Сверхпроводящий накопитель электрической энергии. Сверхпроводящий накопитель энергии


Сверхпроводящий накопитель электрической энергии :: ПВ.РФ Международный промышленный портал

Ольга Третьякoва

Этo нoвая разрабoтка рoccийcких атoмщикoв. Наряду co cвoими глoбальными прoектами, oни не забывают o вoпрocах пoвышения энергoэффективнocти предприятий прoмышленнocти, транcпорта, коммунальной cферы. Причем предлагают решать их в чиcто практичеcкой плоcкоcти – при помощи накопителей энергии.

Извеcтно, что технологичеcкие процеccы потребляют cвыше 30% вcей производимой в стране электроэнергии. Анализ использования электродвигателей в различных отраслях промышленности, проведенный специалистами Института электромашиностроения (Владимир), показал, что интенсивность и экстенсивность загрузки двигателей зависят не только от области применения, но и главным образом от типа механизма и их номинальной мощности.

При замене двигателей с двойным превышением номинальной мощности над рабочей (а именно такой запас имеется у 5-10% установленного оборудования) экономия электроэнергии может составить 40-50%, не говоря о снижении дополнительных затрат на завышенную мощность. Экономия электроэнергии при внедрении двигателей с повышенным КПД колеблется от 2 до 5,5% в зависимости от установленной мощности.

Годовой потенциал экономии электроэнергии по энергосберегающим мероприятиям в четырех отраслях народного хозяйства (промышленности, сельском хозяйстве, транспорте и сфере услуг) определен в размере 27,7 млрд кВт/ч на период 2010 г. и 45,7 млрд кВт/ч на уровне 2015 г. Но, пожалуй, самое существенное позитивное влияние на энергетическую сферу может оказать широкое применение накопителей энергии.

Плюс энергия перетоков

На основании модели электроэнергетической системы с учетом влияния процессов аккумулирования энергии были проведены расчеты по определению оптимальной структуры генерирующих мощностей для энергосистемы Европейской части России на период до 2020 г. Для сравнения были также проведены расчеты по варианту, предложенному в Энергетической стратегии России. Результаты показывают, что прогнозируемые объемы потребления к 2020 г., при наличии в системе накопителей электроэнергии, даже по оптимистическому сценарию, покрываются на существующих, но реконструированных мощностях за счет более полного использования базовых мощностей и применения электроэнергии перетоков.

Широкое использование системного эффекта накопителей энергии (НЭ) позволяет значительно снизить объемы вводимых мощностей и капиталовложений в электроэнергетику. Общая экономия инвестиций при альтернативном варианте, по сравнению с оптимистическим вариантом стратегии, составляет 39 млрд долл., или более 30% от общего объема запланированных инвестиций. Применение НЭ, тем более при немодернизированном оборудовании, позволяет уменьшить капиталовложения в генерирующие мощности, сэкономить топливо и снизить эксплуатационные затраты на базовых мощностях, уменьшить потери от межсистемных перетоков избыточных мощностей в периоды минимумов нагрузки.

С помощью сверхпроводникового накопителя энергии энергоемкостью от 40 до 100 МДж можно повысить динамическую устойчивость энергосистем, а работая в системе автоматического регулирования энергосистемы, он будет гасить нежелательные колебания потоков мощности. Накопители меньших энергоемкостей также могут компенсировать реактивную мощность, снижая тем самым потери при транспортировке электроэнергии. Кроме того, расчеты свидетельствуют в пользу применимости cверхпроводникового индуктивного накопителя энергии (СПИН) в качестве буферного накопителя энергии в железнодорожном транспорте на электрической тяге с рекуперацией энергии.

Принципиальное преимущество

СПИН представляет собой, по сути, магнитную катушку из сверхпроводника. Упрощая, можно сказать, что эффект сверхпроводимости заключается в полном исчезновении электрического сопротивления сверхпроводника при охлаждении его ниже некой критической температуры. Естественно, пропадают и все потери энергии, связанные с электрическим сопротивлением.

Подобное устройство может хранить энергию сколь угодно долго в виде энергии магнитного поля, создаваемого с помощью сверхпроводящего соленоида. Очевидно, что при длительном использовании такого аккумулятора понадобятся дополнительные расходы на охлаждение, однако выгода от использования в итоге существенно покрывает эти расходы.

Принципиальное преимущество индуктивных накопителей заключается в том, что энергия в них запасается в том же виде, в каком и используется, – электромагнитном. А раз нет необходимости в преобразовании из одного вида энергии в другой, то нет и связанных с преобразованием потерь энергии и затрат времени на сам процесс, чем грешат иные типы аккумуляторов, например, химические или гидравлические. Поэтому уникальным свойством сверхпроводящего индуктивного накопителя является возможность практически мгновенного перехода из режима накопления энергии в режим ее выдачи.

Генеральный директор компании "Русский Сверхпроводник" А. В. КАЦАЙ

Опробовано на реакторе

Техническое предложение о разработке источника бесперебойного питания на основе СПИН было выдвинуто еще в 2005 г. рядом предприятий Росатома. Опыт создания самих сверхпроводниковых накопителей имеет еще более давнюю историю. Такие мощные сильноточные устройства уже создавались на предприятиях Росатома, построивших в стране десятки крупных сверхпроводящих соленоидов и в настоящее время участвующих в международном проекте экспериментального термоядерного реактора ITER. К примеру, обмотка тороидального магнитного поля этого реактора типа «Токамак» намотана из российского сверхпроводника, и энергия, запасаемая в ее магнитном поле, может составлять 600 МДж или 166 кВт/ч. Это устройство с полным правом можно назвать аналогом СПИН.

Специалистам проект может показаться чересчур амбициозным. Ведь для участия в суточном регулировании энергопотока необходимо аккумулировать энергию порядка 1012Дж и выдавать мощность в сотни мегаватт, а находящиеся в разработке СПИН имеют сейчас проектную энергоемкость от единиц до сотен мегаджоулей. Тем не менее, за последние годы источники бесперебойного питания на основе СПИН были проработаны в некоторых развитых странах – США, Японии, Италии, Германии – и показали себя как надежные и эффективные устройства для стабилизации провалов напряжения.

В серийное производство

По словам генерального директора компании «Русский Сверхпроводник» Александра Владимировича Кацая, вРоссии уже был создан ряд СПИН для фундаментальных научных исследований, проведены успешные испытания прототипов в действующей энергосистеме Москвы. Налаживание серийного производства индуктивных накопителей позволит повысить надежность энергосистем и сделать серьезные шаги по широкому внедрению сверхпроводниковых технологий в энергетику.

В настоящее время отраслевая компания «Русский Сверхпроводник» совместно с разработчиками технологии ведет активную работу над созданием компактного сверхпроводящего индуктивного накопителя энергоемкостью 24 МДж, состоящего из четырех модулей по 6 МДж. Впоследствии из таких модулей возможно будет собирать накопители большей емкости.

Развитие сверхпроводниковой индустрии, в т.ч. производства сверхпроводящих материалов, обеспечивает возможность изготовления накопителей на основе СПИН практически для любой энергетической системы.

promvest.info

Электромеханический сверхпроводящий накопитель энергии

Изобретение относится к области энергетики. Технический результат - повышение энергоэффективности и энергосбережения накопителя энергии. Электромеханический сверхпроводящий накопитель энергии содержит корпус, в котором размещены синхронный двигатель-генератор со статором и системой обмоток, ротор-маховик, опорные постоянные магниты, расположенные в нижней части ротора-маховика, постоянные магниты возбуждения, расположенные на внутренней боковой поверхности ротора-маховика, направляющая опора с подшипником, расположенная в нижней части синхронного двигателя-генератора, сверхпроводящие пластины, криостат, высокотемпературный сверхпроводниковый подвес, образованный опорными постоянными магнитами и сверхпроводящими пластинами. Корпус выполнен из двух соединенных между собой модулей - модуля криостата и модуля синхронного двигателя-генератора. Сверхпроводящие пластины высокотемпературного сверхпроводникового подвеса расположены в модуле криостата. Ротор-маховик, внутренняя полость которого вакуумирована, расположен в модуле синхронного двигателя-генератора. 1 ил.

 

Изобретение относится к области энергетики и может быть использовано в транспортных системах с электрическим приводом, электрических сетях для буферизации пиковых нагрузок, для использования в локальных электрических сетях (ЛЭС) с возобновляемыми источниками энергии (ВИЭ).

Из уровня техники известны кинетические накопители энергии, в которых электрическая энергия преобразуется в механическую энергию маховика и сохраняется в таком виде до тех пор, пока маховик не остановится (Патент на изобретение РФ №2504889, «Накопитель энергии», МПК H02K 7/02, опубл. 20.01.2014; патент на изобретение РФ №2417504, «Супермаховиковый накопитель энергии», МПК H02K 16/04, опубл. 27.04.2011; патент на изобретение РФ №2456734, «Накопитель энергии», МПК H02K 7/02, опубл. 20.07.2012).

Известен кинетический накопитель энергии (патент на полезную модель РФ №133986, «Кинетический накопитель энергии с магнитным ВТСП подвесом», МПК H02K 7/02, опубл. 27.10.2013), предназначенный для работы в качестве резервных и аварийных источников питания бортовых электроэнергетических систем атмосферных летательных аппаратов и космических энергоустановок, а также других ответственных потребителей.

Наиболее близким к предлагаемому изобретению по своей технической сущности является кинетический накопитель энергии с магнитным высокотемпературным сверхпроводниковым (ВТСП) подвесом (Патент РФ №97018, «Кинетический накопитель энергии», МПК H02K 7/00, опубл. 20.08.2010), содержащий корпус, в котором размещен обращенный мотор-генератор с неподвижным статором и ротор-маховик с бесконтактным сверхпроводящим подвесом на основе кольцевого блочного ВТСП массива. Этот накопитель энергии принят в качестве прототипа.

Недостаток прототипа заключается в ограничении энергетических показателей (запасенная электрическая энергия, коэффициент полезного действия) из-за газовой среды в корпусе накопителя энергии, состоящей из воздуха и газообразного азота, образующегося при испарении жидкого азота из криостата, охлаждающего кольцевой блочный ВТСП массив сверхпроводящего подвеса ротора-маховика. Газовая среда препятствует разгону ротора-маховика до больших скоростей вращения и ограничивает грузоподъемность сверхпроводящего подвеса из-за снижения эффективности охлаждения сверхпроводящих пластин.

Ограничение скорости вращения ротора-маховика уменьшает, соответственно, запасенную энергию накопителя энергии при его заряде. Уменьшается время выбега ротора-маховика за счет моментов сил аэродинамического трения (сопротивления) в газовой среде, в результате чего снижается коэффициент полезного действия, соответственно снижаются энергосбережение и энергоэффективность накопителя энергии.

С другой стороны, наличие газовой среды в корпусе снижает эффективность охлаждения сверхпроводящих пластин ВТСП подвеса, уменьшает грузоподъемные характеристики сверхпроводящего подвеса и запасенную электрическую энергию, которая пропорциональна массе ротора-маховика накопителя энергии, что также снижает энергоэффективность накопителя энергии.

Техническим результатом предлагаемого изобретения является повышение энергоэффективности и энергосбережения накопителя энергии.

Указанный технический результат достигается за счет того, что в электромеханическом сверхпроводящем накопителе энергии, содержащем корпус, в котором размещены синхронный двигатель-генератор со статором с системой обмоток и ротор-маховик, опорные постоянные магниты, расположенные в нижней части ротора-маховика, постоянные магниты возбуждения, расположенные на внутренней боковой поверхности ротора-маховика, направляющая опоры с подшипником, расположенная в нижней части синхронного двигателя-генератора, сверхпроводящие пластины, криостат, высокотемпературный сверхпроводниковый подвес, образованный опорными постоянными магнитами и сверхпроводящими пластинами, согласно изобретению корпус выполнен из двух соединенных между собой модулей - модуля криостата и модуля синхронного двигателя-генератора, причем сверхпроводящие пластины высокотемпературного сверхпроводникового подвеса расположены в модуле криостата, а ротор-маховик, внутренняя полость которого вакуумирована, расположен в модуле синхронного двигателя-генератора.

Выполнение корпуса накопителя энергии сборным и состоящим из двух модулей позволяет оптимизировать решение двух взаимовлияющих технических проблем, что невозможно в прототипе, а именно:

- вакуумировать внутреннюю полость ротора-маховика до любой технически возможной степени разряжения;

- повысить эффективность охлаждения сверхпроводящих пластин за счет уменьшения теплопроводности и, соответственно, тепловых потоков в вакуумированном объеме, разделяющем модуль криостата с находящимися в нем сверхпроводящими пластинами и модуль синхронного двигателя-генератора.

Для выявления связи между энегоэффективностью, энергосбережением накопителя энергии и снижением сопротивления при вращении ротора-маховика, температурой охлаждения активных пластин ВТСП подвеса рассмотрим два основных режима работы накопителя энергии: режим заряда, или накопления энергии, и режим разряда, или отдачи накопленной энергии.

В режиме накопления (заряда) энергии tз происходит преобразование электрической энергии сети, к которой присоединен накопитель, в кинетическую энергию вращающегося ротора-маховика. Следовательно, имеет место следующий баланс энергии:

где Wэл - электрическая энергия, Дж, полученная накопителем из сети, Wк - кинетическая энергия ротора-маховика, Дж, ΔW(Ω,p) - потери энергии за счет сопротивления вращению ротора-маховика в газовой среде, зависящие от скорости вращения Ω и давления р газовой среды в рабочей полости ротора-маховика.

Эмпирическое выражение для потерь энергии за счет сопротивления в газовой среде дано в работе [Н.В. Гулиа. Накопители энергии. Изд-во «Наука». - М.: 1980. С. 80].

где D - диаметр ротора-маховика, L - высота ротора-маховика. По оценке, приведенной в упомянутой работе, потери энергии за счет аэродинамического сопротивления достигают 85% от общего количества потерь. Из выражения (1) следует следующее выражение для коэффициента полезного действия ηз накопителя энергии в режиме накопления энергии

Как следует из формулы (1), остаточный газ в рабочей полости ротора-маховика создает момент сил аэродинамического сопротивления, уменьшающий кинетическую энергию ротора-маховика и препятствующий достижению больших скоростей вращения и, как следствие, увеличению накопленной энергии, поскольку накопленная энергия и скорость вращения ротора-маховика связаны соотношением [Бут Д.А., Алиевский Б.Л., Мизюрин С.Р., Васюкевич П.В. Накопители энергии. - М.: Энергоатомиздат, 1991. - 400 с. 1]:

где Wк - накопленная кинетическая энергия, Дж, J=mr2 - момент инерции ротора-маховика, кг/м2, m - масса ротора-маховика, кг, r - радиус ротора-маховика, м, Ω=2πn, n - скорость вращения, об/сек.

В режиме разряда или отдачи энергии tз происходит обратное преобразование накопленной кинетической энергии ротора-маховика в электрическую энергию, причем часть энергии также расходуется на преодоление аэродинамического сопротивления:

где Wэн - электрическая энергия, полученная в результате обратного преобразования кинетической энергии в электрическую энергию. Соответственно, выражение для коэффициента полезного действия будет иметь вид

Составим общий баланс энергии по полному циклу tц=tз+tр работы накопителя «заряд-разряд», используя формулы (1) и (5):

Определим коэффициент полезного действия по полному циклу работы накопителя, используя выражения (3) и (6) с точностью до линейных членов:

Как следует из формул (1, 4), накопленная энергии пропорциональна квадрату скорости вращения и массе ротора-маховика. Следовательно, снижение сопротивления при вращении ротора-маховика в вакууме уменьшает потери энергии в накопителе при ее преобразованиях за время полного цикла работы, что повышает его энергосбережение.

Как следует из формулы (8), снижение сопротивления при вращении ротора-маховика уменьшает потери энергии, что увеличивает коэффициент полезного действия или энергоэффективность накопителя энергии.

Рассмотрим влияние эффективности охлаждения активных пластин ВТСП подвеса на энергоэффективность и энергосбережение накопителя энергии.

Грузоподъемные характеристики сверхпроводящего подвеса определяются величиной критического магнитного поля, зависящего от температуры охлаждения по следующей формуле [Буккель В. Сверхпроводимость. - М.: Мир, 1975. - 366 с.]:

где Нс - критическое магнитное поле, А/м, Н0 - критическое магнитное поле при температуре Т=0 K, Т - температура охлаждения сверхпроводника, Тс - критическая температура сверхпроводника, K.

Как следует из формулы (9), критическое магнитное поле при снижении температуры сверхпроводника, то есть при увеличении эффективности охлаждения сверхпроводника, растет. Грузоподъемная сила сверхпроводящего подвеса пропорциональна напряженности магнитного поля. Например, для плоской сверхпроводящей пластины в приближении модели Бина получено следующее выражение для удельной силы сверхпроводящего подвеса, действующей на единицу поверхности ВТСП блока [Ковалев Л.К., Конев С.М., Ларионов С.А., Полтавец В.Н. - Сверхпроводниковые магнитные опоры с объемными ВТСП элементами. Электричество. - 2003. - №6]:

где Is - критический ток, А/м2, Вхср=µ0Нхср, Тл, µ0 - магнитная постоянная, Нхср - среднее значение напряженности магнитного поля в биновском слое.

Таким образом, снижение температуры охлаждения активных пластин ВТСП подвеса позволяет увеличить его грузоподъемные характеристики и увеличить массу ротора-маховика. Увеличение массы ротора-маховика в соответствие с формулой (4) увеличит кинетическую энергию ротора-маховика, а в соответствие с формулой (8) увеличит коэффициент полезного действия или энергоэффективность, энергосбережение накопителя энергии.

Модульная конструкция предлагаемого изобретения также обеспечивает удобство эксплуатации и ремонта накопителя энергии.

Сущность изобретения поясняется графическим материалом. На чертеже показан продольный разрез предлагаемого электромеханического сверхпроводящего накопителя энергии.

Электромеханический накопитель энергии имеет корпус, выполненный из модуля криостата 7 и модуля синхронного двигателя-генератора 3, которые соединены между собой креплением (не указано).

В конструкцию модуля криостата 7 входит крышка-опора 17, опорный фланец 10 с уложенными в его пазы (не показаны) сверхпроводящими пластинами 12, закрепленными сверху крышкой-опорой 17. Полость модуля криостата 7 заполнена жидким азотом 11. Внутренние стенки модуля криостата 7 выполнены из теплоизолирующего материла 14, обладающего низкой теплопроводностью. Опорный фланец 10 выполнен из материала с высокой теплопроводностью, благодаря чему обеспечивается охлаждение сверхпроводящих пластин 12 до температуры Т≤Тс, где Тс - температура перехода сверхпроводящих пластин 12 в состояние сверхпроводимости.

Для установки предлагаемого накопителя энергии в плоскости горизонта имеются нивелирующие опоры, расположенные под модулем криостата 7.

В стенке криостата 7 расположен патрубок 15 для заполнения криостата жидким азотом, например, путем его прокачки из криокулеров (не показаны).

Конструкция модуля синхронного двигателя-генератора 3 состоит из ротора-маховика 5, опорных постоянных магнитов 6, закрепленных на нижней части ротора-маховика 5, постоянных магнитов возбуждения 4, расположенных на внутренней боковой поверхности ротора-маховика 5, и крышки-опоры 16.

Также в нижней части модуля синхронного двигателя-генератора 3 установлена направляющая опора 8 с подшипником 9.

Также в конструкцию модуля синхронного двигателя-генератора 3 входит статор 1, на котором закреплена трехфазная система обмоток 2. На верхней части статора 1 расположены клеммы 21 (клеммы А, В, С) для присоединения источника трехфазного напряжения и выход датчика скорости 20 ротора-маховика 5.

Для вакуумирования полости, в которой размещен ротор-маховик 5, в верхней части модуля синхронного двигателя-генератора 3 расположен ниппель 19.

Для визуального наблюдения за положением ротора-маховика 5 в стенке модуля синхронного двигателя-генератора 3 имеется окно 18.

После заполнения полости модуля криостата 7 патрубки 15 закрывают и азот может храниться в жидком состоянии продолжительное время. Для того чтобы отводить газообразный азот, образующийся в процессе работы, модуль криостата 7 содержит отводящий патрубок (не показан).

Опорные постоянные магниты 6 и сверхпроводящие пластины 12 образуют ВТСП подвес, обеспечивающий бесконтактный самоцентрирующийся подвес ротора-маховика 5.

Предлагаемый электромеханический накопитель энергии работает следующим образом.

После сборки модулей синхронного двигателя-генератора 3 и криостата 7 производится соединение крышки-опоры 16 с крышкой-опорой 17 при помощи крепления (не показано), после чего осуществляется вакуумная откачка полости ротора-маховика 5, например, с помощью вакуумного насоса (не показан) и закачивание жидкого азота 11 в полость модуля криостата 7 через патрубок заполнения 15.

В результате поступления жидкого азота в полость модуля криостата 7 происходит охлаждения сверхпроводящих пластин 12 и их переход в сверхпроводящее состояние. В этом случае сверхпроводящие пластины 12 приобретают свойства диамагнетиков. Магнитное поле, образованное постоянными магнитами 6, взаимодействует с сверхпроводящими пластинами 12, в результате чего возникнет эффект левитации, и ротор-маховик 5 снимется с опоры 8. При этом происходит самоцентрирование по вертикальной и горизонтальной осям ротора-маховика 5. Этот момент левитации ротора-маховика 5 можно наблюдать визуально через смотровое окно 18.

Необходимые силовые характеристики ВТСП подвеса обеспечиваются оптимизацией рабочего зазора, образованного нижней поверхностью постоянных магнитов 6 и верхней поверхностью сверхпроводящих пластин 12, выбором материала опорного фланца 10, величиной намагниченности постоянных магнитов 6, величиной разности между температурой сверхпроводящих пластин 12 и температурой их перехода в сверхпроводящее состояние.

После центрирования ротора-маховика 5 на статор 1 подается трехфазное переменное напряжение. За счет полученной энергии ротор-маховик 5 начинает разгоняться до номинальной скорости вращения. После набора номинальной скорости вращения источник энергии отключается, а ротор-маховик 5 будет продолжать вращаться по инерции в вакууме продолжительное время, тем самым сохраняя затраченную на разгон ротора-маховика 5 электрическую энергию в механическом виде.

Для получения электрической энергии из предлагаемого электромеханического сверхпроводящего накопителя энергии необходимо клеммы 21 трехфазной системы обмоток 2 подключить к нагрузке, при этом статор 1 за счет кинетической энергии ротора-маховика 5 будет генерировать электрическую энергию до тех пор, пока кинетическая энергия ротора-маховика 5 не иссякнет.

После этого цикл заряда и разряда электромеханического накопителя энергии можно повторять многократно. Для остановки предлагаемого накопителя энергии необходимо остановить вращение ротора-маховика 5, например, путем замыкания клемм 21 (клеммы А, В, С) на балластное сопротивление, а затем слить жидкий азот 11 из полости модуля криостата 7.

Предлагаемое изобретение положено в основу конструкции экспериментального образца электрокинетического накопителя энергии СПЭНЭ-1, проходящего в настоящее время стадию экспериментальных исследований [Смоленцев, Н.И. Разработка накопителя энергии на основе высокотемпературной сверхпроводимости и перспективы его применения в локальных электрических сетях / Смоленцев, Н.И., Четошникова Л.М., Бондарев Ю.Л. // Ползуновский вестник. - 2015. - №1. С. 73-77]. Расчетное значение запасенной энергии составляет 4 МДж, что существенно превышает аналогичный параметр прототипа, равный 0,5 МДж.

Предлагаемое изобретение может найти применение в энергетике, в электротранспорте, в корабельных силовых установках, а также в энергетических установках космических аппаратов, где проблемы охлаждения сверхпроводников и вакуумирования упрощаются.

Электромеханический сверхпроводящий накопитель энергии, содержащий корпус, в котором размещены синхронный двигатель-генератор со статором с системой обмоток и ротор-маховик, опорные постоянные магниты, расположенные в нижней части ротора-маховика, постоянные магниты возбуждения, расположенные на внутренней боковой поверхности ротора-маховика, направляющая опора с подшипником, расположенная в нижней части синхронного двигателя-генератора, сверхпроводящие пластины, криостат, высокотемпературный сверхпроводниковый подвес, образованный опорными постоянными магнитами и сверхпроводящими пластинами, отличающийся тем, что корпус выполнен из двух соединенных между собой модулей - модуля криостата и модуля синхронного двигателя-генератора, причем сверхпроводящие пластины высокотемпературного сверхпроводникового подвеса расположены в модуле криостата, а ротор-маховик, внутренняя полость которого вакуумирована, расположен в модуле синхронного двигателя-генератора.

www.findpatent.ru

Сверхпроводящий накопитель - Большая Энциклопедия Нефти и Газа, статья, страница 1

Сверхпроводящий накопитель

Cтраница 1

Сверхпроводящие накопители имеют высокое значение индукции - до 5 Тл и среднюю плотность тока 10 - 105 А / см2 при температуре 4 - 5 К.  [2]

Мощные сверхпроводящие накопители весьма перспективны не только для питания импульсных нагрузок, но и для регулирования производства и потребления электроэнергии в целых энергосистемах. Они могут изменить энергетику, сделать потребителей более независимыми от источников тока, упростить управление, контроль и защиту оборудования.  [3]

Обеспечение устойчивости магнитных систем сверхпроводящих накопителей связано с транспозицией элементарных нитей обмотки и секционированием катушек.  [4]

Сложной проблемой является вывод энергии из сверхпроводящего накопителя. Если нагрузка чисто омическая ( активная), можно использовать коммутатор, переключающий ток магнита на нагрузку.  [5]

В настоящее время созданы сверхпроводящие индуктивные накопители на энергию 30 МДж. Обычно они отдают энергию в виде импульсов. Современные сверхпроводящие накопители имеют максимальный ток в импульсе 10000 А и напряжение 50 кВ, максимальную мощность 500 МВт при длительности импульса 5 мс.  [6]

Чтобы не было потерь, необходимо иметь обмотки с активным сопротивлением, равным нулю. Но при этих условиях уравнения электромеханического преобразования не имеют решения. Если в контурах электрической машины нет активного сопротивления - это не ЭП, а сверхпроводящий накопитель энергии, в котором циркулируют токи, а электромагнитного момента нет.  [7]

Очевидным недостатком солнечного излучения как источника энергии является неравномерность его поступления на земную поверхность, определяемая суточной и сезонной цикличностью, а также погодными условиями. Еще недавно вопрос аккумулирования электроэнергии, вырабатываемой с помощью солнечных фотоэлектрических установок ( СФЭУ), рассматривался как наиболее критичный при оценке перспектив крупномасштабной солнечной электроэнергетики вследствие необходимости равномерного энергоснабжения потребителей. Одним из приемлемых способов аккумулирования является использование электроэнергии для электролиза воды на водород и кислород с последующим хранением и расходованием водорода в качестве обычного топлива или реагента в электрических топливных элементах. Сегодня благодаря успехам в области высокотемпературной сверхпроводимости можно говорить также и о возможности создания сверхпроводящих накопителей электроэнергии, выполняемых, вероятно, в комплексе со сверхпроводящими линиями электропередачи. Радикальным способом избавления от неравномерности выработки электроэнергии на солнечных энергоустановках является размещение СФЭУ в околоземном космическом пространстве. Находясь, например, на геостационарной орбите, СФЭУ практически все время будет освещена Солнцем и сможет вырабатывать в несколько раз больше электроэнергии, чем на Земле в самых благоприятных погодных условиях. Вырабатываемая электроэнергия может при этом использоваться как непосредственно в космосе на промышленных спутниках, так и транслироваться на Землю пучком СВЧ-излучения.  [8]

Сверхпроводящие индуктивные накопители электромагнитной энергии представляют собой пример одного из уникальных технических использований явления сверхпроводимости. Это соленоиды, специально предназначенные для накопления и выдачи токов по требованию. Плотность энергии, запасенной в магнитном поле накопителя, на два порядка больше, чем в емкостном накопителе ( конденсаторной батарее), а отдаваемые импульсные мощности могут достигать величин в десятки миллионов киловатт. Время вывода энергии из сверхпроводящего накопителя в зависимости от конструкции и запасенной энергии - от тысячных долей секунды до часов.  [9]

Страницы:      1

www.ngpedia.ru

Сверхпроводящие индуктивные накопители

Поиск Лекций

 

В индуктивном (электромагнитном) накопителе энергия хранится в виде энергии электромагнитного поля, связанного с электрическим током, протекающим в обмотке накопителя. Запасенная в накопителе энергия определяется по формуле:

, (3.1)

где – ток, протекающий в катушке, – индуктивность катушки.

Удельная энергия катушки вычисляется по формуле

, (3.2)

где – коэффициент пропорциональности, определяемый геометрическими размерами катушки, – удельная плотность проводника катушки, – внутренний радиус катушки, – число витков катушки.

Из (3.1) и (3.2) следует, что для данной катушки запасаемая энергия пропорциональна квадрату силы тока.

Таким образом, для увеличения запасаемой энергии необходимо увеличивать силу тока. Это приводит к резкому увеличению габаритов и массы катушки. Поэтому для конструирования индуктивных накопителей используют сверхпроводящие материалы (сверхпроводники).

Функциональная схема сверхпроводящего индукционного накопителя (СПИН) в упрощенном виде представлена на рис. 3.1.

Рисунок 3.1 – Функциональная схема СПИН

1 – трансформатор напряжения; 2 – преобразователь; 3 – блок управления; 4 – сверхпроводящая катушка; 5 – рефрижератор

 

Так как электроэнергия вырабатывается, передается и потребляется почти полностью в виде переменного тока, а запасается в виде постоянного, то связь СПИН с энергосистемой должна осуществляться c помощью трансформатора и управляемого вентильного преобразователя. В режиме заряда СПИН преобразователь работает в выпрямительном режиме. В режиме выдачи мощности (разряд СПИН) преобразователь работает в режиме инвертора. Трансформатор напряжения работает во время заряда как понижающий, а во время разряда – как повышающий.

Мощность преобразователя определяется конкретными условиями – в зависимости от объема накопителей. С учетом сложного характера работы накопителя в режиме разряда, а также в условиях, различных режимов его работы в энергосистеме, управление преобразователем должно производиться автоматически, с применением ЭВМ.

Рефрижераторы предназначены для поддержания обмотки соленоида в сверхпроводящем состоянии при температуре кипения жидкого гелия (4,2 К). Необходимы также криостаты, изолирующие обмотку от притоков тепла извне.

Сверхпроводящие индуктивные накопители с энергоемкостью 10 000 МВт·ч представляют собой весьма сложное и дорогостоящее сооружение диаметром до 300 м и высотой до 100 м, расположенное под землей на глубине 150-500 м – в зависимости от прочности пород. Это расположение катушек под землей помогает устранять вредное воздействие на окружающую среду сильного магнитного поля.

Особо следует обратить внимание на систему аварийной защиты СПИН. Энергия, запасенная в СПИН, сравнима по энергоемкости с современными, крупными гидроаккумулирующими электростанциями (ГАЭС) (1013-1014Дж)и сопоставима с энергией крупного землетрясения, эквивалентной энергии, выделяемой при взрыве 10000 тонн тринитротолуола. Поэтому при спонтанной потере сверхпроводящих свойств в элементе провода катушки энергия, запасенная в накопителе, выделится в виде тепла на участке обмотки, перешедшего в нормальное состояние, и может произойти катастрофический взрыв. Поэтому нельзя допускать, чтобы такая энергия могла высвобождаться самопроизвольно.

 

Емкостные накопители

 

В конденсаторе энергия сосредоточена в изоляторе, находящемся между пластинами. Энергия заряженного конденсатора:

, (3.3)

где – емкость конденсатора, – напряжение на конденсаторе.

Емкость плоского конденсатора равна

, (3.4)

где – электрическая постоянная; – относительная диэлектрическая проницаемость; – площадь обкладки конденсатора; – толщина изолятора.

Часто используют понятие удельной энергии конденсатора т.е.

, (3.5)

где – масса диэлектрика, заключенного в конденсаторе.

Подставляя полученное значение в (3.5) и учитывая (3.3), получим:

. (3.6)

Таким образом, удельная энергия конденсатора определяется в основном физическими свойствами применяемого в нем изолятора, т.е. пробивным напряжением , диэлектрической проницаемостью и удельной плотностью (см. рис. 3.2).

