29.11.2024

Стабилизатор напряжения схемы: Стабилизатор напряжения — устройство, принцип работы, виды, применение

Содержание

электронных, релейных, электромеханических и инверторных

Любое электрооборудование проектируется с расчётом на стабильные параметры сетевого напряжения. Это необходимо по двум причинам:

  1. Подключённое к сети устройство должно обеспечивать стабильные параметры тока на выходе в соответствии со своим целевым предназначением;
  2. Электрическая схема оборудования нуждается в защите от аномалий входного тока, которые являются основной причиной сбоев в работе и выходе из строя потребителей электроэнергии вследствие перегорания их токопроводящих контактов и элементов.

Чтобы питающее сетевое напряжение оставалось неизменным, используется специальное устройство – стабилизатор напряжения. Он осуществляет выравнивание характеристик входного тока и обеспечивает отключение потребителей в случае возникновения короткого замыкания или других критических сетевых аномалий.

Виды стабилизаторов напряжения

Принципиальная схема стабилизатора напряжения включает 2 основных элемента, функции которых заключаются в сравнении входных параметров тока с требуемыми и регулировкой выходных характеристик. При выборе стабилизатора необходимо учитывать его основные параметры, которые должны соответствовать свойствам электросети и особенностям питающихся от неё потребителей.

В список главных характеристик любого стабилизирующего устройства входят:

  • Точность стабилизации;
  • Скорость реакции на изменения параметров входного тока;
  • Эксплуатационная надёжность;
  • Защищённость от помех;
  • Срок эксплуатации;
  • Стоимость.

Существует несколько технических решений, позволяющих обеспечить стабильные параметры тока в сетях электропитания различного назначения. Наиболее широкое применение получили следующие виды стабилизаторов напряжения:

Сервоприводные. Обеспечивают высокую точность стабилизации и обладают неплохой устойчивостью к сетевым перегрузкам, включая короткое замыкание. Схема стабилизатора напряжения сервоприводного типа имеет существенный недостаток – низкую скорость реакции на изменения характеристик входного тока, вследствие их целесообразно использовать для защиты потребителей, питающихся от сетей, исключающих резкие скачки напряжения на входе.

Релейные. Характеризуются завидным быстродействием, однако не способны обеспечить высокую точность и качество выравнивания выходного напряжения, вследствие чего применяются для защиты электрооборудования малой мощности.

Электронные. Работают по тому же принципу, что и релейные, но вместо коммутационных реле функцию регулировки выходного напряжения выполняют электронные ключи – симисторы или тиристоры. Устройства этого типа отличаются высокой скоростью стабилизации и надёжной защитой от резких скачков входного напряжения. К недостаткам можно отнести сравнительно большую погрешность при выравнивании выходного тока и высокую стоимость.

Электромеханические. Представляют собой разновидность сервоприводных стабилизаторов. В отличии от последних, в оборудовании этого класса вместо графитовых щёток используются ролики, обеспечивающие защиту от перегрева, высокую перегрузочную способность и продолжительный срок службы системы. Главным минусом электромеханического стабилизатора является сравнительно высокая стоимость.

В продаже встречаются гибридные (с двойной релейной схемой), а также инверторные и широтно-импульсные (ШИМ) стабилизаторы. Они обеспечивают высокую скорость выравнивания выходного тока с небольшой погрешностью и могут работать с широким диапазоном входных параметров напряжения. Стабилизаторы с подмагничиванием и дискретным высокочастотным регулированием являются узкоспециализированными, вследствие чего широкого применения на практике не получили.

Сервоприводные стабилизаторы

Схема стабилизатора напряжения сервоприводного типа включает:

  • Блок защиты от перегрузки;
  • Автотрансформатор;
  • Серводвигатель с редуктором;
  • Блок управления

Сервоприводные стабилизаторы напряжения осуществляют выравнивание выходного тока посредством сервопривода, который приводит в движение коммутационные контакты – графитовые щётки. Перемещение последних в нужную позицию обмотки трансформатора осуществляется плавно без прерывания фазы и искажений синусоиды выходного напряжения. При скачках или проседаниях входного тока в пределах 10 В блок управления выдаёт команду серводвигателю, который двигает коммутационные контакты до достижения требуемых на выходе 220 В.

Схема регулируемого стабилизатора напряжения сервоприводного типа включает подвижные элементы, что снижает его надёжность и долговечность. Кроме того, устройства этого класса поддерживают достаточно узкий диапазон входного напряжения (150-260 В) и допустимой нагрузки (в пределах 250-500 Вт). В то же время, работают они практически бесшумно и обеспечивают погрешность выравнивания параметров тока не более 2-3%.

Стабилизаторы релейного типа

Принцип работы устройств стабилизации релейного типа основан на ступенчатом регулировании напряжения. Осуществляется оно посредством силовых реле, которые выполняют коммутацию секций на вторичной обмотке автотрансформатора после вычисления необходимого числа трансформации контролирующим входные и выходные параметры тока процессором.

К основным достоинствам релейных стабилизаторов относят:

  1. Компактные габариты и небольшой вес;
  2. Широкий диапазон выравнивания;
  3. Возможность применения при температурном режиме -20…+40°C;
  4. Низкую стоимость.

Главные минусы этого оборудования – малая перегрузочная способность и снижение скорости стабилизации при увеличении точности последней.

Электронные стабилизаторы напряжения

Электронные устройства стабилизации работают по принципу ступенчатого регулирования напряжения посредством автоматической коммутации участков вторичной обмотки трансформатора, которая осуществляется силовыми электронными ключами, управляемыми процессорным блоком.

Отсутствие открытой коммутации исключает возникновение искр и окисление токопроводящих контактов схемы стабилизатора при избыточном токе на входе. Кроме того, оборудование этого класса обеспечивает малую инерционность срабатывания, отличается высокой конструктивной надёжностью и полностью бесшумной работой.

Можно собрать электронный стабилизатор напряжения 220В своими руками. Стоимость такое устройство будет иметь гораздо меньшую, чем произведённое на заводе, обеспечивая простоту в обслуживании. Основным недостатком самодельных решений является их низкая надёжность.

Инверторные стабилизирующие устройства

Всё более популярными становятся устройства стабилизации, работающие по принципу двойного преобразования напряжения. Они не имеют подвижных элементов и обеспечивают куда более высокое качество выравнивания тока, чем классические сервоприводные, релейные и электронные.

Схема инверторного стабилизатора напряжения 220В включает:

  • Входной частотный фильтр;
  • Выпрямитель напряжения;
  • Корректор коэффициента мощности;
  • Накопительный конденсатор;
  • Преобразователь постоянного напряжения в переменное (инвертор) с требуемыми на выходе устройства характеристиками.
  • Микроконтроллер.

Входной ток проходит частотную фильтрацию, после чего выпрямитель превращает его в постоянный с правильной синусоидой. В результате значительно возрастает коэффициент мощности. Постоянное напряжение заряжает конденсаторы, с которых ток поступает на инвертор, где выравниваются его частота и напряжение до требуемых 50 Гц и 220 В соответственно.

Инверторные устройства стабилизации обеспечивают КПД выше 90% и практически нулевую инерционность, поддерживая широкий спектр входных параметров тока.

Схема подключения стабилизатора напряжения не представляет особой сложности. Очень важно при этом грамотно выбрать сечение кабеля:

  • Чем выше мощность устройства, тем большей должна быть площадь сечения;
  • При низком уровне входного напряжения сила тока будет большой, поэтому для сетей с преобладающими проседаниями напряжения следует выбирать сечение кабеля с запасом.

И главное: при подключении стабилизатора любого типа требуется неукоснительно соблюдать правила электробезопасности и рекомендации производителя, указанные в паспорте устройства.

Схема электрическая стабилизатора

Разработчики электрических и электронных устройств, в процессе их создания, исходят из того, что будущее устройство будет работать в условиях стабильного питающего напряжения. Это необходимо для того, чтобы электрическая схема электронного устройства, во-первых, обеспечивала стабильные выходные параметры в соответствии со своим целевым назначением, а во-вторых, стабильность питающего напряжения защищает устройство от скачков, чреватых слишком большими потребляемыми токами и перегоранием электрических элементов устройства. Для решения задачи обеспечения неизменности питающего напряжения применяют какой-либо вариант стабилизатора напряжения. По характеру потребляемого устройством тока различают стабилизаторы переменного и постоянного напряжения.

Стабилизаторы переменного напряжения

Стабилизаторы переменного напряжения применяют, если отклонения напряжения в электрической сети от номинального значения превышают 10% . Такая норма выбрана исходя из того, что потребители переменного тока при таких отклонениях сохраняют свою работоспособность весь срок эксплуатации. В современной электронной технике, как правило, для решения задачи стабильного электропитания используют импульсный блок питания, при котором стабилизатор переменного напряжения не нужен. А вот в холодильниках, микроволновых печах, кондиционерах, насосах и т.п. требуется внешняя стабилизация питающего переменного напряжении. В таких случаях чаще всего используют стабилизатор одного из трёх типов: электромеханический, главным звеном которого является регулируемый автотрансформатор с управляемым электрическим приводом, релейно- трансформаторный, на базе мощного трансформатора, имеющего несколько отводов в первичной обмотке, и коммутатора из электромагнитных реле, симисторов, тиристоров или мощных ключевых транзисторов, а также чисто электронный. Широко распространенные в прошлом веке феррорезонансные стабилизаторы в настоящее время практически не используются из-за наличия многочисленных недостатков.

Для подключения потребителей к сети переменного тока 50 Гц применяют стабилизатор напряжения на 220 В. Электрическая схема стабилизатора напряжения такого типа изображена на следующем рисунке.

Трансформатор А1 повышает напряжение в сети до уровня, достаточного для стабилизации выходного напряжения при низком входном напряжении. Регулирующий элемент РЭ осуществляет изменение выходного напряжения. На выходе управляющий элемент УЭ измеряет значение напряжения на нагрузке и выдает управляющий сигнал для его корректировки, если это необходимо.

Электромеханические стабилизаторы

В основе такого стабилизатора — использование бытового регулируемого автотрансформатора или лабораторного ЛАТРа. Применение автотрансформатора обеспечивает более высокий КПД установки. Рукоятка регулирования автотрансформатора удаляется, а на корпусе вместо нее соосно устанавливают небольшой двигатель с редуктором, обеспечивающим усилие вращения достаточное для поворота бегунка в автотрансформаторе. Необходимая и достаточная скорость вращения – около 1 оборота за 10 — 20 сек. Этим требованиям удовлетворяет двигатель типа РД-09, который раньше применялся в самопишущих приборах. Управляет двигателем электронная схема. При изменении сетевого напряжения в пределах +- 10 вольт выдаётся команда на двигатель, который поворачивает бегунок до достижения на выходе напряжения 220 В.

Примеры схем электромеханических стабилизаторов приведены ниже: 

Электрическая схема стабилизатора напряжения с использованием логических микросхем и релейного управления электроприводом

Электромеханический стабилизатор на основе операционного усилителя.

Достоинством подобных стабилизаторов является простота реализации и высокая точность стабилизации напряжения на выходе. К недостаткам следует отнести невысокую надёжность из — за присутствия механических подвижных элементов, относительно малую допустимую мощность нагрузки ( в пределах 250 … 500 Вт), малую распространенность в наше время автотрансформаторов и необходимых электродвигателей.

Релейно — трансформаторные стабилизаторы

Релейно — трансформаторный стабилизатор является более популярным в силу простоты реализации конструкции, применения распространенных элементов и возможности получения значительной выходной мощности (до нескольких киловатт), значительно превышающей мощность примененного силового трансформатора. На выбор его мощности влияет минимальное напряжение в конкретной сети переменного тока. Если, к примеру, оно не меньше 180 В, то от трансформатора потребуется обеспечение вольтодобавки 40 В, что в 5,5 раз меньше номинального напряжения в сети. Выходная мощность у стабилизатора во столько же раз будет больше, чем мощность силового трансформатора (если не учитывать КПД трансформатора и максимально допустимый ток через коммутирующие элементы). Число ступеней изменения напряжения, как правило, устанавливают в пределах 3 … 6 ступеней, что в большинстве случаев обеспечивает приемлемую точность стабилизации напряжения на выходе. При вычислении количества витков обмоток в трансформаторе для каждой ступени напряжение в сети принимается равным уровню срабатывания коммутирующего элемента. Как правило, в качестве коммутирующих элементов используют электромагнитные реле — схема выходит достаточно элементарной и не вызывающей затруднений при повторении. Недостатком такого стабилизатора является образование дуги на контактах реле в процессе коммутации, что разрушает контакты реле. В более сложных вариантах схем переключение реле производят в моменты перехода полуволны напряжения через нулевое значение, что предотвращает возникновение искры, правда при условии использования быстродействующих реле или коммутации на спаде предшествующей полуволны. Использование в качестве коммутирующих элементов тиристоров, симисторов или других бесконтактных элементов надёжность схемы резко возрастает, но усложняется из-за необходимости обеспечения гальванической развязки между цепями управляющих электродов и модулем управления. Для этого применяют оптронные элементы или разделительные импульсные трансформаторы. Ниже приведена принципиальная схема релейно — трансформаторного стабилизатора:

Схема цифрового релейно — трансформаторного стабилизатора на электромагнитных реле

Электронные стабилизаторы

Электронные стабилизаторы имеют, как правило, небольшую мощность (до 100 Вт) и необходимую для работы многих электронных устройств высокую стабильность выходного напряжения. Они обычно строятся в виде упрощённого усилителя низкой частоты, имеющего достаточно большой запас изменения уровня питающего напряжения и мощности. На его вход от электронного регулятора напряжения подаётся сигнал синусоидальной формы с частотой 50 Гц от вспомогательного генератора. Можно использовать понижающую обмотку силового трансформатора. Выход усилителя подключен к повышающему до 220 В трансформатору. Схема имеет инерционную отрицательную обратную связь по значению выходного напряжения, что гарантирует стабильность выходного напряжения с неискажённой формой. Для достижения мощности на уровне нескольких сотен ватт используют другие методы. Обычно применяют мощный преобразователь постоянного тока в переменный на основе использования нового вида полупроводников — так называемых IGBT транзисторо.

Эти коммутирующие элементы в ключевом режиме могут пропустить ток в несколько сотен ампер при максимально допустимом напряжении более 1000 В. Для управления такими транзисторами используются специальные виды микроконтроллеров с векторным управлением. На затвор транзистора с частотой в несколько килогерц подают импульсы с переменной шириной, которая меняется по программе, введенной в микроконтроллер. По выходу такой преобразователь нагружен на соответствующий трансформатор. Ток в цепи трансформатора меняется по синусоиде. В то же время напряжение сохраняет форму исходных прямоугольных импульсов с разной шириной. Такая схема используется в мощных источниках гарантированного питания, используемых для бесперебойной работы компьютеров. Электрическая схема стабилизатора напряжения такого типа очень сложна и практически недоступна для самостоятельного воспроизведения.

Упрощенные электронные стабилизаторы напряжения

Такие устройства применяют, когда напряжение бытовой сети (особенно в условиях сельских населенных пунктов) нередко оказывается пониженным, практически никогда не обеспечивая номинальных 220 В.

