3 площадь составляет десятки миллиметров. Расчет упрощается, если пользоваться единицами Ом кв.мм/м (см. рис.).

Удельное сопротивление металлов

Удельное сопротивление обозначается греческой буквой «ро», для получения показателя сопротивления величину домножим на длину, разделив на площадь образца. Перевод меж стандартными единицами измерения Ом м чаще используемыми для расчета показывает: взаимосвязь устанавливается через шестую степень десятки. Иногда удастся найти среди табличных значениях сведения, касающиеся удельного сопротивления меди:

  • 168 мкОм м;
  • 0,00175 Ом кв. мм / м.

Легко убедиться, цифры расходятся примерно на 4%, убедитесь, выполнив приведение единиц. Значит, цифры приводятся сортамента меди. При необходимости точных вычислений вопрос уточняется дополнительно, отдельно. Сведения об удельном сопротивлении образца получают чисто опытным путем. Отрез провода с известными сечением, длиной подсоединяется к контактам мультиметра. Для получения ответа требуется показания разделить на протяженность образца, домножить площадью сечения. В тестах полагается выбирать образец подлиннее, сократив до минимума погрешность. Значительная часть тестеров наделена недостаточной точностью для получения годных значений.

Итак, боящимся физиков, отчаявшимся освоить китайские мультиметры работать с удельным сопротивлением неудобно. Гораздо проще взять готовый отрез (большей длины), оценить параметр полного куска. На практике доли Ома играют малую роль, указанные действия выполняются для оценки потерь. Напрямую определены активным сопротивлением участка цепи и квадратично зависят от тока. Учитывая сказанное, отметим: проводники в электротехнике принято делить на две категории по применяемости:

  1. Материалы высокой проводимости, высокого сопротивления. Первые применяются для создания кабелей, вторые – сопротивлений (резисторов). В таблицах не бывает четкого разграничения, учитывается практичность. Серебро с низким сопротивлением для создания проводов не применяют вовсе, для контактов приборов – редко. По очевидным причинам.
  2. Сплавы с высокой упругостью применяются для создания гибких токонесущих частей: пружин, рабочих частей контакторов. Сопротивление обычно должно быть минимальным. Понятно, для этих целей в корне непригодна обычная медь, которой присуща большая степень пластичности.
  3. Сплавы с высоким или низким температурным коэффициентом расширения. Первые служат основой создания биметаллических пластин, структурно служащих основой тепловых и пускозащитных реле. Вторые образуют группу инварных сплавов. Часто требуются, где важна геометрическая форма. У держателей нити накала в обыкновенной лампочке (замена дорогостоящему вольфраму) и вакуумплотных спаев на стыке со стеклом. Но еще чаще инварные сплавы никакого отношения к электричеству не имеют, используются в составе станков, приборов.

Формула связи удельного сопротивления с омическим

Физические основы электропроводности

Сопротивление проводника признано величиной, обратной электропроводности. В современной теории не установлено досконально, как происходит процесс образования тока. Физики часто упирались в стену, наблюдая явление, которое никак не могло быть объяснено с точки позиций ранее выдвигавшихся концепций. Сегодня доминирующей считается зонная теория. Требуется привести краткий экскурс развития представлений о строении вещества.

Изначально предполагалось: вещество представлено субстанцией, заряженной положительно, в ней плавают электроны. Так считал небезызвестный лорд Кельвин (урожденный Томсон), в честь которого названа единица измерения абсолютной температуры. Впервые сделал предположение о планетарной структуре атомов Резерфорд. Теория, выдвинутая в 1911 году, была сооружена на факте отклонения альфа-излучения веществами с большой дисперсией (отдельные частицы изменяли угол полета на весьма значительную величину). На основе существующих предпосылок автор заключил: положительный заряд атома сосредоточен внутри малой области пространства, которую назвали ядром. Факт отдельных случаев сильного отклонения угла полета вызван тем, что путь частицы пролегал в непосредственной близости от ядра.

Так установлены пределы геометрических размеров отдельных элементов и для разных веществ. Заключили, что диаметр ядра золота укладывается областью 3 пм (пико – приставка к отрицательной двенадцатой степени десятки). Дальнейшее развитие теории строения веществ выполнил Бор в 1913 году. На основе наблюдения поведения ионов водорода сделал вывод: заряд атома составляет единицу, была определена масса, составившая примерно одну шестнадцатую веса кислорода. Бор предположил: электрон удерживается силами притяжения, определенными Кулоном. Следовательно, что-то удерживает от падения на ядро. Бор предположил, виновата центробежная сила, возникающая при вращении частицы по орбите.