Емкостные накопители представляют собой батарею последовательно и параллельно соединенных конденсаторов. Отечественная промышленность разработала конденсаторы, обладающие аномально высокой емкостью – до 1 Ф/см3. Эти конденсаторы имеют модульную конструкцию, что позволяет создавать достаточно мощные батареи, рассчитанные на большие напряжения (до 10 кВ) и ток в несколько сот килоампер. Энергия батареи таких конденсаторов может достигать нескольких миллионов МДж, что позволяет использовать ее в качестве аккумулятора электроэнергии, работающего в экстремальные часы графика нагрузки энергосистемы.

Рисунок 3.2 – Принцип работы ёмкостного накопителя

1 – обкладки конденсатора; 2 – диэлектрик; 3 – источник тока; 4 – переключатель; 5 – нагрузка

 

Для того, чтобы емкостный аккумулятор мог запасать энергию из сети переменного напряжения, он включается в эту сеть через управляемый вентильный преобразователь (см. рис. 3.3). В режиме потребления мощности (заряд) преобразователь работает в выпрямительном режиме, заряжая емкостный накопитель.

В режиме выдачи мощности (разряд) производится изменение полярности подключения емкостного накопителя (ЕН) к преобразователю, который при этом работает в режиме инвертора. Причем активная мощность на шинах переменного тока ЕН не должна зависеть от изменяющегося напряжения на ЕН. Это достигается применением управляемых преобразователей.

Рисунок 3.3 – Функциональная схема емкостного накопителя

1 – трансформатор напряжения; 2 – преобразователь, 3 – блок управления; 4 – емкостный накопитель

 

Емкостные накопители обладают высоким КПД, достигающим 90%.

Емкостные накопители могут иметь практически любую мощность, необходимую энергосистеме для компенсации тока нагрузки. По сравнению с ГАЭС емкостный накопитель занимает площадь в 100 раз меньше.

При эксплуатации ЕН не требуется специальных устройств для поддержания своей емкости, они не создают сильных внешних магнитных полей и не взрывоопасны.

По оценке многих исследователей, емкостные накопители имеют лучшие технико-экономические характеристики в сравнении с другими видами накопителей. Емкостные накопители в некоторых случаях могут применяться и для аккумулирования возобновляемой энергии.

 

poisk-ru.ru

Сверхпроводящий накопитель энергии

Изобретение относится к теплотехнике, а точнее к сверхпроводящим накопителям энергии, и может быть использовано для запуска вихревых термоядерных реакторов. Особенностью предложенного сверхпроводящего накопителя энергии является то, что корпус и сверхпроводящий электрод выполнены в виде тороидальной спирали, внутренняя поверхность корпуса и сверхпроводящего электрода покрыты капиллярной структурой, корпус частично заполнен легкоиспаряющейся жидкостью с температурой кипения ниже точки фазового перехода материала сверхпроводящего электрода, а капиллярная структура, расположенная на внутренней поверхности корпуса, и капиллярная структура на сверхпроводящем электроде соединены между собой капиллярными перемычками. К другим особенностям можно отнести то, что герметичный корпус снабжен клапаном, а внешняя система охлаждения выполнена в виде негерметичного сосуда Дъюара с внутренней поверхностью, покрытой капиллярной структурой. 2 з.п. ф-лы, 8 ил.

 

Изобретение относится к теплотехнике, а точнее к сверхпроводящим накопителям энергии и может быть использован для запуска вихревых термоядерных реакторов.

Известна тепловая труба, содержащая корпус с зонами испарения и конденсации и высоковольтные электроды, подключенные к высоковольтному источнику энергии (SU641262, МПК F28D15/00, опубл. 05.01.1979). Однако такая тепловая труба не предназначена для аккумулирования энергии, она наоборот использует энергию от высоковольтного источника энергии.

Известна тепловая труба (SU1000728, МПК F28D15/00, опубл. 28.02.1983), содержащая корпус с зонами испарения и конденсации и сверхпроводящие электроды, разделенные диэлектрической прокладкой.

Однако запас электрической энергии в такой тепловой трубе незначителен и она не может создавать с внешней стороны корпуса вращающееся магнитное поле.

В качестве прототипа выбрана электрогидродинамическая тепловая труба (SU 1726960 A1, МПК F28D15/02, опубл. 15.04.1992), содержащая герметичный тороидальный корпус в виде полого тора, кольцевой сверхпроводящий электрод, расположенный внутри корпуса и внешнюю систему охлаждения. Однако такая тепловая труба, имеющая сверхпроводящий электрод и постоянно циркулирующий по нему ток со своей внешней стороны не может создавать ни постоянное, ни тем более вращающееся магнитное поле. Сверхпроводящий электрод в такой тепловой трубе выполнен в виде простого тора, а не в виде тороидальной спирали, что ограничивает ее использование в качестве сверхпроводящего накопителя энергии.

Задачей настоящего изобретения является создание сверхпроводящего накопителя энергии, который способен создавать с внешней стороны вращающееся магнитное поле.

Поставленная задача решается тем, что в предложенном сверхпроводящем накопителе энергии, содержащем герметичный полый трубчатый корпус, частично заполненный легкоиспаряющейся жидкостью с температурой кипения ниже точки фазового перехода материала сверхпроводящего кольцевого трубчатого электрода, расположенного на внутренней поверхности корпуса и диэлектрическую капиллярную структуру на сверхпроводящем кольцевом электроде, которые соединены между собой капиллярными диэлектрическими перемычками и внешнюю систему охлаждения, корпус снабжен высоковольтным вводом, соединенным с мощным внешним источником электрической энергии, при этом трубчатый корпус и расположенный в нем сверхпроводящий трубчатый электрод выполнены в виде тороидальной спирали.

Сверхпроводящий накопитель энергии может содержать герметичный корпус снабженный клапаном.

Внешняя система охлаждения сверхпроводящего накопителя энергии может быть выполнена в виде негерметичного сосуда Дьюара с внутренней поверхностью, покрытой капиллярной структурой.

На фиг. 1 условно изображен корпус и электрод в виде простого тора.

На фиг. 2-6 условно изображены разнообразные виды корпуса 1 и сверхпроводящих электродов 2.

На фиг. 7 изображен сверхпроводящий накопитель энергии, содержащий герметичный корпус в виде полого тора 1, сверхпроводящий кольцевой трубчатый электрод 2, расположенный внутри корпуса 1 и внешняя система охлаждения 3.

На фиг. 8 изображено поперечное сечение сверхпроводящего накопителя энергии на фиг 7 в районе капиллярных диэлектрических перемычек 7.

На фиг. 9 изображен сверхпроводящий накопитель энергии с высоковольтным вводом 11 и мощным источником энергии 12.

Особенностью предложенного накопителя энергии является то, что корпус 1 и сверхпроводящий кольцевой трубчатый электрод 2 выполнены в виде тороидальной спирали 4, внутренняя поверхность корпуса 1 и сверхпроводящего трубчатого элекрода 2 покрыты капиллярной структурой 5, корпус частично заполнен легкоиспаряющейся жидкостью 6 с температурой кипения ниже точки фазового перехода материала сверхпроводящего электрода 2, а капиллярная структура, расположенная на внутренней поверхности корпуса и капиллярная структура 5 на сверхпроводящем электроде 2 соединены между собой капиллярными перемычками 7.

Другими отличительными признаками можно признать то, что герметичный корпус снабжен клапаном 8, а внешняя система охлаждения 3 выполнена в виде негерметичного сосуда Дъюара 9 с внутренней поверхностью, покрытой капиллярной структурой 10. 11 - высоковольтный ввод на корпусе 1. На корпусе 1 размещен мощный внешний источник электрической энергии 12, например, электрогенератор атомной энергетической установки.

Работает предлагаемый сверхпроводящий накопитель энергии следующим образом.

Основное энерговыделение в таком сверхпроводящем накопителе энергии т происходит при протекании больших токов через сверхпроводящий электрод 2, выполненный в виде тороидальной спирали 4. Поэтому вся поверхность сверхпроводящего электрода должна быть покрыта диэлектрической капиллярной структурой и эта структура должна быть запитана легкоиспаряющейся жидкостью 6 с температурой кипения ниже точки фазового перехода материала сверхпроводящего электрода 4. Это можно достичь только в случае, когда расположенная на внутренней поверхности корпуса 1, диэлектрическая капиллярная структура 5 на сверхпроводящем электроде 2, выполненном в виде тороидальной спирали 4 соединены между собой капиллярными диэлектрическими перемычками 7. Окончательный отвод тепла от корпуса 1 осуществляется за счет того, что внешняя система охлаждения 3 выполнена в виде негерметичного сосуда Дъюара 9 с внутренней поверхностью, покрытой капиллярной структурой 10. Капиллярная структура 10 может быть выполнена из металла. Если криогенная жидкость во внешней системе охлаждения 3 полностью испарится, в корпусе 1 начнет повышаться давление. Во избежание разрушения корпуса 1 герметичный корпус снабжен клапаном 8. Наличие капиллярной структуры 10 в сосуде Дъюара 9 обеспечивает равномерное снятие тепла с части корпуса 1.