В такой ситуации и холодильник работает с перебоями и риском выхода из строя, и освещение оказывается тусклым, и вода в электрочайнике долго не может закипеть. Мощности старенького, еще советских времен, стабилизатора напряжения, рассчитанного на питание телевизора, как правило, недостаточна для всех остальных бытовых электропотребителей, да и значение напряжения в сети часто падает ниже уровня, допустимого для подобного стабилизатора.

Существует простой метод для повышения напряжение в сети, путем использования трансформатора мощностью значительно меньшей мощности применяемой нагрузки. Первичная обмотка трансформатора включается непосредственно в сеть, а нагрузка подключается последовательно к вторичной (понижающей) обмотке трансформатора. При правильной фазировке напряжение на нагрузке окажется равным сумме снимаемого с трансформатора и сетевого напряжения.

Электрическая схема стабилизатора напряжения, действующего по этому несложному принципу, приведена рисунке ниже. Когда стоящий в диагонали диодного моста VD2 транзистор VT2 (полевой) закрыт, обмотка I (являющаяся первичной) трансформатора Т1 к сети не подключена. Напряжение на включенной нагрузке почти равно сетевому за минусом небольшого напряжения на обмотке II (вторичная) трансформатора Т1. При открытии полевого транзистора первичная обмотка трансформатора окажется замкнутой, а к нагрузке будет приложена сумма сетевого и напряжения вторичной обмотки.

Схема электронного стабилизатора напряжения

Напряжение с нагрузки, через трансформатор Т2 и диодный мост VD1 подается на транзистор VT1. Регулятор подстроечного потенциометра R1 должен быть выставлен в положение, обеспечивающее открытие транзистора VT1 и закрытие VT2, когда напряжение на нагрузке превышает номинальное (220 В). Если напряжение меньше 220 вольт транзистор VT1 закроется , a VT2 — откроется. Полученная таким способом отрицательная обратная связь сохраняет напряжение на нагрузке примерно равным номинальному значению.

Выпрямленное напряжение с моста VD1 используется и для запитки коллекторной цепи VT1 (через цепь интегрального стабилизатора DA1). Цепочка C5R6 гасит нежелательные скачки напряжения сток-исток на транзисторе VT2. Конденсатор С1 обеспечивает снижение помех, проникающих в сеть в процессе работы стабилизатора. Номиналы резисторов R3 и R5 подбирают, получая наилучшую и устойчивую стабилизацию напряжения. Выключатель SA1 обеспечивает включение и выключение стабилизатора и нагрузки. Замыкание выключателя SA2 отключает автоматику, стабилизирующую напряжение на нагрузке. Оно в таком варианте оказывается максимально возможным при текущем напряжении в сети.

После включения собранного стабилизатора в сеть, подстроечным резистором R1 устанавливают на нагрузке напряжение, равное 220 В. Нужно учесть, что вышеописанный стабилизатор не может устранить изменения сетевого напряжения, превышающие 220 В, или оказавшиеся ниже минимального, использованного при расчете обмоток трансформатора.

Замечание: В некоторых режимах работы стабилизатора мощность, рассеиваемая транзистором VT2, оказывается весьма значительной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем отводе тепла от этого транзистора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

микросхема, импульсный, интегральный и простой

На чтение 8 мин. Просмотров 31 Опубликовано Обновлено

Стабилизаторы напряжения предотвращают поломки оборудования и бытовой техники от колебания нагрузки. Устройство совместимо с однофазной и трехфазной сетью, подходит для квартиры и частного дома. Схема стабилизатора напряжения может понадобиться при самостоятельном подключении прибора или обустройстве электросети.

Принцип работы стабилизаторов

Различные типы стабилизаторов напряжения

Принцип функционирования зависит от типа оборудования. Для выделения общих моментов целесообразно рассмотреть конструкцию. Прибор состоит из таких элементов:

  • Система управления. Позволяет отслеживать вольтаж на выходе, доводя его до стабильного показателя 220 В. Оборудование работает с погрешностью 10-15 %.
  • Автоматический трансформатор. Имеется у релейных, симисторных, сервомоторных модификаций. Повышает или понижает номинал напряжения.
  • Инвертор. Механизмом из генератора, трансформатора и транзисторов оснащаются инверторные модели. Элементы через первичную обмотку могут пропускать либо выключать ток, формируя напряжение на выходе.
  • Защитный блок, источник вторичного питания. Имеются у моделей, рассчитанных на 220 Вольт.

Функция байпаса или транзита позволяет стабилизаторам подавать напряжение на выход до момента пресечения установленного предела.

Принцип действия релейных моделей

Релейный аппарат регулирует вольтаж посредством замыкания контактов реле. Контроль параметров осуществляется с помощью микросхемы, элементы которой сравнивают сетевое напряжение с опорным. Если показатели не совпадают, от микросхем стабилизаторов напряжения поступают сигналы на понижение или повышение обмотки.

При дешевизне и компактности релейное оборудование медленно реагирует на скачки напряжения, может кратковременно выключаться, не выдерживает перегрузки.

Погрешность устройств – 5-10 %.

Как работают сервоприводные приборы

Основные узлы сервоприводного аппарата – серводвигатель и автоматический трансформатор. Если напряжение отклонилось от нормы, поступает сигнал на переключение трансформаторных от контроллера к мотору. Сравнение показателей опорного и входного вольтажа осуществляет плата управления.

Сервоприводные стабилизаторы могут регулировать нагрузку трехфазной и однофазной сети. Они отличаются стойкостью, надежностью, исправным функционированием при перегрузке.

Точность приборов – 1 %.

Принцип работы инверторных устройств

Инверторный стабилизатор регулирует напряжение по системе двойного преобразования:

  1. Переменный ток на входе выравнивается, пропускается через конденсаторный фильтр пульсации.
  2. Выпрямленный ток подается к инвертору, трансформируется в переменный и поступает на нагрузку.

Выходное напряжение остается стабильным.

Приборы с инверторами отличаются быстротой реакции, КПД от 90%, бесперебойной и бесшумной работой в диапазоне 115-300 Вольт.

Диапазон регулирования аппарата снижается, если нагрузка увеличивается.

Особенности расчета характеристик

Чтобы установить параметрический аппарат, понадобится вычислить мощность, вольтаж на входе, ток базы транзисторов. К примеру, максимальное напряжение на выходе равняется 14 В, минимальное на выходе – 1,5 В, а максимальный ток – 1 А. Зная параметры, производится расчет:

  1. Входное напряжение. Используется формула Uвх=Uвых+3. Цифра – коэффициент падения напряжения на участке перехода от коллектора к эмиттеру.
  2. Максимальная мощность, которую рассеивает транзистор. Для подбора в пользу большей величины понадобится справочник. Применяются такие формулы: Pmax = 1.3 (Uвх-Uвых) Imax = 1.3 (17-14) = 3,9 Вт; Pmax = 1.3 (Uвх-Uвых1) Imax = 1.3 (17-1.5) = 20,15 Вт.
  3. Ток транзисторной базы. Расчеты производятся по формуле: Iб max = Imax/h31Э min. Последний показатель равен 25, поэтому 1/25 = 0,04 А.
  4. Параметры балластного тиристора. Применяется формула Rб = (Uвх-Uст)/(Iб max+Iст min )= (17-14)/(0,00133+0,005) = 474 Ом. Iст min – ток стабилизации; Uст – напряжение стабилизации, которое выдает стабилитрон.

Цифры и расчеты предоставлены для резисторов с сопротивлением 1 Ом.

Схема для компенсационного стабилизатора

Компенсационные схемы объясняют подключение с обратной связью. Сами устройства имеют точное напряжение на выходе без привязки к току нагрузки.

Последовательная схема

Компенсационный стабилизатор напряжения последовательного типа

По обозначениям из справочника можно идентифицировать:

  • регулирующий узел – Р;
  • источник эталонного номинала напряжения – И;
  • сравниваемые показатели – ЭС;
  • усилитель постоянных токов – У.

Для вычисления напряжения на выходе понадобится знать особенности работы устройства. Один транзистор будет регулировать, а второй – стабилизировать. Стабилитрон является источником опорного. Разность мощностей – напряжение на участке между эмиттером и базой.

При подаче коллекторного тока на резистор напряжение падает, имеет обратную полярность для эмиттерного узла. В результате происходит падение коллекторного и эмиттерного токов. Чтобы регулировка была плавной, для линии стабилизатора используется делитель. Ступенчатое регулирование достигается при помощи напряжения опоры стабилитрона.

Параллельная схема

Компенсационный стабилизатор напряжения параллельного типа

Если напряжение отклонилось от номинала, возникает импульс рассогласования. Это разница между показателями выхода и опоры. Поскольку узел регулировки расположен параллельно нагрузке, он усиливает сигнал. Происходит изменение тока на элементе-регуляторе, падение напряжения резистора и сохранение постоянного номинала на выходе.

Схема параметрического стабилизатора

Схема, объясняющая процесс стабилизации опорного напряжения, будет основной для параметрических моделей. Делитель напряжения прибора представляет собой балластный резистор и стабилитрон с параллельным сопротивлением нагрузки. При колебании номинала напряжения питания и токовой нагрузки стабилизируется напряжение.

Если данный показатель возрастает на входе, увеличивается ток, проходящий через стабилитрон и резистор. Благодаря вольт-амперным показателям номинал стабилитрона почти не меняется, как и напряжение сопротивления нагрузки. Все колебания касаются только резистора.

Специфика импульсного устройства

Простой импульсный стабилизатор напряжения

Импульсный аппарат отличается высоким КПД даже в условиях большого диапазона напряжения. Схема устройства включает ключ, энергетический накопитель и цепь управления. Элемент регулировки подключается в режиме импульса. Принцип действия прибора:

  1. От второго коллектора через второй конденсатор к базе подается положительное напряжение обратной связи.
  2. Коллектор №2 открывается после насыщения током от резистора №2.
  3. На переходе от коллектора к эмиттеру насыщение меньше, и он остается открытым.
  4. Усилитель подключается на коллектор №3 через стабилитрон №2.
  5. Подсоединение базы осуществляется к делителю.
  6. Первый стабилитрон управляет открытием/закрытием второго коллектора по сигналу от третьего.

Когда второй стабилитрон открыт, энергия накапливается в дросселе, поступая поле закрытия на нагрузку.

Стабилизаторы на микросхемах

Линейный делитель отличается подачей нестабильного напряжения на вход и снятием стабильного с плеча делителя. Выравнивание осуществляет делительное плечо, поддерживающее постоянное сопротивление. Устройства отличаются простотой конструкции, отсутствием помех в работе. Микросхемы соединяются последовательно или параллельно.

Последовательные стабилизаторы

Последовательный стабилизатор на биополярном транзисторе

Последовательные устройства характеризуются включением элемента регулировки параллельно с нагрузкой. Существует две модификации:

  • С биполярным транзистором. Не имеет авторегулируемого контура, стабильность напряжения зависит от величины тока и температурных показателей. В качестве токового усилителя используется эмиттерный повторитель или транзистор составного типа.
  • С контуром авторегулировки. Компенсационный прибор работает по принципу выравнивания выходного и опорного номинала. Часть напряжения на выходе снимается с резистивного делителя, а потом сравнивается при помощи стабилитрона. Контуром регулирования является петля обратной связи со сдвигом по фазе 180 градусов. Стабилизация тока производится резистором или источником питания.

Самые популярные последовательные стабилизаторы – интегральные.

Специфика параллельного стабилизатора

Простой мощный параллельный стабилизатор на транзисторах

Параллельный прибор отличается включением элемента регулировки параллельно подаваемой нагрузке. Стабилитрон используется полупроводникового или газоразрядного типа. Схема востребована для регулирования сложных устройств.

Снижение нестабильного показателя напряжения на входе осуществляется при помощи резистора. Допускается использовать двухполярный автомат с высокими показателями дифференциального сопротивления на отдельном участке.

Особенности приборов с тремя выводами

Стабилизаторы для переменного напряжения отличаются небольшими габаритами, выпускаются в пластиковом или металлическом корпусе. Они оснащаются каналами для входа, заземления и вывода. Конденсаторы прибора для уменьшения пульсаций запаиваются с двух сторон.

Напряжение на выходе составляет около 5 В, на входе – около 10 В, мощность рассеивания – 15 Вт.

Трехвыводные модификации позволяют получить вольтаж нестандартного номинала, необходимое для запитки макетов, маломощных АКБ, при починке или модернизации аппаратуры.

Алгоритм самостоятельной сборки аппарата

Для самостоятельного изготовления целесообразно использовать схему симистора – эффективного прибора. Он выравнивает номинал подаваемого тока при напряжении от 130 до 270 В. Сделать прибор можно на основе печатной платы из фольгированного текстолита. Сборка устройства осуществляется так:

  1. Подготовка магнитопровода и нескольких кабелей.
  2. Создание обмотки из провода диаметром 0,064 мм – понадобится 8669 витков.
  3. Остальные проводники диаметром 0,185 мм нужны для оставшихся обмоток. Количество витков каждой – 522.
  4. Последовательное соединение трансформаторов на 12 В.
  5. Организация 7-ми отводов. Первые 3 изготавливаются из провода диаметром 3 мм, другие – из шин с сечением 18 мм2. Так самодельный аппарат не будет нагреваться.
  6. Установка контроллерной микросхемы на платиновый теплоотвод.
  7. Монтаж симисторов и светодиодов.

Для устройства понадобится прочный корпус, прикрепленный к жесткому каркасу. Самый простой вариант – полимерные или алюминиевые пластины.

Схема подключения стабилизатора

Схема подключения стабилизатора напряжения

Ввод стабилизатора в частный дом выполняется при помощи трехжильного ВВГнг-кабеля, трехпозиционного выключателя и провода ПУГВ. Установка производится до счетчика, в отдельном или распределительном щитке:

  1. Открыть контакты, подняв лицевую крышку.
  2. Пропустить на выход и вход кабель. Фазу входа затянуть на клемме Lin, нулевой (синий) проводник – на клемме Nin, землю – на винтовой зажим с соответствующим обозначением.
  3. При отсутствии земли закрутить эту жилу под винт на корпусе прибора.
  4. Вернуть стабилизированное напряжение в общий щиток. Фаза подводится на выход Lout, ноль – к Nout, земля – к заземлению на входе.
  5. Протестировать схему в режиме без нагрузки.

Для теста отключаются все автоматы, кроме вводного и направленного на стабилизатор.

Стабилизатор, подключенный между сетью и нагрузкой, подходит для частного или дачного дома, квартиры, производства. Прибор защищает оборудование от выхода из строя, устраняет влияние на электролинию перегрузки и коротких замыканий.

7 схем импульсных стабилизаторов напряжения на транзисторах

Схемы самодельных импульсных DC-DC преобразователей напряжения на транзисторах, семь примеров.

Благодаря высокому КПД импульсные стабилизаторы напряжения получают в последнее время все более широкое распространение, хотя они, как правило, сложнее и содержат большее число элементов.

Поскольку в тепловую энергию преобразуется лишь малая доля подводимой к импульсному стабилизатору энергии, его выходные транзисторы меньше нагреваются, следовательно, за счет снижения площади теплоотводов снижаются масса и размеры устройства.

Ощутимым недостатком импульсных стабилизаторов является наличие на выходе высокочастотных пульсаций, что заметно сужает область их практического использования — чаще всего импульсные стабилизаторы используют для питания устройств на цифровых микросхемах.

Понижающий импульсный стабилизатор напряжения

Стабилизатор с выходным напряжением, меньшим входного, можно собрать на трех транзисторах (рис. 1), два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (ѴТЗ) является усилителем сигнала рассогласования.

Рис. 1. Схема импульсного стабилизатора напряжения с КПД 84%.

Устройство работает в автоколебательном режиме. Напряжение положительной обратной связи с коллектора составного транзистора ѴТ1 через конденсатор С2 поступает в цепь базы транзистора ѴТ2.

Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе ѴТЗ. Его эмиттер подключен к источнику опорного напряжения — стабилитрону VD2, а база — к делителю выходного напряжения R5 — R7.

В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выходное напряжение регулируется изменением скважности работы ключа.

Включением/выключением транзистора VT1 по сигналу транзистора ѴТЗ управляет транзистор ѴТ2. В моменты, когда транзистор ѴТ1 открыт, в дросселе L1, благодаря протеканию тока нагрузки, запасается электромагнитная энергия.

После закрывания транзистора запасенная энергия через диод VD1 отдается в нагрузку. Пульсации выходного напряжения стабилизатора сглаживаются фильтром L1, C3.

Характеристики стабилизатора целиком определяются свойствами транзистора ѴТ1 и диода VD1, быстродействие которых должно быть максимальным. При входном напряжении 24 В, выходном — 15 В и токе нагрузки 1 А измеренное значение КПД было равно 84%.

Дроссель L1 имеет 100 витков провода диаметром 0,63 мм на кольце К26х16х12 из феррита с магнитной проницаемостью 100. Его индуктивность при токе подмагничивания 1 А — около 1 мГн.

Step-down DC-DC преобразователь напряжения на +5В

Схема простого импульсного стабилизатора показана на рис. 2. Дроссели L1 и L2 намотаны на пластмассовых каркасах, помещенных в броневые магнитопроводы Б22 из феррита М2000НМ.

Дроссель L1 содержит 18 витков жгута из 7 проводов ПЭВ-1 0,35. Между чашками его магнитопровода вложена прокладка толщиной 0,8 мм.

Активное сопротивление обмотки дросселя L1 27 мОм. Дроссель L2 имеет 9 витков жгута из 10 проводов ПЭВ-1 0,35. Зазор между его чашками — 0,2 мм, активное сопротивление обмотки — 13 мОм.

Прокладки можно изготовить из жесткого теплостойкого материала — текстолита, слюды, электрокартона. Винт, скрепляющий чашки магнитопровода, должен быть из немагнитного материала.

Рис. 2. Схема простого ключевого стабилизатора напряжения с КПД 60%.

Для налаживания стабилизатора к его выходу подключают нагрузку сопротивлением 5…7 Ом и мощностью 10 Вт. Подбором резистора R7 устанавливают номинальное выходное напряжение, затем увеличивают ток нагрузки до 3 А и, подбирая величину конденсатора С4, устанавливают такую частоту генерации (примерно 18…20 кГц), при которой высокочастотные выбросы напряжения на конденсаторе C3 минимальны.

Выходное напряжение стабилизатора можно довести до 8…10В, увеличив величину резистора R7 и установив новое значение рабочей частоты. При этом мощность, рассеиваемая на транзисторе ѴТЗ, также увеличится.

В схемах импульсных стабилизаторов желательно использовать электролитические конденсаторы К52-1. Необходимую величину емкости получают параллельным включением конденсаторов.

Основные технические характеристики:

  • Входное напряжение, В — 15…25.
  • Выходное напряжение, В — 5.
  • Максимальный ток нагрузки, А — 4.
  • Пульсации выходного напряжения при токе нагрузки 4 А во всем диапазоне входных напряжений, мВ, не более — 50.
  • КПД, %, не ниже — 60.
  • Рабочая частота при входном напряжении 20 б и токе нагрузки 3А, кГц—20.

Улучшенный вариант импульсного стабилизатора на +5В

В сравнении с предыдущим вариантом импульсного стабилизатора в новой конструкции А. А. Миронова (рис. 3) усовершенствованы и улучшены такие его характеристики, как КПД, стабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсной нагрузки.

Рис. 3. Схема импульсного стабилизатора напряжения.

Оказалось, что при работе прототипа (рис. 2) возникает так называемый сквозной ток через составной ключевой транзистор. Этот ток появляется в те моменты, когда по сигналу узла сравнения ключевой транзистор открывается, а коммутирующий диод еще не успел закрыться. Наличие такого тока вызывает дополнительные потери на нагревание транзистора и диода и уменьшает КПД устройства.

Еще один недостаток — значительная пульсация выходного напряжения при токе нагрузки, близком к предельному. Для борьбы с пульсациями в стабилизатор (рис. 2) был введен дополнительный выходной LC-фильтр (L2, С5).

Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только уменьшением активного сопротивления дросселя L2.

Улучшение динамики переходного процесса (в частности, уменьшение его длительности) связано с необходимостью уменьшения индуктивности дросселя, но при этом неизбежно увеличится пульсация выходного напряжения.

Поэтому оказалось целесообразным исключить этот выходной фильтр, а емкость конденсатора С2 увеличить в 5… 10 раз (параллельным соединением нескольких конденсаторов в батарею).

Цепь R2, С2 в исходном стабилизаторе (рис. 6.2) практически не изменяет длительности спада выходного тока, поэтому ее можно удалить (замкнуть резистор R2), а сопротивление резистора R3 увеличить до 820 Ом.

Но тогда при увеличении входного напряжения с 15 6 до 25 6 ток, протекающий через резистор R3 (в исходном устройстве), будет увеличиваться в 1,7 раза, а мощность рассеивания — в 3 раза (до 0,7 Вт).

Подключением нижнего по схеме вывода резистора R3 (на схеме доработанного стабилизатора это резистор R2) к плюсовому выводу конденсатора С2 этот эффект можно ослабить, но при этом сопротивление R2 (рис. 3) должно быть уменьшено до 620 Ом.

Один из эффективных путей борьбы со сквозным током — увеличение времени нарастания тока через открывшийся ключевой транзистор.

Тогда при полном открывании транзистора ток через диод VD1 уменьшится почти до нуля. Этого можно достигнуть, если форма тока через ключевой транзистор будет близка к треугольной.

Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГч.

Еще один путь — применение более быстродействующего коммутирующего диода VD1, например, КД219Б (с барьером Шотки). У таких диодов выше быстродействие и меньше падение напряжения при одном и том же значении прямого тока по сравнению с обычными кремниевыми высокочастотными диодами. Конденсатор С2 типа К52-1.

Улучшение параметров устройства может быть получено и при изменении режима работы ключевого транзистора. Особенность работы мощного транзистора ѴТЗ в исходном и улучшенном стабилизаторах состоит в том, что он работает в активном режиме, а не в насыщенном, и поэтому имеет высокое значение коэффициента передачи тока и быстро закрывается.

Однако из-за повышенного напряжения на нем в открытом состоянии рассеиваемая мощность в 1,5…2 раза превышает минимально достижимое значение.

Уменьшить напряжение на ключевом транзисторе можно подачей положительного (относительно плюсового провода питания) напряжения смещения на эмиттер транзистора ѴТ2 (см. рис. 3).

Необходимую величину напряжения смещения подбирают при налаживании стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения можно предусмотреть отдельную обмотку на трансформаторе. Однако при этом напряжение смещения будет изменяться вместе с сетевым.

Схема преобразователя со стабильным напряжением смещения

Для получения стабильного напряжения смещения стабилизатор надо доработать (рис. 4), а дроссель превратить в трансформатор Т1, намотав дополнительную обмотку II. Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке I определяется из выражения: U1=UBыx + U VD1.

Поскольку напряжение на выходе и на диоде в это время меняется незначительно, то независимо от значения входного напряжения на обмотке II напряжение практически стабильно. После выпрямления его подают на эмиттер транзистора VT2 (и VT1).

Рис. 4. Схема модифицированного импульсного стабилизатора напряжения.

Потери на нагрев снизились в первом варианте доработанного стабилизатора на 14,7%, а во втором — на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на теплоотвод.

В стабилизаторе варианта 1 (рис. 3) дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводов ПЭВ-1 0,35. Обмотку помещают в броневой магнитопровод Б22 из феррита 2000НМ.

Между чашками нужно заложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 (рис. 4) трансформатор Т1 образован намоткой поверх катушки дросселя L1 двух витков провода ПЭВ-1 0,35.

Вместо германиевого диода Д310 можно использовать кремниевый, например, КД212А или КД212Б, при этом число витков обмотки II нужно увеличить до трех.

DC стабилизатор напряжения с ШИМ

Стабилизатор с широтно-импульсным управлением (рис. 5) по принципу действия близок к стабилизатору, описанному в, но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или увеличении тока, потребляемого нагрузкой.

При подаче питания на вход устройства ток, текущий через резистор R3, открывает ключевой элемент, образованный транзисторами VT.1, VT2, в результате чего в цепи транзистор VT1 — дроссель L1 — нагрузка — резистор R9 возникает ток. Происходит заряд конденсатора С4 и накопление энергии дросселем L1.

Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 Б, и стабилитрон VD4 открывается. Это приводит к открыванию транзисторов VT5, ѴТЗ и закрыванию ключевого элемента, а благодаря наличию диода VD3 дроссель L1 отдает накопленную энергию нагрузке.

Рис. 5. Схема стабилизатора с широтно-импульсным управлением с КПД до 89%.

Технические характеристики стабилизатора:

  • Входное напряжение — 15…25 В.
  • Выходное напряжение — 12 В.
  • Номинальный ток загрузки — 1 А.
  • Пульсации выходного напряжения при токе нагрузки 1 А — 0,2 В. КПД (при UBX =18 6, Ін=1 А) — 89%.
  • Потребляемый ток при UBX=18 В в режиме замыкания цепи нагрузки — 0,4 А.
  • Выходной ток короткого замыкания (при UBX =18 6) — 2,5 А.

По мере уменьшения тока через дроссель и разряда конденсатора С4 напряжение на нагрузке также уменьшится, что приведет к закрыванию транзисторов VT5, ѴТЗ и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.

Конденсатор С3, снижающий частоту колебательного процесса, повышает эффективность стабилизатора.

При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R9, открыванию транзистора ѴТ4 и закрыванию ключевого элемента.

Далее процесс протекает аналогично описанному выше. Диоды VD1 и VD2 способствуют более резкому переходу устройства из режима стабилизации напряжения в режим ограничения тока.

Во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки. Транзистор ѴТ1 следует установить на теплоотводе размерами 40×25 мм.

Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМЗ. Магнитопровод имеет зазор толщиной 0,5 мм из немагнитного материала.

Стабилизатор несложно перестроить на другое выходное напряжение и ток нагрузки. Выходное напряжение устанавливают выбором типа стабилитрона VD4, а максимальный ток нагрузки — пропорциональным изменением сопротивления резистора R9 или подачей на базу транзистора ѴТ4 небольшого тока от отдельного параметрического стабилизатора через переменный резистор.

Для снижения уровня пульсаций выходного напряжения целесообразно применить LC-фильтр, аналогичный используемому в схеме на рис. 2.

Импульсный стабилизатор напряжения с КПД преобразования 69…72%

Импульсный стабилизатор напряжения (рис. 6) состоит из узла запуска (R3, VD1, ѴТ1, VD2), источника опорного напряжения и устройства сравнения (DD1.1, R1), усилителя постоянного тока (ѴТ2, DD1.2, ѴТ5), транзисторного ключа (ѴТЗ, ѴТ4), индуктивного накопителя энергии с коммутирующим диодом (VD3, L2) и фильтров — входного (L1, С1, С2) и выходного (С4, С5, L3, С6). Частота переключения индуктивного накопителя энергии в зависимости от тока нагрузки находится в пределах 1,3…48 кГц.

Рис. 6. Схема импульсного стабилизатора напряжения с КПД преобразования 69. ..72%.

Все катушки индуктивности L1 — L3 одинаковы и намотаны в броневых магнитопроводах Б20 из феррита 2000НМ с зазором между чашками около 0,2 мм.

Обмотки содержат по 20 витков жгута из четырех проводов ПЭВ-2 0,41. Можно применить также кольцевые ферритовые магнитопроводы с зазором.

Номинальное выходное напряжение 5 В при изменении входного от 8 до 60 б и КПД преобразования 69…72%. Коэффициент стабилизации — 500.

Амплитуда пульсаций выходного напряжения при токе нагрузки 0,7 А — не более 5 мВ. Выходное сопротивление — 20 мОм. Максимальный ток нагрузки (без теплоотводов для транзистора VT4 и диода VD3) — 2 А.

Импульсный стабилизатор напряжения на 12В

Импульсный стабилизатор напряжения (рис. 6.7) при входном напряжении 20…25 В обеспечивает на выходе стабильное напряжение 12 В при токе нагрузки 1,2 А.

Пульсации на выходе до 2 мВ. Благодаря высокому КПД в устройстве не используются теплоотводы. Индуктивность дросселя L1 — 470 мкГч.

Рис. 7. Схема импульсного стабилизатора напряжения с малыми пульсациями.

Аналоги транзисторов: ВС547 — КТ3102А] ВС548В — КТ3102В. Приблизительные аналоги транзисторов ВС807 — КТ3107; BD244 — КТ816.

Источник: Шустов М. А. — Практическая схемотехника. Преобразователи напряжения.

Схемы и онлайн расчёт элементов регулируемых стабилизаторов напряжения




Онлайн расчёт элементов схем линейных стабилизаторов с фиксированным и
регулируемым выходным напряжением.




Для поддержания стабильной работы и сохранения заявленных параметров электрооборудования его питание в большинстве случаев
должно осуществляться постоянным и неподконтрольным никаким внешним воздействиям напряжением. Как правило, эта функция возлагается на
устройства, называемые стабилизатором напряжения.
Стабилизатор напряжения — это преобразователь электрической энергии, предназначенный для поддержания уровня выходного
напряжения в заданных пределах при изменениях следующих величин: входного напряжения, сопротивления нагрузки, а также в идеале —
температуры и иных внешних воздействий.

Ещё не так давно подобные узлы строились на стабилитронах и транзисторах, однако с появлением специализированных микросхем, необходимость
в самостоятельном конструировании подобных схем скоротечно отпочковалась, ввиду очевидной простоты реализации стабилизаторов, выполненных на
интегральных микросхемах. А зря!

Там, где значения коэффициента стабилизации Кст допустимо исчислять десятками, а не сотнями-тысячами, простейший параметрический
стабилизатор не только имеет право на существование, но и выигрывает у своих интегральных собратьев по такому важному
параметру, как чистота выходного напряжения и отсутствие импульсных помех в момент резкого изменения тока нагрузки.

Давайте рассмотрим такие простейшие устройства стабилизаторов напряжения.



Рис.1 а) Простейшая схема     б) С эмиттерным повторителем     в) С регулируемым вых. напряжением

Схема стабилизатора напряжения, приведённая на Рис.1 а), используется в основном с устройствами, через которые не протекает существенных
токов.
От номинала резистора Rст зависит величина тока Iвх, протекающего как через стабилитрон, так и через нагрузку. Величина этого тока
рассчитывается по формуле:

Rст = (Uвх — Uст)/ Iвх
,
а
Iвх должен удовлетворять условию
Iвх ≥ Iн. макс + Iст. мин, где
Iн. макс — максимальный ток в нагрузке при заданном выходном
напряжении, а
Iст. мин — минимальный ток стабилизации стабилитрона, указанный
в характеристиках полупроводника. В стабилитронах отечественных производителей параметр
Iст. мин, как
правило, задан в явном виде, у зарубежных может быть не указан вообще. Куда податься бедному еврею? Я бы рекомендовал в этом
случае ориентироваться на значение тока из datasheet-ов «Izk» (значение при котором стабилитрон обладает максимальным импедансом) и
увеличить эту величину в 2. ..3 раза. Хотя, по большому счёту, оптимальным (с точки зрения достижения максимальных параметров) током для стабилитрона
является тестовый ток, при котором измеряются основные характеристики полупроводника.

Для наиболее эффективного выполнения своих задач стабилитрону довольно важно, чтобы мощность нагрузки не превышала мощности, рассеиваемой
на полупроводнике. Поэтому если возникает потребность стабилизации напряжения в нагрузках, потребляющих значительную мощность,
используется дополнительный усилитель тока — эмиттерный повторитель (Рис.1 б)). В этом случае нагрузкой для стабилитрона является входное
сопротивление повторителя Rвх ≈ Rн x (1 + β),
т.е. ток нагрузки можно увеличить в β раз. Тут важно учитывать падение напряжения на эмиттерном переходе транзистора, в связи с чем
напряжение на выходе стабилизатора будет на 0,6…0,7 В (на 1,2…1,4 В для составного транзистора) меньше напряжения стабилизации
стабилитрона
.

Установив параллельно стабилитрону переменный резистор (Рис.1 в)), возникает возможность изменять напряжение стабилизации в нагрузке от
нуля почти до максимального значения напряжения стабилизации стабилитрона (за вычетом падения напряжения Uбэ на переходе транзистора).
Естественно, что ток, протекающий через переменник, также необходимо учитывать, задаваясь его значением — не меньшим, чем входной ток
эмиттерного повторителя.

Сдобрим пройденный материал калькулятором.

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ ЛИНЕЙНОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

Схемы компенсационных линейных стабилизаторов являются основой большинства интегральных микросхем, выполняющих
функцию стабилизации напряжений и токов, и в простейшем виде могут быть выполнены на стабилитроне и паре транзисторов (Рис.2).



Рис.2 Схемы компенсационных линейных стабилизаторов напряжения

Здесь стабилитрон является источником опорного напряжения, а транзистор Т2 — устройством сравнения выходного напряжения,
поступающего через резистивный делитель на его базу, с опорным значением напряжения на его эмиттере. Повысилось выходное напряжение,
а вместе с ним напряжение на базе Т2, транзистор приоткрывается и притягивает напряжение на базе регулирующего транзистора Т1 к минусовой
(земляной) шине, тем самым, уменьшая напряжение на его эмиттере, а соответственно и на выходе схемы. Снизилось выходное напряжение —
всё то же самое, только наоборот.
Компенсационные стабилизаторы на транзисторах имеют более высокий коэффициент стабилизации по сравнению с устройствами, представленными
на Рис.1, но в связи наличием обратной связи имеют и свои недостатки.

В связи с этим подробно останавливаться на них мы не будем, а перейдём сразу к
интегральным стабилизаторам, имеющим похожий принцип действия, но значительно более сложным по структуре, обладающих более высокими
характеристиками и при этом — очень простых и удобных в реализации.

Существует два типа подобных интегральных микросхем: регулируемые стабилизаторы напряжения и стабилизаторы с фиксированным значением
выходного напряжения. Во втором случае схема стабилизатора приобретает неприлично примитивный вид, незаслуживающий какого-то серьёзного
обсуждения.

В случае же стабилизаторов с регулируемым выходным напряжением, схема всё ещё остаётся достаточно простой, но требует
некоторых умственных манипуляций, связанных с расчётом резистивного делителя для получения требуемого выходного напряжения.

Типовая схема включения большинства регулируемых микросхем приведена на Рис.3.



Рис.3

Формула для расчёта выходного напряжения имеет вид
Vout = Vref x (1+R2/R1) + Iadj x R2,

причём номинал сопротивления R1, как правило, задаётся производителем микросхемы для достижения наилучших параметров
выходных характеристик.

Отдельные бойцы для снижения пульсаций ставят дополнительные электролиты значительных величин параллельно резистору R2.
Оно, конечно, бойцы эти герои, но зачем же стулья ломать?

Любое резкое увеличение тока нагрузки, приводящее к снижению выходного напряжения, не сможет моментально отработаться схемой
автоматической регулировки из-за задержки в цепи обратной связи, обусловленной данным конденсатором, а это в значительной степени
снизит быстродействие устройства.

И если для статических нагрузок параметр быстродействия стабилизатора по барабану, то для динамических (к примеру, таких как УНЧ) —
очень даже немаловажен. Поэтому — либо эти электролиты вообще не нужны, либо (если их настоятельно рекомендует Datasheet) ставить
конденсаторы небольших номиналов в строгом соответствии с рекомендациями производителя.

Для начала — справочная таблица с основными техническими характеристиками наиболее часто используемых интегральных стабилизаторов
с регулировкой выходного напряжения.













































Приведённая ниже таблица позволяет рассчитать номиналы резисторов делителя некоторых популярных типов микросхем регулируемых
стабилизаторов, представленных разными производителями.

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ МИКРОСХЕМ — СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ




Если не хотите, чтобы вдруг «раздался мощный пук» — послеживайте за полярностью включения конденсатора С2. Она должна
совпадать с полярностью входного (выходного) напряжения.

Отдельно хочу остановиться на

МИКРОМОЩНЫХ СТАБИЛИЗАТОРАХ С МАЛЫМ СОБСТВЕННЫМ ПОТРЕБЛЕНИЕМ.

Такого рода стабилизаторы окажутся совсем не лишними в хозяйстве, так как смогут обеспечить такой важнейший показатель
радиоэлектронной аппаратуры с автономным питанием, как экономичность входящих в её состав узлов.

Здесь выбор интегральных микросхем заметно беднее, а цены, как правило, заметно ощутимей, чем на аналоги со стандартным
потреблением, поэтому начну я с простой, но проверенной временем схемы на дискретных элементах.



Рис.2

Чем хорош КТ315 в данном включении?

На обратно смещённом переходе КТ315 при напряжении 6 — 7,5В, в зависимости от экземпляра транзистора, возникает электрический
(не побоюсь этого слова) пробой, что позволяет использовать его в качестве стабилитрона на эту-же самую величину напряжения
пробоя. При этом транзистор в таком включении, в отличие от многих промышленных стабилитронов, хорошо работает и при малых токах
стабилизации, порядка 100 мкА.

Из относительно гуманных по цене интегральных стабилизаторов с малым собственным потреблением, могу порекомендовать LP2950,
LP2951, LM2931, LM2936 и им подобные.

 



  Тип U вх макс 
   В
І вых макс 
   А
І вых мин 
  мА
U вых мин 
   В
U вых макс 
   В
  КР142ЕН11 -40   1,5   10  -1,2  -37 
  КР142ЕН12  40   1,5   10   1,2   37 
  КР142ЕН18 -40   1,5   10  -1,2  -37 
  КР142ЕН22  35   5   10   1,25   34 
  КР142ЕН22А  35   7,5   10   1,25   34 
  КР142ЕН22Б  35   10   10   1,25   34 
  LT1083  35   7,5   10   1,2   34 
  LT1084  35   5   10   1,2   34 
  LT1085  35   3   10   1,2   34 
  LM117  40   1,5   5   1,2   37 
  LM137 -40   1,5   10  -1,2  -37 
  LM138  35   5   10   1,2   32 
  LM150  35   5   10   1,2   33 
  LM217  40   1,5   5   1,2   37 
  LM317  40   1,5   5   1,2   37 
  LM317LZ  40   0,1   5   1,2   37 
  LM337 -40   1,5   10  -1,2  -37 
  LM337LZ -40   0,1   10  -1,2  -37 
  LM338  35   5   10   1,2   32 
  LM350  35   3   10   1,2   33 
  TL783  126   0,7   0,1   1,25   125 

7 схем импульсных стабилизаторов напряжения

Благодаря высокому КПД импульсные стабилизаторы напряжения получают в последнее время все более широкое распространение, хотя они, как правило, сложнее и содержат большее число элементов. Поскольку в тепловую энергию преобразуется лишь малая доля подводимой к импульсному стабилизатору энергии, его выходные транзисторы меньше нагреваются, следовательно, за счет снижения площади теплоотводов снижаются масса и размеры устройства.

Ощутимым недостатком импульсных стабилизаторов является наличие на выходе высокочастотных пульсаций, что заметно сужает область их практического использования — чаще всего импульсные стабилизаторы используют для питания устройств на цифровых микросхемах.

Стабилизатор с выходным напряжением, меньшим входного, можно собрать на трех транзисторах (рис. 6.1), два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (ѴТЗ) является усилителем сигнала рассогласования.

Рис. 6.1. Схема импульсного стабилизатора напряжения с КПД 84%.

Устройство работает в автоколебательном режиме. Напряжение положительной обратной связи с коллектора составного транзистора ѴТ1 через конденсатор С2 поступает в цепь базы транзистора ѴТ2.

Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе ѴТЗ. Его эмиттер подключен к источнику опорного напряжения — стабилитрону VD2, а база — к делителю выходного напряжения R5 — R7.

В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выходное напряжение регулируется изменением скважности работы ключа. Включением/выключением транзистора VT1 по сигналу транзистора ѴТЗ управляет транзистор ѴТ2. В моменты, когда транзистор ѴТ1 открыт, в дросселе L1, благодаря протеканию тока нагрузки, запасается электромагнитная энергия. После закрывания транзистора запасенная энергия через диод VD1 отдается в нагрузку. Пульсации выходного напряжения стабилизатора сглаживаются фильтром L1, СЗ.

Характеристики стабилизатора целиком определяются свойствами транзистора ѴТ1 и диода VD1, быстродействие которых должно быть максимальным. При входном напряжении 24 В, выходном — 15 В и токе нагрузки 1 А измеренное значение КПД было равно 84%.

Дроссель L1 имеет 100 витков провода диаметром 0,63 мм на кольце К26х16х12 из феррита с магнитной проницаемостью 100. Его индуктивность при токе подмагничивания 1 А — около 1 мГн.

Схема простого импульсного стабилизатора показана на рис. 6.2. Дроссели L1 и L2 намотаны на пластмассовых каркасах, помещенных в броневые магнитопроводы Б22 из феррита М2000НМ. Дроссель L1 содержит 18 витков жгута из 7 проводов ПЭВ-1 0,35. Между чашками его магнитопровода вложена прокладка толщиной 0,8 мм. Активное сопротивление обмотки дросселя L1 27 мОм. Дроссель L2 имеет 9 витков жгута из 10 проводов ПЭВ-1 0,35. Зазор между его чашками — 0,2 мм, активное сопротивление обмотки — 13 мОм. Прокладки можно изготовить из жесткого теплостойкого материала — текстолита, слюды, электрокартона. Винт, скрепляющий чашки магнитопровода, должен быть из немагнитного материала.

Рис. 6.2. Схема простого ключевого стабилизатора напряжения с КПД 60%.

Для налаживания стабилизатора к его выходу подключают нагрузку сопротивлением 5…7 Ом и мощностью 10 Вт. Подбором резистора R7 устанавливают номинальное выходное напряжение, затем увеличивают ток нагрузки до 3 А и, подбирая величину конденсатора С4, устанавливают такую частоту генерации (примерно 18…20 кГц), при которой высокочастотные выбросы напряжения на конденсаторе СЗ минимальны.

Выходное напряжение стабилизатора можно довести до 8…10В, увеличив величину резистора R7 и установив новое значение рабочей частоты. При этом мощность, рассеиваемая на транзисторе ѴТЗ, также увеличится.

В схемах импульсных стабилизаторов желательно использовать электролитические конденсаторы К52-1. Необходимую величину емкости получают параллельным включением конденсаторов.

Основные технические характеристики:

Входное напряжение, В — 15…25.

Выходное напряжение, В — 5.

Максимальный ток нагрузки, А — 4.

Пульсации выходного напряжения при токе нагрузки 4 А во всем диапазоне входных напряжений, мВ, не более — 50.

КПД, %, не ниже — 60.

Рабочая частота при входном напряжении 20 б и токе нагрузки 3А, кГц—20.

В сравнении с предыдущим вариантом импульсного стабилизатора в новой конструкции А. А. Миронова (рис. 6.3) усовершенствованы и улучшены такие его характеристики, как КПД, стабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсной нагрузки.

Рис. 6.3. Схема импульсного стабилизатора напряжения.

Оказалось, что при работе прототипа (рис. 6.2) возникает так называемый сквозной ток через составной ключевой транзистор. Этот ток появляется в те моменты, когда по сигналу узла сравнения ключевой транзистор открывается, а коммутирующий диод еще не успел закрыться. Наличие такого тока вызывает дополнительные потери на нагревание транзистора и диода и уменьшает КПД устройства.

Еще один недостаток — значительная пульсация выходного напряжения при токе нагрузки, близком к предельному. Для борьбы с пульсациями в стабилизатор (рис. 6.2) был введен дополнительный выходной LC-фильтр (L2, С5). Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только уменьшением активного сопротивления дросселя L2. Улучшение динамики переходного процесса (в частности, уменьшение его длительности) связано с необходимостью уменьшения индуктивности дросселя, но при этом неизбежно увеличится пульсация выходного напряжения.

Поэтому оказалось целесообразным исключить этот выходной фильтр, а емкость конденсатора С2 увеличить в 5… 10 раз (параллельным соединением нескольких конденсаторов в батарею).

Цепь R2, С2 в исходном стабилизаторе (рис. 6.2) практически не изменяет длительности спада выходного тока, поэтому ее можно удалить (замкнуть резистор R2), а сопротивление резистора R3 увеличить до 820 Ом. Но тогда при увеличении входного напряжения с 15 6 до 25 6 ток, протекающий через резистор R3 (в исходном устройстве), будет увеличиваться в 1,7 раза, а мощность рассеивания — в 3 раза (до 0,7 Вт). Подключением нижнего по схеме вывода резистора R3 (на схеме доработанного стабилизатора это резистор R2) к плюсовому выводу конденсатора С2 этот эффект можно ослабить, но при этом сопротивление R2 (рис. 6.3) должно быть уменьшено до 620 Ом.

Один из эффективных путей борьбы со сквозным током — увеличение времени нарастания тока через открывшийся ключевой транзистор. Тогда при полном открывании транзистора ток через диод VD1 уменьшится почти до нуля. Этого можно достигнуть, если форма тока через ключевой транзистор будет близка к треугольной. Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГч.

Еще один путь — применение более быстродействующего коммутирующего диода VD1, например, КД219Б (с барьером Шотки). У таких диодов выше быстродействие и меньше падение напряжения при одном и том же значении прямого тока по сравнению с обычными кремниевыми высокочастотными диодами. Конденсатор С2 типа К52-1.

Улучшение параметров устройства может быть получено и при изменении режима работы ключевого транзистора. Особенность работы мощного транзистора ѴТЗ в исходном и улучшенном стабилизаторах состоит в том, что он работает в активном режиме, а не в насыщенном, и поэтому имеет высокое значение коэффициента передачи тока и быстро закрывается. Однако из-за повышенного напряжения на нем в открытом состоянии рассеиваемая мощность в 1,5…2 раза превышает минимально достижимое значение.

Уменьшить напряжение на ключевом транзисторе можно подачей положительного (относительно плюсового провода питания) напряжения смещения на эмиттер транзистора ѴТ2 (см. рис. 6.3). Необходимую величину напряжения смещения подбирают при налаживании стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения можно предусмотреть отдельную обмотку на трансформаторе. Однако при этом напряжение смещения будет изменяться вместе с сетевым.

Для получения стабильного напряжения смещения стабилизатор надо доработать (рис. 6.4), а дроссель превратить в трансформатор Т1, намотав дополнительную обмотку II. Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке I определяется из выражения: U1=UBыx + U VD1. Поскольку напряжение на выходе и на диоде в это время меняется незначительно, то независимо от значения входного напряжения на обмотке II напряжение практически стабильно. После выпрямления его подают на эмиттер транзистора VT2 (и VT1).

Рис. 6.4. Схема модифицированного импульсного стабилизатора напряжения.

Потери на нагрев снизились в первом варианте доработанного стабилизатора на 14,7%, а во втором — на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на теплоотвод.

В стабилизаторе варианта 1 (рис. 6.3) дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводов ПЭВ-1 0,35. Обмотку помещают в броневой магнитопровод Б22 из феррита 2000НМ. Между чашками нужно заложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 (рис. 6.4) трансформатор Т1 образован намоткой поверх катушки дросселя L1 двух витков провода ПЭВ-1 0,35. Вместо германиевого диода Д310 можно использовать кремниевый, например, КД212А или КД212Б, при этом число витков обмотки II нужно увеличить до трех.

Стабилизатор с широтно-импульсным управлением (рис. 6.5) по принципу действия близок к стабилизатору, описанному в, но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или увеличении тока, потребляемого нагрузкой.

При подаче питания на вход устройства ток, текущий через резистор R3, открывает ключевой элемент, образованный транзисторами VT.1, VT2, в результате чего в цепи транзистор VT1 — дроссель L1 — нагрузка — резистор R9 возникает ток. Происходит заряд конденсатора С4 и накопление энергии дросселем L1. Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 Б, и стабилитрон VD4 открывается. Это приводит к открыванию транзисторов VT5, ѴТЗ и закрыванию ключевого элемента, а благодаря наличию диода VD3 дроссель L1 отдает накопленную энергию нагрузке.

Рис. 6.5. Схема стабилизатора с широтно-импульсным управлением с КПД до 89%.

Технические характеристики стабилизатора:

Входное напряжение — 15…25 В.

Выходное напряжение — 12 6.

Номинальный ток загрузки — 1 А.

Пульсации выходного напряжения при токе нагрузки 1 А — 0,2 В. КПД (при UBX =18 6, Ін=1 А) — 89%.

Потребляемый ток при UBX=18 В в режиме замыкания цепи нагрузки — 0,4 А.

Выходной ток короткого замыкания (при UBX =18 6) — 2,5 А.

По мере уменьшения тока через дроссель и разряда конденсатора С4 напряжение на нагрузке также уменьшится, что приведет к закрыванию транзисторов VT5, ѴТЗ и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.

Конденсатор С3, снижающий частоту колебательного процесса, повышает эффективность стабилизатора.

При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R9, открыванию транзистора ѴТ4 и закрыванию ключевого элемента. Далее процесс протекает аналогично описанному выше. Диоды VD1 и VD2 способствуют более резкому переходу устройства из режима стабилизации напряжения в режим ограничения тока.

Во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки. Транзистор ѴТ1 следует установить на теплоотводе размерами 40×25 мм.

Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМЗ. Магнитопровод имеет зазор толщиной 0,5 мм из немагнитного материала.

Стабилизатор несложно перестроить на другое выходное напряжение и ток нагрузки. Выходное напряжение устанавливают выбором типа стабилитрона VD4, а максимальный ток нагрузки — пропорциональным изменением сопротивления резистора R9 или подачей на базу транзистора ѴТ4 небольшого тока от отдельного параметрического стабилизатора через переменный резистор.

Для снижения уровня пульсаций выходного напряжения целесообразно применить LC-фильтр, аналогичный используемому в схеме на рис. 6.2.

Рис. 6.6. Схема импульсного стабилизатора напряжения с КПД преобразования 69…72%.

Рис. 6.7. Схема импульсного стабилизатора напряжения с малыми пульсациями.

Импульсный стабилизатор напряжения (рис. 6.6) состоит из узла запуска (R3, VD1, ѴТ1, VD2), источника опорного напряжения и устройства сравнения (DD1.1, R1), усилителя постоянного тока (ѴТ2, DD1.2, ѴТ5), транзисторного ключа (ѴТЗ, ѴТ4), индуктивного накопителя энергии с коммутирующим диодом (VD3, L2) и фильтров — входного (L1, С1, С2) и выходного (С4, С5, L3, С6). Частота переключения индуктивного накопителя энергии в зависимости от тока нагрузки находится в пределах 1,3…48 кГц.

Все катушки индуктивности L1 — L3 одинаковы и намотаны в броневых магнитопроводах Б20 из феррита 2000НМ с зазором между чашками около 0,2 мм. Обмотки содержат по 20 витков жгута из четырех проводов ПЭВ-2 0,41. Можно применить также кольцевые ферритовые магнитопроводы с зазором.

Номинальное выходное напряжение 5 В при изменении входного от 8 до 60 б и КПД преобразования 69…72%. Коэффициент стабилизации — 500. Амплитуда пульсаций выходного напряжения при токе нагрузки 0,7 А — не более 5 мВ. Выходное сопротивление — 20 мОм. Максимальный ток нагрузки (без теплоотводов для транзистора VT4 и диода VD3) — 2 А.

Импульсный стабилизатор напряжения (рис. 6.7) при входном напряжении 20…25 В обеспечивает на выходе стабильное напряжение 12 В при токе нагрузки 1,2 А. Пульсации на выходе до 2 мВ. Благодаря высокому КПД в устройстве не используются теплоотводы. Индуктивность дросселя L1 — 470 мкГч.

Аналоги транзисторов: ВС547 — КТ3102А] ВС548В — КТ3102В. Приблизительные аналоги транзисторов ВС807 — КТ3107; BD244 — КТ816.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

СХЕМА СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

СХЕМА СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

     С появлением микросхемных стабилизаторов, стало довольно легко получить стабильное напряжение блока питания, стандартного выходного значения. Но при конструировании радиосхем и просто в быту, часто нужно получить какое-либо нестандартное напряжение и тем более если ток выхода более двух ампер — тут уже КРЕНка не подходит, что можете видеть в таблице их параметров:

_________________________________________________________________________________
Наименование Аналог PDF Imax, A Uвых, В Прим.
Параллельные стабилизаторы (регулируемый прецизионный стабилитрон):
КР142ЕН19 TL431 2% 0,1 2,5…30
К1156ЕР5 TL431 1% 0,1 2,5…36
Стабилизаторы с фиксированным напряжением:
К1278ЕН1.5 2% 0,8…5 1,5 В Low Drop
К1278ЕН1.8 2% 0,8…5 1,8 В Low Drop

К1278ЕН2.5 2% 0,8…5 2,5В Low Drop
К142ЕН26 LT1086 3 2,5 В Low Drop
К142ЕН25 LT1086 3 2,9 В Low Drop

К1277ЕН3 4% 0,1 3 В Low Drop
КР1170ЕН3 LM2931 5% 0,1 3 В Low Drop
КР1158ЕН3 (А-Г) 2% 0,15…1,2 3 В Low Drop
К1277ЕН3.3 4% 0,1 3,3 В Low Drop
КР1158ЕН3.3 (А-Г) 2% 0,15…1,2 3,3 В Low Drop
К142ЕН24 LT1086 3 3,3 В Low Drop
К1278ЕН3. 3 2% 0,8…5 3,3 В Low Drop

КР1170ЕН4 LM2931 5% 0,1 4 В Low Drop
КР142ЕН17 (А) 5% 0,04 4,5В Low Drop

КР142ЕН17 (Б) 5% 0,04 5В Low Drop
К1277ЕН5 MC78L05 4% 0,1 5В Low Drop
КР1170ЕН5 LM2931 5% 0,1 5В Low Drop
КР1157ЕН5 (А-Г) MC78L05 4% 0,25 5В
КР1158ЕН5 (А-Г) L4805 2% 0,15…1,2 5В Low Drop
К1156ЕН1 LM2925 4% 0,5 5В Low Drop
+RESET
КР142ЕН5 (А,В) MC7805 2%,4% 3 5В
К1278ЕН5 2% 0,8…5 5В Low Drop

КР1157ЕН6 MC78L06 4% 0,1 6В
КР1170ЕН6 LM2931 5% 0,1 6В Low Drop
КР1158ЕН6 (А-Г) 2% 0,15…1,2 6В Low Drop
КР142ЕН5 (Б,Г) MC7806 2%,4% 3 6В

КР1157ЕН8 MC78L08 4% 0,1 8В
КР1170ЕН8 LM2931 5% 0,1 8В Low Drop

КР1157ЕН9 MC78L09 2%,4% 0,1 9В
КР1170ЕН9 LM2931 5% 0,1 9В Low Drop
КР1158ЕН9 (А-Г) L4892 2% 0,15…1,2 9В Low Drop
КР142ЕН8 (А,Г) MC7809 3%,4% 1,5 9В

КР1170ЕН12 LM2931 5% 0,1 12В Low Drop
КР1157ЕН12 MC78L12 2%,4% 0,25 12В
КР1158ЕН12 (А-Г) L4812 2% 0,15…1,2 12В Low Drop
КР142ЕН8 (Б,Д) MC7812 3%,4% 1,5 12В

КР1157ЕН15 MC78L15 2%,4% 0,25 15В
КР1158ЕН15 (А-Г) 2% 0,15. ..1,2 15В Low Drop
КР142ЕН8 (В,Е) MC7815 3%,4% 1,5 15В
КР142ЕН15 (А-Е) 4% 0,1 +15/-15 двуполярн
К142ЕН6 (А-Е) 2%,6% 0,2 +15/-15 двуполярн

КР1157ЕН18 MC78L18 2%,4% 0,25 18В
КР142ЕН9 (А,Г) MC7818 2%,3% 1,5 20В
КР1157ЕН24 MC78L24 2%,4% 0,25 24В
КР142ЕН9 (Б,Д) MC7824 2%,3% 1,5 24В
КР1157ЕН27 2%,4% 0,1 27В
КР142ЕН8 (В,Е) 2%,3% 1,5 27В
Регулируемые стабилизаторы напряжения:
КР142ЕН15 (А-Е) 0,1 +/- 8…23 двуполярн
К142ЕН6 (А-Е) 0,2 +/- 5…25 двуполярн
КР1157ЕН1 0,1 1,2…37
КР142ЕН1 (А-Г) 0,15 3…12
КР142ЕН2 (А-Г) 0,15 12…30
КР142ЕН14 0,15 2…37
К1156ЕН5 (Д) LM2931 0,5 1,25…20 Low Drop
К142ЕН3 (А-Г) 1 3…30
К142ЕН4 (А-Г) 1 3…30
КР142ЕН10 LM337 1 -(3…30) отрицат
КР142ЕН12 (А,Б) LM317T 1,5 1,2…37
КР142ЕН18 (А,Б) LM337 1,5 -(1,2…26) отрицат
142ЕН11 LM337 1,5 -(1,3…30) отрицат
К1278ЕР1 0,8…5 1,25…12 Low Drop
КР142ЕН22 (А,Б) LT1084 5,5 1,2…34 Low Drop
КР1151ЕН1 LM196 10 1,2. ..17,5
Импульсные:
К142ЕП1 0,25

_______________________________________________________________

      Как видите, для питания усилителя или аппарата электролиза, или мощного зарядного устройства (типа импульсного восстановителя аккумуляторов из этой статьи) найти нужную микросхему непросто.

    Предлагаемая схема стабилизатора напряжения, может быть названа «универсальная КРЕНка», так как с ней при подборе номиналов резисторов и транзисторов я получаю диапазон напряжений от 5 до 50 В и ток до 20 А.

 

    Схема стабилизатора напряжения имеет защиту от КЗ выхода и главное, мощный регулирующий транзистор крепится непосредственно к корпусу (минусу) без всяких изоляторов и прокладок, согласитесь это очень удобно!

    Вот фото моего источника питания 36 В 10 А:

     Вопросы по схеме стабилизатора напряжения пишем на ФОРУМ

Регуляторы напряжения

, схемы, типы, принцип работы, конструкция, применение

Регулятор напряжения предназначен для автоматического «регулирования» уровня напряжения. Он в основном снижает входное напряжение до желаемого уровня и поддерживает его на том же уровне во время подачи питания. Это гарантирует, что даже при приложении нагрузки напряжение не падает.

Таким образом, регулятор напряжения используется по двум причинам: —

  1. Для регулирования или изменения выходного напряжения цепи.
  2. Для поддержания постоянного выходного напряжения на желаемом уровне, несмотря на колебания напряжения питания или тока нагрузки.

Чтобы узнать больше об основах этого предмета, вы также можете обратиться к Регулируемый источник питания .

Регуляторы напряжения

находят свое применение в компьютерах, генераторах переменного тока, электростанциях, где схема используется для управления мощностью установки. Регуляторы напряжения можно разделить на электромеханические или электронные.Его также можно классифицировать как регуляторы переменного тока или регуляторы постоянного тока.

Мы уже рассказали о регуляторах напряжения IC .

Электронный регулятор напряжения

Все регуляторы напряжения электронных будут иметь опорный источник стабильного напряжения, который предусмотрен посредством обратного диода рабочего напряжения пробоя называется стабилитроном. Основная причина использования регулятора напряжения — поддержание постоянного выходного напряжения постоянного тока. Он также блокирует пульсации переменного напряжения, которые не могут быть заблокированы фильтром.Хороший регулятор напряжения может также включать в себя дополнительные схемы защиты, такие как короткое замыкание, схему ограничения тока, тепловое отключение и защиту от перенапряжения.

Электронные регуляторы напряжения разработаны на основе любого из трех или комбинации любого из трех регуляторов, указанных ниже.

1. Транзисторный стабилизатор напряжения с стабилитроном

Стабилизатор напряжения, управляемый стабилитроном, используется, когда эффективность регулируемого источника питания становится очень низкой из-за высокого тока. Существует два типа транзисторных стабилизаторов напряжения с стабилитроном.

Стабилизатор напряжения серии управляемых транзисторов на стабилитронах

Такую схему еще называют регулятором напряжения с эмиттерным повторителем. Он назван так потому, что используемый транзистор подключен по схеме эмиттерного повторителя. Схема состоит из транзистора N-P-N и стабилитрона. Как показано на рисунке ниже, выводы коллектора и эмиттера транзистора включены последовательно с нагрузкой. Таким образом, в этом регуляторе есть именная серия.Используемый транзистор представляет собой транзистор с последовательным проходом.

Стабилизатор напряжения на управляемых стабилитронах серии транзисторов

Выходной сигнал выпрямителя, который отфильтрован, затем подается на входные клеммы, и на нагрузочном резисторе Rload получается регулируемое выходное напряжение Vload. Опорное напряжение обеспечивается стабилитроном и транзистор действует как переменный резистор, сопротивление которого изменяется в зависимости от условий эксплуатации базового тока, IBase.

Основной принцип работы такого регулятора заключается в том, что большая часть изменения напряжения питания или входного напряжения возникает на транзисторе, и, таким образом, выходное напряжение имеет тенденцию оставаться постоянным.

Таким образом, выходное напряжение можно записать как

Vout = Vzener — Vbe

Напряжение базы транзистора Vbase и напряжение стабилитрона Vzener равны, поэтому значение Vbase остается почти постоянным.

Эксплуатация

Когда входное напряжение питания Vin увеличивается, выходное напряжение Vload также увеличивается. Это увеличение Vload вызовет снижение напряжения Vbe эмиттера базы транзистора, поскольку напряжение стабилитрона Vzener является постоянным.Это уменьшение Vbe вызывает снижение уровня проводимости, что дополнительно увеличивает сопротивление коллектор-эмиттер транзистора и, таким образом, вызывает увеличение напряжения коллектор-эмиттер транзистора, и все это вызывает снижение выходного напряжения Vout. Таким образом, выходное напряжение остается постоянным. Работа аналогична при уменьшении входного напряжения питания.

Следующим условием будет влияние изменения выходной нагрузки на выходное напряжение. Рассмотрим случай, когда ток увеличивается за счет уменьшения сопротивления нагрузки Rload.Это вызывает уменьшение значения выходного напряжения и, таким образом, вызывает увеличение напряжения эмиттера базы транзистора. Это вызывает уменьшение сопротивления коллектора-эмиттера из-за увеличения уровня проводимости транзистора. Это приводит к небольшому увеличению входного тока и, таким образом, компенсирует уменьшение сопротивления нагрузки Rload.

Самым большим преимуществом этой схемы является то, что изменения тока стабилитрона уменьшаются в β раз, и, таким образом, эффект стабилитрона значительно снижается, и получается гораздо более стабильный выходной сигнал.

Выходное напряжение последовательного регулятора Vout = Vzener — Vbe. Ток нагрузки Iload схемы будет максимальным током эмиттера, который может пройти транзистор. Для обычного транзистора, такого как 2N3055, ток нагрузки может доходить до 15 А. Если ток нагрузки равен нулю или не имеет значения, то ток, потребляемый от источника питания, можно записать как Izener + Ic (min). Такой регулятор напряжения с эмиттерным повторителем более эффективен, чем обычный стабилизатор напряжения. Обычный стабилитрон, в котором есть только резистор и стабилитрон, должен обеспечивать ток базы транзистора.

Ограничения

Перечисленные ниже ограничения доказали, что этот серийный стабилизатор напряжения подходит только для низких выходных напряжений.

  1. С повышением температуры в помещении значения Vbe и Vzener имеют тенденцию к уменьшению. Таким образом, выходное напряжение нельзя поддерживать постоянным. Это еще больше увеличит напряжение эмиттера базы транзистора и, следовательно, нагрузку.
  2. Нет возможности изменить выходное напряжение в цепи.
  3. Из-за небольшого процесса усиления, обеспечиваемого только одним транзистором, схема не может обеспечить хорошее регулирование при высоких токах.
  4. По сравнению с другими регуляторами, этот регулятор имеет плохое регулирование и подавление пульсаций в отношении изменений на входе.
  5. Рассеиваемая мощность проходного транзистора велика, потому что она равна Vcc Ic, и почти все изменения проявляются при Vce, а ток нагрузки приблизительно равен току коллектора. Таким образом, при прохождении больших нагрузочных токов транзистор должен рассеивать много энергии и, следовательно, нагреваться.

Шунтирующий транзисторный стабилизатор напряжения с стабилитроном

На изображении ниже показана принципиальная схема шунтирующего регулятора напряжения.Схема состоит из NPN-транзистора и стабилитрона, а также последовательного резистора Rseries, подключенного последовательно с входным источником питания. Стабилитрон подключен к базе и коллектору транзистора, который подключен к выходу.

Транзисторный шунтирующий стабилизатор напряжения с стабилитроном

Работа

Поскольку в последовательном сопротивлении Rseries наблюдается падение напряжения, вместе с ним уменьшается и нерегулируемое напряжение. Величина падения напряжения зависит от тока, подаваемого на нагрузку Rload.Величина напряжения на нагрузке зависит от стабилитрона и напряжения эмиттера базы транзистора Vbe.

Таким образом, выходное напряжение можно записать как

Vout = Vzener + Vbe = Vin — I.Rseries

Выход остается почти постоянным, поскольку значения Vzener и Vbe почти постоянны. Это условие объясняется ниже.

Когда напряжение питания увеличивается, выходное напряжение и напряжение база-эмиттер транзистора увеличиваются и, таким образом, увеличивается базовый ток Ibase и, следовательно, увеличивается ток коллектора Icoll (Icoll = β.Ibase).

Таким образом, напряжение питания увеличивается, вызывая увеличение тока питания, который, в свою очередь, вызывает падение напряжения на последовательном сопротивлении Rseries и тем самым снижает выходное напряжение. Этого уменьшения будет более чем достаточно, чтобы компенсировать первоначальное увеличение выходного напряжения. Таким образом, выпуск остается почти постоянным. Работа, описанная выше, происходит в обратном порядке, если напряжение питания снижается.

Когда сопротивление нагрузки Rload уменьшается, ток нагрузки Iload увеличивается из-за уменьшения токов через базу и коллектор Ibase и Icoll.Таким образом, на Rseries не будет падения напряжения, а входной ток останется постоянным. Таким образом, выходное напряжение останется постоянным и будет разницей между напряжением питания и падением напряжения на последовательном сопротивлении. Это происходит наоборот, если увеличивается сопротивление нагрузки.

Ограничения

Последовательный резистор вызывает огромные потери мощности.

1. Ток питания через транзистор будет больше, чем через нагрузку.

2. В цепи могут быть проблемы, связанные с перенапряжением.

2. Дискретный транзисторный регулятор напряжения

Дискретные транзисторные регуляторы напряжения можно разделить на два. Они объяснены ниже. Эти две схемы способны создавать регулируемое выходное постоянное напряжение, которое регулируется или поддерживается на заданном уровне, даже если входное напряжение изменяется или нагрузка, подключенная к выходному зажиму, изменяется.

Стабилизатор напряжения серии на дискретных транзисторах

Блок-схема дискретного стабилизатора напряжения транзисторного типа приведена ниже.Для сбора нерегулируемого входа устанавливается элемент управления, который регулирует величину входного напряжения и передает его на выход. Затем выходное напряжение возвращается в схему выборки, затем сравнивается с опорным напряжением и отправляется обратно на выход.

Стабилизатор напряжения

на дискретных транзисторах Таким образом, если выходное напряжение имеет тенденцию к увеличению, схема компаратора выдает управляющий сигнал, чтобы заставить элемент управления уменьшать величину выходного напряжения, пропуская его через схему выборки и сравнивая его, тем самым поддерживая постоянное значение. и стабильное выходное напряжение.

Предположим, что выходное напряжение имеет тенденцию к снижению, схема компаратора выдает управляющий сигнал, который заставляет последовательный элемент управления увеличивать величину выходного напряжения, таким образом поддерживая стабильность.

Шунтирующий стабилизатор напряжения на дискретных транзисторах

Блок-схема дискретного транзисторного шунтирующего стабилизатора напряжения приведена ниже. Как следует из названия, регулирование напряжения обеспечивается за счет отвода тока от нагрузки. Элемент управления шунтирует часть тока, возникающего в результате входного нерегулируемого напряжения, подаваемого на нагрузку.Таким образом, напряжение регулируется на нагрузке. Из-за изменения нагрузки, если есть изменение выходного напряжения, оно будет скорректировано путем подачи сигнала обратной связи в схему компаратора, которая сравнивается с опорным напряжением и выдает выходной управляющий сигнал на элемент управления для корректировки величины. сигнала, необходимого для отвода тока от нагрузки.

Шунтирующий стабилизатор напряжения на дискретных транзисторах

Если выходное напряжение увеличивается, ток шунта увеличивается и, таким образом, создается меньший ток нагрузки и поддерживается стабилизированное выходное напряжение. Если выходное напряжение уменьшается, ток шунта уменьшается и, таким образом, создается больший ток нагрузки и поддерживается постоянное регулируемое выходное напряжение. В обоих случаях важную роль играют схема выборки, схема компаратора и элемент управления.

Ограничения транзисторных регуляторов напряжения

Устойчивое и стабилизированное выходное напряжение, получаемое от регулятора, ограничено диапазоном напряжения (30-40) вольт. Это связано с малым значением максимального напряжения коллектор-эмиттер транзистора (50 Вольт).Это ограничивает использование транзисторных источников питания.

3. Электромеханический регулятор

Как следует из названия, это регулятор, сочетающий в себе электрические и механические характеристики. Процесс регулирования напряжения осуществляется спиральным измерительным проводом, который действует как электромагнит. Магнитное поле создается соленоидом в соответствии с протекающим через него током. Это магнитное поле притягивает движущийся материал сердечника из железа, который связан с натяжением пружины или силой тяжести.Когда напряжение увеличивается, ток усиливает магнитное поле, поэтому сердечник притягивается к соленоиду. Магнит физически связан с механическим переключателем. Когда напряжение уменьшается, магнитное поле, создаваемое сердечником, уменьшается, поэтому натяжение пружины заставляет сердечник втягиваться. Это замыкает механический переключатель и позволяет току течь.

Если конструкция механического регулятора чувствительна к небольшим колебаниям напряжения, к соленоиду можно добавить селекторный переключатель в диапазоне сопротивлений или обмотки трансформатора, чтобы постепенно повышать и понижать выходное напряжение или изменять положение подвижного катушка регулятора переменного тока.

Ранее автомобильные генераторы и генераторы переменного тока содержали механические регуляторы. В регуляторах такого типа процесс осуществляется одним, двумя или тремя реле и различными резисторами, чтобы установить выходную мощность генератора чуть более 6 или 12 вольт, и этот процесс не зависит от частоты вращения двигателя или нагрузки, изменяющейся на транспортном средстве. электрическая система. Реле используются для выполнения широтно-импульсной модуляции для регулирования выходной мощности генератора и управления током возбуждения, проходящим через генератор.

Регулятор, используемый для генераторов постоянного тока, отключается от генератора, когда он не работает, чтобы предотвратить обратный поток электричества от батареи к генератору. В противном случае он будет работать как мотор.

4. Автоматический регулятор напряжения (АРН)

Этот активный системный регулятор в основном используется для регулирования выходного напряжения очень больших генераторов, которые обычно используются на кораблях, нефтяных вышках, больших зданиях и т. Д. Схема AVR сложна и состоит из всех активных и пассивных элементов, а также микроконтроллеров.Основной принцип работы АРН такой же, как и у обычного регулятора напряжения. Входное напряжение возбудителя генератора регулируется АРН, и когда напряжение генератора увеличивается или уменьшается, выходное напряжение генератора автоматически увеличивается или уменьшается. Будет предопределенная уставка, по которой АРН определяет величину напряжения, которое должно подаваться на возбудитель каждую миллисекунду. Таким образом регулируется выходное напряжение. Та же операция становится более сложной, когда только один АРН используется для регулирования нескольких генераторов, подключенных параллельно.

5. Трансформатор постоянного напряжения (CVT)

В некоторых случаях вариатор также используется в качестве регулятора напряжения. CVT состоит из резонансной обмотки высокого напряжения и конденсатора, который производит регулируемое выходное напряжение для любого типа входного переменного тока. Как и у обычного трансформатора, вариатор имеет первичную и вторичную обмотки. Первичная обмотка находится на стороне магнитного шунта, а вторичная обмотка — на противоположной стороне с настроенной цепью катушки. Регулирование поддерживается за счет магнитного насыщения вторичных катушек.Чтобы узнать больше о вариаторах, ознакомьтесь с нашей статьей — Трансформатор постоянного напряжения .

Некоторые применения регуляторов напряжения

  • Используется во всех блоках питания электронных устройств для регулирования напряжения и защиты устройства от повреждений
  • Используется с генератором двигателей внутреннего сгорания для регулирования выходной мощности генератора.
  • Используется для электронных схем для подачи точного количества напряжения

Примечание. Стабилизаторы напряжения отличаются от стабилизаторов напряжения.Регуляторы используются для понижения напряжения до желаемого уровня, тогда как стабилизатор «стабилизирует» напряжение. Регуляторы в основном используются для постоянного тока, а стабилизаторы — для переменного тока. Стабилизаторы удерживают напряжение от слишком высокого или слишком низкого, чтобы не повредить подключенное к нему устройство, например телевизор или холодильник.

Как использовать регуляторы напряжения в цепи — Pi Hut

Введение

В этом уроке мы рассмотрим, как использовать регулятор напряжения в цепи!

Стабилизаторы напряжения

предназначены для поддержания и стабилизации уровней напряжения. Регуляторы находятся в большинстве электронных устройств и могут использоваться для понижения и управления выходным напряжением от источника высокого напряжения, рассеивая избыточную энергию в виде тепла. Это отлично подходит для приложений, где вам нужно несколько дискретных напряжений для разных устройств в одной цепи, поскольку вы можете использовать регуляторы напряжения для понижения напряжения от одного источника с более высокой выходной мощностью!

Большинство регуляторов напряжения имеют 3 контакта:

Вход — это входное напряжение от исходного источника.Например аккумулятор или блок питания. Вы подаете выход этого устройства на вход регулятора. Вход всегда должен быть как можно более чистым и всегда должен быть больше, чем требуемое выходное напряжение. Большинство регуляторов напряжения имеют минимальное указанное входное напряжение, поэтому убедитесь, что вы его соблюдаете (иначе выходная мощность может быть ниже ожидаемой)

Земля — ​​требуется общее заземление между входным и выходным напряжениями. Он должен подключаться к земле в цепи и необходим для работы регулятора.

Выход — выходной контакт выдает регулируемое напряжение.

Как мне использовать регуляторы напряжения в цепи?

Как работают регуляторы напряжения — это отдельная тема, поэтому здесь мы не будем останавливаться на ней. Достаточно сказать, что регуляторы напряжения — это, по сути, рассеиватели напряжения, которые преобразуют избыточное напряжение в тепло. Более высокое входное напряжение приведет к более горячему регулятору напряжения, так как он будет труднее избавляться от этого избыточного напряжения, поэтому пользователи должны знать об этом!

Ваша настенная розетка выдает переменный ток, в то время как большинство приборов работают от постоянного тока.Одна из функций источника питания — понижать и преобразовывать этот сигнал переменного тока в постоянный, однако в зависимости от качества используемого источника питания на линии может оставаться «шум», и это может вызвать проблемы для регуляторов напряжения.

Если ваш регулятор расположен на расстоянии более 25 см (10 дюймов) от источника питания, вам необходимо добавить конденсаторы на вход (0,33 мкФ) и выход (0,10 мкФ), чтобы отфильтровать любой остаточный шум переменного тока в линии. Стабилизаторы напряжения работают наиболее эффективно, когда на них подается чистый сигнал постоянного тока, и этот байпасный конденсатор помогает уменьшить любые пульсации переменного тока.По сути, они действуют, чтобы замкнуть шум переменного тока сигнала напряжения на землю и фильтровать только постоянное напряжение в стабилизатор.

Эти два конденсатора не обязательно требуются, и их можно не устанавливать, если вас не слишком беспокоит уровень шума в линии, например если добавляете несколько светодиодов с резисторами. Однако, если вы создаете что-то вроде зарядного устройства для мобильного телефона или используете выход для логической оценки, вам понадобится хорошая чистая линия постоянного тока, поэтому мы рекомендуем включить конденсаторы!

0. Керамический конденсатор 33 мкФ следует подключать после источника напряжения и перед входом регулятора напряжения. Второй конденсатор, керамический конденсатор 0,1 мкФ, должен быть подключен после выхода регулятора напряжения.

В схеме выше у нас есть источник 12 В, который нам нужно стабилизировать до 5 В, чтобы наш светодиод заработал! GND в этой цепи — это просто отрицательная сторона этого источника 12 В.

Первый конденсатор емкостью 0,33 мкФ замыкает любые помехи переменного тока в линии на землю и очищает сигнал на входе нашего регулятора.Регулятор в этой схеме представляет собой стабилизатор TS7805CZ (5 В 1 А), который затем понижает сигнал напряжения 12 В до 5 В и подает его на выход.

Конденсатор 0,1 мкФ затем очищает сигнал постоянного тока, что оставляет нам хороший чистый источник 5 В. Мы можем использовать для питания любых устройств с напряжением 5 В, в данном случае светодиода, но на этом этапе вы можете подключить любое устройство с напряжением 5 В!

При использовании регуляторов напряжения в цепи необходимо помнить следующее:

  • Всегда дважды проверяйте выходное напряжение с помощью мультиметра перед подключением вашей цепи. Последнее, что вы хотите сделать, это взорвать свое устройство на 5 В, по ошибке пропустив через него большое напряжение
  • Большинство регуляторов имеют только 3 порта (IN / OUT / GND). Если контактов больше, убедитесь, что вы знаете, что они делают и требуются ли какие-либо посторонние компоненты.
  • Избыточное напряжение рассеивается регулятором в виде тепла, поэтому будьте осторожны при проектировании и использовании схем. Если вы понижаете большое напряжение, регулятор будет выделять больше тепла, и вам может потребоваться радиатор, чтобы гарантировать, что ваш регулятор не перегорит.Если он кажется слишком горячим, возможно, он слишком горячий!

Регулятор напряжения | Дискретные полупроводниковые схемы

ДЕТАЛИ И МАТЕРИАЛЫ

  • Четыре батареи по 6 В
  • Стабилитрон, 12 В — тип 1N4742 (каталог Radio Shack № 276-563 или аналогичный)
  • Один резистор 10 кОм

Для этого эксперимента подойдет любой низковольтный стабилитрон. Перечисленная здесь модель 1N4742 (напряжение стабилитрона = 12 вольт) является лишь одним предложением.

Какую бы модель диода вы ни выбрали, я настоятельно рекомендую тот, у которого напряжение стабилитрона на больше, чем на , чем напряжение отдельной батареи, для максимального обучения.Важно, чтобы вы видели, как работает стабилитрон при напряжении на меньше, чем его номинального пробоя.

ССЫЛКИ

Уроки электрических цепей , том 3, глава 3: «Диоды и выпрямители»

ЦЕЛИ ОБУЧЕНИЯ

СХЕМА

ИЛЛЮСТРАЦИЯ

ИНСТРУКЦИЯ

Создайте эту простую схему, подключив диод в режиме «обратного смещения» (положительный катод и отрицательный анод), и измерьте напряжение на диоде, используя одну батарею в качестве источника питания.Запишите это падение напряжения для использования в будущем.

Также измерьте и запишите падение напряжения на резисторах 10 кОм. Измените схему, подключив последовательно две 6-вольтовые батареи для получения общего напряжения источника питания 12 вольт. Повторно измерьте падение напряжения на диоде, а также падение напряжения на резисторе с помощью вольтметра:

.

Соедините последовательно три, а затем четыре батареи по 6 В, образуя источник питания на 18 и 24 В соответственно.Измерьте и запишите падения напряжения на диодах и резисторах для каждого нового напряжения источника питания.

Что вы заметили в падении напряжения на диоде для этих четырех разных источников напряжения? Вы видите, что напряжение на диоде никогда не превышает 12 вольт?

Что вы заметили в падении напряжения на резисторе для этих четырех различных уровней напряжения источника? Стабилитроны часто используются в качестве устройств , регулирующих напряжение, потому что они действуют, чтобы ограничить падение напряжения на себе на заданном уровне.

Любое избыточное напряжение, подаваемое источником питания, падает на последовательном резисторе. Однако важно отметить, что стабилитрон не может заменить на недостатка напряжения источника.

Например, этот 12-вольтный стабилитрон не пропускает 12 вольт при напряжении источника питания всего 6 вольт. Полезно думать о стабилитроне как о ограничителе напряжения : устанавливая максимальное падение напряжения, но не минимальное падение напряжения.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Схема с номерами узлов SPICE:

Netlist (создайте текстовый файл, содержащий следующий текст, дословно):

Стабилитрон v1 1 0 r1 1 2 10k d1 0 2 mod1.модель mod1 d bv = 12 .dc v1 18 18 1 .print dc v (2,0) .end 

Стабилитрон можно смоделировать в SPICE с помощью обычного диода, параметр обратного пробоя (bv = 12) установлен на желаемое напряжение пробоя стабилитрона.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Сильноточная схема регулируемого регулятора напряжения, 0-30 В, 20 А

Если вам нужна сильноточная схема с регулируемым регулятором напряжения . Это может быть лучшим выбором для вас.

Он может выдавать выходной ток 20 А или 400 Вт и может регулировать напряжение от 4 до 20 В или легко подавать напряжение от 0 до 30 В.Это хорошее качество, отличная производительность и долговечность с печатной платой.

Для использования в электронной связи, радиопередатчиках большой мощности и т. Д.

В этом проекте используются несколько компонентов. Из-за использования четырех стабилизаторов напряжения LM338-5A и популярного операционного усилителя IC-741 в режиме линейного питания.

Попробуй построить, тебе понравится!

Как это работает

LM338K, который мы предлагаем для использования, представляет собой схему регулятора напряжения постоянного тока на плавающем типе. Простой прикладной стиль этой ИС, как показано на рисунке 1

Как использовать LM338 IC в basic

Рисунок 1 Схема , в нормальных условиях напряжение между выводом Adj и выводом равно 1. 25 В стабильно, что поток R1, R2 также будет постоянным.

Выходное напряжение равно напряжению на выводе Adj + 1,25 В или Рассчитывается следующим образом

Vo = 1,25 (R1 + R2) / R1

Высокий ток при параллельном подключении LM338

Нормально IC-LM338 Может подавать до 5 ампер, но чтобы ток нагрузки не превышал 20 ампер, мы приведем его в параллель.

На что следует обратить внимание при параллельном соединении множества ИС, так это на средний ток, протекающий по цепи.Каждому одинаково.

Самый простой способ — подключить резистор к выходному выводу IC, как показано на рис. 2 .

Номинал резисторов-R, используемых к нему, будет намного меньше, чем R1.

Исходя из схемы, мы можем установить.

IoRs = 1,25 — Vo (R1 / (R1 + R2))

И от работы цепей, установленных ниже, будет.

IiRs = 1,25 — Vo (R1 / (R1 + R2))

Из этих двух одинаковых уравнений следует, что Io = Ii.

Или просто, ток через микросхему LM338 одинаков.

Соединение LM338 в параллельной форме

На практике мы не используем схемы для его использования. Поскольку падение напряжения Rs будет изменяться в зависимости от тока, протекающего через нагрузку, и эталонного напряжения IC. Кроме того, они отличаются друг от друга.

Внешнее управление LM338 с использованием uA741

Следовательно, нам необходимо управлять внешними цепями.Чтобы контролировать напряжение на выводе adj, как показано на Рис. 3.

Из схемы мы увидим, что на отрицательном выводе IC должно быть половинное напряжение от выходного напряжения. И на положительном выводе должно быть равное номинальному напряжению.

Это вызвано постоянным током, протекающим через транзистор к Rs и P1.

От свойств схемы операционного усилителя до регулируемого уровня выходного напряжения, что. Пока не будет такое же напряжение на штыревом входе.

Итак, напряжение на базе вывода транзистора Q1 равно напряжению на отрицательном выводе IC.

Напряжение это, чтобы сделать изменения в сопротивлении транзистора, в результате чего напряжение в точке ссылочного изменения.

Сопротивление транзистора обратно пропорционально выходному напряжению, чтобы компенсировать потерю напряжения в размере Rs. Из-за неравномерного протекания этих нагрузочных токов.

Регулятор постоянного тока большой мощности 4-20 вольт 20 ампер от LM338

  • Исходя из всех вышеперечисленных принципов, у нас есть приложения для схем, как показано на Рисунок 4 , если вы хотите добавить IC-LM338, что позволяет они должны быть выше по току.
  • Для трансформатора, который может подавать не менее 30 ампер, и напряжение вторичной обмотки не должно быть меньше 18 вольт.

Для оптимизации схемы конденсатора С2 лучше использовать 20000uF.

Чтение: Как использовать LM317 Техническое описание и распиновка

Список деталей
IC1: LM741
IC2-IC5: LM338K или LM338P
Q1: BD140
D1: Мостовой диод 35A

Diodes
Diodes R1: 150 Ом резистор 0,5 Вт
R2: 100 Ом резистор 0. 5 Вт
R3, R4: резисторы 4,7 кОм 1/2 Вт
R5-R8: резисторы 0,3 Ом 5 ​​Вт
C1: 0,01 мкФ 200 В, полиэфирный конденсатор
C2, C5: 4700 мкФ 50 В, электролитические конденсаторы
C3: 0,1 мкФ 63 В, полиэфирный конденсатор
C4: 10 мкФ 25 В Тантал
C6: 47 мкФ 35 В, электролитические конденсаторы

Печатная плата регулятора постоянного тока большой мощности-4-20-вольт-20-ампер

Build 20A Сильноточный регулируемый источник питания

  • Все устройства в схемах. Устройства можно припаять к печатной плате, как показано на Рисунок 5 .Если вы не измените входной конденсатор-C2, они увеличились. Придется установить его вне печатной платы.
  • Мостовой диод должен быть аккуратно прикреплен к радиатору. Чтобы продлить срок службы и долговечность.
  • Для IC-LM338, который также необходимо установить на радиатор большого размера. Будьте осторожны, корпус ИС к радиатору Коротко решительно.
  • Когда все будет готово для пайки оборудования, протестируйте входное питание переменного тока для этого проекта.
  • Затем отрегулируйте VR1 до необходимого выходного напряжения, проверьте нагрузку и отрегулируйте VR1 до тех пор, пока выходное напряжение не останется неизменным.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Цепи регулятора напряжения

»Электроника

— обзор основ схем линейных и импульсных стабилизаторов напряжения, используемых в источниках питания электроники.


Пособие и руководство по схемам источника питания Включает:
Обзор электронных компонентов источника питания
Линейный источник питания
Импульсный источник питания

Защита от перенапряжения
Характеристики блока питания
Цифровая мощность
Шина управления питанием: PMbus
Бесперебойный источник питания


Регуляторы напряжения широко используются в схемах питания электроники.Они обеспечивают очень высокую степень регулирования и низкий уровень пульсаций, хотя их уровни эффективности намного ниже, чем у другой популярной формы регулятора, называемой регулятором режима переключения. Однако линейные регуляторы все еще используются в больших количествах из-за их относительной простоты и высокого уровня производительности.

Можно изготавливать схемы регуляторов напряжения как из дискретных компонентов, так и использовать регуляторы IC. Регуляторы IC позволяют достичь очень высоких уровней производительности, часто с использованием сравнительно небольшого количества компонентов, но часто для многих проектов можно использовать несколько доступных компонентов, чтобы создать идеально подходящую схему регулятора напряжения.

Базовая концепция схем регулятора напряжения

Несмотря на то, что существует множество различных схем регуляторов напряжения и интегральных регуляторов, основные концепции этих схем делятся на две основные категории:

  • Цепь регулятора серии
  • Параллельная или шунтирующая схема регулятора.

Все цепи регулятора напряжения попадают в одну из этих категорий, хотя из двух наиболее распространенным типом, наблюдаемым для цепей полного регулятора напряжения, является последовательный регулятор.

Помимо того, что регуляторы напряжения классифицируются как последовательные и шунтирующие регуляторы, их также можно разделить на две другие категории в зависимости от режима работы:

  • Линейные регуляторы напряжения.
  • Импульсные регуляторы напряжения.

Широко используются как линейные, так и импульсные схемы регуляторов. Каждый тип имеет свои преимущества и недостатки, поэтому выбор типа регулятора необходимо делать в зависимости от предполагаемого применения.

Цепь регулятора напряжения серии

Цепи последовательного регулятора напряжения работают с использованием последовательного элемента управления, такого как биполярный транзистор или полевой транзистор. Принцип работы схемы основан на контроле проводимости этого последовательного элемента с помощью управляющего напряжения. Если выходное напряжение имеет тенденцию к повышению, это будет обнаружено, и управляющее напряжение будет отрегулировано для уменьшения проводимости последовательного элемента, что вызовет повышение напряжения на последовательном элементе. Поскольку последовательный элемент и нагрузка образуют схему делителя потенциала, любое увеличение напряжения на последовательном элементе управления приведет к падению напряжения на нагрузке.

Точно так же, если напряжение на нагрузке имеет тенденцию падать слишком низко, это будет обнаружено, управляющее напряжение для последовательного элемента затем вызовет повышение проводимости последовательного элемента, и напряжение на нагрузке будет поддерживаться.

Это типичная форма системы отрицательной обратной связи.Управляющее напряжение должно иметь эталон, с которым можно сравнивать выходной сигнал. Это часто обеспечивается опорного напряжения схемы, основанной вокруг стабилитрона. Выходное напряжение регулятора снимается, часто через делитель потенциала, и сравнивается с опорным напряжением, а напряжение ошибки возвращается в качестве управляющего напряжения для изменения проводимости элемента последовательного управления.

Можно изменять выходное напряжение, изменяя величину, на которую выходное напряжение делится в меньшую сторону. Поместив переменный резистор в делитель потенциала, можно изменить напряжение, которое сравнивается с опорным напряжением. Это, в свою очередь, изменит выходное напряжение схемы регулятора напряжения.

Схема шунтирующего регулятора напряжения

Как следует из названия, шунтирующий регулятор напряжения работает параллельно с нагрузкой, а не последовательно с ней. Используя форму устройства постоянного тока, которое может быть таким же простым, как резистор, оно работает параллельно с нагрузкой, шунтируя или поглощая ток, так что напряжение на нагрузке остается неизменным.

В простейших формах шунтирующих стабилизаторов используются устройства постоянного напряжения, такие как стабилитроны. В этих схемах используется последовательный резистор для ограничения тока, а стабилитрон устанавливается между резистором и землей параллельно нагрузке. Поскольку стабилитрон поддерживает постоянное напряжение, а изменения тока нагрузкой не вызовут каких-либо (значительных) изменений напряжения, потому что диод будет поддерживать постоянное напряжение, принимая любые изменения тока. Естественно, существуют и другие, более сложные формы шунтирующего регулятора, но вариант с стабилитроном является наиболее простым и понятным.

Линейный регулятор напряжения

Схема линейного регулятора напряжения — это схема, в которой проводимость элемента последовательного регулятора изменяется линейно, чтобы гарантировать поддержание требуемого напряжения на выходе. Таким образом, выходное напряжение поддерживается настолько точно, насколько это возможно, и получается самый чистый выходной сигнал.

Хотя схема линейного регулятора напряжения обеспечивает очень высокие уровни производительности с точки зрения шума, пульсаций и регулирования, этот тип схемы неэффективен.Элемент последовательного регулятора требует значительного падения напряжения на нем, чтобы он мог поддерживать требуемый высокий уровень шума и подавления пульсаций. Элемент последовательного регулятора должен быть способен рассеивать значительные уровни мощности в зависимости от требуемой выходной мощности. Это означает, что эти блоки питания могут быть большими и тяжелыми.

Импульсный регулятор напряжения

В отличие от линейных регуляторов, в которых последовательный элемент изменяется линейно, последовательный элемент в импульсных регуляторах имеет только два состояния — включено и выключено.Регулятор работает, заряжая большой конденсатор на выходе. Когда напряжение падает, поскольку заряд используется для питания нагрузки, включается последовательный стабилизатор. После достижения необходимого напряжения он снова отключается. Благодаря наличию на выходе емкостного конденсатора достаточно большого размера переключающие выбросы устраняются в основном.

Преимущество импульсных регуляторов заключается в гораздо более высоком уровне эффективности, который они могут предложить. Последовательный элемент рассеивает очень мало энергии как во включенном, так и в выключенном состоянии.В результате эти источники питания не только очень эффективны, но и могут быть значительно меньше. Проблема в том, что на выходе всегда присутствуют всплески переключения, а общий уровень шума на выходе выше, чем у линейных регуляторов. Однако они вполне подходят для многих приложений и в результате очень широко используются.

Сводка

Линейные регуляторы напряжения очень широко используются в электронных схемах. В цепях, работающих на высоких скоростях и требующих точного обслуживания шин питания, цепи регулятора напряжения используются для обеспечения питания большинства цепей.

Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем

Вернуться в меню «Конструкция схемы». . .

Сертификат серии

»Примечания по электронике

Последовательный регулятор или регулятор последовательного прохода — наиболее широко используемый вид регулятора напряжения, используемый в линейных источниках питания.


Схемы линейного источника питания Праймер и руководство Включает:
Линейный источник питания
Шунтирующий регулятор
Регулятор серии
Ограничитель тока
Регуляторы серий 7805, 7812 и 78 **

См. Также:
Обзор электроники блока питания
Импульсный источник питания
Защита от перенапряжения
Характеристики блока питания
Цифровая мощность
Шина управления питанием: PMbus
Бесперебойный источник питания


Последовательный стабилизатор напряжения или, как его иногда называют, последовательный стабилизатор напряжения — наиболее часто используемый подход для обеспечения окончательного регулирования напряжения в линейно регулируемом источнике питания.

Линейный регулятор серии обеспечивает высокий уровень производительности, особенно когда требуется низкий уровень шума, пульсаций и переходных процессов на регулируемом выходе.

Существует множество схем, использующих дискретные электронные компоненты, которые обеспечивают линейное регулирование с помощью последовательного элемента, и в дополнение к этому практически все ИС линейных регуляторов используют этот подход.

Это означает, что существует множество вариантов для последовательных регуляторов напряжения, которые открываются при проектировании электронной схемы источника питания.

Основы регуляторов напряжения серии

В последовательном регуляторе напряжения или последовательном регуляторе напряжения используется переменный элемент, включенный последовательно с нагрузкой. Изменяя сопротивление последовательного элемента, можно изменять падение напряжения на нем, чтобы обеспечить постоянство напряжения на нагрузке.

Блок-схема последовательного регулятора напряжения

Преимущество последовательного регулятора напряжения состоит в том, что величина потребляемого тока фактически равна величине потребляемого нагрузкой, хотя некоторая часть будет потребляться любой схемой, связанной с регулятором.В отличие от шунтирующего регулятора напряжения, последовательный регулятор не потребляет полный ток, даже если нагрузка не требует никакого тока. В результате последовательный регулятор напряжения значительно более эффективен.

Вместо того, чтобы потреблять ток, который не требуется нагрузке для поддержания напряжения, он снижает разницу напряжений между входным и требуемым стабилизированным напряжением.

Для поддержания достаточного уровня регулирования и подавления шумов и переходных процессов, которые могут возникать на входящем напряжении, последовательные линейные регуляторы напряжения должны значительно снижать напряжение.Для многих высококачественных стабилизаторов напряжения с низким уровнем шума и пульсаций требуется несколько вольт на последовательном регулирующем элементе. Это означает, что в этом компоненте рассеивается значительная мощность, и для устройства последовательного регулятора, а также для источника питания в целом требуется хороший теплоотвод и отвод тепла.

Хотя последовательный регулятор значительно более эффективен, чем шунтирующий регулятор, он значительно менее эффективен, чем импульсный источник питания. Эффективность последовательного регулятора напряжения и любых линейных источников питания, использующих их, будет зависеть от нагрузки и т. Д., Но часто достигаются уровни эффективности менее 50%, тогда как источники питания с импульсным режимом могут достигать уровня более 90%.

Стабилизаторы напряжения серии

имеют относительно низкий уровень эффективности по сравнению с импульсным источником питания, но у них есть преимущества простоты, а также на их выходе отсутствуют всплески переключения, наблюдаемые на некоторых импульсных источниках питания, хотя SMPS улучшаются, а производительность многих сейчас исключительно хорошо.

Регулятор напряжения простой эмиттерный повторитель

Конструкция электронной схемы простого транзисторного регулятора напряжения с эмиттерным повторителем очень проста.Эта схема не используется широко сама по себе в линейном источнике питания, но может использоваться в другом оборудовании для обеспечения понижающего напряжения и т. Д. От шины с более высоким напряжением.

Базовый последовательный стабилизатор с использованием стабилитрона и эмиттерного повторителя

В схеме используется однопроходный транзистор в виде конфигурации эмиттерного повторителя и одиночный стабилитрон или другой диод стабилизатора напряжения, управляемый резистором от нерегулируемого источника питания.

Это обеспечивает простую форму системы обратной связи, обеспечивающую поддержание напряжения стабилитрона на выходе, хотя и со снижением напряжения, равным напряжению перехода база-эмиттер — 0.6 вольт для кремниевого транзистора.

Спроектировать такую ​​схему последовательного регулятора напряжения несложно. Зная максимальный ток, необходимый для нагрузки, можно рассчитать максимальный ток эмиттера. Это достигается делением тока нагрузки, то есть тока эмиттера транзистора, на Β или hfe транзистора.

Стабилитрону обычно требуется минимум около 10 мА, чтобы небольшой стабилитрон сохранял свое регулируемое напряжение.Затем следует рассчитать резистор, чтобы обеспечить базовый ток возбуждения и минимальный ток Зенера на основе данных о нерегулируемом напряжении, напряжении Зенера и требуемом токе. [(Нерегулируемое напряжение — напряжение стабилитрона) / ток]. К току следует добавить небольшой запас, чтобы обеспечить достаточное пространство для запаса при нагрузке и, следовательно, база транзистора принимает полный ток.

Рассеиваемая мощность стабилитрона должна быть рассчитана для случая, когда ток нагрузки и, следовательно, ток базы равен нулю.В этом случае стабилитрон должен будет принимать полный ток, пропускаемый последовательным резистором.

Иногда через стабилитрон или опорный диод напряжения может быть помещен конденсатор, чтобы помочь устранить шум и любые переходные процессы напряжения, которые могут возникнуть.

Выборка выходного сигнала

Простая схема последовательного регулятора напряжения с эмиттерным повторителем напрямую сравнивает выходной сигнал с опорным напряжением. Таким образом, выходное напряжение было равно, что в качестве ссылки, пренебрегая базу эмиттерного падения напряжения.

Однако можно улучшить характеристики регулятора напряжения, выбрав часть выходного напряжения и сравнив ее с эталонным. Для этой функции можно использовать дифференциальный усилитель, например операционный усилитель. Если это сделано, то выходное напряжение становится больше, чем опорное напряжение в качестве обратного отрицательного в цепи схватках, чтобы держать два сравниваемых напряжений одинаковы.

Если, например, опорное напряжение 5 вольт, и отбор проб или потенциальный делитель обеспечивает 50% от выходного напряжения, то выходное напряжение будет поддерживаться на 10 вольт.

Последовательный регулятор напряжения с дискретным выходом / figcaption>

Деление потенциала или выборку можно сделать переменными, и, таким образом, выходное напряжение можно отрегулировать до необходимого значения. Обычно этот метод используется только для небольших корректировок, как уровень минимальной мощности, полученного этим способом, является выходным сигналом, равного опорного напряжения.

Следует помнить, что использование делителя потенциала снижает коэффициент усиления контура обратной связи. Это приводит к уменьшению коэффициента усиления контура и тем самым к снижению характеристик регулирования.Обычно существует достаточное усиление контура, чтобы это не было большой проблемой, за исключением случаев, когда дискретизируется только очень небольшая часть выходного сигнала.

Также следует проявлять осторожность, чтобы не увеличивать выходное напряжение до точки, при которой на регуляторе не будет достаточного падения напряжения для достаточного регулирования выходного напряжения.

Регулятор прохода серии

с обратной связью

Чтобы обеспечить улучшенный уровень производительности по сравнению с простым эмиттерным повторителем, можно добавить в схему регулятора напряжения более сложную сеть обратной связи.Это достигается путем дискретизации выходного сигнала, сравнения его с эталоном и последующего использования дифференциального усилителя некоторой формы для обратной связи по разнице с целью исправления ошибок.

Можно использовать простую двухтранзисторную схему для последовательного регулятора с измерением напряжения и обратной связью. Хотя довольно просто использовать операционный усилитель, который обеспечит более высокий уровень обратной связи и, следовательно, лучшее регулирование, эта двухтранзисторная схема хорошо иллюстрирует принципы.

Простая схема последовательного регулятора с двумя транзисторами

В этой схеме TR1 образует последовательный транзистор. Второй транзистор, TR2, действует как дифференциальный усилитель, подавая напряжение ошибки между опорным диодом и измеренным выходным напряжением, которое является пропорцией выходного напряжения, установленного потенциометром. Резистор R1 обеспечивает ток для коллектора TR2 и опорного напряжения диода ZD1.

Источник опорного напряжения

Любой линейный регулятор напряжения может быть только так хорошо, как опорное напряжение, которое используется в качестве основы для сравнения в рамках системы.Хотя теоретически можно использовать аккумулятор, это не подходит для большинства приложений. Вместо этого почти повсеместно используются эталоны на основе стабилитронов.

регуляторы цепи Интегрированные и ссылки используют сложные комбинации на чипе транзисторов и резисторов для получения температурной компенсацией и точное опорное напряжение источников.

Опорное напряжение должно быть приводится в движение от нестабилизированного источника. Его нельзя взять из регулируемой мощности, так как есть проблемы с запуском.При запуске нет выхода, поэтому выход задания будет нулевым, и он будет поддерживаться до запуска задания.

Упрощенный опорный источник для регулятора напряжения серии

прохода Часто выход опорного источника подается через делитель напряжения. Это не только снижает выходное напряжение, которое обычно очень полезно, но также позволяет добавить к выходу конденсатор, чтобы помочь устранить любую пульсацию или шум, которые могут присутствовать. Пониженное напряжение также полезно, потому что минимальное выходное напряжение определяется опорным напряжением.

Стабилизаторы напряжения серии с малым падением напряжения

При выборе любого регулятора необходимо учитывать напряжение, подаваемое на элемент последовательного прохода. Часто для линейных регуляторов требуется значительное падение поперечного сечения элемента последовательного прохода для достижения наилучшего регулирования и подавления шума. Например, линейный регулятор с выходным напряжением 12 вольт может быть рассчитан на входное напряжение 18 вольт или более.

Для любого линейного регулятора существует минимальное напряжение, которое требуется на последовательном элементе, прежде чем регулятор «отключится».«Это падение напряжения можно увидеть во многих интегральных схемах линейных регуляторов.

В некоторых схемах важно иметь регулятор с низким падением напряжения. Если доступное входное напряжение не очень высокое, важно иметь линейный стабилизатор с низким падением напряжения. Он должен хорошо регулироваться, несмотря на ограниченное напряжение на нем.

Хотя схемы, показанные здесь, представляют собой простые транзисторные схемы, те же принципы используются в более крупных схемах, а также в интегральных схемах.В одинаковых концепциях последовательного регулятора, а также в схемах опорных диодов, выборки и других областях используются одни и те же элементы.

Используемые здесь концепции используются практически в линейных регулируемых источниках питания, которые могут предложить очень хорошие уровни производительности. Источники питания с линейной регулировкой больше и тяжелее, чем блоки питания с импульсным режимом, однако они известны своим низким уровнем шума и хорошей стабилизацией на выходе, без резких скачков, которые есть у некоторых блоков питания с импульсным режимом.

Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем

Вернуться в меню «Конструкция схемы». . .

Какова функция регулятора напряжения?

Назначение регулятора напряжения — поддерживать напряжение в цепи относительно близким к желаемому значению.Стабилизаторы напряжения являются одними из наиболее распространенных электронных компонентов, поскольку источник питания часто вырабатывает чистый ток, который в противном случае повредил бы один из компонентов в цепи. Регуляторы напряжения имеют множество специфических функций в зависимости от их конкретного применения.

Пассивное регулирование напряжения

Пассивный регулятор напряжения может использоваться, если источник питания постоянно выдает напряжение, превышающее то, что требуется компонентам в цепи. Этот тип регулятора напряжения по существу состоит из резистора с определенным набором рабочих характеристик.Пассивный регулятор напряжения снижает входящее напряжение до желаемого выходного уровня и сбрасывает избыточную энергию в виде тепла. Пассивным регуляторам часто требуется радиатор для отвода ненужного тепла.

Активное регулирование напряжения

Для цепей, требующих увеличения напряжения, потребуется активный регулятор напряжения. Такие регуляторы напряжения обычно используют какой-либо тип контура отрицательной обратной связи для управления напряжением. Это означает, что напряжение за пределами желаемого диапазона заставляет регулятор напряжения возвращать напряжение в заданный диапазон. В свою очередь, это действие заставляет регулятор напряжения перестать изменять напряжение цепи.

Регулирование электросети

Регуляторы напряжения на главной линии переменного тока для управления очень большими изменениями напряжения в цепях этих типов. Трансформатор в сети имеет несколько ответвлений, которые регулируют напряжение цепи. Когда выходное напряжение сетевого регулятора падает ниже минимального значения, регулятор подключается к ответвлению с более высоким напряжением. Точно так же, когда выходное напряжение поднимается выше максимального значения, регулятор подключается к ответвлению с более низким напряжением.

Стабилизация переменного напряжения

Стабилизация переменного напряжения относится к регулированию относительно небольших колебаний переменного напряжения. Эти регуляторы напряжения обычно используются в домашних условиях, чтобы поддерживать напряжение в диапазоне, необходимом для бытовой техники.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *