01.02.2025

Таблица сечение проводов: Выбор сечения провода (кабеля) — по току, мощности и длине: таблица

Содержание

Выбор сечения кабеля по мощности и току

При проектировании электрической сети очень важно рассчитать максимальную мощность всех потребителей. Грубо говоря, это суммарная мощность всех приборов в доме. 

Для этого вам необходимо найти на каждом приборе табличку с указанием его мощности. Также определить мощность прибора можно по его инструкции. Для приборов производства России, Белоруссии и Украины мощность на приборах обозначается как Вт (ватты) или кВт (киловатты). 1 киловатт = 1000 ватт. Для приборов зарубежного производства мощность указывается буквой W. На приборах указание максимальной мощности обозначается префиксом TOT или TOT.MAX, например TOT.MAX 2200W обозначает, что максимальная мощность прибора 2200 Вт = 2,2 кВт.

Основными потребителями электроэнергии являются: электрические обогреватели всех конструкций, электрические плиты, плитки, духовки, электрочайники, кондиционеры, стиральные машины, водонагреватели, теплые полы. Именно мощность этих приборов учитывайте в первую очередь.

Итак, вы определили мощность всех основных приборов и просуммировали ее. Получилось, например, 8 кВт. Добавим примерно 30% запаса, получится 10,4 кВт. По таблице, приведенной ниже мы можем увидеть, что для мощности 11,0 кВт необходим кабель с сечением жилы не менее 10 мм2. Это довольно толстый провод.

Также необходимо учитывать, что при большой длине линии (более 10 метров) в кабеле будут дополнительные потери, связанные с его сопротивлением. Поэтому, чем длиннее линия, тем толще должен быть кабель, иначе на его конце вы получите заниженное напряжение.

сечение кабеля, мм2

медный проводалюминиевый провод
ток, Амощность, кВтток, Амощность, кВт
220 В380 В220 В380 В
1,5153,35,7102,23,8
2,0194,27,2143,15,3
2,5214,68,0163,56,1
4,0275,910,3214,68,0
6,0347,512,9265,79,9
10,05011,019,0388,414,4
16,08017,630,45512,120,9
25,010022,038,06514,324,7

Дополнительные формулы для вычисления тока, напряжения, сопротивления и мощности:

расчёт и пользование матрицей при выборе диаметра проводника

Безопасности электрических сетей уделяется повышенное внимание, существует ряд типоразмеров проводников для различных условий работы. Чтобы правильно подобрать нужный размер, вычисляют сечение кабеля по мощности и таблицам. Это позволяет обеспечить токопроводимость на оптимальном уровне, не допуская перегрева и разрушения изоляции жил. Расчёт диаметра проводов можно выполнить и по токовой нагрузке с помощью математических формул и табличных матриц.

Срез провода и жилы кабеля

Неправильный выбор сечения проводов опасен возможностью возгорания изоляции при недостаточной площади среза. Обратная ситуация — избыточный диаметр приводит к удорожанию электросети и чрезмерному весу конструкции. Форма сечения проводника обычно круглая, но бывает и прямоугольной, площадь, соответственно, определяется по формулам круга S=(3,14*D2)/4=0,785*D2 и четырёхугольника S=a*b, где:

  • S — сечение провода, мм2;
  • D — Ø проволоки, мм;
  • a и b — стороны квадрата в миллиметрах.

Чтобы рассчитать площадь многопроволочного проводника, определяют квадратуру единичного электропровода и умножают на их количество. Измерить диаметр можно штангенциркулем или обычной линейкой. Есть и упрощённый способ: снять размер всего пучка свитых проволок и определить площадь по той же формуле, но с введением поправочного коэффициента 0,91 на неплотность прилегания проводников. Для удобства пользования существуют таблицы зависимости площади среза от диаметра проводника.

Ø одной проволоки или пучка, мм1,01,62,53,24,5
Площадь сеч. провода/свивки, мм20,7/0,62,0/1,85,0/4,58,0/7,316,0/14,5

Толщину тонкой проволочки определяют микрометром, а при его отсутствии — линейкой. Сначала снимается изоляция, металлическая нить вплотную наматывается на участок карандаша. Затем замеряется длина покрытого отрезка и делится на количество витков — получится искомый диаметр. Чем больше оборотов сделано вокруг стержня, тем точнее замер.

В электротехнике применяются чаще медные проводники — они имеют меньший диаметр при равной токовой пропускной способности, удобны в монтаже и долговечны. Регламент ПУЭ предписывает использовать в жилых зданиях кабели с жилами из меди. Преимущества перед алюминиевыми проводами сохраняются на малых диаметрах: при возрастании площади масса и стоимость изделий увеличивается. При токовой нагрузке I ≥50 А явное превосходство меди исчезает, и электрики переходят на использование кабелей с жилами из алюминия.

Для обустройства ЛЭП применяются самонесущие изолированные провода — СИП электро. В отличие от ранее применявшихся оголённых с креплением на изоляторах и разнесённых в пространстве, новые изделия представляют собой пучок покрытых диэлектриком (светостойкий полиэтилен) алюминиевых проводов с проложенным внутри стальным сердечником или без него. Такая конструкция позволяет ставить опоры на большем расстоянии и без изоляторов передавать напряжение до 35 тысяч вольт.

Значение протяжённости и факторы нагрева

Обстоятельства, влияющие на подсчёт сеч. кабеля по киловаттам и токовой нагрузке, можно условно разделить на 2 группы: факторы, касающиеся нагрева проводников, и показатели, относящиеся к протяжённости электросети. От правильности подбора характеристик кабелей и проводов зависит безопасность жилых и производственных помещений, здоровье и жизнь людей, в них находящихся.

Причины роста температуры провода

Движение электронов по проводнику вызывает его нагревание. Считается, что допустимый ток не должен поднимать температуру жил кабельного шланга больше, чем на 60ºС. Когда провод горячий, нужно немедленно принимать меры к устранению нарушений. Причиной нагрева могут быть следующие факторы:

  1. Площадь сечения проводника не соответствует приложенной нагрузке: сила тока превышает допустимый ампераж. Необходимо пересчитать подключённую мощность потребителей и заменить проводку новой.
  2. Материал проводника — в квартире должны быть проложены электросети из медных кабельных жил, они имеют меньшее сопротивление по сравнению с алюминием. Участки, не соответствующие требованиям правил, следует заменить.
  3. Тип проводника — одиночная проволока или свивка из нескольких нитей. Многожильная конструкция более гибкая, но при одинаковом диаметре токовая пропускная способность монопроводника выше, нагревается он меньше.

Способ прокладки кабеля также влияет на температурный режим: плотно уложенные в трубу силовые магистрали греются сильнее, чем рассредоточенные на открытом пространстве. Поэтому скрытая в стене проводка принимается несколько большего сечения против расчетной величины. Изоляционное покрытие — ещё один параметр: низкое качество диэлектрика приводит к скорому его разрушению от нагрева.

Зависимость потерь от протяжённости линии

На подсчёт сеч. кабеля воздействует удалённость источника тока от потребителя. Если напряжение на токоприёмнике меньше исходного на 5% и больше, длина магистрали учитывается при определении размера проводника. Существуют таблицы сечения проводов по току и мощности, учитывающие потери от сопротивления движению электронов на дальние расстояния. Вот пример: значения длин указаны в десятках метров, а сеч. жил кабельного рукава (верхняя строка) — в мм2.

Передаваемая мощность, кВтСила тока, А410162535507095
14,613,533,553     
5233710,51723,531,546,063
1045 3,45,48,41215,523,032
1673   5,37,49,914,520
1882   4,76,58,812,517,5
2091    5,97,911,516

Чтобы правильно выбрать сечение проводника, нужно учесть весь комплекс факторов, обозначенных в п. 1.3 ПУЭ. Некоторые поправки к расчётам вводятся через коэффициенты. Обязательно обращают внимание на такие характеристики:

  • температура окружающей среды, в какой будет эксплуатироваться кабель; обычно это +25ºС, при отклонении пользуются таблицами ПУЭ;
  • комплектация электрощита: не стоит все провода подключать к одному автомату, иначе клеммы будут перегружены и сработает защита;
  • количество токоприёмников, находящихся в помещении, их мощность суммируется.

Основным фактором для выбора кабеля и его сечения остаётся нагрузка на электросеть или ток. Все иные обстоятельства также учитываются в расчётах, а результат увеличивается на 20-30% для создания резерва пропускной способности проводника.

Расчёт диаметра проводника по мощности

Прежде чем определять соотношение сечения кабеля и нагрузки на него, необходимо сделать подготовку. Каждый провод способен выдержать только ту мощность, которая не превысит разрешённых значений. Последовательность расчёта:

  1. Переписываются все электроприборы, которые будут подключены посредством планируемого кабеля, с указанием данных шильдика — бирки токоприёмника или технического паспорта о мощности.
  2. Собираются сведения о времени работы каждого потребителя для определения коэффициента одновременности включения нагрузки.
  3. Суммированные показатели мощности с учётом коэф. использования во времени дают расчётную нагруженность сети.
  4. Сверяются с таблицей сечения провода и нагрузки для определения диаметра жил кабельного изделия. Найденная по матрице из правил цифра увеличивается на 10―15% и принимается за рассчитанное сеч.

В соответствии с изложенным порядком, расчётную мощность сети определяют по формуле Роб=(Р1+Р2+Р3+…+Рn)*Ко, где Ко — коэффициент одновременности. Если подключаются электроплита 2,9 кВт, чайник 0,8 и утюг мощностью 1,7 киловатта, то при Ко=0,8: Роб=(2,9+0,8+1,7)*0,8=4,3. С поправкой на 15% — 5,0 кВт. Дальше смотреть таблицу сечения медного провода по мощности.

Сеч. провода, мм2Рассчитанная Роб для сети 220 V, кВтТо же, в сети 380 В
1,54,110,5
2,55,916,5
6,010,126,4
10,015,433,0

Поскольку бытовая сеть 220 вольт, а ближайшая величина нагрузки 5,9 кВт, то пл. сеч. медного провода принимается 2,5 мм². Соотношения мощности и толщины провода из алюминия будут иными.

Формула определения сечения по току

Аналогичным образом высчитывается сечение провода из таблицы по току и мощности. Используется формула общей силы тока Iоб=(Р1+Р2+Р3+…+Р n)/220 для 220 V. Для 380 вольт Iоб=(Р1+Р2+Р3+…+Рn)/(√3*380), ампер. В качестве примера приводится расчёт алюминиевого проводника для сети 220 В: общая нагрузка Р=10 кВт; Iоб=10000/220=45,5 А. По таблице сечения кабеля по мощности и току подбирается ближайший типоразмер.

Размер провода, жилы из Al, мм2Ток, А: потенциалы 220/380 ВПотребление в сети, кВт: значения 220/380 вольт
2,520/194,4/12,5
428/236,1/15,1
636/307,9/19,8
1050/3911,0/25,7

Из матрицы видно, что искомым параметром является пл. сеч. 10 мм². Если те же 10 кВт подключаются в сети 380 V, будет достаточно жилы 2,5 мм². Матрицы ПУЭ составлены для различных условий подсчётов, ими удобно пользоваться.

Таблица мощности проводов: рассмотрим подробно

Упрощенная таблица для выбора сечения проводника по номинальной мощности

Таблица зависимости мощности от сечения провода была разработана специально для новичков в вопросах электротехнике. Вообще выбор сечения провода зависит не только от мощности подключаемых нагрузок, но и от массы других параметров.

В одной из главных книг любого электрика – ПУЭ, правильному выбору сечения проводов посвящен целый пункт. И именно на основании него написана наша инструкция, которая должна помочь вам в нелегкой задаче выбора сечения проводов.

Как правильно выбирать сечение провода

Почему нельзя пользоваться таблицами мощности

Прежде всего вы должны знать, что любая таблица зависимости сечения провода от мощности не может противоречить ПУЭ. Ведь именно на основании этого документа осуществляют свой выбор не только профессионалы, но и конструкторские бюро.

Поэтому все те таблицы и видео, которые вы во множестве можете найти в сети интернет, предлагающие осуществлять выбор именно по мощности, являются своеобразным усредненным вариантом.

Итак:

  • Практически любая таблица сечений проводов по мощности предлагает вам выбрать провод, исходя из активной мощности прибора или приборов. Но, те кто хорошо учился в школе должны помнить, что активная мощность — это лишь составная часть полной мощности, которая кроме того содержит реактивную мощность.

Что такое cosα

  • Отличаются эти составные части на cosα. Для большинства электрических приборов этот показатель очень близок к единице, но для таких устройств как трансформаторы, стабилизаторы, разнообразная микропроцессорная техника и тому подобное он может доходить до 0,7 и меньше.
  • Но любая таблица сечения провода по мощности не точна не только из-за того, что не учитывает полную мощность. Есть и другие важные факторы. Так, согласно ПУЭ, выбор проводников напряжением до 1000В должен осуществляться только по нагреву. Согласно п.1.4.2 ПУЭ, выбор по токам короткого замыкания для таких проводов не является обязательным.
  • Для того, чтобы выбрать сечение провода по нагреву, следует учитывать следующие параметры: номинальный ток, протекающий через провод, вид провода – одно-, двух- или четырехжильный, способ прокладки провода, температура окружающей среды, количество прокладываемых проводов в пучке, материал изоляции провода и, конечно, материал провода. Не одна таблица нагрузочной способности проводов не способна совместить такое количество параметров.

Выбор сечения провода по номинальному току

Конечно, совместить все эти параметры в одной таблице сложно, а выбирать как-то надо. Поэтому, дабы вы могли произвести выбор своими руками и головой, мы предлагаем вам основные аспекты выбора в сокращенном варианте.