Важную поправку к макету внес Зоммерфельд. Допустил эллиптичность орбит, ввел два квантовых числа, описывающих траекторию – n и k. Бор заметил: теория Максвелла для модели терпит крах. Движущаяся частица обязана порождать в пространстве магнитное поле, тогда постепенно электрон упал бы на ядро. Следовательно, приходится допустить: существуют орбиты, на которых излучения энергии в пространство не происходит. Легко заметить: предположения противоречат друг другу, лишний раз напоминая: сопротивление проводника, как физическую величину, сегодня неспособны объяснить физики.

Почему? Зонная теория выбрала базисом постулаты Бора, гласящие: положения орбит дискретны, вычисляются заранее, геометрические параметры связаны некоторыми соотношениями. Выводы ученого пришлось дополнить волновой механикой, поскольку сделанные математические модели бессильны оказались объяснить некоторые явления. Современная теория говорит: для каждого вещества предусмотрено в состоянии электронов три зоны:

  1. Валентная зона электронов, прочно связанных с атомами. Требуется большая энергия — разорвать связь. Электроны валентной зоны в проводимости не участвуют.
  2. Зона проводимости, электроны при возникновении в веществе напряженности поля образуют электрический ток (упорядоченное движение носителей заряда).
  3. Запрещенная зона – область энергетических состояний, где электроны в нормальных условиях находиться не могут.

Необъяснимый опыт Юнга

Согласно зонной теории, у проводника зона проводимости перекрывается валентной. Образуется электронное облако, легко увлекаемое напряженностью электрического поля, образуя ток. По этой причине сопротивление проводника имеет столь малое значение. Причем ученые прилагают бесполезные усилия объяснить, что представляет собой электрон. Известно только: элементарная частица проявляет волновые и корпускулярные свойства. Принцип неопределенности Гейзенберга ставит факты на места: нельзя с вероятностью 100% одновременно определить местоположение электрона и энергию.

Что касается эмпирической части, учеными подмечено: опыт Юнга, проделанный с электронами, дает любопытный результат. Ученый пропускал поток фотонов через две близкие щели щита, получалась интерференционная картина, составленная рядом полос. Предложили проделать тест с электронами, случился коллапс:

  1. Если электроны проходят пучком, минуя две щели, образуется интерференционная картина. Происходит, будто движутся фотоны.
  2. Если электроны выстреливать по одному, ничего не меняется. Следовательно… одна частица отражается сама от себя, существует сразу в нескольких местах?
  3. Тогда стали пытаться зафиксировать момент прохождения электроном плоскости щита. И… интерференционная картина пропала. Остались два пятна напротив щелей.

Эффект бессильны объяснить с научной точки зрения. Получается, электроны «догадываются» о проводимом наблюдении, перестают проявлять волновые свойства. Показывает ограниченность современных представлений физики. Хорошо, если бы этим можно было удовольствоваться! Очередной муж науки предложил вести наблюдение за частицами, когда они уже прошли сквозь щель (летели в определенном направлении). И что же? Снова электроны перестали проявлять волновые свойства.

Получается, элементарные частицы вернулись обратно во времени. В тот момент, когда проходили щель. Проникли в тайну будущего, узнав, будет ли вестись наблюдение. В зависимости от факта скорректировали поведение. Понятно, ответ не может быть попаданием в яблочко. Загадка ждет разрешения по сей день. Кстати, теория Эйнштейна, выдвинутая в начале XX века, теперь опровергнута: найдены частицы, скорость которых превышает световую.

Как образуется сопротивление проводников

Современные воззрения говорят: свободные электроны перемещаются по проводнику со скоростью порядка 100 км/с. Под действием возникающего внутри поля дрейф упорядочивается. Скорость перемещения носителей вдоль линий напряженности мала, составляет единицы сантиметров в минуту. В ходе движения электроны сталкиваются с атомами кристаллической решетки, некая доля энергии переходит в тепло. И меру этого преобразования принято называть сопротивлением проводника. Чем выше, тем больше электрической энергии переходит в тепло. На этом основан принцип действия обогревателей.

