Стабилитроны и стабисторы: Общая информация. Стабилитрона схема


Принцип работы стабилитрона - Технический

Конструктивно стабилитрон подобен обычным плоскостным кремниевым диодам.

Основная особенность стабилитрона состоит в том, что он специально предназначен для работы при обратных напряжениях, превышающих напряжение пробоя p-n перехода. Такой режим работы становится возможным, если принять меры для предотвращения перегрева p-n перехода обратным током (усилить теплоотвод от перехода, ограничить величину обратного тока внешним сопротивлением).

Стабилитрон изготавливается на основе p — n перехода, процессы в котором основываются на явлениях туннельного или лавинного пробоев p — n перехода, и который содержит на обратной ветви ВАХ участок с малым сопротивлением при определённом напряжении — это напряжение и будет напряжением стабилизации

В режиме лавинного пробоя самое незначительное увеличение обратного напряжения приводит к резкому возрастанию числа свободных электронов и дырок за счет эффекта Зенера и эффекта лавинного умножения. Эффект лавинного умножения состоит в том, что быстро движущийся носитель заряда – дырка или электрон — при соударении может передать часть своей энергии валентному электрону, перебросив его в зону проводимости. В результате создается новая пара носителей заряда – электрон в зоне проводимости и дырка в валентной зоне, которые в свою очередь могут передать энергию другим электронам и т.д. При достаточной величине внешнего поля процесс приобретает лавинный характер, обратный ток резко увеличивается.

Другим механизмом работы стабилитрона является туннельный пробой.

Вольтамперная характеристика стабилитрона представлена на рис. .

Стабилитрон изготавливают, как правило, на основе слаболегированного кремния.

При подаче больших обратных напряжений, которые соответствуют на энергетической диаграмме большому смещению энергетических зон, в p — n переходе образуется большое ускоряющее поле для неосновных носителей заряда. Неосновных носители ускоряются в поле p — n перехода и ионизируют атомы основного вещества, которые в свою очередь ускоряются в этом же поле и ионизируют другие атомы . При этом количество подвижных носителей резко (лавинообразно) возрастает и ток через p — n переход в обратном направлении резко возрастает. Обратный ток ограничивается только внешними элементами электрической цепи. При этом напряжение на стабилитроне практически не меняется.

При малых напряжениях стабилизации <6 Вольт имеет место туннельный пробой p — n перехода, а при больших – лавинный.

На основе p — n перехода, процессы в котором основываются на явлениях туннельного и лавинного пробоев p — n перехода, и который содержит на обратной ветви ВАХ участок с малым сопротивлением при определённом напряжении √ это напряжение стабилизации.

Стабилитрон изготавливают, как правило, на основе слаболегированного кремния.

При этом в p — n переходе образуется большое ускоряющее поле для неосновных носителей заряда и при обратном направлении порядка неосновных носители ускоряются в поле p — n перехода ионизируют атомы основного вещества, которые в свою очередь ускоряются в этом же поле и ионизируют другие атомы . При этом количество подвижных носителей резко (лавинообразно) возрастает и ток через p — n переход в обратном направлении резко возрастает.

И он ограничивается только внешними элементами электрической цепи.

При этом напряжение на стабилитроне практически не меняется.

При малых напряжениях стабилизации <6 Вольт имеет место туннельный пробой p — n перехода.

Схема включения стабилитрона.

Параметрический стабилизатор при обратном включении.

Используется стабилитрон при обратном включении.

R б — балластное сопротивление,

D — стабилитрон,

Rн — сопротивление нагрузки, на котором выделяется стабильное напряжение

Конструктивно стабилитрон подобен обычным плоскостным кремниевым диодам.

Основная особенность стабилитрона состоит в том, что он специально предназначен для работы при обратных напряжениях, превышающих напряжение пробоя p-n перехода. Такой режим работы становится возможным, если принять меры для предотвращения перегрева p-n перехода обратным током (усилить теплоотвод от перехода, ограничить величину обратного тока внешним сопротивлением).

В таком режиме самое незначительное увеличение обратного напряжения приводит к резкому возрастанию числа свободных электронов и дырок за счет эффекта Зенера и эффекта лавинного умножения. Эффект лавинного умножения состоит в том, что быстро движущийся носитель заряда – дырка или электрон — при соударении может передать часть своей энергии валентному электрону, перебросив его в зону проводимости. В результате создается новая пара носителей заряда – электрон в зоне проводимости и дырка в валентной зоне, которые в свою очередь могут передать энергию другим электронам и т.д. При достаточной величине внешнего поля процесс приобретает лавинный характер, обратный ток резко увеличивается.

hron.com.ua

Стабилитроны и стабисторы: Общая информация

 

Стабилитроном называют полупроводниковый диод, напряжение на обратной ветви ВАХ которого в области электрического пробоя слабо зависит от значения проходящего тока. Вольт-амперная характеристика стабилитрона приведена на рис. 2.5‑1. Как видно, в области пробоя напряжение на стабилитроне (\(U_{ст}\)) лишь незначительно изменяется при больших изменениях тока стабилизации (\(I_{ст}\)). Такая характеристика используется для получения стабильного (опорного) напряжения.

 

Рис. 2.5-1. Вольт-амперная характеристика стабилитрона

 

В стабилитронах могут возникать два вида электрического пробоя: туннельный (зенеровский) пробой — для диодов с \(U_{ст} > {5 В}\), лавинный пробой — для диодов с \(U_{ст} > 7 В\). В интервале 5...7 В возникает смешанный вид пробоя.

Независимо от напряжения стабилизации и существующего вида пробоя, в различной литературе (особенно в зарубежной) стабилитроны часто называют по имени первооткрывателя туннельного пробоя — зенеровскими диодами или просто зенерами (Zeners).

Существующие стабилитроны имеют минимальное напряжение стабилизации примерно до 3 В. Для получения меньшего напряжения стабилизации используется прямая ветвь ВАХ \(p\)-\(n\)-перехода (рис. 2.5‑2), а полупроводниковые приборы, реализующие такую функцию называются стабисторами. В области прямого смещения \(p\)-\(n\)-перехода напряжение на нем имеет значение 0,7...2 В и мало зависит от тока. В связи с этим стабисторы позволяют стабилизировать только малые напряжения (не более 2 В). Помимо кремниевых стабисторов, хорошие показатели реализуемы у приборов, изготовленных из селена (селеновые стабисторы).

 

Рис. 2.5-2. Вольт-амперная характеристика стабистора

 

Некоторые стабилитроны могут использоваться в импульсных режимах. Они применяются для стабилизации амплитуды импульсов, их ограничения, а также для защиты входов чувствительных устройств от перегрузок по напряжению. Такие стабилитроны называются импульсными стабилитронами.

Для применения в критически важных каскадах и измерительной аппаратуре разработаны специальные прецизионные стабилитроны. В этих приборах путем последовательного соединения двух или более \(p\)-\(n\)-переходов достигается высокая точность и устойчивость напряжения стабилизации к изменениям тока и температуры (\( {\alpha}_{U_{ст}} \leq {0,0005 \%/^{\circ} \operatorname{C}} \)).

Наряду со стабилитронами, имеющими несимметричную ВАХ, выпускаются двуханодные стабилитроны, имеющие симметричную ВАХ. Они применяются для двустороннего ограничения напряжения, могут использоваться так же и как опорные стабилитроны.

 

 

< Предыдущая Следующая >
 

www.club155.ru

Стабилитрон или диод Зенера-подробное описание

Полупроводниковый прибор, каким является диод Зенера или как его еще называют стабилитрон, служит для стабилизации напряжения на выходе.

Принцип действия стабилитрона

Принцип работы прибора заключается в подаче на диод через резистор запирающего напряжения, величина которого превышает величину напряжения пробоя самого диода. До того времени, пока не наступил момент совершения пробоя, через стабилитрон идут токи утечки величина, которых очень незначительна, в тоже время сопротивление прибора очень высокое.

В момент совершения пробоя величина тока резко повысится, а значение дифференцированного сопротивления понизится до самых малых величин. Благодаря этому свойству режим пробоя характеризуется стабильным значением напряжения в широких границах обратного тока. Иными словами стабилитрон служит для распределения тока резистора, на который приходится избыток напряжения, а также тока, составляющего полезную нагрузку.

Рис. №1. Вольт-амперная характеристика (ВАХ) стабилитрона. Для работы стабилитрона используются участки ВАХ, на которых при существенных изменениях тока, напряжение практически  не изменяется, что бывает при обратном подключении прибора на участке электрического пробоя.

Рис.№2. Стабилитрон с резистором

Рис. №3. Стабилитрон, состоящий из двух последовательно-встречно подключенных диодов, служит для ограничения напряжения обеих полярностей.

 

Основа действия прибора строится на двух механизмах – это туннельный пробой и p-n-переход, его называют эффект Зенера и лавинный пробой p-n-перехода.

Основные электрические параметры, характеризующие стабилитрон

Рис. №4. Электрические характеристики важные для стабилитрона.

Пояснение главных величин, которые характеризуют стабилитрон:

  • Стабилизирующее напряжение – U раб, оно соответствует средней точке в месте стабилизации. Напряжение стабилизации – средняя величина между минимальным и предельно-максимальным значением стабилизируемого напряжения.
  • Минимальный ток стабилизации, для этого значения осуществляется лавинный пробой p-n-перехода обратимого действия, он неизменно соответствует минимальному значению стабилизируемого напряжения.
  • Максимальный предельно-допустимый ток стабилитрона.
  • Ток стабилизации или прямой ток, он определяется, как – Iст.ном = Imax – Imin. (он способен выдержать в течение продолжительного отрезка времени p-n-переход без термического разрушения.
  • Температурный коэффициент – величина, которая служит для определения отношения изменяющейся температуры окружающей среды при токе неизменной величины. Для каждого типа стабилитрона свойствен свой коэффициент температуры.
  • Дифференциальное сопротивление – величина, которая зависит от приращения стабилизационного напряжения к приращению тока в определенном диапазоне частоты.
  • Рассеиваемая мощность – величина мощности, обеспечивающей необходимую надежность и рассеиваемую на стабилитроне.

 

Типы стабилитронов

Существует три основных типа стабилитронов:

  1. Прецизионные стабилитроны – для них свойственно наличие повышенной стабильности напряжения. Пример: 2С191 или КС211.
  2. Двухсторонние – ограничивают и стабилизируют двухполярное напряжение. Пример: 2С170А или 2С182А.
  3. Быстродействующий стабилитрон – пониженная величина барьерной емкости и небольшая работа переходного процесса – это делает возможным работать в области кратковременных импульсов напряжений. Это такие стабилитроны: 2С175Е; КС182Е; 2С211Е.

Распределение по мощности – это мощные и маломощные стабилитроны.

 

Особенности использования стабилитронов

Для использования стабилитронов, особенно российских производителей не желательна работа вне зоны пробоя, что является следствием повышения, со временем, тока утечки. Например, на стабилитрон рассчитанный на U15 В, не рекомендуется подавать отличное от расчетного значение напряжения, по крайней мере необходимо следить за минимальным током стабилизации.

Во время неудачного разброса напряжений, при выборе его к предельному значению, может произойти перегрев устройства и возникает режим пробоя.

Нежелательно подключать стабилитроны в сеть в качестве предохранителя, последствия для стабилитрона будут плачевны, при превышении значения тока они выйдут из строя. Для защиты лучше всего использовать, в некоторых случаях, специализированные стабилитроны (супрессоры) марки ZY5.6. Установка стабилитрона (диода Зенера) в цепь низковольтного питания крайне нежелательно из того, что туннельный пробой при U обладает отрицательным температурным коэффициентом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

КАК ПРОВЕРИТЬ СТАБИЛИТРОН

Представленный здесь прибор - это стабилитронометр для тестирования значения напряжения неизвестного стабилитрона.Стабилитрон - это радиоэлектронный компонент, который поддерживает постоянное напряжение на его контактах, причём напряжение источника Vs должно быть больше, чем собственное напряжение стабилитрона Vz, а ток ограничивается с помощью сопротивления Rs, чтоб его текущее значение всегда было меньше, чем его максимальная мощность.

Схема простейшего метода проверки напряжения стабилитрона

Радиолюбители и все те, кто хорошо дружит с электроникой знают, что задача нахождения стабилитрона с нужными характеристиками (рабочим напряжением) скучная и кропотливая. Случается, что нужно перебрать очень много разных экземпляров, пока не найдётся нужное значение Vz. Проверка состояния стабилитрона обычно делается с помощью обычной шкалы мультиметра для измерения диодов, этот тест дает нам точное представление о состоянии компонента, но не дает нам определить значение Vz. В общем тестер стабилитронов это действительно удобный прибор, когда мы хотим быстро выяснить значение напряжения Vz.

Параметры прибора

  • Питание 220 В.
  • Цифровая индикация Vz
  • Меряет стабилитроны на напряжения от 1 В до 50 В
  • Два токовых режима - 5 мА и 15 мА

Схема устройства для проверки стабилитронов

Как видно, схема проста. Напряжение с трансформатора с двумя вторичными обмотками 24V, выпрямляется и фильтруется для получения постоянного напряжения около 80 В, затем поступает на стабилизатор напряжения, образованный элементами (R1, R2, D1, D2 и Q1), который снижает напряжение до 52V, чтобы избежать превышения максимального предела рабочего напряжения микросхемы LM317AHV.

Обратите внимание на буквенный индекс микросхемы. У LM317AHV входное напряжение, в отличии от LM317T, может достигнуть максимума 57V.

На LM317AHV собран генератор постоянного тока, куда добавлен выключатель (S2) совместно с резистором (R4), чтобы выбрать два тестовых режима (5 мА и 15 мА) в качестве источника тока для испытуемого стабилитрона.

Этот тестер легко собрать из стандартных компонентов. Готовый импульсный блок питания от какого-нибудь DVD или тюнера спутниковой системы, а вольтметр либо в виде промышленного модуля на микроконтроллере, либо взять мультиметр D-830.

   Схемы для начинающих

 

elwo.ru

Стабилитрон

Стабилитрон — это диод с рп-переходом, который характеризуется точ­но определенной величиной напряжения пробоя. В отличие от обычного диода стабилитрон работает в области обратной вольтамперной характе­ристики (рис. 27.1). В прямом направлении стабилитрон ведет себя как обычный диод. При обратном смещении перехода ток через стабилитрон практически отсутствует, пока величина обратного напряжения остается меньше величины напряжения туннельного пробоя VZ, обычно называе­мого напряжением стабилизации. Как только обратное напряжение до­стигает величины напряжения туннельного пробоя, стабилитрон начина­ет проводить ток. В области пробоя падение напряжения на стабилитроне практически не изменяется при очень больших изменениях тока. Стаби­литрон является полупроводниковым эквивалентом хорошо известного газотрона. Стабилитроны применяются для параллельной стабилизации и в качестве источников опорного напряжения (см. гл. 29).

 

Рис. 27.1. Прямая и обратная вольтамперные характеристики стабилитрона.

 

 Переключательный диод

Переключательный диод, или динистор, состоит из четырех чередующих из слоев полупроводниковых материалов, как показано на рис. 27.2. Когда такой диод смещен в прямом направлении, через него течет очень малый ток, пока не достигается область пробоя (рис. 27.3). При напря­жениях, меньших напряжения пробоя, динистор можно рассматривать, как ключ в положении ВЫКЛЮЧЕНО, а при напряжениях, больших на­пряжения пробоя, — как ключ в положении ВКЛЮЧЕНО.

 

                                   

 

Рис. 27.2. Переключательный диод,

Рис. 27.3. Вольтамперная характе­ристика переключательного диода.

Однооперационный триодный тиристор (SCR)

Управляемый выпрямитель, или однооперационный триодный тири­стор, — еще один прибор с четырехслойной рпрп-структурой. В отличие от переключательного диода тиристор имеет третий вывод, называемый управляющим электродом (рис. 27.4). Величину критического напряже­ния пробоя можно теперь варьировать, изменяя потенциал управляю­щего электрода. На рис. 27.5 показаны вольтамперные характеристи­ки тиристора для двух различных значений тока в цепи управляющего электрода. При нулевом токе (когда потенциал управляющего электрода равен нулю) напряжение включения тиристора равно V1. Если теперь на управляющий электрод подать положительный по отношению к ка­тоду потенциал, вызывающий протекание тока Ig1 в цепи управляющего электрода, то включение будет происходить при меньшем напряжении V2. После перевода тиристора в проводящее состояние потенциал управляю­щего электрода не оказывает уже никакого влияния на ток тиристора. Тиристор можно выключить только путем уменьшения потенциала анода ниже уровня потенциала катода.

 

Рис. 27.4. Однооперационный триодный тиристор: условное обозначение

 и внешний вид прибора.

 

Рис. 27.5. Вольтамперные характеристики тиристора.

Триодные тиристоры находят широкое применение, поскольку они обладают высоким быстродействием и переключаются при подаче очень малого тока (т. е. очень малой мощности) в цепь управляющего электрода, коммутируя при этом токи порядка нескольких ампер.

Они очень часто используются для выпрямления тока и управления мощностью. Тиристор включается только во время положительного (или отрицательного) полупериодов синусоидального тока, вырабатывая пульсирующий ток одного направления. Управление мощностью осуществляется путем переключения тиристора в проводящее состояние на больший или меньший промежуток времени (см. гл. 29).

На рис. 27.6 показан тиристор, переключаемый последовательностью импульсов. Тиристор включается положительным фронтом каждого пульса и остается в проводящем состоянии, пока входное напряжение не упадет до нуля. Форма результирующего выходного напряжения повто­ряет часть положительного полупериода входного сигнала.

 

Рис. 27.6. Импульсное управление триодным тиристором (SCR).

На рис. 27.7 приведена схема переключения тиристора с помощью пе­ременного резистора R1, управляющего моментом переключения. Пере­ключение осуществляется самим входным сигналом. При установке ми­нимального значения сопротивления резистора R1 переключение проис­ходит в самом начале полупериода входного напряжения, как показано на рис. 27.7(а). По мере увеличения сопротивления переключение про­исходит все позже и позже, поскольку амплитуда сигнала, подаваемо­го на управляющий электрод, становится меньше. При максимальном сопротивлении резистора R1 тиристор переключается непосредственно перед моментом достижения входным напряжением пикового значения (рис.27.7(б)). Заметим, что в рассматриваемой схеме тиристор можно переключить в проводящее состояние только в первой половине положительного полупериода, то есть до момента появления пикового напряжения на управляющем электроде. Если максимум пройден, переключение тиристора станет невозможным и выходное напряжение будет равно нулю.

 

Рис. 27.7. Тиристорный выпрямитель.

Для переключения тиристора во второй половине положительного по­лупериода, т. е. после прохождения положительного максимума, исполь­зуется фазосдвигающая цепь. В схеме на рис. 27.8 эту функцию выпол­няют конденсатор С и резистор R1. Напряжение, подаваемое на упра­вляющий электрод, имеет временную задержку (сдвигается по фазе от­носительно входного напряжения), как показано на рис. 27.8(б). Как уже говорилось, тиристор может переключиться только до момента прихода положительного максимума сигнала на управляющий электрод. Но в результате фазового сдвига к тому моменту времени, когда этот положи­тельный максимум попадет на управляющий электрод, положительный максимум входного напряжения будет уже пройден. Таким образом, с помощью фазосдвигающей цепи тиристор можно переключить в проводя­щее состояние и во второй половине положительного полупериода вход­ного напряжения (рис. 27.8(в)).

 

Рис. 27.8. Тиристорный выпрямитель с фазосдвигающей цепью R1C 

Варикап

Обнаружено, что диод с обратносмещенным рп-переходом имеет неболь­шую емкость, которая изменяется при изменении обратного напряжения, прикладываемого к переходу. Этот факт используется в технологии ин­тегральных схем для формирования конденсаторов внутри кремниевой пластины.

Обратносмещенные диоды, применяемые как конденсаторы перемен­ной емкости, называются варикапами или варакторами (рис. 27.9). По­мимо многих других применений варикапы используются в системах ав­томатической подстройки частоты и в программируемых измерительных Приборах. Хорошо известный метод электронной настройки также связан с применением варикапов в качестве подстроенных конденсаторов.

По сравнению с обычными конденсаторами переменной емкости вари­капы имеют меньшие размеры, большую чувствительность и очень высокую стабильность и надежность.

Рис. 27.9. Варикап.

                                                 Рис. 27.10. Однопереходный транзистор р-типа. (а) Условное обозна­чение. (б) Вольтамперная характе­ристика.

Однопереходный транзистор

Однопереходный транзистор — это прибор с отрицательным сопротивле­нием (в определенных условиях уменьшение напряжения сопровожда­ется увеличением тока). На рис. 27.10 показаны условное обозначение и вольт-амперная характеристика однопереходного транзистора р-типа. Как только напряжение на эмиттере достигнет величины, достаточной для прямого смещения рта-перехода между эмиттером и базой b1, от эмит­тера начинает течь ток. При этом падение напряжения на переходе па­дает до малой величины (приблизительно 0,6 В). Такие однопереходные транзисторы часто используются в качестве генераторов (см. схему на рис. 33.8) и для целей коммутации.

Симметричный диодный тиристор

Симметричный диодный тиристор — это еще один переключательный прибор с двумя выводами T1 и T2, как показано на рис. 27.11. При увеличении разности потенциалов между этими выводами независимо от полярности происходит пробой — включение. Симметричный диодный тиристор может проводить в обоих направлениях, и поэтому его также на­зывают двунаправленным диодом. Когда происходит включение, напря­жениена этом приборе падает до нескольких вольт. Напряжение вклю­чения находится в диапазоне   30-50 В. Симметричные диодные тиристоры используются как переключающие элементы, например для управления однооперационными триодными тиристорами.

Рис. 27.11. Симметричный диодный тиристор.

(а) Условное обозначение. (б) Внешний вид.

Рис. 27.12. Симметричный триодный тиристор.

(а) Условное обозна­чение. (б) Внешний вид.

Симметричный триодный тиристор

Симметричный триодный тиристор, или симистор, (рис. 27.12) — еще один двунаправленный диод с дополнительным выводом управляющего элек­трода. Пробой происходит, когда напряжение между выводами T1 и T2 (любой полярности) достигает определенного уровня.

Симистор можно переключить в проводящее состояние путем подачи на управляющий электрод сигнала, который может быть или положи­тельным, или отрицательным по отношению к выводам T1или T2. Симисторы также используются как переключающие элементы, например, для управления однооперационными триодными тиристорами.

Интегральные схемы

Прогресс технологии привел к улучшению надежности электронных устройств, а также к снижению их стоимости и размеров. Микроэлек­тронные схемы представляют собой миниатюрный ансамбль большого чи­сла электронных компонентов, как пассивных, так и активных.

Существует два типа микросхем: пленочные схемы и монолитные ин­тегральные схемы. Пленочные микросхемы подразделяются в свою оче­редь на тонкопленочные и толстопленочные схемы. Оба типа пленочных схем изготавливаются путем нанесения пленок специальной резистивной пасты на изолирующую подложку. Они применяются главным образом как резисторные схемы, но могут использоваться также для формирова­ния малогабаритных конденсаторов и катушек индуктивности.

Монолитные интегральные схемы, обычно называемые просто инте­гральными схемами (ИС), формируются в диске из кремния р-типа, или чипе. Кремниевый чип представляет собой очень тонкую пластину (толщиной 0.02 см) с площадью поверхности, эквивалентной площади поперечного сечения очень тонкого карандаша (приблизительно 26 мм2). Чип выполняет функцию подложки, в которой формируются различные электронные компоненты с помощью процесса, называемого диффузией. Интегральные схемы могут содержать большое число активных элементов: транзисторов, диодов и т. п., а также резисторов и конденсаторов. Тех­нология ИС большой степени интеграции (больших ИС, или БИС) по­зволяет создать на одном чипе целую электронную систему, например дешифратор или микропроцессор.

Хотя интегральные схемы являются твердотельными, т. е. механиче­ски прочными приборами, но как электронные схемы это весьма «дели­катные» устройства, требующие аккуратного обращения. Ниже перечи­слены меры предосторожности, которые нужно соблюдать при замене ИС.

1. ИС следует держать за корпус, избегая прикасания к выводам. В про­тивном случае на выводах могут появиться грязь и жир, что приводит к ухудшению электрического контакта.

2. При пайке ИС исключительное внимание должно уделяться отводу тепла, чтобы избежать перегрева микросхемы. Перегрев приводит к быстрому разрушению большинства ИС.

3. Напряжение питания должно соответствовать паспортному значению для данной микросхемы. Для питания большинства ИС нужен источ­ник питания с высокой степенью стабильности выходного напряже­ния. Это особенно важно для цифровых применений.

4. Мощность рассеяния для большинства ИС, исключая интегральные усилители мощности, очень мала. Поэтому необходимо исключить любые перегрузки, так как они могут вызвать превышение паспортной мощности рассеяния, перегрев и повреждение ИС.

5. При проведении измерений необходимо соблюдать меры предосторож­ности, чтобы не вызвать короткого замыкания соседних выводов ми­кросхемы. Следует использовать измерительные зонды специальной формы.

6. Если ИС МОП-типа не используется, все ее выводы должны бытьзакорочены между собой. Это следует делать независимо от того, лежит ли ИС на полке или упаковывается для транспортировки.

В этом видео рассказывается о стабилитронах:

Добавить комментарий

radiolubitel.net

Параметрический стабилизатор на транзисторе и стабилитроне своими руками

Как известно, ни одно электронное устройство не работает без подходящего источника питания. В самом простейшем случае, в качестве источника питания может выступать обычный трансформатор и диодный мост (выпрямитель) со сглаживающим конденсатором. Однако, не всегда под рукой есть трансформатор на нужное напряжение. Да и тем более, такой источник питания нельзя назвать стабилизированным, ведь напряжение на его выходе будет зависеть от напряжения в сети. Вариант решения этих двух проблем – использовать готовые стабилизаторы, например, 78L05, 78L12. Они удобны в использовании, но опять-таки не всегда есть под рукой. Ещё один вариант – использовать параметрический стабилизатор на стабилитроне и транзисторе. Его схема показана ниже.

Схема стабилизатора

VD1-VD4 на этой схеме – обычный диодный мост, преобразующий переменное напряжение с трансформатора в постоянное. Конденсатор С1 сглаживает пульсации напряжения, превращая напряжение из пульсирующего в постоянное. Параллельно этому конденсатору стоит поставить плёночный или керамический конденсатор небольшой ёмкости для фильтрации высокочастотных пульсаций, т.к. при большой частоте электролитический конденсатор плохо справляется со своей задачей. Электролитические конденсаторы С2 и С3 в этой схеме стоят с этой же целью – сглаживание любых пульсаций. Цепочка R1 – VD5 служит для формирования стабилизированного напряжения, резистор R1 в ней задаёт ток стабилизации стабилитрона. Резистор R2 нагрузочный. Транзистор в этой схеме гасит на себе всю разницу входного и выходного напряжения, поэтому на нём рассеивается приличное количество тепла. Данная схема не предназначена для подключения мощной нагрузки, но, тем не менее, транзистор стоит прикрутить к радиатору с использованием теплопроводящей пасты. Напряжение на выходе схемы зависит от выбора стабилитрона и значения резисторов. Ниже показана таблица, в которой указаны номиналы элементов для получения на выходе 5, 6, 9, 12, 15 вольт. Вместо транзистора КТ829А можно использовать импортные аналоги, например, TIP41 или BDX53. Диодный мост допустимо ставить любой, подходящий по току и напряжению. Кроме того, можно собрать его из отдельных диодов. Таким образом, при использовании минимума деталей получается работоспособный стабилизатор напряжения, от которого можно питать другие электронные устройства, потребляющие небольшой ток.

Фото собранного мной стабилизатора:

Плата устройства

Автор – Дмитрий С.

sdelaysam-svoimirukami.ru

Стабилитрон Википедия

Стабилитрон в стеклянном корпусе с рассеиваемой мощностью 0,5 Вт
Условные графические обозначения обычных (вверху) и двуханодных (внизу) стабилитронов на принципиальных схемах

Полупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя[1]. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко[1]. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей oма до сотен oм[1]. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью в широком диапазоне обратных токов[2].

Основное назначение стабилитронов — стабилизация напряжения[1][2]. Серийные стабилитроны изготавливаются на напряжения от 1,8 В до 400 В[3]. Интегральные стабилитроны со скрытой структурой на напряжение около 7 В являются самыми точными и стабильными твердотельными источниками опорного напряжения: лучшие их образцы приближаются по совокупности показателей к нормальному элементу Вестона. Особый тип стабилитронов, высоковольтные лавинные диоды («подавители переходных импульсных помех», «супрессоры», «TVS-диоды») применяется для защиты электроаппаратуры от перенапряжений.

ru-wiki.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.