Мы отбросили все параметры выбора сечения для высоковольтных кабелей, малоиспользуемых проводов и оставили только самое важное.

Итак:

  • Так как в ПУЭ используется таблица выбора сечения провода по току, то нам необходимо узнать, какой ток будет протекать в проводе при определенных значениях мощности. Сделать это можно по формуле I=P /U× cosα, где I – наш номинальный ток, P – активная мощность, cosα – коэффициент полной мощности и U – номинальное напряжение нашей электросети (для однофазной сети оно равно 220В, для трехфазной сети оно равно 380В).

На фото представлена таблица выбора сечения провода из ПУЭ для алюминиевых проводников

  • Возникает закономерный вопрос, где взять показания cosα? Обычно он указан на всех электроприборах или его можно вывести, если указана полная и активная мощность. Если расчёт ведется для нескольких электроприборов, то обычно принимается средняя либо рассчитывается номинальный ток для каждого из них.

Обратите внимание! Если у вас не получается узнать cosα для каких-то приборов, то для них его можно принять равным единице. Это, конечно, повлияет на конечный результат, но дополнительный запас прочности для нашей проводки не повредит.

  • Зная нагрузки для каждой из планируемых групп нашей электросети, таблица зависимости сечения провода от тока, приведенная в ПУЭ, может быть использована нами. Только для правильного пользования следует остановиться еще на некоторых моментах.
  • Прежде всего следует определиться с проводом, который мы планируем использовать. Вернее, нам следует определиться с количеством жил. Кроме того, следует определиться со способом прокладки провода. Ведь при открытом способе прокладки провода интенсивность отвода тепла от него значительно выше, чем при прокладке в трубах или гофре. Это учитывается в таблицах ПУЭ.

Таблица выбора сечения провода для медных проводников

Обратите внимание! При выборе количества жил провода в расчет не принимаются нулевые и защитные жилы.

  • Кроме того, таблица сечения провода по току поможет вам определиться с выбором материала для проводки. Ведь, исходя из получающихся результатов, вы можете оценить какой материал вам лучше принять.

Обратите внимание! Производя выбор сечения провода, всегда выбирайте ближайшее большее значение сечения. Кроме того, если вы собираетесь монтировать новую проводку к старой, то учитывайте, что, согласно п.3.239 СНиП 3.05.06 – 85, старые клеммные колодки не позволят использовать провод сечением больше 4 мм2.

Дополнительные аспекты выбора сечения провода

Но когда рассматривается таблица зависимости тока от сечения провода, нельзя забывать и об условиях, в которых проложен провод. Поэтому если у вас имеют место быть условия не благоприятные по условиям нагрева провода, то стоит обратить внимание на дополнительные аспекты.

Таблица поправочных температурных коэффициентов

  • Прежде всего, это температура окружающей среды. Если она будет отличаться от среднестатистических +15⁰С, исходя из которых выполнен расчет в таблицах ПУЭ, то вам следует внести поправочные коэффициенты. Сводную таблицу этих коэффициентов вы найдете ниже.
  • Также таблица нагрузки и сечения проводов по п.1.3.10 ПУЭ требует введение поправочных коэффициентов при совместной прокладке нагруженных проводов в трубах, лотках или просто пучками. Так, для 5-6 проводов, проложенных совместно, этот коэффициент составляет 0,68. Для 7-9 он будет 0,63, и для большего количества он равен 0,6.

Вывод

Надеемся, наша таблица нагрузки медных и алюминиевых проводов поможет вам определиться с выбором. А предложенная нами методика позволит даже не профессионалу сделать правильный выбор.

Ведь цена ошибки может быть очень велика. Чего стоит только статистика пожаров, случившихся из-за короткого замыкания. А причина в большинстве случаев — не отвечающая нормам по нагреву проводка.

по мощности, току, нагрузке и длине

Установки будут работать длительное время без сбоев только при правильном выборе соответствующего провода. А если провод не подходит, то возникают серьёзные последствия. Потому так важно проследить за тем, чтобы жилы обладали правильной толщиной.

Провод и кабель: общая информация

Обозначения важно понимать, когда идёт работа с проводами, кабелями любого вида. Технические характеристики, внутреннее устройство – вот главные различия между моделями. Стоит разобраться и с самими понятиями, в которых многие люди путаются.

Провод – это название проводника, у которого есть несколько компонентов – тонкий изоляционный слой, дополненный одной проволокой или целой их группой. В последнем случае детали просто сплетаются между собой.

Кабель – это другой термин. Им обозначают одну жилу, или несколько сразу. Каждая из них снабжается собственной изоляцией, но есть и оболочка, общая для всего содержимого.

Каждая разновидность проводников отличается своими методами определения сечений, хотя есть и много общих черт.

Материалы проводников

Материал токопроводящих жил во многом определяет количество энергии, которую в целом способен передавать проводник. В производстве таких изделий чаще применяются следующие разновидности основ:

  1. Алюминий.

Главное преимущество – небольшой вес, доступные цены. Но есть и отрицательные качества, в числе которых – высокий показатель электросопротивления у окисленных поверхностей; склонность к появлению механических повреждений; низкий уровень по электропроводности.

  1. Медь.

Стоимость проводников достаточно высока, но они стали достаточно популярными среди потребителей. Из достоинств – лёгкая спайка и сварка; высокая прочность, эластичность; контакты с небольшим уровнем сопротивления электрического, переходного типа.

  1. Алюмомедь.

Жилы выполнены из алюминия, а сверху их покрывают медью. Электропроводность у изделий меньше, если сравнить с аналогами из меди. К остальным важным характеристикам относят среднее сопротивление и лёгкость с сохранением относительно доступных цен.

Во многих случаях именно жильная составляющая и основной материал помогают решить, как определять сечение. От этого прямо зависят такие параметры, как пропускная мощность, сила тока.

Измеряем сечение проводов в зависимости от диаметра

Сечение кабеля или других видов проводников определяется несколькими способами. Главное – позаботиться о предварительных замерах. Для этого рекомендуют снимать верхний слой изоляции.

О приборах для измерения, описание процесса

Штангенциркуль, микрометр – основные инструменты, помогающие при измерениях. Чаще всего предпочтение отдают приспособлениям механической группы. Но допустимо выбирать и электронные аналоги. Их главное отличие – цифровые специальные экраны.

Электронный штангенциркуль

Штангенциркуль относится к инструментам, имеющимся в каждом домашнем хозяйстве. Потому его часто выбирают при измерении диаметра у проводов, кабелей. Это касается и случаев, когда сеть продолжает работать – к примеру, внутри розетки или щитового устройства.

Следующая формула помогает определиться с сечением на основе диаметра:

S = (3,14/4)*D2.

D – буква, обозначающая диаметр провода.

Если в конструкции жила не одна – то замеры проводятся для каждого из составных элементов отдельно. После этого полученные результаты складывают друг с другом.

Далее всё можно считать с помощью такой формулы:

Sобщ= S1+ S2+…

Sобщ – указание на общую площадь поперечного сечения.

S1, S2 и так далее – поперечные сечения, определённые для каждой из жил.

Рекомендуется замерять параметр минимум три раза, чтобы результаты были точными. Поворачивание проводника в разные стороны происходит каждый раз. Результат – средняя величина, максимально близкая к реальности.

Обычную линейку допускается использовать, если штангенциркуля или микрометра нет под руками. Предполагается выполнение таких манипуляций:

  • Полное очищение слоя изоляции у жилы.
  • Накручивание витков вокруг карандаша, максимально плотно друг к другу. Минимальное количество таких компонентов – 15-17 штук.
  • Намотку измеряют, по длине в целом.
  • На количество витков делят итоговую величину.

Точность измерения вызывает сомнения, если витки не укладываются на карандаш равномерно, с оставленными зазорами определённых размеров. Чтобы точность была выше – рекомендуют замерять изделие с разных сторон. Сложно навивать толстые жилы на обычные карандаши. Лучше всё-таки применять штангенциркули.

Площадь сечения провода вычисляется с помощью формулы, описанной ранее. Это делается после завершения основных измерений. Можно опираться на специальные таблицы.

Микрометр советуют применять в случае с наличием в составе сверхтонких жил. Иначе велика вероятность механических повреждений.

Таблица соответствия диаметров проводов и их площадь сечения

О сечении сегментных кабелей

Продукция кабельной сферы с диаметром до 10 мм2 почти всегда выпускается с круглой формой. Проводники подходят для жилых домов и квартир, где обеспечиваются бытовые нужды. От электрической сети вводные жилы могут быть выполнены в сегментном варианте, если сечения кабеля увеличивается. В таких ситуациях подсчёт сечения кабелей усложняется.

Тогда рекомендуется использовать соответствующие таблицы. Там есть несколько параметров, принимающих определённые значения в зависимости от площади сечения:

  1. Высота.
  2. Ширина.

Эти параметры сначала измеряют у кабелей при помощи обычной линейки. После этого легко соотнести данные.

Ток, мощность и сечение жил: их зависимость друг от друга

Недостаточно определить площадь сечения по диаметру. Важно узнать о том, какой пропускной способностью обладает тот или иной вид продукции. Следующие несколько критериев помогут определиться с выбором:

  • Токовая нагрузка, характерная для конкретного кабеля.
  • Мощность, которую потребляют различные устройства.
  • Сила электротока, проходящая через кабель.

По поводу мощности

Выполняя электромонтажные работы, больше всего обращают внимания на пропускную мощность. Особенно это касается самой прокладки кабелей. Максимум мощности передаваемой по проводнику энергии определяется сечением. Важно знать, какой общей мощностью обладают все приборы, соединённые с проводом.

Этикетки большинства современных приборов содержат информацию относительно средней, максимальной мощности, на которую проводился расчёт производителем. К примеру, для стиральных машинок стандартный диапазон – от нескольких десятков Вт/ч до 2,7 кВт/час. Провод выбирается с сечением для обеспечения передачи электричества с высшим уровнем мощности. Подключения с двумя и более проводниками предполагают сначала проведение обычных расчётов, а затем – сложение итоговых цифр.

В случае с однофазными сетями усреднённая мощность для электрических приборов и освещения редко превышает 7500 кВт. Под это значение потом подбирают кабельные сечения.

Сечение рекомендуют округлять, в сторону увеличения. Ведь в будущем потребляемой электроэнергии может стать больше.

Можно привести в качестве примера следующие рекомендации:

  1. Если общая мощность – 7,5 кВт – сечение жилы подходит 4 мм2. Это изделие способно пропускать до 8,3 кВт.
  2. В этой же ситуации сечение для провода с жилой из алюминия должно быть минимум 6 мм2. Тогда пропускная способность доходит до 7,9 кВт.

В случае с индивидуальными жилыми домами часто характерно применение трёхфазных жил, с электроснабжением на 380 В. Но на такое напряжение большая часть техники не рассчитана. Создают стандартный уровень на 220 В, через нулевой кабель. Токовая нагрузка распределяется равномерно, по всем фазам.

Электрический ток

Утерянная документация и этикетки могут стать причинами того, что для владельца многие параметры приборов остаются неизвестными. В том числе – мощность. Тогда придётся делать расчёты самостоятельно, используя специальную формулу.

Она выглядит следующим образом:

P = U * I

U- приложенное электронапряжение, с Единцами измерения – Вольтами.

I – сила электротока. Измеряется амперами.

P – общая мощность, в ваттах.

Можно использовать контрольно- измерительные приборы, если изначально сила тока неизвестна. Речь о токоизмерительных клещах, мультиметрах, амперметрах.

Когда мощность и сила тока станут известны – не доставит труда узнать о необходимом сечении кабеля.

Показатель нагрузки

Расчёт этого параметра важен для пользователей, которые хотят защититься от перегрева. Если электроток слишком большой для используемого сечения – изоляционный слой разрушается, даже оплавляется.

Есть определённое количественное значение, которое называется предельно допустимой токовой нагрузкой. Это электроток, который может проходить по кабелю без значительных перегревов долгое время. Чтобы найти это значение, сначала надо выяснить мощность всех потребителей электричества. После нагрузку определяют, используя формулу:

  1. I = P∑*Kи/(√3*U)
  2. I = P∑*Kи/U.

Первый вариант для трёхфазных сетей, второй – для однофазных.

U – показатель сетевого напряжения на текущий момент.

Ки – специальный коэффициент, составляет 0,75.

P∑- общий уровень мощности для электрических приборов.

Заключение

У электрических сетей множество параметров, для определения которых применяют различные методы. Рекомендуется применять специальные измерительные приборы, чтобы результаты были точнее. Микрометры и штангенциркули получили самое широкое распространение в этих направлениях. Но эти устройства стоят дорого, особенно – по сравнению с аналогами цифровой разновидности. Главное – определяя сечение, брать только провод, очищенный от изоляции.

Видео

Диаметр кабеля по сечению таблица, как расчитать

Общая информация о кабеле и проводе

При работе с проводниками необходимо понимать их обозначение. Существуют провода и кабеля, которые отличаются друг от друга внутренним устройством и техническими характеристиками. Однако многие люди часто путают эти понятия.

Проводом является проводник, имеющий в своей конструкции одну проволоку или группу проволок, сплетенных между собой, и тонкий общий изоляционный слой. Кабелем же называется жила или группа жил, имеющих как собственную изоляцию, так и общий изоляционный слой (оболочку). Каждому из типов проводников будут соответствовать свои методы определения сечений, которые почти схожи.

Материалы проводников

Количество энергии, какую передает проводник, зависит от ряда факторов, главный из которых – это материал токопроводящих жил. Материалом жилок проводов и кабелей могут выступать следующие цветные металлы:

  1. Алюминий. Дешевые и легкие проводники, что является их преимуществом. Им присуще такие отрицательные качества, как низкая электропроводность, склонность к механическим повреждением, высокое переходное электросопротивление окисленных поверхностей;
  2. Медь. Наиболее популярные проводники, имеющие, по сравнению с другими вариантами, высокую стоимость. Однако им присуще малое электрическое и переходное на контактах сопротивление, достаточно высокая эластичность и прочность, легкость в спайке и сварке;
  3. Алюмомедь. Кабельные изделия с жилами из алюминия, которые покрыты медью. Им свойственна чуть меньшая электропроводность, чем у медных аналогов. Также им присуще легкость, среднее сопротивление при относительной дешевизне.

Некоторые способы определения сечения кабелей и проводов будут зависеть именно от материала их жильной составляющей, который напрямую влияет на пропускную мощность и силу тока (метод определения сечения жил по мощности и току).

Особенности электрических проводов

Наиболее широкое применение находят марки проводов ПУHП и ПУГHП, а также ВПП, ПHCB и PKГM, которые обладают следующими, очень важными для получения безопасного подключения основными техническими характеристиками:

  • ПУНП — плоское проводное изделие установочного или так называемого монтажного типа, с однопроволочными жилами из меди в ПВХ-изоляции. Такая разновидность отличается количеством жил, а также номинальным напряжением в пределах 250 В с частотой 50 Гц и температурным эксплуатационным режимом от минус 15 °C до плюс 50 °C;
  • ПУГНП — гибкая разновидность с многопроволочными жилами. Основные показатели, которые представлены номинальным уровнем напряжения, частотой и температурным эксплуатационным режимом, не отличаются от аналогичных данных ПУHП;
  • AПB — алюминиевая одножильная разновидность, круглый провод, имеющий защитную ПВХ-изоляцию и однопроволочную или многопроволочную жилу. Отличием данного вида является устойчивость к повреждениям механического типа, вибрациям и химическим соединениям. Температурный эксплуатационный режим составляет от минус 50 °C до плюс 70 °C;
  • ПBC — многожильная медная разновидность с ПBX-изоляцией, придающей проводу высокие показатели плотности и традиционную округлую форму. Термоустойчивая жила рассчитана для номинального уровня 380 В при частоте 50 Гц;
  • PKГM — силовая монтажная разновидность, представленная одножильным медным проводом с кремнийорганической резиновой или стекловолоконной изоляцией, пропитанной термостойким составом. Температурный эксплуатационный режим составляет от минус 60 °C до плюс 180 °C;
  • ПHCB — нагревательная одножильная разновидность в виде однопроволочного провода на основе оцинкованной или вороненой стали. Температурный эксплуатационный режим составляет от минус 50 °C до плюс 80 °C;
  • ВПП — одножильная медная разновидность с многопроволочной жилой и изоляцией на основе ПBX или полиэтилена. Температурный эксплуатационный режим составляет от минус 40 °C до плюс 80 °C.

В условиях невысокой мощности применяется медный провод ШBBП с защитной внешней ПBX-изоляцией. Многопроволочного типа жила обладает прекрасными показателями гибкости, а само проводное изделие рассчитано максимум на 380 В, при частоте в пределах 50 Гц.

Проводные изделия самых распространенных типов реализуются в бухтах, и чаще всего имеют белое окрашивание изоляции.

Площадь поперечного сечения проводника

В последние годы отмечается заметное понижение качественных характеристик изготавливаемой кабельной продукции, в результате чего страдают показатели сопротивления — сечение проводов. Диаметр любого проводника в обязательном порядке должен обладать соответствием всем заявленным производителем параметрам.

Любое отклонение, составляющее даже 15-20 %, может стать причиной значительного перегрева электрической проводки или оплавления изоляционного материала, поэтому выбору площади или толщины проводника нужно уделять повышенное внимание не только на практике, но и с точки зрения теории.

Поперечное сечение проводников

Параметры, наиболее важные для правильного выбора сечения проводника, отражены в следующих рекомендациях:

  • толщина проводника — достаточная для беспрепятственного прохождения электротока, при максимально возможном нагреве провода в пределах 60 °C;
  • сечение проводника — достаточное для резкого понижения напряжения, не превышающего допустимые показатели, что особенно важно для очень длинной электропроводки и значительных токов.

Особое внимание требуется уделять максимальным показателям рабочего температурного режима, при превышении которого проводник и защитная изоляция приходят в негодность.

Сечением используемого проводника и его защитной изоляцией должна в обязательном порядке обеспечиваться полноценная механическая прочность и надежность электрической проводки.

Формула поперечного сечения проводника

Как правило, провода обладают круглым сечением, но допустимые токовые показатели должны рассчитываться согласно площади поперечного сечения. С целью самостоятельного определения площади сечения в одножильном или многожильном проводе осторожно вскрывается оболочка, представляющая собой изоляцию, после чего в одножильном проводнике замеряется диаметр.

Площадь определяется в соответствии с хорошо известной даже школьникам физической формулой:

S = π х D²/4 или S = 0,8 х D², где:

  • S является площадью сечения в мм2;
  • π — число π, стандартная величина, равная 3,14;
  • D является диаметром в мм.

Проводник

Замеры многожильного провода потребуют его предварительного распушения, а также последующего подсчета количества всех жилок внутри пучка. Затем измеряется диаметр одного составляющего элемента и вычисляется площадь сечения в соответствии со стандартной формулой, указанной выше. На заключительном этапе замеров суммируются площади жилок с целью определения показателей их общего сечения.

С целью определения диаметра проводной жилы используется микрометр или штангенциркуль, но при необходимости можно воспользоваться стандартной ученической линейкой или сантиметром. Замеряемую жилку провода нужно максимально плотно намотать на палочку двумя десятками витков. При помощи линейки или сантиметра требуется замерить расстояние намотки в мм, после чего показатели используются в формуле:

D = l/n,

Где:

  • l представлено расстоянием намотки жилки в мм;
  • n является числом витков.

Следует отметить, что большее сечение провода позволяет обеспечивать запас по показателям тока, в результате чего уровень нагрузки на электропроводку можно незначительно превышать.

Чтобы самостоятельно определить проводное сечение монолитной жилы, требуется посредством обычного штангенциркуля или микрометра выполнить замеры диаметра внутренней части кабеля без защитной изоляции.

Таблица соответствия диаметров проводов и площади их сечения

Определение кабельного или проводного сечения по стандартной физической формуле относится к числу достаточно трудоемких и сложных процессов, не гарантирующих получение максимально точной результативности, поэтому целесообразно использовать с этой целью специальные, уже готовые табличные данные.

Диаметр кабельной жилыПоказатели сеченияПроводники с жилой медного типа
Мощность в условиях сети 220 ВТокМощность в условиях сети 380 В
1,12 мм1,0 мм23,0 кВт14 А5,3 кВт
1,38 мм1,5 мм23,3 кВт15 А5,7 кВт
1,59 мм2,0 мм24,1 кВт19 А7,2 кВт
1,78 мм2,5 мм24,6 кВт21 А7,9 кВт
2,26 мм4,0 мм25,9 кВт27 А10,0 кВт
2,76 мм6,0 мм27,7 кВт34 А12,0 кВт
3,57 мм10,0 мм211,0 кВт50 А19,0 кВт
4,51 мм16,0 мм217,0 кВт80 А30,0 кВт
5,64 мм25,0 мм222,0 кВт100 А38,0 кВт
6,68 мм35,0 мм229,0 кВт135 А51,0 кВт

Расчет сечения кабеля: зачем он необходим и как правильно выполнить

Самое уязвимое место в сфере обеспечения квартиры или дома электрической энергией – это электропроводка. Во многих домах продолжают использовать старую проводку, не рассчитанную на современные электроприборы. Нередко подрядчики и вовсе стремятся сэкономить на материалах и укладывают провода, не соответствующие проекту. В любом из этих случаев необходимо сначала сделать расчет сечения кабеля, иначе можно столкнуться с серьезными и даже трагичными последствиями.

Для чего необходим расчет кабеля

В вопросе выбора сечения проводов нельзя следовать принципу «на глаз». Протекая по проводам, ток нагревает их. Чем выше сила тока, тем сильнее происходит нагрев. Эту взаимосвязь легко доказать парой формул. Первая из них определяет активную силу тока:

где I – сила тока, U – напряжение, R – сопротивление.

Из формулы видно: чем больше сопротивление, тем больше будет выделяться тепла, т. е. тем сильнее проводник будет нагреваться. Сопротивление определяют по формуле:

R = ρ · L/S (2),

где ρ – удельное сопротивление, L – длина проводника, S – площадь его поперечного сечения.

Чем меньше площадь поперечного сечения проводника, тем выше его сопротивление, а значит выше и активная мощность, которая говорит о более сильном нагреве. Исходя из этого, расчет сечения необходим для обеспечения безопасности и надежности проводки, а также грамотного распределения финансов.

Что будет, если неправильно рассчитать сечение

Без расчета сечения проводника можно столкнуться с одной из двух ситуаций:

  • Слишком сильный перегрев проводки. Возникает при недостаточном диаметре проводника. Создает благоприятные условия для самовозгорания и коротких замыканий.
  • Неоправданные затраты на проводку. Такое происходит в ситуациях, когда были выбраны проводники избыточного диаметра. Конечно, опасности здесь нет, но кабель большего сечения стоит дороже и не столь удобен в работе.

Что еще влияет на нагрев проводов

Из формулы (2) видно, что сопротивление проводника зависит не только от площади поперечного сечения. В связи с этим на его нагрев будут влиять:

  • Материал. Пример – у алюминия удельное сопротивление больше, чем у меди, поэтому при одинаковом сечении проводов медь будет нагреваться меньше.
  • Длина. Слишком длинный проводник приводит к большим потерям напряжения, что вызывает дополнительный нагрев. При превышении потерь уровня 5% приходится увеличивать сечение.

Пример расчета сечения кабеля на примере BBГнг 3×1,5 и ABБбШв 4×16

Трехжильный кабель BBГнг 3×1,5 изготавливается из меди и предназначен для передачи и распределения электричества в жилых домах или обычных квартирах. Токопроводящие жилы в нем изолированы ПВХ (В), из него же состоит оболочка. Еще BBГнг 3×1,5 не распространяет горение нг(А), поэтому полностью безопасен при эксплуатации.

Кабель ABБбШв 4×16 четырехжильный, включает токопроводящие жилы из алюминия. Предназначен для прокладки в земле. Защита с помощью оцинкованных стальных лент обеспечивает кабелю срок службы до 30 лет. В компании «Бонком» вы можете приобрести кабельные изделия оптом и в розницу по приемлемой цене. На большом складе всегда есть в наличии вся продукция, что позволяет комплектовать заказы любого ассортимента.

Порядок расчета сечения по мощности

В общем виде расчет сечения кабеля по мощности происходит в 2 этапа. Для этого потребуются следующие данные:

  • Суммарная мощность всех приборов.
  • Тип напряжения сети: 220 В – однофазная, 380 В – трехфазная.
  • ПУЭ 7. Правила устройства электроустановок. Издание 7.
  • Материал проводника: медь или алюминий.
  • Тип проводки: открытая или закрытая.

Шаг 1. Потребляемую мощность электроприборов можно найти в их инструкции или же взять средние характеристики. Формула для расчета общей мощности:

ΣP = (P₁ + Р₂ + … + Рₙ) · Кс · Кз,

где P1, P2 и т. д. – мощность подключаемых приборов, Кс – коэффициент спроса, который учитывает вероятность включения всех приборов одновременно, Кз – коэффициент запаса на случай добавления новых приборов в доме. Кс определяется так:

  • для двух одновременно включенных приборов – 1;
  • для 3-4 – 0,8;
  • для 5-6 – 0,75;
  • для большего количества – 0,7.

Кз в расчете кабеля по нагрузке имеет смысл принять как 1,15-1,2. Для примера можно взять общую мощность в 5 кВт.

Шаг 2. На втором этапе остается по суммарной мощности определить сечение проводника. Для этого используется таблица расчета сечения кабеля из ПУЭ. В ней дана информация и для медных, и для алюминиевых проводников. При мощности 5 кВт и закрытой однофазной электросети подойдет медный кабель сечением 4 мм2.

Правила расчета по длине

Расчет сечения кабеля по длине предполагает, что владелец заранее определил, какое количество метров проводника потребуется для электропроводки. Таким методом пользуются, как правило, в бытовых условиях. Для расчета потребуются такие данные:

  • L – длина проводника, м. Для примера взято значение 40 м.
  • ρ – удельное сопротивление материала (медь или алюминий), Ом/мм2·м: 0,0175 для меди и 0,0281 для алюминия.
  • I – номинальная сила тока, А.

Шаг 1. Определить номинальную силу тока по формуле:

I = (P · Кс) / (U · cos ϕ) = 8000/220 = 36 А,

где P – мощность в ваттах (суммарная всех приборов в доме, для примера взято значение 8 кВт), U – 220 В, Кс – коэффициент одновременного включения (0,75), cos φ – 1 для бытовых приборов. В примере получилось значение 36 А.

Шаг 2. Определить сечение проводника. Для этого нужно воспользоваться формулой (2):

R = ρ · L/S.

Потеря напряжения по длине проводника должна быть не более 5%:

dU = 0,05 · 220 В = 11 В.

Потери напряжения dU = I · R, отсюда R = dU/I = 11/36 = 0,31 Ом. Тогда сечение проводника должно быть не меньше:

S = ρ · L/R = 0,0175 · 40/0,31 = 2,25 мм2.