Параллельно контексту идет численное выражение проводимости материала, которое можно увидеть на рисунке. Для получения сопротивления полагается единицу разделить на указанное число. Ход дальнейших преобразований рассмотрен выше. Видно, что сопротивление зависит от параметров — температурное движение электронов и длина их свободного пробега, что прямо приводит к строению кристаллической решётки вещества. Объяснение — сопротивление проводников отличается. У меди меньше алюминия.

vashtehnik.ru

это что? Чему равно сопротивление проводника

В данной статье мы рассмотрим, что это – проводник. Здесь будут затронуты вопросы его определения, особенностей и свойств. Также мы остановимся на понятии потенциала проводника. Изучаемый объект представляет собой важное открытие и достижение науки, которое позволяет человеку на современном этапе развития снижать расходы на потребление важных и исчерпаемых ресурсов земли.

Введение

Проводник – это преимущественно вещество, а также определенная среда или материал, которые проводят электрический ток практически без препятствования. В проводниках находится большое количество свободно двигающихся носителей заряда (частиц с зарядом), которые способны в свободном виде перемещаться внутри проводников. Эти носители находятся под влиянием проводника, что приближен к объекту электронапряжения и создают ток проводимости.

Существует понятие однородного проводника. Это набор характеристик, которые являются одинаковыми в любой его точке. Примером может служить реохорд – устройство для измерения эл. сопротивления посредством мостового метода Уитстона.

В связи с наличием большого числа свободных переносчиков заряда и высокой степенью их подвижности, значение удельной величины, определяющей электропроводимость, достигает больших значений. С точки зрения электродинамической науки, проводник – это среда, обладающая огромным значением тангенса, указывающего на угол диэлектрической потери. Рассмотрение происходит всегда посредством определения четкой частоты. Идеальный проводник в таком случае - это материал, обладающий значением tgδ в бесконечно большом размере. Все остальные виды таких структур именуют реальными, или обладающими потерей.

Часть электрической цепи

Проводник – это часть электрической цепочки (соединительный провод, металлическая шина и т.д.).

Одними из наиболее распространенных проводящих структур твердого типа являются вещества металлов, полуметаллов и углеродов (графит и уголь). Среди проводящих жидкостей, примером может служить ртуть, электролитические растворы, а также металлические расплавы. Среди газов, способных проводить ток, самым ярким представителем является газ в ионизированном виде (плазма). Некоторые вещества, чаще полупроводники, могут изменять свои свойства проводимости, если изменять внешние условия вокруг них, например, повышать температуру или легировать.

Электрические проводники – это вещества и материалы, которые, в соответствии с формой движения частиц, делятся на первый и второй род. В первом случае свойство проводимости обуславливается электронным движением, а во втором, ионным.

Ток в проводнике

Под электрическим током подразумевают передвижение частиц, обладающих зарядом, в упорядоченном виде. Ток способен образоваться в разнообразных средах. Обязательным условием является наличие подвижных носителей заряда, которые смогут передвигаться под воздействием поля, которое приложили извне.

Силой тока называют скалярную величину, что может принимать два значения: положительное и отрицательное. Это зависит от произвольного направления, вдоль которого движутся частицы. Единицей, определяющей силу тока, является ампер (А).

Сила тока в проводника – это величина, что может обуславливаться направлением положительно заряженных элементов, образующих ток. В случае, когда ток был обусловлен частицами с зарядом «-», он приобретает направление, противоположное курсу реальной скорости движения частичек.

Силу тока определяют, анализируя отношение Dq (количество заряда), что был перенесенным сквозь проводниковое поперечное сечение, за единицу времеи Dt, к размерной величине самого интервала:

I = Delta q/ Dela t.

Понятие дрейфа

Показатель, указывающий на силу тока, тесно связан с явлением дрейфа заряж. частиц. Допустим, у нас есть проводник, на участке поперечного сечения (S) которого, есть определенное количество носителей заряда в конкретном объеме, соответствующем числу – n. Заряд всех носителей соответствует значению q0. Если приложить внешнее электр. поле (E), то переносчики приобретут среднюю величину скорости v (показатель скорости дрейфа), которая направляется по направлению к противоположному полю. Если допустить, что дрейф обладает постоянной скоростью (ток движется в одном темпе и с одной мощностью), можно рассчитать силу взаимосвязи дрейфа и перемещения частичек:

∆q=q0nv∆ts, из которого следует, что I=q0nvS

Полная величина заряда в общей величине объема цилиндра со значением образующей величины Dl = vDt равна.

Явление сопротивления

Электрическое сопротивление проводника – это величина, характеризующая его свойства, способные препятствовать переправе тока, а еще она равна соотношению напряжения на концевых участках провода к силе тока, который пропускают.

Понятие импеданса и явление волновой формы сопротивления описывают противодействие для цепи тока с переменными значениями, а также электромагнитные поля. Под понятием резистора в таком случае подразумевают радиодеталь, предназначение которой заключено во введении активного сопротивления в электр. цепь.

Сопротивление проводника – это величина, которую чаще всего обозначают буквой R (малой или большой). В некоторых пределах, оно является постоянным и рассчитывается по формуле:

R = U/I,

где R – это величина сопротивления, I – указывает на силу тока, что протекает между разными концами проводника под воздействием потенциальной разности (A), а U – это степень разности электр. потенциалов, которые расположены по его разные стороны.

Физический аспект явления

Электрический ток в проводнике – это упорядоченное перемещение частиц с определенным зарядом. Металлы обладают высокой электропроводимостью, что связано с наличием огромного количества носителей эл. тока (электроны проводимости), которые образуются из валентного ряда электронов металлов. Последние не должны принадлежать определенному виду атомов.

Электроны, которые передвигаются благодаря воздействию поля, начинают рассеиваться на неоднородности ионных решеток. Сам электрон в таком случае теряет силу импульса, а энергия, отвечающая за движение, превращается во внутреннюю энергию решетки кристаллического характера. Она вызывает нагревание проводника вследствие прохождения эл. тока по нему. Важно помнить о том, что значение линейной зависимости, которая выражается законом Ома, не всегда соблюдается. Величина сопротивления обуславливается также особенностями его геометрии и свойствами удельного эл. сопротивления материала, из которого его образовали.

Сечение проводника

Поперечное сечение проводника – это характеристика, тесно связанная с явлением его сопротивления. Дело в том, что носителем заряда в металле является свободный электрон. Находясь в хаотической форме движения, они подобны газовым молекулам. По этой причина, классическая физика определяет электроны в металле как электронный газ. Здесь применимы постановления закона для идеальных газов.

Показатель плотности эл. газа и структура кристаллических решеток обусловлены родом металла. По этой причине, сопротивление зависит от рода самого вещества, из которого был создан проводник. Также учитывается его длина, температура и площадь поперечного сечения. Влияние последней объяснить можно благодаря тому, что уменьшение сечения электронного потока внутри проводника, с одним и тем же значением силы тока, приводит к уплотнению потока. Это вызывает усиление взаимодействия между электроном и частицей вещества проводника.

Потенциал

Электрический потенциал проводника – это особая характеристика проводника, представленная в виде скалярного энергетического параметра потенциальной энергии, которой «наполнен» положительно заряженный единичный вариант пробного заряда, который поместили в конкретную точку на поле. Для измерения подобного значения используют Международную систему единиц (СИ), а именно Вольт (1В = 1Дж/Кл). Электрический потенциал равняется соотношению величины потенциальной энергии, указывающей на взаимодействие заряда и поля к размерности самого заряда.

fb.ru

Закон Ома. Сопротивление проводников

Немецкий физик Г. Ом (1787.—1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

(98.1)

где R — электрическое сопротивление проводника. Уравнение (98.1) выражает закон Ома для участка цепи (не содержащего источника тока): сала тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Формула (98.1) позволяет установить единицу сопротивления — ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1А.

Величина

называется электрической проницаемостью проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом.

Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

(98.2)

где р — коэффициент пропорциональности, характеризующий материал проводника и называемыйудельным электрическим сопротивлением. Единица удельного электрического сопротивления — ом-метр (Ом·м). Наименьшим удельным сопротивлением обладают серебро (1,6-10-8 Ом·м) и медь (1,7·10-8 Ом·м). На практике наряду с медными применяются алюминиевые провода. Хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,6-10-8 Ом·м), но зато обладает меньшей плотностью по сравнению с медью.

ЗаконОма можно представить в дифференциальной форме. Подставив выражение для сопротивления (98.2) в закон Ома (98.1), получим

 

(98.3)

где величина, обратная удельному сопротивлению,

называетсяудельной электрической проводимостью вещества проводника. Ее единица — сименс на метр (См/м). Учитывая, что — напряженность электрического поля в проводнике, — плотность тока, формулу (98.3) можно записать в виде

(98.4)

Так как в изотропном проводнике носители тока в каждой точке движутся в направлении вектора Е, то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в виде

(98.5)

Выражение (98.5) —закон Ома в дифференциальной форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.

Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:

где р и ро, R и Rо — соответственно удельные сопротивления и сопротивления проводника при t и 0°С, α — температурил коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К-1. Следовательно, температурная зависимость сопротивления может быть представлена в виде

где Т — термодинамическая температура.

Качественный ход температурной зависимости сопротивления металла представлен на рис. 147 (кривая 7). Впоследствии было обнаружено, что сопротивление многих металлов (например, А1, Рb, Zn и др.) и их сплавов при очень низких температурах Тk (0,14—20 К), называемыхкритическими, характерных для каждого вещества, скачкообразно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным проводником. Впервые это явление, названноесверхпроводимостью, обнаружено в 1911 г. Г. Камерлииг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.

 

Рис. 147

На зависимости электрического сопротивления металлов от температуры основано действиетермометров сопротивления, которые позволяют по градуированной взаимосвязи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называютсятермисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.

Похожие статьи:

poznayka.org

Сопротивление проводника. Как его найти и от чего оно зависит?

Сила тока в электрической цепи определяется, согласно закону Ома по двум показателям: напряжение цепи и сопротивление проводника. Поговорим более подробно о последнем показателе.

Электрическое сопротивление проводника – физическая величина, которая характеризует способность вещества замедлять скорость заряженных частиц внутри себя, а также количественно показывает его способность превращать энергию электричества в тепловую, когда оно находится под действием тока. Единица обозначается Ом, входит в международную систему.

Найти сопротивление проводников можно по физическим законам. Одним из таких законов является Закон Ома. Формулы будут разными для постоянного и переменного тока. Проще всего вычислить этот показатель для участка цепи с постоянным током.

Величина, обратная ему называется электрическую проводимость, измеряют в сименсах.

Сопротивление возникает из-за того, что в материале есть как движущиеся под действием тока электроны, так и неподвижные заряды и нейтроны. Под воздействием напряжения они приходят в хаотическое тепловое движение – начинается нагревание. При подключении цепи к источнику тока электроны начинают движение, но не ускоряются, а сохраняют скорость постоянной из-за сопротивления других частиц. Часть двигательной энергии превращается во внутреннюю, и, как следствие, увеличивается его температура. От чего зависит сопротивление проводника?

Естественно, что значение его будет зависеть от того, из какого материала сделан проводник. Кроме того, на эту величину влияет его длина и площадь сечения. Формула для подсчётов выглядит так:

Площадь поперечного сечения можно вычислить по формуле:

Удельное сопротивление

Отражение взаимосвязи сопротивления проводника и природы вещества – удельное сопротивление проводника ρ. Этот показатель равен сопротивлению, которое оказывает метровый проводник сечением в квадратный метр. Для разных веществ – оно отличается. Единица – Ом-метр (обозначается Ом·м).

Определение удельного сопротивления проводника самостоятельно проводить при подсчётах не нужно. Его значения приводятся в справочных таблицах, имеющихся в книгах и задачниках. Самые низкие значения – у золота, серебра, меди, латуни.

Стоит отметить, что эта величина имеет зависимость от следующих особенностей: количества в нём свободных электронов и их скорости рассеивания на ионах кристаллической решётки, её дефектах и примесях.

Мы выяснили, от чего зависит электрическое сопротивление согласно формуле, указанной выше. Но есть ещё одна особенность у этой величины – её значение у проводника от температуры также находится в прямой зависимости. При нагревании проводника оно возрастает, значение может увеличиваться до 50%. А вот у электролитов наоборот при увеличении их температуры – уменьшается. Существуют сплавы, которые всегда имеют стабильное значение. Зависимость от температуры характеризует температурный коэффициент сопротивления, измеряется в Кельвинах в минус первой степени (обозначается К-1).

Измерение сопротивления

Измерение электрического сопротивления проводника производят с помощью омметра или мультиметра. Мультиметр может определять несколько характеристик электрической цепи. Существуют разные способы проведения измерений. К общим принципам, которые нужно учитывать в любом из них относится то, что и для более точного измерения цепь не должна быть подключена к напряжению, а для измерения отдельного элемента цепи его нужно из неё извлечь. Для проведения измерений омметр подключают параллельно к прибору. Существуют устройства для измерения в цепях постоянного и переменного тока.

Добиться изменения параметров цепи можно при помощи специального прибора – реостата. Он устроен таким образом, что позволяет как резко, так и плавно устанавливать нужное значение. Есть различные виды реостатов – проволочный, ползунковый, жидкостный, ламповый. В лабораторных работах применяют простой ползунковый прибор. Ещё их можно классифицировать на переменный, подстроечный и регулировочный. Реостаты являются обязательным элементом многих электрических сетей и частью приборов.

Ползунок реостата меняет длину проволоки в цепи и соответственно её сопротивление

Материалы проводников

Что такое сопротивление, мы рассмотрели, теперь стоит сказать несколько слов о практической стороне вопроса. В частности, какие металлы чаще всего используют в качестве проводников в быту. Самые распространённые – это медь и алюминий, плюсы их в том, что они имеют низкое удельное сопротивление, устойчивы к коррозии, легко обрабатываются. Также довольно часто применяется сталь, однако её нужно защитить от коррозии, для этого железо оцинковывают. В космонавтике и сфере высоких технологий проводники делают из драгоценных металлов, обладающих минимальным удельным сопротивлением – например, из золота. В нагревательных приборах оно наоборот должно быть высоким, поэтому используют сплавы никеля и хрома. Большое внимание в промышленности уделяется созданию новых сплавов с разным значением рассматриваемой величины и устойчивым к воздействиям извне.

 

Загрузка...

1247

Понравилась статья? Поделитесь:

Советуем к прочтению

voltland.ru

Закон Ома. Сопротивление проводников

 

Немецкий физик Г. Ом (1787,—1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. с. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению Uна концах проводника:

 

I=U/R, (98.1)

 

где R — электрическое сопротивление проводника. Уравнение (98.1) выражает закон Ома для участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Формула (98.1) позволяет установить единицу сопротивления — ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Величина

называется электрической проводимостью проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом. Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление Rпрямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

(98.2)

где r— коэффициент пропорциональности, характеризующий материал проводника и называемый удельным электрическим сопротивлением. Единица удельного электрического сопротивления — ом-метр (Ом×м). Наименьшим удельным сопротивлением обладают серебро (1,6-10~8 Ом м) и медь (1,7×10-8 Ом×м). На практике наряду с медными применяются алюминиевые провода. Хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,6×10-8 Ом×м), но зато обладает меньшей плотностью по сравнению с медью.

Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (98.2) в закон Ома (98.1), получим

(98.3)

где величина, обратная удельному сопротивлению,

называется удельной электрической проводимостью вещества проводника. Ее единица — сименс на метр (См/м). Учитывая, что U/l = E— напряженность электрического поля в проводнике, I/S = j— плотность тока, формулу (98.3) можно записать в виде

(98.4)

Так как в изотропном проводнике носители тока в каждой точке движутся в направлении вектора Е, то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в виде

(98.5)

Выражение (98.5) — закон Ома в дифференциальной форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.

Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:

где rи r0, R и R0— соответственно удельные сопротивления и сопротивления проводника при t и 0 °С, a — температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К-1. Следовательно, температурная зависимость сопротивления может быть представлена в виде

где Т— термодинамическая температура.

Качественный ход температурной зависимости сопротивления металла представлен на рис. 147 (кривая 1). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах Тk(0,14—20 К), называемых критическими, характерных для каждого вещества, скачкообразно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным проводником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.

 

Рис. 147

 

На зависимости электрического сопротивления металлов от температуры основано действие термометров сопротивления, которые позволяют по градуированной взаимосвязи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называются термнсторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.

 

Работа и мощность тока.

Закон Джоуля — Ленца

 

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время dt через сечение проводника переносится заряд dq = Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока

(99.1)

Если сопротивление проводника R, то, используя закон Ома (98.1), получим

(99.2)

Из (99.1) и (99.2) следует, что мощность тока

(99.3)

Если сила тока выражается в амперах, напряжение — в вольтах, сопротивление — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт-ч) и киловатт-час (кВт-ч). 1 Вт×ч — работа тока мощностью 1 Вт в течение 1 ч; 1 Вт-ч = 3600 Вт-с = 3,6-103 Дж; 1 кВт-ч=103 Вт-ч=3,6-106 Дж.

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

(99.4)

Таким образом, используя выражения (99.4), (99.1) и (99.2), получим

(99.5)

Выражение (99.5) представляет собой закон Джоуля — Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем[1].

Выделим в проводнике элементарный цилиндрический объем dV = dSdl(ось цилиндра совпадает с направлением тока), сопротивление которого . По закону Джоуля — Ленца, за время Dtв этом объеме выделится теплота

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна

(99.6)

Используя дифференциальную форму закона Ома (j = gE)и соотношение r = 1/g, получим

(99.7)

Формулы (99.6) и (99.7) являются обобщенным выражением закона Джоуля — Ленца в дифференциальной форме, пригодным для любого проводника.

Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847—1923) лампы накаливания. На нагревании проводников электрическим током основано действие электрических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761—1834)), контактной электросварки, бытовых электронагревательных приборов и т. д.

 



infopedia.su

Что такое сопротивление | Практическая электроника

Не трудно догадаться, что слово «сопротивление» происходит от слова  «сопротивляться». Различные вещи и электронные компоненты по разному сопротивляются электрическому току. Ваша лампочка на потолке, сопротивляясь электрическому току, освещает комнату. Ноутбук, с которого вы читаете эту статью, высвечивает на дисплее эту статейку. Электрический чайник превращает воду в кипяток. Разные вещи обладают различным по величине сопротивлением и по разному себя ведут. Что-то греется, что-то крутится (вентилятор на вашем компьютере), что-то светится (лампочка или светодиод), что-то говорит (динамик).

Что же такое сопротивление?

В электронике  есть такое понятие, как Ом. Что это такое и с чем его едят? Для более развернутого ответа, давайте рассмотрим вот такую схему:

Буквы в кружочках — это измерительные приборы

Вольтметр служит для измерения напряжения, а амперметр — для измерения силы тока. Как ими правильно пользоваться читаем в этой статье.

Итак, если пропустить по проводку электрический ток с силой тока в 1 ампер, а на концах этого провода у нас появится напряжение в 1 вольт,  это значит, что наш проводок обладает сопротивлением в 1 ом.

В электронике и электрике сопротивление обозначается буквой R. Например,  человек имеет сопротивление от  нескольких сотен Ом и до 100 кОм. Для расчетов берут 1 кОм. Сопротивление человеческого тела зависит от многих факторов, таких как пол, возраст, состояние кожи, сила прикосновения проводников к коже, уровень алкоголя в крови и тд. Медный провод длиной в метр и сечением в  1 мм2  имеет сопротивление 0,1 Ом.

Давайте рассмотрим сопротивление с точки зрения гидравлики, как мы это делали с напряжением. Что же будет являться сопротивлением для потока воды и какие факторы влияют на сопротивление?

Как из предметов будет оказывать бОльшее сопротивление электрическому току? Садовый шланг или нефтяная магистраль?

Конечно же садовый шланг будет оказывать бОльшее сопротивление потоку. Почему? Да потому что его диаметр намного меньше, чем у нефтяной магистрали.

А теперь ответьте на такой вопрос, какой шланг будет обладать бОльшим сопротивлением, с учетом того, что их длины и диаметры равны? Гофрированный или гладкий?

Разумеется гофрированный. Его стенки будут препятствовать потоку воды

И еще один нюанс. У нас есть садовый гофрированный шланг. Мы обрезали от него небольшую длину, но все равно остался еще большой моток шланга

У какого шланга будет бОльшее сопротивление потоку воды? Думаю, у того, который длиннее.

Как ни странно, но дела с проводом обстоят точно также. Чем тоньше и длиннее провод, тем больше его сопротивление электрическому току. Большую роль в значении сопротивления играет также материал изготовления. Различные материалы по разному проводят электрический ток. Есть те, которые замечательно проводят ток, а есть те, которые почти не пропускают через себя электрический ток.

Поэтому, сопротивление провода можно описать простой формулой:

В технике до сих пор применяется устаревшая единица измерения удельного сопротивления Ом х мм2 /м.  Чтобы перевести  в Ом х м, достаточно умножить на 10-6, так как 1 мм2=10-6м2.

 

Как вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником в конструировании радиоэлектронных устройств. Ну а самым распространенными и дешевыми — медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности. Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками , а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками.

Резисторы

В электронике имеются специальные радиоэлектронные компоненты, которые уже обладают нужным нам сопротивлением. Их называют резисторами.

Существуют постоянные резисторы, у которых сопротивление практически не меняется:

 

а есть также и переменные резисторы:

С помощью них можно изменять сопротивление в каком-либо определенном диапазоне.

Последовательное и параллельное соединение резисторов

В электрических схемах постоянные резисторы обозначаются так:

переменные выглядят немного по-другому

Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.

В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:

 

При последовательном соединении номиналы резисторов просто тупо суммируются

В этом случае

 

Резюме

Сопротивление играет главенствующую роль в электронике и электротехнике. Любой материал во Вселенной обладает сопротивлением электрическому току. Некоторые материалы очень плохо пропускают через себя электрический ток, а некоторые материалы, такие как серебро и медь, обладают очень малым сопротивлением и отлично пропускают через себя электрический ток. Материалы, которые отлично пропускают через себя электрический ток, называются проводниками.

На сопротивление влияют также такие параметры, как материал, площадь поперечного сечения материала, а также его длина. Материалы, которые отлично проводят через себя электрический ток называются проводнкиами, а которые препятствую протеканию электрического тока — диэлектриками.

Резисторы — специальные радиоэлементы в электронике, которые обладают определенным номиналом сопротивления и используются в электронике для ограничения протекания силы тока в цепи.

 

www.ruselectronic.com

СОПРОТИВЛЕНИЕ ПРОВОДНИКОВ | Техника и Программы

Направленному движению электронов (электрическому току) мешают хаотически двигающиеся молекулы и атомы проводника, что приводит к искривлению пути электронов и уменьшает скорость их передвижения. Следовательно, электрический ток, проходя по проводнику, всегда испытывает со стороны проводника препятствие своему прохождению. Это препятствие называется электрическим сопротивлением проводника и обозначается латинской буквой R. На схемах электрическое сопротивление обозначается так, как показано на рис. 5,а.

Рис. 5. л —условное обозначение сопротивлений на схемах; б — закон Ома для участка цепи; в — закон Ома для полной цепи

За международную единицу сопротивления принят один ом, т. е. такое сопротивление, которым обладает столбик ртути при 0°С длиной 106,3 см, имеющий одинаковое поперечное сечение по всей длине, равное 1 мм2. Для измерения больших сопротивлений применяются единицы, называемые килоом (сокращенно ком) и мегом (сокращенно Мом). 1 Мом = 1000 ком—1000000 ом.

Чем длиннее проводник и чем меньше его сечение, тем большее сопротивление току он создает. Короткие проводники большого сечения имеют малое сопротивление. Сопротивление проводника зависит также от материала, из которого он сделан. Два проводника одинаковой длины и поперечного сечения, но изготовленные из разных материалов, будут по-разному проводить электрический ток. Сопротивление проводника также зависит от его температуры. С повышением температуры сопро-. тивление металлов увеличивается. Исключение составляют специальные металлические сплавы (манганин, константан, никелин и др.), сопротивление которых почти не меняется с изменением температуры. Таким образом, установлено, что сопротивление проводника зависит от его длины, поперечного сечения, материала, из которого он сделан, и температуры. Характеристикой способности различных материалов проводить электрический ток служит их удельное сопротивление, обозначаемое греческой буквой р (ро) и выражаемое в омах.

Удельным сопротивлением какого-либо материала называется сопротивление проводника, сделанного из этого материала и имеющего длину 1 м, а поперечное сечение 1 мм2 при температуре 20° С. Удельное сопротивление различных материалов различно; оно определяется опытным путем и приводится в справочных таблицах. Сопротивление любого проводника можно определить расчетным путем по формуле:

где R — сопротивление проводника, ом\

р —удельное сопротивление проводника;

I — длина проводника в метрах; 5 —сечение проводника, мм2.

Пример. Определить сопротивление медного провода длиной 100 ж и сечением 0,5 мм2. Удельное сопротивление меди 0,0175 оммм2/м.

Решение.

Несмотря на то что проводник оказывает сопротивление прохождению тока, ток через проводник все же проходит. Поэтому всякий проводник можно характеризовать не только сопротивлением, но и его способностью проводить электрический ток, т. е. проводимостью. Чем больше сопротивление проводника, тем хуже он проводит электрический ток и тем меньше его проводимость. Поэтому сопротивление и проводимость проводника обратные величины. Следовательно, если сопротивление проводника обозначается буквой R, то проводимость определится как — ; единица измерения про-

R

водимости есть единица, деленная на ом, «обратный ом», которая иногда называется мо или сименс. В формулах проводимость принято обозначать буквой G или g.

nauchebe.net


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.