1. Сверхпроводящий накопитель энергии, содержащий герметичный полый трубчатый корпус, частично заполненный легкоиспаряющейся жидкостью с температурой кипения ниже точки фазового перехода материала сверхпроводящего кольцевого трубчатого электрода, расположенного на внутренней поверхности корпуса, и диэлектрическую капиллярную структуру на сверхпроводящем кольцевом электроде, которые соединены между собой капиллярными диэлектрическими перемычками, и внешнюю систему охлаждения, отличающийся тем, что корпус снабжен высоковольтным вводом, соединенным с мощным внешним источником электрической энергии, при этом трубчатый корпус и расположенный в нем сверхпроводящий трубчатый электрод выполнены в виде тороидальной спирали.

2. Сверхпроводящий накопитель энергии по п. 1, отличающийся тем, что герметичный корпус снабжен клапаном.

3. Сверхпроводящий накопитель энергии по п. 1, отличающийся тем, что внешняя система охлаждения выполнена в виде негерметичного сосуда Дьюара с внутренней поверхностью, покрытой капиллярной структурой.

www.findpatent.ru

СВЕРХПРОВОДЯЩИЙ НАКОПИТЕЛЬ ЭНЕРГИИ

Изобретение относится к теплотехнике, а точнее к сверхпроводящим накопителям энергии и может быть использован для запуска вихревых термоядерных реакторов.

Известна тепловая труба, содержащая корпус с зонами испарения и конденсации и высоковольтные электроды, подключенные к высоковольтному источнику энергии (SU641262, МПК F28D15/00, опубл. 05.01.1979). Однако такая тепловая труба не предназначена для аккумулирования энергии, она наоборот использует энергию от высоковольтного источника энергии.

Известна тепловая труба (SU1000728, МПК F28D15/00, опубл. 28.02.1983), содержащая корпус с зонами испарения и конденсации и сверхпроводящие электроды, разделенные диэлектрической прокладкой.

Однако запас электрической энергии в такой тепловой трубе незначителен и она не может создавать с внешней стороны корпуса вращающееся магнитное поле.

В качестве прототипа выбрана электрогидродинамическая тепловая труба (SU 1726960 A1, МПК F28D15/02, опубл. 15.04.1992), содержащая герметичный тороидальный корпус в виде полого тора, кольцевой сверхпроводящий электрод, расположенный внутри корпуса и внешнюю систему охлаждения. Однако такая тепловая труба, имеющая сверхпроводящий электрод и постоянно циркулирующий по нему ток со своей внешней стороны не может создавать ни постоянное, ни тем более вращающееся магнитное поле. Сверхпроводящий электрод в такой тепловой трубе выполнен в виде простого тора, а не в виде тороидальной спирали, что ограничивает ее использование в качестве сверхпроводящего накопителя энергии.

Задачей настоящего изобретения является создание сверхпроводящего накопителя энергии, который способен создавать с внешней стороны вращающееся магнитное поле.

Поставленная задача решается тем, что в предложенном сверхпроводящем накопителе энергии, содержащем герметичный полый трубчатый корпус, частично заполненный легкоиспаряющейся жидкостью с температурой кипения ниже точки фазового перехода материала сверхпроводящего кольцевого трубчатого электрода, расположенного на внутренней поверхности корпуса и диэлектрическую капиллярную структуру на сверхпроводящем кольцевом электроде, которые соединены между собой капиллярными диэлектрическими перемычками и внешнюю систему охлаждения, корпус снабжен высоковольтным вводом, соединенным с мощным внешним источником электрической энергии, при этом трубчатый корпус и расположенный в нем сверхпроводящий трубчатый электрод выполнены в виде тороидальной спирали.

Сверхпроводящий накопитель энергии может содержать герметичный корпус снабженный клапаном.

Внешняя система охлаждения сверхпроводящего накопителя энергии может быть выполнена в виде негерметичного сосуда Дьюара с внутренней поверхностью, покрытой капиллярной структурой.

На фиг. 1 условно изображен корпус и электрод в виде простого тора.

На фиг. 2-6 условно изображены разнообразные виды корпуса 1 и сверхпроводящих электродов 2.

На фиг. 7 изображен сверхпроводящий накопитель энергии, содержащий герметичный корпус в виде полого тора 1, сверхпроводящий кольцевой трубчатый электрод 2, расположенный внутри корпуса 1 и внешняя система охлаждения 3.

На фиг. 8 изображено поперечное сечение сверхпроводящего накопителя энергии на фиг 7 в районе капиллярных диэлектрических перемычек 7.

На фиг. 9 изображен сверхпроводящий накопитель энергии с высоковольтным вводом 11 и мощным источником энергии 12.

Особенностью предложенного накопителя энергии является то, что корпус 1 и сверхпроводящий кольцевой трубчатый электрод 2 выполнены в виде тороидальной спирали 4, внутренняя поверхность корпуса 1 и сверхпроводящего трубчатого элекрода 2 покрыты капиллярной структурой 5, корпус частично заполнен легкоиспаряющейся жидкостью 6 с температурой кипения ниже точки фазового перехода материала сверхпроводящего электрода 2, а капиллярная структура, расположенная на внутренней поверхности корпуса и капиллярная структура 5 на сверхпроводящем электроде 2 соединены между собой капиллярными перемычками 7.

Другими отличительными признаками можно признать то, что герметичный корпус снабжен клапаном 8, а внешняя система охлаждения 3 выполнена в виде негерметичного сосуда Дъюара 9 с внутренней поверхностью, покрытой капиллярной структурой 10. 11 - высоковольтный ввод на корпусе 1. На корпусе 1 размещен мощный внешний источник электрической энергии 12, например, электрогенератор атомной энергетической установки.

Работает предлагаемый сверхпроводящий накопитель энергии следующим образом.

Основное энерговыделение в таком сверхпроводящем накопителе энергии т происходит при протекании больших токов через сверхпроводящий электрод 2, выполненный в виде тороидальной спирали 4. Поэтому вся поверхность сверхпроводящего электрода должна быть покрыта диэлектрической капиллярной структурой и эта структура должна быть запитана легкоиспаряющейся жидкостью 6 с температурой кипения ниже точки фазового перехода материала сверхпроводящего электрода 4. Это можно достичь только в случае, когда расположенная на внутренней поверхности корпуса 1, диэлектрическая капиллярная структура 5 на сверхпроводящем электроде 2, выполненном в виде тороидальной спирали 4 соединены между собой капиллярными диэлектрическими перемычками 7. Окончательный отвод тепла от корпуса 1 осуществляется за счет того, что внешняя система охлаждения 3 выполнена в виде негерметичного сосуда Дъюара 9 с внутренней поверхностью, покрытой капиллярной структурой 10. Капиллярная структура 10 может быть выполнена из металла. Если криогенная жидкость во внешней системе охлаждения 3 полностью испарится, в корпусе 1 начнет повышаться давление. Во избежание разрушения корпуса 1 герметичный корпус снабжен клапаном 8. Наличие капиллярной структуры 10 в сосуде Дъюара 9 обеспечивает равномерное снятие тепла с части корпуса 1.

edrid.ru

ЭЛЕКТРОМЕХАНИЧЕСКИЙ СВЕРХПРОВОДЯЩИЙ НАКОПИТЕЛЬ ЭНЕРГИИ

Изобретение относится к области энергетики и может быть использовано в транспортных системах с электрическим приводом, электрических сетях для буферизации пиковых нагрузок, для использования в локальных электрических сетях (ЛЭС) с возобновляемыми источниками энергии (ВИЭ).

Из уровня техники известны кинетические накопители энергии, в которых электрическая энергия преобразуется в механическую энергию маховика и сохраняется в таком виде до тех пор, пока маховик не остановится (Патент на изобретение РФ №2504889, «Накопитель энергии», МПК H02K 7/02, опубл. 20.01.2014; патент на изобретение РФ №2417504, «Супермаховиковый накопитель энергии», МПК H02K 16/04, опубл. 27.04.2011; патент на изобретение РФ №2456734, «Накопитель энергии», МПК H02K 7/02, опубл. 20.07.2012).

Известен кинетический накопитель энергии (патент на полезную модель РФ №133986, «Кинетический накопитель энергии с магнитным ВТСП подвесом», МПК H02K 7/02, опубл. 27.10.2013), предназначенный для работы в качестве резервных и аварийных источников питания бортовых электроэнергетических систем атмосферных летательных аппаратов и космических энергоустановок, а также других ответственных потребителей.

Наиболее близким к предлагаемому изобретению по своей технической сущности является кинетический накопитель энергии с магнитным высокотемпературным сверхпроводниковым (ВТСП) подвесом (Патент РФ №97018, «Кинетический накопитель энергии», МПК H02K 7/00, опубл. 20.08.2010), содержащий корпус, в котором размещен обращенный мотор-генератор с неподвижным статором и ротор-маховик с бесконтактным сверхпроводящим подвесом на основе кольцевого блочного ВТСП массива. Этот накопитель энергии принят в качестве прототипа.

Недостаток прототипа заключается в ограничении энергетических показателей (запасенная электрическая энергия, коэффициент полезного действия) из-за газовой среды в корпусе накопителя энергии, состоящей из воздуха и газообразного азота, образующегося при испарении жидкого азота из криостата, охлаждающего кольцевой блочный ВТСП массив сверхпроводящего подвеса ротора-маховика. Газовая среда препятствует разгону ротора-маховика до больших скоростей вращения и ограничивает грузоподъемность сверхпроводящего подвеса из-за снижения эффективности охлаждения сверхпроводящих пластин.

Ограничение скорости вращения ротора-маховика уменьшает, соответственно, запасенную энергию накопителя энергии при его заряде. Уменьшается время выбега ротора-маховика за счет моментов сил аэродинамического трения (сопротивления) в газовой среде, в результате чего снижается коэффициент полезного действия, соответственно снижаются энергосбережение и энергоэффективность накопителя энергии.

С другой стороны, наличие газовой среды в корпусе снижает эффективность охлаждения сверхпроводящих пластин ВТСП подвеса, уменьшает грузоподъемные характеристики сверхпроводящего подвеса и запасенную электрическую энергию, которая пропорциональна массе ротора-маховика накопителя энергии, что также снижает энергоэффективность накопителя энергии.

Техническим результатом предлагаемого изобретения является повышение энергоэффективности и энергосбережения накопителя энергии.

Указанный технический результат достигается за счет того, что в электромеханическом сверхпроводящем накопителе энергии, содержащем корпус, в котором размещены синхронный двигатель-генератор со статором с системой обмоток и ротор-маховик, опорные постоянные магниты, расположенные в нижней части ротора-маховика, постоянные магниты возбуждения, расположенные на внутренней боковой поверхности ротора-маховика, направляющая опоры с подшипником, расположенная в нижней части синхронного двигателя-генератора, сверхпроводящие пластины, криостат, высокотемпературный сверхпроводниковый подвес, образованный опорными постоянными магнитами и сверхпроводящими пластинами, согласно изобретению корпус выполнен из двух соединенных между собой модулей - модуля криостата и модуля синхронного двигателя-генератора, причем сверхпроводящие пластины высокотемпературного сверхпроводникового подвеса расположены в модуле криостата, а ротор-маховик, внутренняя полость которого вакуумирована, расположен в модуле синхронного двигателя-генератора.

Выполнение корпуса накопителя энергии сборным и состоящим из двух модулей позволяет оптимизировать решение двух взаимовлияющих технических проблем, что невозможно в прототипе, а именно:

- вакуумировать внутреннюю полость ротора-маховика до любой технически возможной степени разряжения;

- повысить эффективность охлаждения сверхпроводящих пластин за счет уменьшения теплопроводности и, соответственно, тепловых потоков в вакуумированном объеме, разделяющем модуль криостата с находящимися в нем сверхпроводящими пластинами и модуль синхронного двигателя-генератора.

Для выявления связи между энегоэффективностью, энергосбережением накопителя энергии и снижением сопротивления при вращении ротора-маховика, температурой охлаждения активных пластин ВТСП подвеса рассмотрим два основных режима работы накопителя энергии: режим заряда, или накопления энергии, и режим разряда, или отдачи накопленной энергии.

В режиме накопления (заряда) энергии tз происходит преобразование электрической энергии сети, к которой присоединен накопитель, в кинетическую энергию вращающегося ротора-маховика. Следовательно, имеет место следующий баланс энергии:

где Wэл - электрическая энергия, Дж, полученная накопителем из сети, Wк - кинетическая энергия ротора-маховика, Дж, ΔW(Ω,p) - потери энергии за счет сопротивления вращению ротора-маховика в газовой среде, зависящие от скорости вращения Ω и давления р газовой среды в рабочей полости ротора-маховика.

Эмпирическое выражение для потерь энергии за счет сопротивления в газовой среде дано в работе [Н.В. Гулиа. Накопители энергии. Изд-во «Наука». - М.: 1980. С. 80].

где D - диаметр ротора-маховика, L - высота ротора-маховика. По оценке, приведенной в упомянутой работе, потери энергии за счет аэродинамического сопротивления достигают 85% от общего количества потерь. Из выражения (1) следует следующее выражение для коэффициента полезного действия ηз накопителя энергии в режиме накопления энергии

Как следует из формулы (1), остаточный газ в рабочей полости ротора-маховика создает момент сил аэродинамического сопротивления, уменьшающий кинетическую энергию ротора-маховика и препятствующий достижению больших скоростей вращения и, как следствие, увеличению накопленной энергии, поскольку накопленная энергия и скорость вращения ротора-маховика связаны соотношением [Бут Д.А., Алиевский Б.Л., Мизюрин С.Р., Васюкевич П.В. Накопители энергии. - М.: Энергоатомиздат, 1991. - 400 с. 1]:

где Wк - накопленная кинетическая энергия, Дж, J=mr2 - момент инерции ротора-маховика, кг/м2, m - масса ротора-маховика, кг, r - радиус ротора-маховика, м, Ω=2πn, n - скорость вращения, об/сек.

В режиме разряда или отдачи энергии tз происходит обратное преобразование накопленной кинетической энергии ротора-маховика в электрическую энергию, причем часть энергии также расходуется на преодоление аэродинамического сопротивления:

где Wэн - электрическая энергия, полученная в результате обратного преобразования кинетической энергии в электрическую энергию. Соответственно, выражение для коэффициента полезного действия будет иметь вид

Составим общий баланс энергии по полному циклу tц=tз+tр работы накопителя «заряд-разряд», используя формулы (1) и (5):

Определим коэффициент полезного действия по полному циклу работы накопителя, используя выражения (3) и (6) с точностью до линейных членов:

Как следует из формул (1, 4), накопленная энергии пропорциональна квадрату скорости вращения и массе ротора-маховика. Следовательно, снижение сопротивления при вращении ротора-маховика в вакууме уменьшает потери энергии в накопителе при ее преобразованиях за время полного цикла работы, что повышает его энергосбережение.

Как следует из формулы (8), снижение сопротивления при вращении ротора-маховика уменьшает потери энергии, что увеличивает коэффициент полезного действия или энергоэффективность накопителя энергии.

Рассмотрим влияние эффективности охлаждения активных пластин ВТСП подвеса на энергоэффективность и энергосбережение накопителя энергии.

Грузоподъемные характеристики сверхпроводящего подвеса определяются величиной критического магнитного поля, зависящего от температуры охлаждения по следующей формуле [Буккель В. Сверхпроводимость. - М.: Мир, 1975. - 366 с.]:

где Нс - критическое магнитное поле, А/м, Н0 - критическое магнитное поле при температуре Т=0 K, Т - температура охлаждения сверхпроводника, Тс - критическая температура сверхпроводника, K.

Как следует из формулы (9), критическое магнитное поле при снижении температуры сверхпроводника, то есть при увеличении эффективности охлаждения сверхпроводника, растет. Грузоподъемная сила сверхпроводящего подвеса пропорциональна напряженности магнитного поля. Например, для плоской сверхпроводящей пластины в приближении модели Бина получено следующее выражение для удельной силы сверхпроводящего подвеса, действующей на единицу поверхности ВТСП блока [Ковалев Л.К., Конев С.М., Ларионов С.А., Полтавец В.Н. - Сверхпроводниковые магнитные опоры с объемными ВТСП элементами. Электричество. - 2003. - №6]:

где Is - критический ток, А/м2, Вхср=µ0Нхср, Тл, µ0 - магнитная постоянная, Нхср - среднее значение напряженности магнитного поля в биновском слое.

Таким образом, снижение температуры охлаждения активных пластин ВТСП подвеса позволяет увеличить его грузоподъемные характеристики и увеличить массу ротора-маховика. Увеличение массы ротора-маховика в соответствие с формулой (4) увеличит кинетическую энергию ротора-маховика, а в соответствие с формулой (8) увеличит коэффициент полезного действия или энергоэффективность, энергосбережение накопителя энергии.

Модульная конструкция предлагаемого изобретения также обеспечивает удобство эксплуатации и ремонта накопителя энергии.

Сущность изобретения поясняется графическим материалом. На чертеже показан продольный разрез предлагаемого электромеханического сверхпроводящего накопителя энергии.

Электромеханический накопитель энергии имеет корпус, выполненный из модуля криостата 7 и модуля синхронного двигателя-генератора 3, которые соединены между собой креплением (не указано).

В конструкцию модуля криостата 7 входит крышка-опора 17, опорный фланец 10 с уложенными в его пазы (не показаны) сверхпроводящими пластинами 12, закрепленными сверху крышкой-опорой 17. Полость модуля криостата 7 заполнена жидким азотом 11. Внутренние стенки модуля криостата 7 выполнены из теплоизолирующего материла 14, обладающего низкой теплопроводностью. Опорный фланец 10 выполнен из материала с высокой теплопроводностью, благодаря чему обеспечивается охлаждение сверхпроводящих пластин 12 до температуры Т≤Тс, где Тс - температура перехода сверхпроводящих пластин 12 в состояние сверхпроводимости.

Для установки предлагаемого накопителя энергии в плоскости горизонта имеются нивелирующие опоры, расположенные под модулем криостата 7.

В стенке криостата 7 расположен патрубок 15 для заполнения криостата жидким азотом, например, путем его прокачки из криокулеров (не показаны).

Конструкция модуля синхронного двигателя-генератора 3 состоит из ротора-маховика 5, опорных постоянных магнитов 6, закрепленных на нижней части ротора-маховика 5, постоянных магнитов возбуждения 4, расположенных на внутренней боковой поверхности ротора-маховика 5, и крышки-опоры 16.

Также в нижней части модуля синхронного двигателя-генератора 3 установлена направляющая опора 8 с подшипником 9.

Также в конструкцию модуля синхронного двигателя-генератора 3 входит статор 1, на котором закреплена трехфазная система обмоток 2. На верхней части статора 1 расположены клеммы 21 (клеммы А, В, С) для присоединения источника трехфазного напряжения и выход датчика скорости 20 ротора-маховика 5.

Для вакуумирования полости, в которой размещен ротор-маховик 5, в верхней части модуля синхронного двигателя-генератора 3 расположен ниппель 19.

Для визуального наблюдения за положением ротора-маховика 5 в стенке модуля синхронного двигателя-генератора 3 имеется окно 18.

После заполнения полости модуля криостата 7 патрубки 15 закрывают и азот может храниться в жидком состоянии продолжительное время. Для того чтобы отводить газообразный азот, образующийся в процессе работы, модуль криостата 7 содержит отводящий патрубок (не показан).

Опорные постоянные магниты 6 и сверхпроводящие пластины 12 образуют ВТСП подвес, обеспечивающий бесконтактный самоцентрирующийся подвес ротора-маховика 5.

Предлагаемый электромеханический накопитель энергии работает следующим образом.

После сборки модулей синхронного двигателя-генератора 3 и криостата 7 производится соединение крышки-опоры 16 с крышкой-опорой 17 при помощи крепления (не показано), после чего осуществляется вакуумная откачка полости ротора-маховика 5, например, с помощью вакуумного насоса (не показан) и закачивание жидкого азота 11 в полость модуля криостата 7 через патрубок заполнения 15.

В результате поступления жидкого азота в полость модуля криостата 7 происходит охлаждения сверхпроводящих пластин 12 и их переход в сверхпроводящее состояние. В этом случае сверхпроводящие пластины 12 приобретают свойства диамагнетиков. Магнитное поле, образованное постоянными магнитами 6, взаимодействует с сверхпроводящими пластинами 12, в результате чего возникнет эффект левитации, и ротор-маховик 5 снимется с опоры 8. При этом происходит самоцентрирование по вертикальной и горизонтальной осям ротора-маховика 5. Этот момент левитации ротора-маховика 5 можно наблюдать визуально через смотровое окно 18.

Необходимые силовые характеристики ВТСП подвеса обеспечиваются оптимизацией рабочего зазора, образованного нижней поверхностью постоянных магнитов 6 и верхней поверхностью сверхпроводящих пластин 12, выбором материала опорного фланца 10, величиной намагниченности постоянных магнитов 6, величиной разности между температурой сверхпроводящих пластин 12 и температурой их перехода в сверхпроводящее состояние.

После центрирования ротора-маховика 5 на статор 1 подается трехфазное переменное напряжение. За счет полученной энергии ротор-маховик 5 начинает разгоняться до номинальной скорости вращения. После набора номинальной скорости вращения источник энергии отключается, а ротор-маховик 5 будет продолжать вращаться по инерции в вакууме продолжительное время, тем самым сохраняя затраченную на разгон ротора-маховика 5 электрическую энергию в механическом виде.

Для получения электрической энергии из предлагаемого электромеханического сверхпроводящего накопителя энергии необходимо клеммы 21 трехфазной системы обмоток 2 подключить к нагрузке, при этом статор 1 за счет кинетической энергии ротора-маховика 5 будет генерировать электрическую энергию до тех пор, пока кинетическая энергия ротора-маховика 5 не иссякнет.

После этого цикл заряда и разряда электромеханического накопителя энергии можно повторять многократно. Для остановки предлагаемого накопителя энергии необходимо остановить вращение ротора-маховика 5, например, путем замыкания клемм 21 (клеммы А, В, С) на балластное сопротивление, а затем слить жидкий азот 11 из полости модуля криостата 7.

Предлагаемое изобретение положено в основу конструкции экспериментального образца электрокинетического накопителя энергии СПЭНЭ-1, проходящего в настоящее время стадию экспериментальных исследований [Смоленцев, Н.И. Разработка накопителя энергии на основе высокотемпературной сверхпроводимости и перспективы его применения в локальных электрических сетях / Смоленцев, Н.И., Четошникова Л.М., Бондарев Ю.Л. // Ползуновский вестник. - 2015. - №1. С. 73-77]. Расчетное значение запасенной энергии составляет 4 МДж, что существенно превышает аналогичный параметр прототипа, равный 0,5 МДж.

Предлагаемое изобретение может найти применение в энергетике, в электротранспорте, в корабельных силовых установках, а также в энергетических установках космических аппаратов, где проблемы охлаждения сверхпроводников и вакуумирования упрощаются.

Электромеханический сверхпроводящий накопитель энергии, содержащий корпус, в котором размещены синхронный двигатель-генератор со статором с системой обмоток и ротор-маховик, опорные постоянные магниты, расположенные в нижней части ротора-маховика, постоянные магниты возбуждения, расположенные на внутренней боковой поверхности ротора-маховика, направляющая опора с подшипником, расположенная в нижней части синхронного двигателя-генератора, сверхпроводящие пластины, криостат, высокотемпературный сверхпроводниковый подвес, образованный опорными постоянными магнитами и сверхпроводящими пластинами, отличающийся тем, что корпус выполнен из двух соединенных между собой модулей - модуля криостата и модуля синхронного двигателя-генератора, причем сверхпроводящие пластины высокотемпературного сверхпроводникового подвеса расположены в модуле криостата, а ротор-маховик, внутренняя полость которого вакуумирована, расположен в модуле синхронного двигателя-генератора.

edrid.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.