В случае с трехжильным кабелем площадь поперечного сечения одной жилы должна составить 0,75 мм2. Отсюда диаметр одной жилы должен быть не менее (√S/ π) · 2 = 0,98 мм. Кабель BBГнг 3×1,5 удовлетворяет этому условию.

Как рассчитать сечение по току

Расчет сечения кабеля по току осуществляется также на основании ПУЭ, в частности, с использованием таблиц 1.3.6. и 1.3.7. Зная суммарную мощность электроприборов, можно по формуле определить номинальную силу тока:

I = (P · Кс) / (U · cos ϕ).

Для трехфазной сети используется другая формула:

I=P/(U√3cos φ),

где U будет равно уже 380 В.

Если к трехфазному кабелю подключают и однофазных, и трехфазных потребителей, то расчет ведется по наиболее нагруженной жиле. Для примера с общей мощностью приборов, равной 5 кВт, и однофазной закрытой сети получается:

I = (P · Кс) / (U · cos ϕ) = (5000 · 0,75) / (220 · 1) = 17,05 А, при округлении 18 А.

BBГнг 3×1,5 – медный трехжильный кабель. По таблице 1.3.6. для силы тока 18 А ближайшее в значение – 19 А (при прокладке в воздухе). При номинальной силе тока 19 А сечение его токопроводящей жилы должно составлять не менее 1,5 мм2. У кабеля BBГнг 3×1,5 одна жила имеет сечение S = π · r2 = 3,14 · (1,5/2)2 = 1,8 мм2, что полностью соответствует указанному требованию.

Если рассматривать кабель ABБбШв 4×16, необходимо брать данные из таблицы 1.3.7. ПУЭ, где указаны значения для алюминиевых проводов. Согласно ей, для четырехжильных кабелей значение тока должно определяться с коэффициентом 0,92. В рассматриваемом примере к 18 А ближайшее значение по таблице 1.3.7. составляет 19 А.

С учетом коэффициента 0,92 оно составит 17,48 А, что меньше 18 А. Поэтому необходимо брать следующее значение – 27 А. В таком случае сечение токопроводящей жилы кабеля должно составлять 4 мм2. У кабеля ABБбШв 4×16 сечение одной жилы равно:

S = π · r2 = 3,14 · (4,5/2)2 = 15,89 мм2.

Согласно таблице 1.3.7. этот кабель рациональнее использовать при номинальном токе 60 А (при прокладке по воздуху) и до 90 А (при прокладке в земле).

Расчёт для многожильного провода

Многожильный провод (многопроволочный) представляет собой свитые вместе одножильные проволоки. Кто хоть немного дружит с математикой, тот прекрасно понимает, что необходимо посчитать количество этих проволочек в многожильном проводе. После этого измеряется сечение одной тонкой проволочки и умножается на их общее количество. Рассмотрим следующие варианты.

Расчёт с помощью штангенциркуля

Измерение проводится штангенциркулем с обычной шкалой (или микрометром). У опытных мастеров этот инструмент всегда находится под рукой, но не все же профессионально занимаются электрикой.

Для этого на примере кабеля ВВГнг разрежьте ножом толстую оболочку и разведите жилы в разные стороны.

Потом выберете одну жилу и зачистите ножом или ножницами. Далее произведите замер этой жилы. Должен получиться размер 1,8 мм. В качестве доказательства правильности измерения обратитесь к расчетам.

Полученная в результате вычисления цифра 2,54 мм2 – это фактическое сечение жилы.

Измерение с помощью ручки или карандаша

Если у вас не оказалось под рукой штангенциркуля, то можно воспользоваться подручными методами, используя карандаш и линейку. Сначала возьмите измеряемый провод, зачистите его и намотайте на карандаш или ручку так, чтобы витки ложились вплотную друг другу. Чем больше витков, тем лучше. Теперь подсчитаем количество намотанных витков и измерим их общую длину.

К примеру, получилось 10 витков с общей длиной намотки 18 мм. Нетрудно подсчитать диаметр одного витка, для этого общую длину делим на количество витков.

В результате всех производимых расчётов по формуле получите искомый диаметр жилы. В этом случае он составляет 1,8 мм. Так как диаметр одной жилы известен, то нетрудно посчитать сечение всего провода ВВГнг по известной уже формуле.

Можно заметить, что результаты получились равными.

Ток, мощность и сечение жил: их зависимость друг от друга

Недостаточно определить площадь сечения по диаметру. Важно узнать о том, какой пропускной способностью обладает тот или иной вид продукции. Следующие несколько критериев помогут определиться с выбором:

  • Токовая нагрузка, характерная для конкретного кабеля.
  • Мощность, которую потребляют различные устройства.
  • Сила электротока, проходящая через кабель.

По поводу мощности

Выполняя электромонтажные работы, больше всего обращают внимания на пропускную мощность. Особенно это касается самой прокладки кабелей. Максимум мощности передаваемой по проводнику энергии определяется сечением. Важно знать, какой общей мощностью обладают все приборы, соединённые с проводом.

Этикетки большинства современных приборов содержат информацию относительно средней, максимальной мощности, на которую проводился расчёт производителем. К примеру, для стиральных машинок стандартный диапазон – от нескольких десятков Вт/ч до 2,7 кВт/час. Провод выбирается с сечением для обеспечения передачи электричества с высшим уровнем мощности. Подключения с двумя и более проводниками предполагают сначала проведение обычных расчётов, а затем – сложение итоговых цифр.

В случае с однофазными сетями усреднённая мощность для электрических приборов и освещения редко превышает 7500 кВт. Под это значение потом подбирают кабельные сечения.

Сечение рекомендуют округлять, в сторону увеличения. Ведь в будущем потребляемой электроэнергии может стать больше.

Можно привести в качестве примера следующие рекомендации:

  1. Если общая мощность – 7,5 кВт – сечение жилы подходит 4 мм2. Это изделие способно пропускать до 8,3 кВт.
  2. В этой же ситуации сечение для провода с жилой из алюминия должно быть минимум 6 мм2. Тогда пропускная способность доходит до 7,9 кВт.

В случае с индивидуальными жилыми домами часто характерно применение трёхфазных жил, с электроснабжением на 380 В. Но на такое напряжение большая часть техники не рассчитана. Создают стандартный уровень на 220 В, через нулевой кабель. Токовая нагрузка распределяется равномерно, по всем фазам.

Электрический ток

Утерянная документация и этикетки могут стать причинами того, что для владельца многие параметры приборов остаются неизвестными. В том числе – мощность. Тогда придётся делать расчёты самостоятельно, используя специальную формулу.

Она выглядит следующим образом:

P = U * I

U- приложенное электронапряжение, с Единцами измерения – Вольтами.

I – сила электротока. Измеряется амперами.

P – общая мощность, в ваттах.

Можно использовать контрольно- измерительные приборы, если изначально сила тока неизвестна. Речь о токоизмерительных клещах, мультиметрах, амперметрах.

Когда мощность и сила тока станут известны – не доставит труда узнать о необходимом сечении кабеля.

Показатель нагрузки

Расчёт этого параметра важен для пользователей, которые хотят защититься от перегрева. Если электроток слишком большой для используемого сечения – изоляционный слой разрушается, даже оплавляется.

Есть определённое количественное значение, которое называется предельно допустимой токовой нагрузкой. Это электроток, который может проходить по кабелю без значительных перегревов долгое время. Чтобы найти это значение, сначала надо выяснить мощность всех потребителей электричества. После нагрузку определяют, используя формулу:

  1. I = P∑*Kи/(√3*U)
  2. I = P∑*Kи/U.

Первый вариант для трёхфазных сетей, второй – для однофазных.

U – показатель сетевого напряжения на текущий момент.

Ки – специальный коэффициент, составляет 0,75.

P∑- общий уровень мощности для электрических приборов.

Заключение

У электрических сетей множество параметров, для определения которых применяют различные методы. Рекомендуется применять специальные измерительные приборы, чтобы результаты были точнее. Микрометры и штангенциркули получили самое широкое распространение в этих направлениях. Но эти устройства стоят дорого, особенно – по сравнению с аналогами цифровой разновидности. Главное – определяя сечение, брать только провод, очищенный от изоляции.

Видео

Диаметр кабеля по сечению таблица, как расчитать

Общая информация о кабеле и проводе

При работе с проводниками необходимо понимать их обозначение. Существуют провода и кабеля, которые отличаются друг от друга внутренним устройством и техническими характеристиками. Однако многие люди часто путают эти понятия.

Проводом является проводник, имеющий в своей конструкции одну проволоку или группу проволок, сплетенных между собой, и тонкий общий изоляционный слой. Кабелем же называется жила или группа жил, имеющих как собственную изоляцию, так и общий изоляционный слой (оболочку). Каждому из типов проводников будут соответствовать свои методы определения сечений, которые почти схожи.

Материалы проводников

Количество энергии, какую передает проводник, зависит от ряда факторов, главный из которых – это материал токопроводящих жил. Материалом жилок проводов и кабелей могут выступать следующие цветные металлы:

  1. Алюминий. Дешевые и легкие проводники, что является их преимуществом. Им присуще такие отрицательные качества, как низкая электропроводность, склонность к механическим повреждением, высокое переходное электросопротивление окисленных поверхностей;
  2. Медь. Наиболее популярные проводники, имеющие, по сравнению с другими вариантами, высокую стоимость. Однако им присуще малое электрическое и переходное на контактах сопротивление, достаточно высокая эластичность и прочность, легкость в спайке и сварке;
  3. Алюмомедь. Кабельные изделия с жилами из алюминия, которые покрыты медью. Им свойственна чуть меньшая электропроводность, чем у медных аналогов. Также им присуще легкость, среднее сопротивление при относительной дешевизне.

Некоторые способы определения сечения кабелей и проводов будут зависеть именно от материала их жильной составляющей, который напрямую влияет на пропускную мощность и силу тока (метод определения сечения жил по мощности и току).

Особенности электрических проводов

Наиболее широкое применение находят марки проводов ПУHП и ПУГHП, а также ВПП, ПHCB и PKГM, которые обладают следующими, очень важными для получения безопасного подключения основными техническими характеристиками:

  • ПУНП — плоское проводное изделие установочного или так называемого монтажного типа, с однопроволочными жилами из меди в ПВХ-изоляции. Такая разновидность отличается количеством жил, а также номинальным напряжением в пределах 250 В с частотой 50 Гц и температурным эксплуатационным режимом от минус 15 °C до плюс 50 °C;
  • ПУГНП — гибкая разновидность с многопроволочными жилами. Основные показатели, которые представлены номинальным уровнем напряжения, частотой и температурным эксплуатационным режимом, не отличаются от аналогичных данных ПУHП;
  • AПB — алюминиевая одножильная разновидность, круглый провод, имеющий защитную ПВХ-изоляцию и однопроволочную или многопроволочную жилу. Отличием данного вида является устойчивость к повреждениям механического типа, вибрациям и химическим соединениям. Температурный эксплуатационный режим составляет от минус 50 °C до плюс 70 °C;
  • ПBC — многожильная медная разновидность с ПBX-изоляцией, придающей проводу высокие показатели плотности и традиционную округлую форму. Термоустойчивая жила рассчитана для номинального уровня 380 В при частоте 50 Гц;
  • PKГM — силовая монтажная разновидность, представленная одножильным медным проводом с кремнийорганической резиновой или стекловолоконной изоляцией, пропитанной термостойким составом. Температурный эксплуатационный режим составляет от минус 60 °C до плюс 180 °C;
  • ПHCB — нагревательная одножильная разновидность в виде однопроволочного провода на основе оцинкованной или вороненой стали. Температурный эксплуатационный режим составляет от минус 50 °C до плюс 80 °C;
  • ВПП — одножильная медная разновидность с многопроволочной жилой и изоляцией на основе ПBX или полиэтилена. Температурный эксплуатационный режим составляет от минус 40 °C до плюс 80 °C.

В условиях невысокой мощности применяется медный провод ШBBП с защитной внешней ПBX-изоляцией. Многопроволочного типа жила обладает прекрасными показателями гибкости, а само проводное изделие рассчитано максимум на 380 В, при частоте в пределах 50 Гц.

Проводные изделия самых распространенных типов реализуются в бухтах, и чаще всего имеют белое окрашивание изоляции.

Площадь поперечного сечения проводника

В последние годы отмечается заметное понижение качественных характеристик изготавливаемой кабельной продукции, в результате чего страдают показатели сопротивления — сечение проводов. Диаметр любого проводника в обязательном порядке должен обладать соответствием всем заявленным производителем параметрам.

Любое отклонение, составляющее даже 15-20 %, может стать причиной значительного перегрева электрической проводки или оплавления изоляционного материала, поэтому выбору площади или толщины проводника нужно уделять повышенное внимание не только на практике, но и с точки зрения теории.

Поперечное сечение проводников

Параметры, наиболее важные для правильного выбора сечения проводника, отражены в следующих рекомендациях:

  • толщина проводника — достаточная для беспрепятственного прохождения электротока, при максимально возможном нагреве провода в пределах 60 °C;
  • сечение проводника — достаточное для резкого понижения напряжения, не превышающего допустимые показатели, что особенно важно для очень длинной электропроводки и значительных токов.

Особое внимание требуется уделять максимальным показателям рабочего температурного режима, при превышении которого проводник и защитная изоляция приходят в негодность.

Сечением используемого проводника и его защитной изоляцией должна в обязательном порядке обеспечиваться полноценная механическая прочность и надежность электрической проводки.

Формула поперечного сечения проводника

Как правило, провода обладают круглым сечением, но допустимые токовые показатели должны рассчитываться согласно площади поперечного сечения. С целью самостоятельного определения площади сечения в одножильном или многожильном проводе осторожно вскрывается оболочка, представляющая собой изоляцию, после чего в одножильном проводнике замеряется диаметр.

Площадь определяется в соответствии с хорошо известной даже школьникам физической формулой:

S = π х D²/4 или S = 0,8 х D², где:

  • S является площадью сечения в мм2;
  • π — число π, стандартная величина, равная 3,14;
  • D является диаметром в мм.

Проводник

Замеры многожильного провода потребуют его предварительного распушения, а также последующего подсчета количества всех жилок внутри пучка. Затем измеряется диаметр одного составляющего элемента и вычисляется площадь сечения в соответствии со стандартной формулой, указанной выше. На заключительном этапе замеров суммируются площади жилок с целью определения показателей их общего сечения.

С целью определения диаметра проводной жилы используется микрометр или штангенциркуль, но при необходимости можно воспользоваться стандартной ученической линейкой или сантиметром. Замеряемую жилку провода нужно максимально плотно намотать на палочку двумя десятками витков. При помощи линейки или сантиметра требуется замерить расстояние намотки в мм, после чего показатели используются в формуле:

D = l/n,

Где:

  • l представлено расстоянием намотки жилки в мм;
  • n является числом витков.

Следует отметить, что большее сечение провода позволяет обеспечивать запас по показателям тока, в результате чего уровень нагрузки на электропроводку можно незначительно превышать.

Чтобы самостоятельно определить проводное сечение монолитной жилы, требуется посредством обычного штангенциркуля или микрометра выполнить замеры диаметра внутренней части кабеля без защитной изоляции.

Таблица соответствия диаметров проводов и площади их сечения

Определение кабельного или проводного сечения по стандартной физической формуле относится к числу достаточно трудоемких и сложных процессов, не гарантирующих получение максимально точной результативности, поэтому целесообразно использовать с этой целью специальные, уже готовые табличные данные.

Диаметр кабельной жилыПоказатели сеченияПроводники с жилой медного типа
Мощность в условиях сети 220 ВТокМощность в условиях сети 380 В
1,12 мм1,0 мм23,0 кВт14 А5,3 кВт
1,38 мм1,5 мм23,3 кВт15 А5,7 кВт
1,59 мм2,0 мм24,1 кВт19 А7,2 кВт
1,78 мм2,5 мм24,6 кВт21 А7,9 кВт
2,26 мм4,0 мм25,9 кВт27 А10,0 кВт
2,76 мм6,0 мм27,7 кВт34 А12,0 кВт
3,57 мм10,0 мм211,0 кВт50 А19,0 кВт
4,51 мм16,0 мм217,0 кВт80 А30,0 кВт
5,64 мм25,0 мм222,0 кВт100 А38,0 кВт
6,68 мм35,0 мм229,0 кВт135 А51,0 кВт

Расчет сечения кабеля: зачем он необходим и как правильно выполнить

Самое уязвимое место в сфере обеспечения квартиры или дома электрической энергией – это электропроводка. Во многих домах продолжают использовать старую проводку, не рассчитанную на современные электроприборы. Нередко подрядчики и вовсе стремятся сэкономить на материалах и укладывают провода, не соответствующие проекту. В любом из этих случаев необходимо сначала сделать расчет сечения кабеля, иначе можно столкнуться с серьезными и даже трагичными последствиями.

Для чего необходим расчет кабеля

В вопросе выбора сечения проводов нельзя следовать принципу «на глаз». Протекая по проводам, ток нагревает их. Чем выше сила тока, тем сильнее происходит нагрев. Эту взаимосвязь легко доказать парой формул. Первая из них определяет активную силу тока:

где I – сила тока, U – напряжение, R – сопротивление.

Из формулы видно: чем больше сопротивление, тем больше будет выделяться тепла, т. е. тем сильнее проводник будет нагреваться. Сопротивление определяют по формуле:

R = ρ · L/S (2),

где ρ – удельное сопротивление, L – длина проводника, S – площадь его поперечного сечения.

Чем меньше площадь поперечного сечения проводника, тем выше его сопротивление, а значит выше и активная мощность, которая говорит о более сильном нагреве. Исходя из этого, расчет сечения необходим для обеспечения безопасности и надежности проводки, а также грамотного распределения финансов.

Что будет, если неправильно рассчитать сечение

Без расчета сечения проводника можно столкнуться с одной из двух ситуаций:

  • Слишком сильный перегрев проводки. Возникает при недостаточном диаметре проводника. Создает благоприятные условия для самовозгорания и коротких замыканий.
  • Неоправданные затраты на проводку. Такое происходит в ситуациях, когда были выбраны проводники избыточного диаметра. Конечно, опасности здесь нет, но кабель большего сечения стоит дороже и не столь удобен в работе.

Что еще влияет на нагрев проводов

Из формулы (2) видно, что сопротивление проводника зависит не только от площади поперечного сечения. В связи с этим на его нагрев будут влиять:

  • Материал. Пример – у алюминия удельное сопротивление больше, чем у меди, поэтому при одинаковом сечении проводов медь будет нагреваться меньше.
  • Длина. Слишком длинный проводник приводит к большим потерям напряжения, что вызывает дополнительный нагрев. При превышении потерь уровня 5% приходится увеличивать сечение.

Пример расчета сечения кабеля на примере BBГнг 3×1,5 и ABБбШв 4×16

Трехжильный кабель BBГнг 3×1,5 изготавливается из меди и предназначен для передачи и распределения электричества в жилых домах или обычных квартирах. Токопроводящие жилы в нем изолированы ПВХ (В), из него же состоит оболочка. Еще BBГнг 3×1,5 не распространяет горение нг(А), поэтому полностью безопасен при эксплуатации.

Кабель ABБбШв 4×16 четырехжильный, включает токопроводящие жилы из алюминия. Предназначен для прокладки в земле. Защита с помощью оцинкованных стальных лент обеспечивает кабелю срок службы до 30 лет. В компании «Бонком» вы можете приобрести кабельные изделия оптом и в розницу по приемлемой цене. На большом складе всегда есть в наличии вся продукция, что позволяет комплектовать заказы любого ассортимента.

Порядок расчета сечения по мощности

В общем виде расчет сечения кабеля по мощности происходит в 2 этапа. Для этого потребуются следующие данные:

  • Суммарная мощность всех приборов.
  • Тип напряжения сети: 220 В – однофазная, 380 В – трехфазная.
  • ПУЭ 7. Правила устройства электроустановок. Издание 7.
  • Материал проводника: медь или алюминий.
  • Тип проводки: открытая или закрытая.

Шаг 1. Потребляемую мощность электроприборов можно найти в их инструкции или же взять средние характеристики. Формула для расчета общей мощности:

ΣP = (P₁ + Р₂ + … + Рₙ) · Кс · Кз,

где P1, P2 и т. д. – мощность подключаемых приборов, Кс – коэффициент спроса, который учитывает вероятность включения всех приборов одновременно, Кз – коэффициент запаса на случай добавления новых приборов в доме. Кс определяется так:

  • для двух одновременно включенных приборов – 1;
  • для 3-4 – 0,8;
  • для 5-6 – 0,75;
  • для большего количества – 0,7.

Кз в расчете кабеля по нагрузке имеет смысл принять как 1,15-1,2. Для примера можно взять общую мощность в 5 кВт.

Шаг 2. На втором этапе остается по суммарной мощности определить сечение проводника. Для этого используется таблица расчета сечения кабеля из ПУЭ. В ней дана информация и для медных, и для алюминиевых проводников. При мощности 5 кВт и закрытой однофазной электросети подойдет медный кабель сечением 4 мм2.

Правила расчета по длине

Расчет сечения кабеля по длине предполагает, что владелец заранее определил, какое количество метров проводника потребуется для электропроводки. Таким методом пользуются, как правило, в бытовых условиях. Для расчета потребуются такие данные:

  • L – длина проводника, м. Для примера взято значение 40 м.
  • ρ – удельное сопротивление материала (медь или алюминий), Ом/мм2·м: 0,0175 для меди и 0,0281 для алюминия.
  • I – номинальная сила тока, А.

Шаг 1. Определить номинальную силу тока по формуле:

I = (P · Кс) / (U · cos ϕ) = 8000/220 = 36 А,

где P – мощность в ваттах (суммарная всех приборов в доме, для примера взято значение 8 кВт), U – 220 В, Кс – коэффициент одновременного включения (0,75), cos φ – 1 для бытовых приборов. В примере получилось значение 36 А.

Шаг 2. Определить сечение проводника. Для этого нужно воспользоваться формулой (2):

R = ρ · L/S.

Потеря напряжения по длине проводника должна быть не более 5%:

dU = 0,05 · 220 В = 11 В.

Потери напряжения dU = I · R, отсюда R = dU/I = 11/36 = 0,31 Ом. Тогда сечение проводника должно быть не меньше:

S = ρ · L/R = 0,0175 · 40/0,31 = 2,25 мм2.

В случае с трехжильным кабелем площадь поперечного сечения одной жилы должна составить 0,75 мм2. Отсюда диаметр одной жилы должен быть не менее (√S/ π) · 2 = 0,98 мм. Кабель BBГнг 3×1,5 удовлетворяет этому условию.

Как рассчитать сечение по току

Расчет сечения кабеля по току осуществляется также на основании ПУЭ, в частности, с использованием таблиц 1.3.6. и 1.3.7. Зная суммарную мощность электроприборов, можно по формуле определить номинальную силу тока:

I = (P · Кс) / (U · cos ϕ).

Для трехфазной сети используется другая формула:

I=P/(U√3cos φ),

где U будет равно уже 380 В.

Если к трехфазному кабелю подключают и однофазных, и трехфазных потребителей, то расчет ведется по наиболее нагруженной жиле. Для примера с общей мощностью приборов, равной 5 кВт, и однофазной закрытой сети получается:

I = (P · Кс) / (U · cos ϕ) = (5000 · 0,75) / (220 · 1) = 17,05 А, при округлении 18 А.

BBГнг 3×1,5 – медный трехжильный кабель. По таблице 1.3.6. для силы тока 18 А ближайшее в значение – 19 А (при прокладке в воздухе). При номинальной силе тока 19 А сечение его токопроводящей жилы должно составлять не менее 1,5 мм2. У кабеля BBГнг 3×1,5 одна жила имеет сечение S = π · r2 = 3,14 · (1,5/2)2 = 1,8 мм2, что полностью соответствует указанному требованию.

Если рассматривать кабель ABБбШв 4×16, необходимо брать данные из таблицы 1.3.7. ПУЭ, где указаны значения для алюминиевых проводов. Согласно ей, для четырехжильных кабелей значение тока должно определяться с коэффициентом 0,92. В рассматриваемом примере к 18 А ближайшее значение по таблице 1.3.7. составляет 19 А.

С учетом коэффициента 0,92 оно составит 17,48 А, что меньше 18 А. Поэтому необходимо брать следующее значение – 27 А. В таком случае сечение токопроводящей жилы кабеля должно составлять 4 мм2. У кабеля ABБбШв 4×16 сечение одной жилы равно:

S = π · r2 = 3,14 · (4,5/2)2 = 15,89 мм2.

Согласно таблице 1.3.7. этот кабель рациональнее использовать при номинальном токе 60 А (при прокладке по воздуху) и до 90 А (при прокладке в земле).

Расчёт для многожильного провода

Многожильный провод (многопроволочный) представляет собой свитые вместе одножильные проволоки. Кто хоть немного дружит с математикой, тот прекрасно понимает, что необходимо посчитать количество этих проволочек в многожильном проводе. После этого измеряется сечение одной тонкой проволочки и умножается на их общее количество. Рассмотрим следующие варианты.

Расчёт с помощью штангенциркуля

Измерение проводится штангенциркулем с обычной шкалой (или микрометром). У опытных мастеров этот инструмент всегда находится под рукой, но не все же профессионально занимаются электрикой.

Для этого на примере кабеля ВВГнг разрежьте ножом толстую оболочку и разведите жилы в разные стороны.

Потом выберете одну жилу и зачистите ножом или ножницами. Далее произведите замер этой жилы. Должен получиться размер 1,8 мм. В качестве доказательства правильности измерения обратитесь к расчетам.

Полученная в результате вычисления цифра 2,54 мм2 – это фактическое сечение жилы.

Измерение с помощью ручки или карандаша

Если у вас не оказалось под рукой штангенциркуля, то можно воспользоваться подручными методами, используя карандаш и линейку. Сначала возьмите измеряемый провод, зачистите его и намотайте на карандаш или ручку так, чтобы витки ложились вплотную друг другу. Чем больше витков, тем лучше. Теперь подсчитаем количество намотанных витков и измерим их общую длину.

К примеру, получилось 10 витков с общей длиной намотки 18 мм. Нетрудно подсчитать диаметр одного витка, для этого общую длину делим на количество витков.

В результате всех производимых расчётов по формуле получите искомый диаметр жилы. В этом случае он составляет 1,8 мм. Так как диаметр одной жилы известен, то нетрудно посчитать сечение всего провода ВВГнг по известной уже формуле.

Можно заметить, что результаты получились равными.

Использование таблиц

Как можно узнать и измерить сечение кабеля, если под рукой не оказалось ни штангенциркуля, ни линейки, ни микрометра. Вместо того чтобы ломать себе голову над сложными математическими формулами, достаточно вспомнить, что есть уже готовые таблицы значений для измерения сечения кабеля. Существуют, конечно, очень сложные таблицы с множеством параметров, но, в принципе, для начала достаточно воспользоваться самой простой из двух колонок. В первой колонке вписывается диаметр проводника, а во второй колонке приводятся готовые значения сечения провода.

Таблица сечения проводя для закрытой проводки

Существует и другой «приблизительный» метод, который не требует измерения толщины отдельных проводков. Можно просто измерить сечение (диаметр) всего толстого свитка. Таким методом обычно пользуются опытные электрики. Они могут узнать сечение кабеля как «на глаз», так и с помощью инструментов.

Параллельное соединение проводов электропроводки

Бывают безвыходные ситуации, когда срочно нужно проложить проводку, а провода требуемого сечения в наличии нет. В таком случае, если есть провод меньшего, чем необходимо, сечения, то можно проводку сделать из двух и более проводов, соединив их параллельно. Главное, чтобы сумма сечений каждого из них была не меньше расчетной.

Например, есть три провода сечением 2, 3 и 5 мм², а нужен по расчетам 10 мм². Соединяете их все параллельно, и проводка будет выдерживать ток до 50 ампер. Да Вы и сами многократно видели параллельное соединение большего количества тонких проводников для передачи больших токов. Например, для сварки используется ток до 150 А и для того, чтобы сварщик мог управлять электродом, нужен гибкий провод. Его и делают из сотен параллельно соединенных тонких медных проволочек.

В автомобиле аккумулятор к бортовой сети тоже подключают с помощью такого же гибкого многожильного провода, так как во время пуска двигателя стартер потребляет от аккумулятора ток до 100 А. А при установке и снятии аккумулятора необходимо провода отводить в сторону, то есть провод должен быть достаточно гибким.

Способ увеличения сечения электропровода путем параллельного соединения нескольких проводов разного диаметра можно использовать только в крайнем случае. При прокладке домашней электропроводки допустимо соединять параллельно только провода одинакового сечения, взятые из одной бухты.

Источники

  • https://electric-220.ru/sechenie-provoda-kabelja-po-diametru-formula-tablica
  • https://proprovoda.ru/provodka/provoda-i-kabelya/poperechnoe-sechenie-provodnika.html
  • https://www.boncom.by/papers/raschet-secheniya-kabelya
  • https://220.guru/electroprovodka/provoda-kabeli/kak-uznat-sechenie.html

[свернуть]

фото, видео, формулы для расчета диаметра провода и площади поперечного сечения


Автор Aluarius На чтение 6 мин. Просмотров 296 Опубликовано

Когда появляется необходимость провести электрическую проводку в новом доме или сделать замену старой, то чаще всего неопытные электрики сталкиваются с проблемой подбора самого кабеля. То есть, какой он должен быть, из какого материала и какого сечения. Для этого существует таблица сечения проводов, которую можно найти в интернете. Но что делать если доступа к мировой паутине нет, то есть, вы за городом, возводите свой собственный дом, а в поселке с интернетом проблемы. Выход один – самостоятельно подобрать сечение провода, сделав несколько математических выкладок, даже в уме.

Итак, начать надо с пояснения, что электрический ток, проходящий по электрическому кабелю с определенной мощностью, выделяет некоторое количество тепла. И если мощность будет достаточно большой, то изоляция провода может не выдержать тепловой энергии. Она просто расплавится, а это стопроцентное короткое замыкание между двумя жилами, расположенными в одном кабеле. И хорошо, если сработает автоматический выключатель в распределительном щите, который предотвратит возгорание.

То есть, протекающий по проводам ток зависит от нагрузки в сети. Поэтому формула тока такова:

I=P/U, где

  • I – сила тока;
  • P – потребляемая мощность;
  • U – напряжение.

Но сам ток также зависит от сопротивления кабеля. И чем оно больше, тем труднее току проходить по жилам провода (объяснения по-простому). Поэтому данный показатель необходимо обязательно учитывать, определяя сечение провода. Сопротивление зависит от сечения кабеля, от его длины и материала, из которого изготовлен. Если говорить о частном домостроении, то длину кабеля можно в расчет и не брать, слишком небольшие участки в схеме разводки дома. А вот материал и сечение играют важную роль.

Расчет сечения

Если перед вами лежит кабель, сечение которого вы не знаете (нет маркировки), то этот показатель можно самостоятельно рассчитать, используя формулу площади круга:

S=πd²/4=0,8d².

То есть, замеряете своими руками при помощи штангенциркуля диаметр жилы и вставляете данный показатель в формулу. Если маркировка на проводе осталась, к примеру, ВВГ 3х1,5, то это значит, что перед вами трехжильный провод с сечением 1,5 мм².

Внимание! Чем больше сечение провода, тем большую токовую нагрузку он может нести.

Но необходимо учитывать и тот факт, что провода бывают разные в плане материала, из которого они изготавливаются. В основе всех электрических кабелей лежит или медь, или алюминий. Так вот медные кабели выдерживают большую токовую нагрузку, чем алюминиевые. К тому же они практически не окисляются, поэтому, когда перед вами стоит выбор, то предпочтение лучше всего отдать медному варианту.

Есть еще один момент, который необходимо учитывать. Этот способ проводки схемы электроснабжения. То есть, электрический кабель уложен в штробы и заштукатурен, или проводка была проведена в гофрированном шланге, или была сделана открытая электропроводка. В чем разница?

Все дело в том, что внутренняя проводка (скрытая) создает условия, при которых провод оказывается в замкнутом пространстве. То есть, нагреваясь, он не отдает тепло воздуху, который его окружает. А, значит, перегревается быстрее и больше. А это, в свою очередь, снижает ресурс эксплуатации и создает условия быстрого выхода из строя. То есть, в такой проводке необходимо использовать провода сечением чуть больше, чем по номиналу.

Плотность тока

Постепенно, разбираясь в электрических проводах, а точнее, в выборе сечения кабеля, мы подошли к еще одному не менее важному показателю – плотности тока. Что это такое? По сути, это все та же сила тока, измеряемая в амперах, которая проходит через стандартную величину сечения электрического провода, равную одному миллиметру в квадрате.

Скажем так, что это относительная величина, поэтому ее можно использовать в формуле, определяющей диаметр провода:

d=1,1*√I/Ip, где Ip – плотность тока.

Теперь можно вычислить сечение провода, подставляя значение «d» в формулу площади. В конечном итоге получаем, что S=I/Ip.

Но где тогда взять показания «Ip»? Это стандартные величины, зависящте опять-таки от материала, из которого изготавливаются провода, и вида проводки. Нижняя таблица показывает данную зависимость.

Площадь круга

МатериалМедьАлюминий
Скрытая проводка6 А/мм²4
Открытая проводка106

Как мы и говорили выше, медь в данном случае предпочтительнее.

Давайте рассмотрим один простой пример расчета. Вводные данные:

  • Провод медный.
  • Открытая проводка.
  • Нагрузка на кабель 2,2 кВт.

Сначала находим силу тока в электрической цепи: I=P/U=2200 Вт:220 В= 10 А.

Теперь находим сечение самого провода: S=I/Ip=10:10=1 мм², где второе число «10» выбираем из вышеупомянутой таблицы. Таким образом, можно самостоятельно рассчитать все сечения кабелей на каждом участке электрической сети дома. Главное – правильно рассчитать потребляемую мощность на каждом шлейфе. А это, как вы знаете, суммарная мощность все бытовых приборов и лампочек освещения. К примеру, если рассчитывается участок кухни, то придется сложить мощность всех аппаратов, а это холодильник, микроволновка, кофеварка, электрический чайник, вытяжка, блендер и так далее, плюс освещение. Данный показатель указывается на бирках приборов и стеклянном корпусе ламп.

В принципе, для себя можно такую таблицу сечения проводов собрать самостоятельно, учитывая все раскладки, о которых написано выше. То есть, если знать потребляемую мощность на всех электрических контурах, то можно по участкам разбить кабели в зависимости от их сечения.

Мощность некоторых бытовых электроприборов

  • Во-первых, это упростит проведение монтажа. То есть, вы никогда не запутаетесь, где какой кабель должен быть проложен.
  • Во-вторых, можно будет подсчитать расходы, связанные с покупкой проводки, и тем самым определить бюджет ремонта.
  • В-третьих, таблица поможет в будущем. Если потребляемая мощность не изменится с годами, то вам не надо будет опять проводить все расчеты. Достаточно достать таблицу и вспомнить, какого сечения кабель, где был уложен.

Заключение по теме

Итак, к чему мы пришли? Создавая таблицу сечения проводов в своем собственном доме, вы просто обеспечиваете себе безопасность, связанную с эксплуатацией электрической сети дома. Плюс облегчаете себе работу, когда дело дойдет до замены или ремонта.

Онлайн-калькуляторы и таблицы размеров проводов

Этот сайт предлагает множество простых в использовании калькуляторов и диаграмм силы тока проводов, которые помогут вам правильно определить размеры.
провода и кабелепровод в соответствии с NEC. Посетите калькуляторы и таблицы
страницы для полного списка ресурсов.

Калькулятор сечения провода

Введите информацию ниже, чтобы рассчитать подходящий размер провода.

Размер проводника

Национальный электротехнический кодекс устанавливает требования к выбору электрических
провод для предотвращения перегрева, пожара и других опасных ситуаций.Правильный размер
провод для множества различных приложений может стать сложным и непосильным. Сила тока — это мера электрического
ток, протекающий по цепи. Номинальная допустимая нагрузка на провод определяет силу тока, которую провод может безопасно
ручка. Чтобы правильно подобрать размер провода для вашего приложения, необходимо знать допустимую нагрузку на провод.
Однако множество различных внешних факторов, таких как температура окружающей среды и изоляция проводника, играют роль в определении
токовая нагрузка провода.

Допустимая нагрузка на провод рассчитывается таким образом, чтобы не превышать определенного повышения температуры при определенной электрической нагрузке. Нагрев проводника напрямую связан с его
I 2 R потери в цепи. Длина проводника прямо пропорциональна его сопротивлению. Однако площадь поперечного сечения проводника также может быть изменена, чтобы изменить
сопротивление проводника. При увеличении поперечного сечения проводника (или увеличении размера провода) сопротивление уменьшается, а допустимая допустимая токовая нагрузка увеличивается.При выборе размеров проводов следует руководствоваться здравым смыслом.
потому что большие проводники могут стать дорогостоящими и сложными в установке, в то время как небольшие проводники могут представлять потенциальную опасность. Используйте калькулятор выше, чтобы определить размер провода для основных применений, или просмотрите некоторые диаграммы токовой нагрузки для значений токовой нагрузки проводов.

Падение напряжения

Падение напряжения может стать проблемой для инженеров и электриков при выборе кабеля для длинных проводов. Падение напряжения в цепи может происходить из-за использования слишком маленького сечения провода или слишком большой длины кондуктора.Для длинных проводов, где может возникнуть падение напряжения, используйте калькулятор падения напряжения для определения падения напряжения и калькулятор расстояния цепи для определения максимальной длины цепи.

Электродвигатели

Существует много различных типов электродвигателей, от однофазных до трехфазных двигателей переменного тока, двигателей постоянного и низкого напряжения, синхронных и асинхронных двигателей. При проектировании фидера или ответвительной цепи с одним или несколькими электродвигателями необходимо учитывать несколько важных моментов.Пусковой ток двигателя иногда может достигать 7 ампер полной нагрузки двигателя. Сечение проводов двигателя должно быть рассчитано таким образом, чтобы выдерживать пусковой ток, а также постоянный ток полной нагрузки двигателя. При проектировании фидера и параллельных цепей двигателя необходимо учитывать также защиту обмоток двигателя и тепловые характеристики. Просмотрите калькулятор размера провода двигателя или таблицу размеров провода двигателя, чтобы получить информацию о размерах проводов и устройствах защиты цепи для двигателей.

На этом сайте есть много калькуляторов размеров проводов и размеров проводов.
диаграммы, которые помогут вам правильно выбрать размер провода в соответствии с нормами. Посетите Условия использования и Политику конфиденциальности этого сайта. Ваше мнение очень ценится. Сообщите нам, как мы можем улучшить.

Поперечное сечение — определение поперечного сечения по The Free Dictionary

Расчетная оценка по (9) с теми же начальными данными ([[тета]. Sub.0i], = [[тета]. Sub.11] = 70 [градусов] C; [t.sub.KC] = 160 мс; [T.sub.a] = 20 мс; Imk = 100 кА; [J.sub.ak] = 9 x [10.sup.8] [A.sup.2] xs) конечной температуры [[theta] .sub.iS] джоулева нагрева медной круглой жилы кабеля с ПВХ или R изоляции (второй пример) с допустимым поперечным сечением [S.sub.il] = 258,62 [mm.sup.2] (см. Таблицу 6) показывает, что в этом случае он достигает уровня приблизительно 139,1 [градусов] C «Рост компьютерных технологий, обработки сигналов и новых материалов с интересными и необычными электрическими и магнитными характеристиками послужил толчком для значительных разработок в радарах и, следовательно, в поперечном сечении радара», — говорит Дженн.В разделе 3 мы покажем, что с помощью символьного вычисления четырех ребер в четырехугольнике Магнела мы можем искать внутри области, чтобы найти подходящую расчетную точку для каждого поперечного сечения. Во-первых, параболический и линейный профили сухожилий будут получены с использованием трех поперечных сечений. В таблице 1 показано сечение рассеяния сферической частицы с различным расположением в гауссовом пучке. Чтобы получить математическое соотношение для перепада температуры с точки зрения глубины поперечного сечения , линейное уравнение или, точнее, полином четвертой степени является наиболее подходящим выбором после тестирования различных аппроксимаций кривой.Величина и распределение этих начальных напряжений в горячекатаных элементах имеют сложную форму и зависят от типа поперечного сечения и производственного процесса, и, следовательно, предполагаемое распределение и величина обычно представляют только удобство моделирования. Теоретические и вычислительные аспекты включительно изолированных быстрое производство фотонов, такое как задействованные подпроцессы ведущего порядка (LO) и следующего за ведущим порядком (NLO), прямая и фрагментационная составляющие поперечного сечения и требование изоляции фотонов, обсуждались во многих статьях (например,g., см. [30, 32]). Хотя изображение ВСУЗИ содержит информацию о поперечном сечении кровеносного сосуда, положение и ориентация, при которых изображение было получено, неизвестны. Цели настоящей работы — предоставить новый рекомендованный крест. раздел экспериментальных данных с использованием соответствующего метода подсчета для определения нейтронного потока, чтобы подтвердить текущие оцененные сечения, представляющие интерес, в диапазоне энергий и обеспечить ряд данных сечения, полученных относительно стандартного сечения.Golden Software предлагает шесть продуктов: Surfer [R] для построения координатной сетки, контуров и трехмерного картирования поверхностей; Voxler [R] для трехмерной визуализации данных; Grapher [TM] для построения 2D и 3D графиков; Strater [R] для построения каротажных диаграмм, стволов и разрезов; MapViewer [TM] для тематического картографирования и пространственного анализа; и Didger [R] для оцифровки и преобразования координат. Низкочастотный ультразвуковой томограф обнаружил арматурную сталь с низким уровнем потерь поперечного сечения.

Cross wire — определение поперечной проволоки в The Free Dictionary

Среди них фантом с одной перекрестной проволокой широко используется в качестве эталона для проверки других методов калибровки [12,16] благодаря своей превосходной точности и точности.В лотке OnTrac Shaped Tray используется уникальная плоская поперечная проволока. После установки закрепите крепкими тростями не менее пяти футов высотой и убедитесь, что тростники прикреплены к поперечной проволоке достаточно высоко, чтобы растения не могли опрокинуться, когда они покрыты массой. БОЛЬШОЙ ажиотаж во время Coronation Street в среду, когда я работал, если скрестить проволочную вату с Уэйном Руни, получится Физ. Тайчунг, Тайвань, 21 июля 2011 г. — (PR.com) — серия SA, инновационный сварочный аппарат для проволочной сетки. производства Golden Spot Industrial Inc., оснащены недавно разработанным устройством подачи проволоки, устройством подачи поперечной проволоки, системой точечной сварки и установкой вывода. Эти клыки лисицы и тибетского терьера с перекрестной проволокой массово пересекают дорогу, когда они прибывают на работу в Empire Theatre. теория сварки для соединения поперечной проволоки и линейной проволоки одновременно с помощью цилиндра. Самая большая особенность этой машины для сварки проволочной сетки заключается в том, что в машине есть автоматическая система загрузки поперечной проволоки; Оператор просто отправляет предварительно обрезанные проволоки в тележку с помощью крана, а загрузочная тележка с бункером для одиночной проволоки автоматически выполняет сортировку, позиционирование и выталкивание проволоки в нужное время.Перекрещенные провода ДАЛЕЕ от письма Берни Леттермана, я считаю, что здесь есть перекрестные провода. Тируванантапурам: Общество обслуживания Наир (NSS) в Керале, которое поиграло мускулами в пользу президента Комитета Конгресса Керала-Прадеш (KPCC) Рамеша Ченнитала, введенного в должность в Государственный кабинет, оказался в политических перекрестках, помимо невыполнения его требования сделать Ченнитала заместителем главного министра. Были предложены и широко исследованы различные энантиомерные формы двухслойной планарной хиральной структуры, такие как скрученные розетки [7], скрученные поперечные проволоки [3,11,13], U-образные SRR [14], сопряженные свастики [15,16] и другие новые двухслойные структуры [17-24], которые могут проявлять отрицательный показатель преломления и оптическую активность в одночастотный или двухдиапазонный.

% PDF-1.5
%
7844 0 obj>
endobj

xref
7844 91
0000000016 00000 н.
0000004792 00000 н.
0000002116 00000 н.
0000004918 00000 н.
0000006227 00000 н.
0000007397 00000 н.
0000007466 00000 н.
0000007533 00000 н.
0000007694 00000 н.
0000007733 00000 н.
0000007820 00000 н.
0000008997 00000 н.
0000009063 00000 н.
0000009132 00000 н.
0000017736 00000 п.
0000022533 00000 п.
0000026633 00000 п.
0000030878 00000 п.
0000036110 00000 п.
0000040184 00000 п.
0000044754 00000 п.
0000050428 00000 п.
0000051093 00000 п.
0000051902 00000 п.
0000052903 00000 п.
0000054576 00000 п.
0000055943 00000 п.
0000056824 00000 п.
0000057932 00000 п.
0000058775 00000 п.
0000059488 00000 п.
0000060211 00000 п.
0000060894 00000 п.
0000061594 00000 п.
0000062289 00000 п.
0000062988 00000 п.
0000063660 00000 п.
0000064335 00000 п.
0000065030 00000 п.
0000065743 00000 п.
0000066441 00000 п.
0000067154 00000 п.
0000067867 00000 п.
0000068565 00000 п.
0000069264 00000 п.
0000069964 00000 н.
0000072778 00000 п.
0000074518 00000 п.
0000075834 00000 п.
0000076550 00000 п.
0000077264 00000 п.
0000077980 00000 п.
0000078693 00000 п.
0000079406 00000 п.
0000080097 00000 п.
0000080783 00000 п.
0000081452 00000 п.
0000082635 00000 п.
0000083517 00000 п.
0000084214 00000 п.
0000084927 00000 п.
0000085721 00000 п.
0000087491 00000 п.
0000088524 00000 п.
0000089656 00000 п.
0000090691 00000 п.
0000092468 00000 п.
0000093153 00000 п.
0000093880 00000 п.
0000094572 00000 п.
0000095268 00000 п.
0000095960 00000 п.
0000096646 00000 п.
0000097332 00000 п.
0000098017 00000 п.
0000099713 00000 п.
0000100411 00000 н.
0000101952 00000 н.
0000103464 00000 н.
0000104132 00000 н.
0000105173 00000 п.
0000105858 00000 п.
0000106554 00000 н.
0000107251 00000 н.
0000107936 00000 п.
0000108604 00000 п.
0000109273 00000 н.
0000109949 00000 н.
0000110641 00000 п.
0000111338 00000 н.
0000112036 00000 н.
трейлер
] >>
startxref
0
%% EOF

7846 0 obj> поток
xX {PTv ݳ W] T 51i
JA5 * (jL
@SQDk_i; -6m

Руководство по настройке DWDM Cisco ONS 15454, выпуск 9.8.x — Глава 11, Предоставление карт транспондеров и мультиплексоров [Мультисервисные транспортные платформы Cisco ONS серии 15454]

Предоставление карт транспондера и мультиплексора


Примечание Термины «Кольцо с коммутацией однонаправленных путей» и «UPSR» могут встречаться в литературе Cisco. Эти термины не относятся к использованию продуктов Cisco ONS 15xxx в конфигурации кольца с коммутацией однонаправленных путей. Скорее, эти термины, а также «Ячеистая сеть с защитой пути» и «PPMN» в целом относятся к функции защиты пути Cisco, которая может использоваться в любой топологической конфигурации сети.Cisco не рекомендует использовать свою функцию защиты пути в какой-либо конкретной топологической конфигурации сети.

В этой главе описывается транспондер Cisco ONS 15454 (TXP), мультипондер (MXP), GE_XP, 10GE_XP, GE_XPE, 10GE_XPE, ADM-10G, OTU2_XP, 100G-LC-C, 10x10G-LC, CFP-LC, WSE, AR_MXP, AR_XP, и карты AR_XPE, а также связанные с ними подключаемые модули (подключаемые модули малого форм-фактора [модуль SFP, SFP +, XFP, CXP или CFP]). Для получения информации о безопасности карты и соответствии требованиям см.
Соответствие нормативным требованиям и информация о безопасности для продуктов Cisco ONS.


Примечание Если не указано иное, «ONS 15454» относится как к сборкам полок ANSI, так и ETSI.


Примечание Платы, описанные в этой главе, поддерживаются платформами Cisco ONS 15454, Cisco ONS 15454 M6, Cisco ONS 15454 M2, если не указано иное.


Примечание Процедуры и задачи, описанные в этой главе для платформы Cisco ONS 15454, применимы к платформам Cisco ONS 15454 M2 и Cisco ONS 15454 M6, если не указано иное.


Примечание В этой главе «карта 100G-LC-C» относится к карте 15454-M-100G-LC-C. «10x10G-LC» относится к карте 15454-M-10x10G-LC. «CFP-LC» относится к карте 15454-M-CFP-LC.

Темы главы включают:

  • Обзор карты
  • Этикетки безопасности
  • TXP_MR_10G Карта
  • Связанные процедуры для карты TXP_MR_10G
  • TXP_MR_10E Карта
  • Связанные процедуры для карты TXP_MR_10E
  • Карты TXP_MR_10E_C и TXP_MR_10E_L
  • Связанные процедуры для карт TXP_MR_10E_C и TXP_MR_10E_L
  • TXP_MR_2.Карты 5G и TXPP_MR_2.5G
  • Связанные процедуры для карт TXP_MR_2.5G и TXPP_MR_2.5G
  • Карты 40E-TXP-C и 40ME-TXP-C
  • Связанные процедуры для карт 40E-TXP-C и 40ME-TXP-C
  • Карта MXP_2.5G_10G
  • Связанные процедуры для карты MXP_2.5G_10G
  • Карта MXP_2.5G_10E
  • Связанные процедуры для карты MXP_2.5G_10E
  • Карты MXP_2.5G_10E_C и MXP_2.5G_10E_L
  • Связанные процедуры для MXP_2.5G_10E_C и MXP_2.5G_10E_L Карты
  • Карты MXP_MR_2.5G и MXPP_MR_2.5G
  • Связанные процедуры для карт MXP_MR_2.5G и MXPP_MR_2.5G
  • Карты MXP_MR_10DME_C и MXP_MR_10DME_L
  • Связанные процедуры для карт MXP_MR_10DME_C и MXP_MR_10DME_L
  • Карты 40G-MXP-C, 40E-MXP-C и 40ME-MXP-C
  • Связанные процедуры для карт 40G-MXP-C, 40E-MXP-C и 40ME-MXP-C
  • Карты GE_XP, 10GE_XP, GE_XPE и 10GE_XPE
  • Связанные процедуры для карт GE_XP, 10GE_XP, GE_XPE и 10GE_XPE
  • Карта ADM-10G
  • Связанные процедуры для карты ADM-10G
  • Карта OTU2_XP
  • Связанные процедуры для карты OTU2_XP
  • TXP_MR_10EX_C Карта
  • Связанные процедуры для карты TXP_MR_10EX_C
  • MXP_2.5G_10EX_C карта
  • Связанные процедуры для карты MXP_2.5G_10EX_C
  • MXP_MR_10DMEX_C Карта
  • Связанные процедуры для карты MXP_MR_10DMEX_C
  • Карты AR_MXP, AR_XP и AR_XPE
  • Карты 100G-LC-C, 10x10G-LC и CFP-LC
  • Связанные процедуры для карт 100G-LC-C, 10x10G-LC и CFP-LC
  • Карта WSE
  • Связанные процедуры для карты WSE
  • MLSE UT
  • Модули SFP, SFP +, XFP, CXP и CFP

Примечание Cisco ONS 15454 DWDM поддерживает интерфейсы IBM InfiniBand 5G DDR (двойная скорость передачи данных).

11.1 Обзор карты

В разделе обзора карт перечислены карты, описанные в этой главе, и представлена ​​информация о совместимости.


Примечание Каждая карта помечена символом, который соответствует слоту (или слотам) на сборке полки ONS 15454. Затем карты устанавливаются в слоты с такими же символами. Список разъемов и символов см. В разделе «Требования к разъемам для карт» в Руководстве по установке оборудования Cisco ONS 15454.

Плата TXP, MXP, GE_XP, 10GE_XP, GE_XPE, 10GE_XPE, ADM-10G, OTU2_XP, AR_MXP, AR_XP или AR_XPE предназначена для преобразования «серых» сигналов оптического интерфейса клиента в сигналы магистрали, которые работают в «цветном» режиме. диапазон длин волн плотного мультиплексирования с разделением по длине волны (DWDM). Обращенные к клиенту серые оптические сигналы обычно работают на более коротких длинах волн, тогда как цветные оптические сигналы DWDM находятся в более длинноволновом диапазоне (например, 1490 нм = фиолетовый; 1510 нм = синий; 1530 нм = зеленый; 1550 нм = желтый; 1570 нм = оранжевый; 1590 нм = красный; 1610 нм = коричневый).Однако некоторые из более новых PPM, ориентированных на клиентов, работают в цветном регионе. Транспонирование или мультиплексирование — это процесс преобразования сигналов между длинами волн клиента и магистралью.

MXP обычно обрабатывает несколько клиентских сигналов. Он объединяет или мультиплексирует сигналы клиентов с более низкой скоростью и отправляет их через магистральный порт с более высокой скоростью. Аналогичным образом он демультиплексирует оптические сигналы, поступающие по магистрали, и отправляет их на отдельные клиентские порты. TXP преобразует одиночный сигнал клиента в одиночный сигнал магистрали и преобразует одиночный входящий сигнал магистрали в одиночный сигнал клиента.Карты GE_XP, 10GE_XP, GE_XPE и 10GE_XPE могут быть настроены как TXP, как MXP или как переключатели уровня 2.

Все карты TXP и MXP выполняют преобразование оптических сигналов в электрические и оптические (OEO). В результате они не являются оптически прозрачными картами. Причина этого в том, что карты должны работать с проходящими через них сигналами, поэтому необходимо выполнить преобразование OEO.

С другой стороны, режим завершения для всех TXP и MXP, который выполняется на электрическом уровне, можно настроить так, чтобы он был прозрачным.В этом случае ни Линия, ни Секция не завершаются. Платы также могут быть сконфигурированы таким образом, чтобы можно было прерывать служебные данные линии или участка, либо можно было завершить оба.


Примечание Карта MXP_2.5G_10G по своей конструкции, когда она настроена в режиме прозрачного завершения, фактически завершает некоторые из байтов. Подробности см. В Таблице G-19.

11.1.1 Сводка карты

Таблица 11-1
перечисляет и обобщает функции каждого TXP, TXPP, MXP, MXPP, AR_MXP, AR_XP, AR_XPE, GE_XP, 10GE_XP, GE_XPE, 10GE_XPE, 100G-LC-C, 10x10G-LC, CFP-LC, WSE, ADM-10G и Карта OTU2_XP.

Таблица 11-1 Карты транспондера и мультиплексора Cisco ONS 15454

Для дополнительной информации

Карта TXP_MR_10G имеет два набора портов, расположенных на лицевой панели.

См. Раздел «Карта TXP_MR_10G».

Плата TXP_MR_10E имеет два набора портов, расположенных на лицевой панели.

См. Раздел «Карта TXP_MR_10E».

TXP_MR_10E_C и TXP_MR_10E_L

Платы TXP_MR_10E_C и TXP_MR_10E_L имеют два набора портов, расположенных на лицевой панели.

См. Раздел «Карты TXP_MR_10E_C и TXP_MR_10E_L».

Плата TXP_MR_2.5G имеет два набора портов, расположенных на лицевой панели.

Смотрите «TXP_MR_2.Карты 5G и TXPP_MR_2.5G ».

Плата TXPP_MR_2.5G имеет три набора портов, расположенных на лицевой панели.

См. Раздел «Карты TXP_MR_2.5G и TXPP_MR_2.5G».

40E-TXP-C и 40ME-TXP-C

Карты 40E-TXP-C и 40ME-TXP-C имеют два порта, расположенных на лицевой панели.

См. Раздел «Карты 40E-TXP-C и 40ME-TXP-C».

MXP_2.Карта 5G_10G имеет девять наборов портов, расположенных на лицевой панели.

См. Раздел «Карта MXP_2.5G_10G».

Карта MXP_2.5G_10E имеет девять наборов портов, расположенных на лицевой панели.

См. Раздел «Карта MXP_2.5G_10E».

MXP_2.5G_10E_C и
MXP_2.5G_10E_L

Платы MXP_2.5G_10E_C и MXP_2.5G_10E_L имеют девять наборов портов, расположенных на лицевой панели.

См. Раздел «Карты MXP_2.5G_10E_C и MXP_2.5G_10E_L».

Карта MXP_MR_2.5G имеет девять наборов портов, расположенных на лицевой панели.

См. Раздел «Карты MXP_MR_2.5G и MXPP_MR_2.5G».

Карта MXPP_MR_2.5G имеет десять наборов портов, расположенных на лицевой панели.

См. Раздел «Карты MXP_MR_2.5G и MXPP_MR_2.5G».

MXP_MR_10DME_C и MXP_MR_10DME_L

Карты MXP_MR_10DME_C и MXP_MR_10DME_L имеют восемь наборов портов, расположенных на лицевой панели.

См. Раздел «Карты MXP_MR_10DME_C и MXP_MR_10DME_L».

40G-MXP-C
40E-MXP-C
и
40МЕ-MXP-C

Карты 40G-MXP-C, 40E-MXP-C и 40ME-MXP-C имеют пять портов, расположенных на лицевой панели.

См. Раздел «Карты 40G-MXP-C, 40E-MXP-C и 40ME-MXP-C».

AR_MXP, AR_XP и
AR_XPE

Карты AR_MXP, AR_XP и AR_XPE имеют десять портов, расположенных на лицевой панели.

См. Раздел «Карты AR_MXP, AR_XP и AR_XPE».

Карты GE_XP и GE_XPE имеют двадцать клиентских портов Gigabit Ethernet и два магистральных порта 10 Gigabit Ethernet.

См. Раздел «Карты GE_XP, 10GE_XP, GE_XPE и 10GE_XPE».

Карты 10GE_XP и 10GE_XPE имеют два клиентских порта 10 Gigabit Ethernet и два магистральных порта 10 Gigabit Ethernet.

См. Раздел «Карты GE_XP, 10GE_XP, GE_XPE и 10GE_XPE».

Карта 100G-LC-C имеет один порт DWDM и один порт CXP.

См. Раздел «Карта 100G-LC-C».

Карта 10x10G-LC имеет 10-p

Перекрестная таблица с примером | Кросс-таблица и анализ хи-квадрат

Что такое перекрестная таблица?

Вы когда-нибудь смотрели на таблицу питания за упаковкой с закусками? Этот небольшой стол дает вам исчерпывающую разбивку того, как определенная закуска повлияет на ваш общий уровень энергии.Анализ поможет вам принимать обоснованные решения относительно вашей диеты и потребления калорий.

Кросс-табуляция — это статистическая модель мэйнфрейма, которая следует аналогичным принципам. Это помогает вам принимать обоснованные решения относительно вашего исследования, выявляя закономерности, тенденции и корреляцию между параметрами вашего исследования. При проведении исследования необработанные данные обычно могут вызывать затруднения. Они всегда будут указывать на несколько возможных хаотичных результатов. В такой ситуации кросс-таблица помогает вам без сомнений сосредоточиться на единственной теории, вычерчивая тенденции, сравнения и корреляции между взаимоисключающими факторами в рамках вашего исследования.

Например, рассмотрите ваше заявление в колледж. Вы, вероятно, не осознавали этого тогда, но вы мысленно сравнивали факторы, чтобы прийти к осознанному решению относительно колледжей, которые вы хотели бы посещать и которые имели лучший шанс при подаче заявления. Позвольте нам проанализировать ваш процесс принятия решений по одному фактору за раз.

Во-первых, вам нужно было рассмотреть академический фактор: ваши оценки в средней школе, результаты SAT, область, в которой вы хотели специализироваться, и эссе, которое вам нужно будет написать.Во-вторых, идет финансовый фактор, который учитывает стоимость обучения и возможности получения стипендии. Наконец, это будет эмоциональный фактор, который будет учитывать ваше расстояние от дома и то, как далеко находятся университеты, которые рассматривают ваши друзья, поэтому воссоединение не будет проблемой. Другими словами, сопоставление «Академики + Финансы + Эмоции» привело вас к уточненному списку университетов, один из которых является или скоро станет вашей альма-матер.

Перекрестная таблица, также известная как перекрестная таблица или таблица непредвиденных обстоятельств, представляет собой статистический инструмент, используемый для категориальных данных.Категориальные данные включают значения, исключающие друг друга. Данные всегда собираются в числах, но числа не имеют значения, если они что-то не значат. 4,7,9 являются просто числовыми, если не указано иное — например, 4 яблока, 7 бананов и 9 киви.

Исследователи используют перекрестную таблицу, чтобы изучить взаимосвязь в данных, которая не является очевидной. Это весьма полезно при проведении маркетинговых исследований и опросов. Отчет с перекрестной таблицей показывает связь между двумя или более вопросами, заданными в исследовании.

Понимание кросс-таблицы на примере

Cross-tab — популярный выбор для статистического анализа данных. Поскольку это инструмент отчетности / анализа, его можно использовать с любым уровнем данных: порядковым или номинальным. Он обрабатывает все данные как номинальные данные (номинальные данные не измеряются. Они классифицируются). Например, вы можете проанализировать связь между двумя категориальными переменными, такими как возраст и покупка электронных гаджетов.

Здесь задаются два вопроса:

  • Сколько тебе лет?
  • Какой электронный гаджет вы собираетесь купить в ближайшие полгода?

В этом примере вы можете увидеть четкую связь между возрастом и покупкой электронных гаджетов.Неудивительно, но интересно видеть корреляцию между двумя переменными через собранные данные.

При проведении опросов перекрестная таблица позволяет нам глубоко погрузиться в и проанализировать предполагаемые данные, упрощая выявление тенденций и возможностей, не перегружая себя всеми данными, собранными из ответов.

Перекрестная таблица и хи-квадрат

Хи-квадрат или критерий хи-квадрат Пирсона — это любая статистическая гипотеза, которую исследователи используют, чтобы определить, существует ли значительная разница между ожидаемыми частотами и наблюдаемыми частотами в одной или нескольких категориях.

Важным моментом при составлении кросс-таблицы результатов вашего исследования является проверка того, является ли кросс-таблица верным или ложным. Это похоже на сомнения, которые возникают у нас после поступления в университет, когда мы задаемся вопросом, действительно ли это подходит или нет. Чтобы решить эту дилемму, кросс-таблица вычисляется вместе с анализом хи-квадрат, который помогает определить, являются ли переменные исследования независимыми или связанными друг с другом. Если два элемента независимы, табуляция считается несущественной, а исследование — нулевой гипотезой.Поскольку факторы не связаны друг с другом, результаты исследования ненадежны. Напротив, если существует связь между двумя элементами, это подтвердит, что результаты табуляции значительны и на них можно положиться при принятии стратегических решений.

Важным моментом при составлении кросс-таблицы результатов вашего исследования является проверка того, является ли кросс-таблица верным или ложным. Это похоже на сомнения, которые возникают у нас после поступления в университет, когда мы задаемся вопросом, действительно ли это подходит или нет.Чтобы решить эту дилемму, кросс-таблица вычисляется вместе с анализом хи-квадрат, который помогает определить, являются ли переменные исследования независимыми или связанными друг с другом. Если два элемента независимы, табуляция считается несущественной, а исследование — нулевой гипотезой. Поскольку факторы не связаны друг с другом, результаты исследования ненадежны. Напротив, если существует связь между двумя элементами, это подтвердит, что результаты табуляции значительны и на них можно положиться при принятии стратегических решений.

Еще один важный термин, который мы здесь введем, — это гипотеза нуля. Нулевая гипотеза предполагает, что любое различие или важность, которую можно увидеть в наборе данных, случайно. Противоположность нулевой гипотезе называется альтернативной гипотезой.

Применение критерия хи-квадрат к опросам обычно выполняется с помощью вопросов следующих типов:

  • Демография
  • Вопросы по шкале Лайкерта
  • Города
  • Название продукта
  • Даты и номер (при объединении)

Например, нам нужно выяснить, существует ли связь между покупательским поведением при покупке электронных устройств и регионом, в котором они продаются.Данные будут введены как в таблице ниже:

Как упоминалось ранее, тест хи-квадрат помогает определить, связаны ли две дискретные переменные. Если есть связь, распределение одной переменной будет отличаться в зависимости от значения второй переменной. Но если две переменные независимы, распределение первой переменной будет одинаковым для всех значений второй переменной.

Используя перекрестную таблицу и хи-квадрат, мы получаем следующий вывод:

Применение вычисления хи-квадрат к вышеуказанным значениям — хи-квадрат Пирсона = 0.803, значение P = 0,05. Так что это значит? Нам нужно обратить внимание на p-значение. Сравните значение p с вашим альфа-уровнем, который обычно составляет 0,05.

  • Если p-значение меньше или равно альфа-значению, то две переменные связаны.
  • Если p-значение больше альфа-значения, вы делаете вывод, что переменные независимы.

В этом примере статистика хи-квадрат Пирсона равна 0,803 (со значением p 0,05). Итак, с альфа-значением 0.05, делаем вывод, что корреляции нет и она несущественна.

Перекрестная таблица и хи-квадрат

  • Одним из значительных преимуществ использования перекрестных таблиц в обследовании является то, что их легко вычислить и чрезвычайно легко понять. Даже если исследователь не имеет глубоких знаний о концепции, интерпретировать результаты не составит труда.
  • Это устраняет путаницу, поскольку необработанные данные иногда бывает сложно понять и интерпретировать. Даже если есть небольшие наборы данных, вы можете запутаться, если данные не расположены упорядоченным образом.Перекрестная таблица предлагает простой способ корреляции переменных, который помогает минимизировать путаницу, связанную с представлением данных.
  • Из перекрестных таблиц можно получить множество выводов. Как упоминалось в примерах перекрестных таблиц в разделе выше, интерпретировать необработанные данные непросто. Перекрестная таблица отображает корреляцию между переменными, и идеи, которые в противном случае могли бы быть упущены, ясно понимаются. Легко понять идеи даже из сложной формы статистики.
  • Он с легкостью предоставляет квалифицированные или относительные данные по двум или более переменным для нескольких функций.
  • Наиболее важным преимуществом использования перекрестных таблиц для анализа обследования является простота использования любых данных, будь то номинальные, порядковые, интервальные или относительные.

Перекрестная таблица с использованием QuestionPro

1. Войдите в свою учетную запись QuestionPro и выберите опрос, который хотите проанализировать.

2. В разделе «Аналитика» вы найдете параметр «Анализ».Щелкните Cross-Tabulation в разделе Analysis.

3. Выберите вопрос в строке и вопрос в столбце из раскрывающегося списка соответственно.

4. Перекрестная таблица будет создана вместе с анализом хи-квадрат Пирсона

5. После создания отчета вы также можете загрузить отчет.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *