26.06.2024

Понижение напряжения резистором: Как рассчитать и выбрать токоограничивающий резистор для светодиодов

Содержание

Как рассчитать и выбрать токоограничивающий резистор для светодиодов


Автор Aluarius На чтение 9 мин. Просмотров 638 Опубликовано

Расчет резистора для светодиода

Светодиод – прибор, который преобразует проходящий через него ток в световое излучение. Их используют для освещения в прожекторах и лампах, для украшения в гирляндах, в фарах авто. В статье ниже вы узнаете, как правильно подключить светодиод и чем отличаются разные виды соединений. А также, зачем для подключения нужен резистор и как рассчитать, какой резистор вам нужен.

Особенности подключения светодиода

Главная особенность подключения светодиода к блоку питания — маленькое внутреннее сопротивление. То есть, при прямом подключении к сети, сила тока будет слишком высокой и светодиод может сгореть. Подключение кристалла светодиода происходит по медным или золотым нитям. Они выдерживают небольшие скачки тока, но, когда допустимое значение сильно превышается, они перегорают, прекращая питание элемента. Поэтому для их подключения используют резистор, ограничивающий поступление тока, так, чтобы он по номиналу подходил к заявленной у диода характеристике.

Также при подключении ограничителей тока необходимо помнить про соблюдение полярности и подключать отрицательный анод к отрицательному полю, а катод к положительному.

Особенности дешёвых LED

При подборе светодиода на рынке можно найти совершенно разные цены. Чем же отличаются дорогие диоды от дешёвых?
Светодиоды за разную стоимость отличаются не только внешними особенностями, но и техническими характеристиками. У дешёвых светодиодов параметры сильно отличаются друг от друга, в то время, как у дорогих они уменьшаются плавно при изменении тока или напряжения сети. Кроме того, дешёвые аналоги могут служить недолго и свет будет более тусклым или режущим глаза. На что нужно обратить внимание при покупке светодиодной лампы и как ее установить читайте тут.

Можно ли обойтись без резисторов

Если подсоединить светодиоды без резистора, то при небольшом изменении напряжения в сети, ток, подаваемый в диод, изменится в несколько раз. Даже если вы подключили несколько диодов, и они работают без резистора, нет гарантии, что напряжение сети не поднимется выше допустимого. Поэтому, если вы не хотите, чтобы диоды сгорели, нужно либо воспользоваться резистором, ограничивающим поток тока, либо использовать драйвер.

Справка! драйвер — блок питания для светодиодов, в нём стабильно поддерживается определённый ток на выходе. Драйверы часто используют в качестве источника питания для светодиода.

В каких случаях допускается подключение светодиода через резистор

В некоторых случаях подключение светодиодов возможно не через драйвер, а токоограничительный резистор.

  • Если свечение нужно в качестве индикатора, где не имеет значения, насколько ярко будет гореть диод, а важен сам факт свечения.
  • Для проверки работоспособности диодов их подключают через резистор к аккумулятору с высоким напряжением, из-за которого ЛЕД элемент может сломаться. Резистор ограничивает поступающее на диод напряжение и можно проверить его работоспособность без риска поломки деталей.
  • Для определения отрицательного и положительного полей светодиода.
  • При исследовании, как будет работать новый светодиод, используют ограничительные резисторы, чтобы элемент не перегорел при тестировании.

Расчет резистора для светодиода при последовательно-параллельном соединении

Последовательно-параллельно светодиоды соединяют в осветительных приборах с высокой мощностью. Соединение универсально: используется и для постоянного, и для переменного тока.
В таком случае последовательно соединённые цепочки светодиодов соединяют параллельно.

Для успешного соединения в каждой цепочке должно быть одинаковое количество диодов.

Нагрузочный резистор должен быть выбран с учётом того, что во всех параллельных ветках будет одинаковое напряжение. Поэтому для вычисления нужно вычислить только сопротивление одного резистора в любой цепи:
R = (Un*ULED)/ ULED,
где n — число светодиодов на ветке.
Лимит по числу диодов на ветке находится по формуле: n = (U = ULED)/ULED.
После проведения необходимых расчётов можно соединить диоды гибридным способом.

Плюсы гибридного соединения:

  • При выходе из строя одного диода, остальная часть схемы продолжит полноценно работать и не случится перенапряжения.
  • Для работы нужно меньше резисторов, чем в других соединениях.

Вычисление сопротивления при параллельном соединении светодиодов

Параллельное соединение используют, если суммарное соединение диодов, которых нужно подсоединить к источнику питанию, больше, чем напряжение источника. То есть, если при последовательном соединении диодов питания не хватает, и они не работают.
При параллельном соединении несколько веток с диодами параллельно соединяют, на каждой из них установлен свой резистор.

В таком случае во всем устройстве будет одинаково меняться напряжение, а проходящий ток может быть разным на каждой из веток.

Расчёты проводят для каждой отдельно взятой ветки.
Сначала нужно рассчитать сопротивление резистора по закону Ома:
U=I*R,
I — допустимый ток для прибора, значение можно взять из характеристики прибора.
Теперь нужно рассчитать мощность резистора:
P = U2/R.
Можно сократить: P=I*U.

Преимущества параллельного соединения:

  • Если один светодиод перегорит, то другие цепи продолжат работать;
  • Можно добавить больше светодиодов, чем при последовательном;
  • Можно использовать для двуцветного свечения лампочек. При этом цвет диодов меняется при изменении направления тока.

    Если добавить импульсный модулятор к двум параллельно соединенным диодам, можно добиться широкого диапазона изменения цвета.

Недостатки:

  • Увеличение нагрузки на остальные элементы, если один перестанет работать;
  • Нужно много резисторов для соединения.

Пример расчета сопротивления резистора при последовательном подключении

Диоды можно соединять последовательно в цепочку. Для этого нужно анод устройства соединить с катодом другого, и так продолжать цепочку, пока не достигнете нужного размера. Соединение происходит с помощью резистора, который ограничивает ток, поступающий на элементы, чтобы избежать их поломки.
Зная закон Ома, можно найти сопротивление включенного в схему резистора:
R=(U-ULED1+…+ULEDn)/ILED
Где U — напряжение сети;
ULED1– ULEDn — сумма напряжений включенных в цепь светодиодов.
ILED — ток, являющийся оптимальным для светодиодов.
Мощность резистора вычисляется по формуле:
P = I2*R

Лучше всего поставить резистор с мощностью, в два раза превышающую нужное значение, чтобы при перепаде напряжения устройства продолжало исправно работать.

 

Преимущества последовательного соединения:

  • В цепочке один ток;
  • Простое и быстрое соединение;
  • Возможное количество светодиодов ограничено уровнем напряжения;
  • При выходе из строя одного диода, перестаёт работать вся цепочка.

Как подключить светодиод к 220в через резистор

Светодиоды пропускают через себя ток в одном направлении. При переменном напряжении его направление меняется 2 раза за период, то есть в одном случае ток протекает через диод, а в ином — нет. Так как ток протекает в половине случаев, для определения среднего значения тока, который проходит через диод, нужно разделить U пополам.
Соответственно, U = 110В.
Допустим, собственное сопротивление у диода: 1,7 Ом.

Ток, проходящий через диод:
I=U/ ULED
110/1,7=65А.

Высокий ток, пройдя через полупроводник, сожжёт его, поэтому нужно использовать дополнительный прибор с сопротивлением, чтобы он, по принципу рассеивания, уменьшал количество тока, подаваемого на диод.

При высоком токе нельзя использовать параллельное соединение, так как если одна из цепей перестанет работать, значение тока в остальных увеличится и прибор сгорит.

  • Можно использовать дополнительный LED-элемент для блокировки обратного напряжения.
  • Использование встречно-параллельного соединения диодов с резистором:

Для того, чтобы прибор работал исправно, необходимо учитывать, что через все диоды должен проходить один ток, значит нужно подобрать элементы с одинаковыми характеристиками.

После соединения пересчитайте ёмкость конденсатора, потому что на светодиодах должно увеличиться напряжение.

Какой резистор нужен для светодиода на 12 вольт

12-вольтовая система — стандартная в автомобиле. В подключении LED-элемента к 12 вольтовой системе нет ничего сложного. Важно правильно провести расчёты сопротивления диода через токоограничивающий резистор.
Перед началом вычислений надо узнать характеристики имеющихся светодиодов: падение напряжения и требуемый им ток.
Сопротивление резистора рассчитывается по формуле:
R = U/I

  • 1 светодиод
    ULED = 3. 3 Вольт
    ILED = 0,02А
    При таком внутреннем сопротивлении диода, он будет отлично работать в системе, напряжение которой ограничивается значением 3,3 Вольт.
    Возьмём напряжение с запасом, так как скачки бывают до максимального значения 14,5.
    Максимально возможное напряжение отличается от допустимого для исправной работы светящегося элемента на 11,2 Вольта. Значит, перед включением диода, нужно снизить подаваемый ему ток на это значение.

Сперва нужно посчитать сопротивление, необходимое резистору:
R=U/I. R=560 Ом.
Для того, чтобы расчёты были более надёжными, надо вычислить мощность резистора:
P = U * I Мощность — 0,224Вт.
При выборе резистора, необходимо округлять значения в большую сторону и выбирать более мощный вариант.

  • 2 и 3 светодиода
    Рассчитывается аналогичным образом, светодиодное напряжение будет умножаться на количество светящихся элементов
  • От 4 светодиодов
    При подключении больше трёх светодиодов к такой сети не нужен будет резистор, так как напряжение не будет сильно превышать допустимое и светодиоды будут работать исправно.

Резисторы вы можете установить и на положительном, и на отрицательном полюсе, это не имеет значения при использовании.

Теория

Для того, чтобы светодиоды не перегорели, важно правильно рассчитать ограничивающий резистор.

Математический расчёт

Необходимые вычисления можно сделать самостоятельно, при низких значениях вам не потребуется калькулятор. Либо при помощи специальной программы, проводящей подсчёты за вас.
При расчёте сопротивления гасящего резистора нужно знать закон Ома.
R = U-ULED /ILED
U — напряжение сети;

ULED — значение напряжения, оптимального для работы диода
I LED —ток, на который рассчитана работа элемента
Чтобы не произошёл перегрев резистора во время работы, необходимо дополнительно рассчитывать оптимальную мощность для такого напряжения.
P = (U-ULED)*ILED

В этой схеме резистор подключается к катоду светящегося элемента.

Графический расчёт

В большинстве случаев, пользуются математическими вычислениями, но графический способ более наглядный и в каких-то случаях его применять значительно удобнее.

Для построения графика нужно знать характеристики светящегося элемента: ток и напряжение.
Теперь можно узнать сопротивление резистора по графику:

На нём пунктирной линией показано вычисление для элемента, на работу которого нужно 20мА тока. Далее соединяем точку пересечения пунктирной линии с “кривой ЛЕД”, отмеченной голубым цветом, со значением напряжения диода. Линия пересекает шкалу максимального тока, где указано нужное значение.
После этого нужно провести расчёт сопротивления токоограничивающего резистора:
R=ULED/Imax
Его мощность: P=I2*R

Схемы подключений светодиодной ленты можно посмотреть здесь.

Светодиоды стали незаменимой частью нашей жизни, они стоят в качестве индикаторов на бытовой технике, в виде декоративных светодиодных лент и в составе оптопары в промышленности, а также в качестве более экологичного и экономного освещения. В использовании светодиодов нет ничего сложного, главное — не забывать использовать балластный резистор, благодаря которому ток будет ограниченно поступать на светящиеся элементы, и они не сломаются. Теперь вы знаете, как рассчитать нужное сопротивление резистора, разные способы соединения диодов и для чего их используют.

Как понизить напряжение — Мои статьи — Каталог статей

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

P=(14. 7-3.3)*0.02=0.228 Вт

Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.

Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:

где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.

Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:

Пример использования индуктивного сопротивление — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Как понизить и стабилизировать напряжение постоянного тока

Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.

Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.

Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.

Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:

Pпотерь = (Uвх-Uвых)*I

Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.

Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.

Как повысить постоянное напряжение?

Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:

1. Плата на базе микросхемы XL6009

2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.

3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.

4. Плата на базе MT3608

Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.

 

 

 

Как повысить переменное напряжение?

Для корректировки переменного напряжения используют два основных способа:

1. Автотрансформатор;

2. Трансформатор.

Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.

Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.

Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.

Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.

Uвт=Uперв*Kтр

Kтр=N1/N2

Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:

  • Зарядное устройство вашего смартфона;

  • Блок питания ноутбука;

  • Блок питания компьютера.

За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).

 

 

 

В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост и высокоскоростных диодов.

Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.

Достоинства – простота схемы, гальваническая развязка и малые размеры.

Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.

 

Падение напряжения — Voltage drop

Падение напряжения — это уменьшение электрического потенциала на пути тока, протекающего в электрической цепи . Падения напряжения на внутреннем сопротивлении источника, на проводниках , на контактах и на разъемах нежелательны, поскольку часть подаваемой энергии рассеивается. Падение напряжения на электрической нагрузке пропорционально мощности, доступной для преобразования в этой нагрузке в какой-либо другой полезный вид энергии.

Например, электрический обогреватель может иметь сопротивление десять Ом , а провода, которые его питают, могут иметь сопротивление 0,2 Ом, что составляет около 2% от общего сопротивления цепи. Это означает, что примерно 2% подаваемого напряжения теряется в самом проводе. Чрезмерное падение напряжения может привести к неудовлетворительной работе обогревателя и перегреву проводов и соединений.

Национальные и местные электротехнические нормы и правила могут устанавливать рекомендации по максимально допустимому падению напряжения в электропроводке для обеспечения эффективности распределения и правильной работы электрического оборудования. Максимально допустимое падение напряжения варьируется от страны к стране. В электронной конструкции и передаче энергии используются различные методы для компенсации эффекта падения напряжения в длинных цепях или там, где необходимо точно поддерживать уровни напряжения. Самый простой способ уменьшить падение напряжения — увеличить диаметр проводника между источником и нагрузкой, что снизит общее сопротивление. В системах распределения электроэнергии заданное количество мощности может передаваться с меньшим падением напряжения, если используется более высокое напряжение. Более сложные методы используют активные элементы для компенсации чрезмерного падения напряжения.

Падение напряжения в цепях постоянного тока: сопротивление

Рассмотрим постоянного тока цепи с девятью вольт постоянного тока источника; три резистора по 67 Ом , 100 Ом и 470 Ом; и лампочка — все подключены последовательно . Источник постоянного тока, проводники (провода), резисторы и лампочка ( нагрузка ) имеют сопротивление ; все в той или иной степени используют и рассеивают подаваемую энергию. Их физические характеристики определяют, сколько энергии. Например, сопротивление проводника постоянному току зависит от длины, площади поперечного сечения, типа материала и температуры.

Если измерить напряжение между источником постоянного тока и первым резистором (67 Ом), потенциал напряжения на первом резисторе будет немного меньше девяти вольт. Ток проходит по проводнику (проводу) от источника постоянного тока к первому резистору; при этом часть подаваемой энергии «теряется» (недоступна для нагрузки) из-за сопротивления проводника. Падение напряжения существует как в питающем, так и в обратном проводах цепи. Если измеряется падение напряжения на каждом резисторе, результат измерения будет значительным. Это представляет собой энергию, используемую резистором. Чем больше резистор, тем больше энергии используется этим резистором и тем больше падение напряжения на этом резисторе.

Для проверки падения напряжения можно использовать закон Ома . В цепи постоянного тока напряжение равно току, умноженному на сопротивление. V = I R . Кроме того, законы Кирхгофа для цепей гласят, что в любой цепи постоянного тока сумма падений напряжения на каждом компоненте цепи равна напряжению питания.

Падение напряжения в цепях переменного тока: полное сопротивление

В цепях переменного тока противодействие протеканию тока происходит из-за сопротивления, как и в цепях постоянного тока. Однако цепи переменного тока также включают в себя второй вид сопротивления протеканию тока: реактивное сопротивление . Сумма противодействий току от сопротивления и реактивного сопротивления называется импедансом .

Электрический импеданс обычно представлен переменной Z и измеряется в омах на определенной частоте. Электрический импеданс вычисляется как векторная сумма электрического сопротивления , емкостного реактивного сопротивления и индуктивного реактивного сопротивления .

Величина импеданса в цепи переменного тока зависит от частоты переменного тока и магнитной проницаемости электрических проводников и электрически изолированных элементов (включая окружающие элементы), которая зависит от их размера и расстояния.

По аналогии с законом Ома для постоянного тока цепей, электрический импеданс может быть выражена формулой E = I Z . Таким образом, падение напряжения в цепи переменного тока является произведением силы тока и полного сопротивления цепи.

Смотрите также

Ссылки

  • Электротехнические принципы для электротехники (Джим Дженнессон) 5-е издание

внешние ссылки

<img src=»https://en.wikipedia.org//en.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1×1″ alt=»» title=»»>

Как повысить силу тока не изменяя напряжения: как понизить вольтаж?

Как повысить силу тока в генераторе

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Это интересно: Режимы работы электродвигателей

Сопротивление проводников. Удельное сопротивление

Закон Ома является самым главным в электротехнике. Именно поэтому электрики говорят: «- Кто не знает Закон Ома, пусть сидит дома». Согласно этому закону ток прямо пропорционален напряжению и обратно пропорционален сопротивлению ( I = U / R ), где R является коэффициентом, которое связывает напряжение и силу тока. Единица измерения напряжения – Вольт, сопротивления – Ом, силы тока – Ампер.
Для того, чтобы показать, как работает Закон Ома, разберем простую электрическую цепь. Цепью является резистор, он же – нагрузка. Для регистрации на нем напряжения используется вольтметр. Для тока нагрузки – амперметр. При замыкании ключа ток идет через нагрузку. Смотрим, насколько соблюдается Закон Ома. Ток в цепи равен: напряжение цепи 2 Вольта и сопротивление цепи 2 Ома ( I = 2 В / 2 Ом =1 А). Амперметр столько и показывает. Резистор является нагрузкой, сопротивлением 2 Ома. Когда замыкаем ключ S1, ток течет через нагрузку. С помощью амперметра измеряем ток цепи. С помощью вольтметра – напряжение на зажимах нагрузки. Ток в цепи равен: 2 Вольта / 2 Ом = 1 А. Как видно это соблюдается.

Теперь разберемся, что нужно сделать, чтобы поднять силу тока в цепи. Для начала увеличиваем напряжение. Сделаем батарею не 2 В, а 12 В. Вольтметр будет показывать 12 В. Что будет показывать амперметр? 12 В/ 2 Ом = 6 А. То есть, повысив напряжение на нагрузке в 6 раз, получили повышение силы тока в 6 раз.

Рассмотрим еще один способ, как поднять ток в цепи. Можно уменьшить сопротивление – вместо нагрузки 2 Ом, возьмем 1 Ом. Что получаем: 2 Вольта / 1 Ом = 2 А. То есть, уменьшив сопротивление нагрузки в 2 раза, увеличили ток в 2 раза.
Для того, чтобы легко запомнить формулу Закона Ома придумали треугольник Ома:
Как можно по этому треугольнику определять ток? I = U / R. Все выглядит достаточно наглядно. С помощью треугольника также можно написать производные от Закона Ома формулы: R = U / I; U = I * R. Главное запомнить, что напряжение находится в вершине треугольника.

В 18 веке, когда был открыт закон, атомная физика находилась в зачаточном состоянии. Поэтому Георг Ом считал, что проводник представляет собой что-то, похожее на трубу, в которой течет жидкость. Только жидкость в виде электротока.
При этом он обнаружил закономерность, что сопротивление проводника становится значительнее при увеличении его длины и меньше при увеличении диаметра. Исходя из этого, Георг Ом вывел формулу: R = p *l / S, где p – это некоторый коэффициент, умноженный на длину проводника и деленный на площадь сечения. Этот коэффициент был назван удельным сопротивлением, характеризующим способность создавать препятствие протеканию эл.тока, и зависит из какого материала изготовлен проводник. Причем, чем больше удельное сопротивление, тем больше сопротивление проводника. Чтобы увеличить сопротивление необходимо увеличить длину проводника, либо уменьшить его диаметр, либо выбрать материал с большим значением данного параметра. В частности, для меди удельное сопротивление составляет 0,017 ( Ом * мм2 / м ).

Как повысить силу тока в цепи

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств. . Рассмотрим, как повысить силу тока с помощью простых приборов

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

Вариант 1.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Также читают — как действует электрический ток на организм человека.

Вариант 2.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

5 Ответы


0 голосов

Меняйте проводку, алюминий на медь, квадратов этак на 8 с учетом и другой нагрузки (чайник, стиральная машина и т. д. ) , не меньше и будет вам счастье. Скруток не делать, соединения через колодки или пайка, или сварка ( лучше всего) . Стабилизатор не поможет.

4 годов назад
от
ац


0 голосов

Хрен что понял. Что за внешний блок кондера (на улице который висит? ) . И что это за чудо стабилизатор на 10кВ.
Из физики сила тока это мощность 4кВт деленная на напряжение (в сети 220 вольт) следовательно 4000:220=18, 2 Ампера Округлим, итого 18 ампер сила тока вашего кондера. Хотите увеличить силу тока покупайте боле мощьный кондей, либо понижайте напряжение питающей сети : )
Скажите внешний блок кондея сам отключается, потом сам включается или как?
напряжение В-вольт
мощьность Вт- ватт
сила тока А- ампер
Возможно стабилизатор на 220 вольт до нагрузки 10кВатт.
Может у вас кондей какой нибудь «левой» фирмы, надо было отзывы на приобретаемый товар перед покупкой в интернете почитать. Вызывайте представителя фирмы, пусть он на месте посмотрит, определит в чем проблема, устранит или даст рекомендации по устранению. Вдруг у вас что то с питающей сетью, хотя через стабилизатор вы пробывали. В любом случае пусть посмотрит специалист. И в интернете поищите может найдете, что.

4 годов назад
от
Ирина Ходакова


0 голосов

Пусть они возвращают деньги. Грубо говоря, Вы заказали одно, а работает по-другому. Если бы это зависело от сети, инженеры фирмы обязаны были бы вас предупредить перед установкой. Да и действительно, это бред. Сейчас даже в деревнях, где свет есть, проблем с отдачей таких токов не бывает.

4 годов назад
от
Любовь Свиридова


0 голосов

Требуйте полного возврата денег и демонтажа оборудования. Закон на вашей стороне. Закажите новый кондер за эти деньги в другой нормальной организации, и все будет работать! ) Про амперы — это бред! Сила тока в сети ограничивается только предохранителями после вашего счетчика.

4 годов назад
от
Сания Габзалилова


0 голосов

Вам нужно проверить теряет ли сеть напряжение при подключении кондиционера (Безо всякого стабилизатора и другой приблуды) . Измерьте напряжение в сети при подключенном кондиционере, когда он выведен на максимальную мощность или близкую к ней. Мерять надо как можно ближе к розетке, куда включен кондиционер. Напряжение не должно упасть меньше 200В. Если упадет, значит у сети не хватает мощности (как вы говорите «нехватает апмеров») . Нехватка мощности может быть обусловлена плохим качеством проводки. Иначе дело не в сети.
Да, сразу скажу, что ни стабилизатор ни трансформатор не являеьтся волшебной палочкой, если сеть проседает даже без стабилизатора, то при подключении оного она просядет еще больше.
Если падает, значит у вас просто хреновая проводка, вот и весь секрет. Совет? Если вся проводка старая, есть смысл е полностью заменить (если она даже 4кВт не держит то это очень плохо) . Можно протянуть провод достаточного сечения (2, 5 — 4кв мм по меди) непосредственно от счетчика (щитка) . Можете проверить все скрутки и соединения на плотность затяжки. Проверьте автоматы (дешевые подгорают) . После всех работ нужно провести контроль напряжения снова.
Падение напряжения может быть также обусловлено хреновым контактом на вводе (до щитка/счетчика) . Тут надо тоже мерять под нагрузкой и делать выводы.
Вобще говоря, если проводке больше 20 лет то лучше всего е менять, иначе проблемы вас не отпустят. И если вам самим это все сложно делать, пригласите толкового электрика, чтоб все осмотрел и дал советы.
Да, в цепи не должно стоять никаких китайских удлинителей с дохленькими проводами и подобной лабудой.

4 годов назад
от
Сергей Иванов

Это интересно: Как сделать цветомузыку на диодах

Как повысить силу тока в зарядном устройстве

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству

Вот и все — остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Проводники

Рассмотрим, какие бывают проводники. На сегодняшний день самым распространенным является проводник из меди. Из-за низкого удельного сопротивления и большой устойчивости к окислению, при этом довольно низкой ломкости, этот проводник все больше и больше находит применение в электрике. Постепенно медный проводник вытесняет алюминиевый. Медь применяют при производстве провода (жил в кабелях) и при изготовлении электротехнических изделий.

Вторым по применению можно назвать алюминий. Он часто используется в старой проводке, на смену которой приходит медь. Также применяется при производстве проводов и изготовлении электротехнических изделий.
Следующий материал – это железо. Оно обладает удельным сопротивлением гораздо больше, чем медь и алюминий (в 6 раз больше, чем у меди и в 4 раза выше, чем у алюминия). Поэтому, при производстве проводов, как правило, не применяется. Зато применяется при изготовлении щитов, шин, которые благодаря большому сечению обладают низким сопротивлением. Также как крепежное изделие.

Золото в электрике не применяется, так как оно достаточно дорогое. Благодаря низкому значению удельного сопротивления и большой защиты от окисления применяется в космических технологиях.

Латунь в электрике не применяется.

Олово и свинец обычно применяются в сплаве в качестве припоя. Как проводники, для изготовления каких-либо приборов, не применяются.

Серебро чаще всего применяется в военной технике высокочастотных приборов. В электрике применяется редко.

Вольфрам применяется в лампах накаливания. Благодаря тому, что он не разрушается при высоких температурах, его используют в качестве нитей накаливания для ламп.

>Уголь, графит применяются в электрических щетках в электродвигателях.
Проводники применяются с целью пропускать через себя силу тока. При этом ток совершает полезную работу.

Как повысить силу тока в блоке питания

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Ситуация №1.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

Узнайте больше — как проверить транзистор мультиметром на исправность.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Ситуация №2.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Что такое напряжение, как понизить и повысить напряжение

Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.

Определение физической величины

Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.

Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:

U=Ф1-Ф2

Если выразить через работу, тогда:

U=A/q,

где A — работа, q — заряд.

Измерение напряжения

Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.

Вывод:

Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.

На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.

Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.

Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».

А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.

Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.

Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.

Что делать если напряжение не подходит для питания нагрузки

Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

P=(14.7-3.3)*0.02=0.228 Вт

Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.

Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:

где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.

Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:

Пример использования индуктивного сопротивление — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Как понизить и стабилизировать напряжение постоянного тока

Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.

Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.

Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.

Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:

Pпотерь = (Uвх-Uвых)*I

Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.

Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.

Как повысить постоянное напряжение?

Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:

1. Плата на базе микросхемы XL6009

2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.

3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.

4. Плата на базе MT3608

Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.

Как повысить переменное напряжение?

Для корректировки переменного напряжения используют два основных способа:

1. Автотрансформатор;

2. Трансформатор.

Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.

Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.

Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.

Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.

Uвт=Uперв*Kтр

Kтр=N1/N2

Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:

  • Зарядное устройство вашего смартфона;

  • Блок питания ноутбука;

  • Блок питания компьютера.

За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).

В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.

Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.

Достоинства – простота схемы, гальваническая развязка и малые размеры.

Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.

Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.

Заключение

Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.

Алексей Бартош

Неисправности из-за повышенного и пониженного напряжения — Granite Devices Knowledge Wiki

Отказ привода из-за колебаний напряжения в шине постоянного тока высокого напряжения обычно возникает в сервосистемах. Эти сбои возникают, когда привод измеряет напряжение питания шины постоянного тока высокого напряжения, выходящее за пределы диапазона, определенного параметрами FOV (Порог сбоя пониженного напряжения) и Порог сбоя повышенного напряжения (FOV). Отклонение напряжения может быть невозможно заметить с помощью мультиметра, поскольку длина этих скачков напряжения может составлять миллисекунды.

Сервопривод

, прикрепленный к двигателю, может действовать двумя способами: энергоснабжение и потребление энергии. Поведение потребителя энергии происходит во время замедления и во время быстрого изменения направления вращения, и это вызывает протекание тока от двигателя к конденсаторам источника питания. Если генерируемая энергия нигде не поглощается, напряжение конденсаторов высоковольтной шины постоянного тока поднимется выше порога перенапряжения (FOV срабатывания защиты от перенапряжения) и вызовет ошибку перенапряжения, которую можно устранить программно. Сбои из-за перенапряжения, вызванные возвращенной энергией от двигателя, можно устранить с помощью тормозного резистора и дополнительной дополнительной емкости в шине постоянного тока высокого напряжения.

Сценарии, в которых возвращенная энергия вызывает повышение напряжения на шине постоянного тока ВН:

  • Снижение скорости двигателя, когда в механическом движении сохраняется значительное количество энергии (вращающаяся инерция или движущаяся масса). Обычно это происходит со шпинделями и линейными осями.
  • Внезапное изменение уставки крутящего момента. Это может вызвать скачок напряжения, даже когда двигатель стоит на месте. Обычно это происходит в приложениях управления крутящим моментом с широким диапазоном частот (таких как система обратной связи по усилию (FFB)).Эти выбросы очень короткие, и добавленный конденсатор к шине постоянного тока высокого напряжения и / или рекуперативный резистор с низким сопротивлением могут обеспечить решение.
  • Генерация напряжения при замедлении двигателя (ток двигателя отрицательный, ток подается на шину постоянного тока высокого напряжения, вызывая повышение на 40 В постоянного тока). Вверху: команда крутящего момента двигателя, в центре: скорость, внизу: напряжение шины постоянного тока ВН.

  • Генерация напряжения при замедлении двигателя (ток двигателя отрицательный, ток подается на шину постоянного тока ВН).Однако в этом случае привод оснащен тормозным резистором и жестко настроенным параметром FOV Порог сбоя перенапряжения, который предотвращает значительное повышение напряжения (повышение только на 5 В постоянного тока).

  • Пример ускорения двигателя (ток двигателя положительный, питание поступает от шины постоянного тока высокого напряжения, что вызывает временное падение напряжения). Выпрямленные пульсации переменного тока в сети 50 Гц легко увидеть на графике напряжения.

Размер тормозного резистора [править | править источник]

Тормозной резистор 250 Вт, 82 Ом, подходящий для привода с аргоном и достаточный для больших машин Необходимое значение тормозного резистора можно рассчитать по формуле:

$ R_ {regen} = \ frac {U_ {DCBusVoltage}} {I_ {PeakMotorCurrent}} $ щелкните, чтобы увеличить уравнения

И.е. если напряжение питания составляет 48 В постоянного тока, а пиковый ток составляет 10 А, тогда может потребоваться резистор 4,8 Ом, чтобы потреблять весь ток, возвращающийся от двигателя. Однако в большинстве практических случаев ток рекуперации меньше пикового тока двигателя, что позволяет использовать более высокое сопротивление, тем самым снижая риск перегрузки переключателя MOSFET, работающего с резистором. Рекомендуется сначала поэкспериментировать с более высокими значениями резисторов и постепенно переходить к более низким сопротивлениям, если проблема не исчезнет.

Мощность резистора [править | править источник]

Резисторы

обычно имеют два свойства: сопротивление и показатель рассеиваемой мощности.Сопротивление, которое мы определили в предыдущей главе, оставляет возможность определять силу. Определить надлежащую номинальную мощность не так просто, поскольку оценить количество возвращенной энергии сложно без практических экспериментов (т.е.попробуйте один резистор и следите за его температурой). Здесь приводится только приблизительное руководство по началу работы.

Малые станки, такие как настольные обрабатывающие инструменты и легкие механические оси
0-50 Вт (0 Вт = резистор может не понадобиться)
Станки среднего размера, такие как чугунные станки
50-200 Вт
Большие и тяжелые машины (> кВт мощности двигателя)
> 200 Вт
Системы обратной связи по усилию
10-50 Вт, в этих системах энергия в основном поступает от индуктивности двигателя, а не от инерции.

Наиболее подходящие типы резисторов — те, которые могут выдерживать высокую пиковую мощность без повреждений.Это обычные силовые резисторы с проволочной обмоткой, которые обычно могут выдерживать в ~ 10 раз больше мощности за короткие периоды, чем их фактические номиналы.

Если резистор постоянно нагревается, даже когда машина не движется, это означает, что предел отказа привода из-за перенапряжения Порог неисправности из-за перенапряжения FOV установлен слишком низко по сравнению с напряжением шины постоянного тока высокого напряжения (привод думает, что сжигает регенеративную энергию, но это действительно так подаваемая мощность горения). Попробуйте увеличить значение FOV или уменьшить напряжение питания до тех пор, пока нагрев не прекратится, а резистор не останется холодным, когда двигатели не работают.

Пониженное напряжение возникает из-за падения напряжения питания во время скачков напряжения. Самое простое решение — установить параметр пониженного напряжения [FUV] на более низкое значение и использовать источник питания, который не отключается и не падает почти до нуля при скачках напряжения. Для очень коротких скачков тока (диапазон миллисекунд) решение может быть добавлено к шине постоянного тока высокого напряжения.

Использование дополнительного конденсатора в шине постоянного тока высокого напряжения [править | править источник]

Переменные, используемые в уравнениях [править | править источник]

  • $ t_ {duration} $ = время в секундах, в течение которого конденсатор должен помочь при максимальном скачке тока
  • $ L_ {MotorInductance} $ = индуктивность катушки двигателя в Генри (используемое значение индуктивности катушки ML / 1000)
  • $ I_ {PeakMotorCurrent} $ = пиковый ток двигателя в амперах (используйте значение ограничения пикового тока MMC / 1000)
  • $ U_ {MaxVoltageChange} $ = максимальное изменение напряжения на шине постоянного тока высокого напряжения во время этого скачка / пика тока.Т.е. если привод настроен на неисправность при 56 В и напряжение питания 48 В постоянного тока, тогда следует использовать 56-48 В = 8 В.
  • $ scaler $ = значение, выбранное пользователем от 0,1 до 1,0. 1.0 для наихудшего случая, когда мы предполагаем мгновенное реверсирование крутящего момента (редко), и более низкие значения могут использоваться с более медленным изменением направления крутящего момента.
Привод допускает временное напряжение на несколько вольт выше порогового значения перенапряжения FOV перед отказом. В IONI это напряжение около 4 вольт. Поэтому, когда FOV установлено на 52 В, тогда привод фактически отказывает в 56 В

Метод, основанный на продолжительности выброса [править | править источник]

При коротких скачках / скачках тока конденсатор, добавленный к шине постоянного тока высокого напряжения, может обеспечить решение для фильтрации скачков.Размер конденсатора можно определить по формуле:

$ C_ {filter} = t_ {duration} \ frac {I_ {PeakMotorCurrent}} {U_ {MaxVoltageChange}} $ щелкните, чтобы увеличить уравнения

Т. 2 $ щелкните, чтобы увеличить уравнения

И.2 = 0,01F = 10000 мкФ $.

Сохраняя практичность [править | править источник]

Задание низкого значения при максимальном изменении напряжения значительно увеличит емкость конденсатора и может стать непрактичным. Т.е. если напряжение питания составляет 48 В, а максимальное напряжение составляет 56 В, максимальное изменение напряжения будет всего 8 В. При уменьшении напряжения питания на несколько вольт, скажем 44 В, допустимое изменение напряжения становится равным 12 В, что дает гораздо меньшую требуемую емкость (в приведенном выше примере метода на основе индуктивности это изменение составит 2.Разница в 2 раза).

При работе привода вблизи максимального предела напряжения питания могут возникнуть высокие требования к предотвращению перенапряжения. Иногда может быть проще немного снизить напряжение питания, чтобы получить больше места для увеличения напряжения. Многие импульсные источники питания имеют подстроечный резистор, позволяющий регулировать напряжение вверх / вниз на несколько вольт.

Ни в коем случае информация о продукте или ее части не должны рассматриваться как гарантия условий или характеристик.Информация о продукте или любая ее часть также не может рассматриваться как гарантия любого рода. Автор не принимает на себя никаких обязательств в отношении Информации о продукте или любого ее использования, а также не освобождает вас от ответственности или не несет ответственности за любые претензии третьих лиц в отношении такой информации или любого ее использования.

Поскольку содержимое этой Wiki может редактироваться сообществом пользователей, Granite Devices Oy или ее аффилированные лица не несут никакой ответственности за содержание этой Wiki.Используйте информацию на свой страх и риск. Однако сотрудники Granite Devices стараются проверять все изменения, внесенные в эту Wiki, и обеспечивать достоверность информации.

Без письменного согласия Продукты или Интеллектуальная собственность Granite Devices не должны использоваться в ситуациях или установках, где живые существа, материальная собственность или нематериальная собственность могут быть повреждены в результате работы, функций или сбоев Продукта. Продукты можно использовать только таким образом, чтобы избежать возникновения таких опасностей, как движущиеся части, поражение электрическим током, лазерное излучение или пожар, даже если содержание этой Wiki предполагает иное.

Регенеративный резистор

— Granite Devices Knowledge Wiki

Регенеративный резистор 250 Вт, 82 Ом, подходящий для привода с аргоном Регенеративные резисторы обычно входят в состав сервосистем для поглощения энергии, возвращаемой при замедлении или торможении сервооси.

Сервопривод с двигателем может действовать двумя способами: источник энергии и генератор энергии. Поведение генератора возникает во время замедления, и это вызывает протекание тока от двигателя к конденсаторам источника питания. Если эта генерируемая энергия нигде не поглощается, напряжение конденсаторов поднимется выше порога перенапряжения и вызовет сбой перенапряжения, который может быть сброшен программно.

В большинстве случаев тормозной резистор не требуется. Резистор необходим в тех случаях, когда быстро движущийся двигатель с высокой инерционной нагрузкой быстро останавливается, вызывая преобразование кинетической энергии в электрический ток, который должен рассеиваться резистором. Эксперименты без резистора безопасны, поскольку защита привода от перенапряжения предотвратит любые повреждения. Если в преобразователе частоты возникает ошибка перенапряжения во время замедления, попробуйте установить более высокое значение FOV для порога ошибки перенапряжения или добавьте тормозной резистор.

Сценарии, в которых возвращенная энергия вызывает повышение напряжения на шине постоянного тока ВН:

  • Снижение скорости двигателя, когда в механическом движении сохраняется значительное количество энергии (вращающаяся инерция или движущаяся масса). Обычно это происходит со шпинделями и линейными осями.
  • Внезапное изменение уставки крутящего момента. Это может вызвать скачок напряжения, даже когда двигатель стоит на месте. Обычно это происходит в приложениях управления крутящим моментом с широким диапазоном частот (таких как система обратной связи по усилию (FFB)).Эти выбросы очень короткие, и добавленный конденсатор к шине постоянного тока высокого напряжения и / или рекуперативный резистор с низким сопротивлением могут обеспечить решение.
  • Генерация напряжения при замедлении двигателя (ток двигателя отрицательный, ток подается на шину постоянного тока высокого напряжения, вызывая повышение на 40 В постоянного тока).

  • Генерация напряжения при замедлении двигателя (ток двигателя отрицательный, ток подается на шину постоянного тока ВН). Однако в этом случае привод оснащен тормозным резистором и жестко настроенным параметром FOV Порог сбоя перенапряжения, который предотвращает значительное повышение напряжения (повышение только на 5 В постоянного тока).

  • Пример ускорения двигателя (ток двигателя положительный, питание поступает от шины постоянного тока высокого напряжения, что вызывает временное падение напряжения). Выпрямленные пульсации переменного тока в сети 50 Гц легко увидеть на графике напряжения.

Ни в коем случае информация о продукте или ее части не должны рассматриваться как гарантия условий или характеристик. Информация о продукте или любая ее часть также не может рассматриваться как гарантия любого рода.Автор не принимает на себя никаких обязательств в отношении Информации о продукте или любого ее использования, а также не освобождает вас от ответственности или не несет ответственности за любые претензии третьих лиц в отношении такой информации или любого ее использования.

Поскольку содержимое этой Wiki может редактироваться сообществом пользователей, Granite Devices Oy или ее аффилированные лица не несут никакой ответственности за содержание этой Wiki. Используйте информацию на свой страх и риск. Однако сотрудники Granite Devices стараются проверять все изменения, внесенные в эту Wiki, и обеспечивать достоверность информации.

Без письменного согласия Продукты или Интеллектуальная собственность Granite Devices не должны использоваться в ситуациях или установках, где живые существа, материальная собственность или нематериальная собственность могут быть повреждены в результате работы, функций или сбоев Продукта. Продукты можно использовать только таким образом, чтобы избежать возникновения таких опасностей, как движущиеся части, поражение электрическим током, лазерное излучение или пожар, даже если содержание этой Wiki предполагает иное.

Отзывы о выключателе пониженного напряжения 12 в

— интернет-магазины и отзывы на выключатель пониженного напряжения 12 в на AliExpress

Отличные новости !!! Вы находитесь в нужном месте для выключателя минимального напряжения 12В.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший выключатель пониженного напряжения на 12 В должен стать одним из самых востребованных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили переключатель пониженного напряжения 12 В на AliExpress.С самыми низкими ценами в Интернете, дешевыми тарифами на доставку и возможностью получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в выключателе минимального напряжения на 12 В и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести switch undervoltage 12v по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

Мониторинг однофазного (В) напряжения: Пониженное напряжение Перенапряжение Оконный режим (повышенное напряжение + пониженное напряжение) Выбираемая память неисправностей напряжения

Трехфазное реле контроля CM-PFE

Техническое описание Трехфазное реле контроля CM-PFE CM-PFE — это трехфазное контрольное реле, которое контролирует фазовый параметр, последовательность фаз и обрыв фазы в трехфазной сети.2CDC 251005 S0012 Характеристики

Подробнее

Миниатюрные промышленные реле RY2

6 RY2 Реле общего назначения Для вставных розеток, монтаж на рейку 35 мм в соотв. согласно PN-EN 60715 или на панели Плоские вставные соединители — faston x 0,5 мм Признания, сертификаты, директивы: RoHS,

Подробнее

Термисторная защита двигателя

Термисторная защита двигателя Серия CM-E Термисторная защита двигателя Термисторная защита двигателя Реле защиты двигателя Преимущества и преимущества Таблица выбора Принцип действия и области применения термистора

Подробнее

Трехфазный двунаправленный счетчик энергии

Технический паспорт www.sbc-support.com Трехфазный двунаправленный счетчик энергии с импульсным выходом S0 Двунаправленный счетчик энергии с интерфейсом S0. Интерфейс S0 — это аппаратный интерфейс для передачи измеренных

Подробнее

УСТРОЙСТВА ЗАЩИТЫ ОТ НАПРЯЖЕНИЯ

УСТРОЙСТВА ЗАЩИТЫ ОТ НАПРЯЖЕНИЯ 1. ВВЕДЕНИЕ В целях обеспечения безопасности людей, защиты оборудования и, в определенной степени, бесперебойного снабжения, координация изоляции направлена ​​на снижение вероятности

Подробнее

Легкий многофункциональный сейф

Электронные пускатели двигателей EMS www.eaton.eu Easy Multifunctional Safe Многогранная производительность EMS при толщине всего 0 мм Продукты серии Eaton Moeller всегда воплощали в себе качество и надежность в машине

Подробнее

Модуль резервирования QUINT-DIODE / 40

Модуль резервирования QUT DIODE обеспечивает: 00% развязку параллельно подключенных источников питания Может быть установлен во взрывоопасных зонах Поддерживаются токи нагрузки до 60 А Простая сборка путем защелкивания

Подробнее

Характеристики.Картина. Характеристики

Тип: для измерения уровня Номер для заказа: см. Таблицу 1 / Страница 4 Характеристики Изображение Двухпроводная система Пьезорезистивный измерительный элемент Выходной сигнал 4-20 мА Погрешность соответствия ± 0,5% полной шкалы или стандартное измерение DIN

Подробнее

Ручной пускатель двигателя MS116

Техническое описание Ручной пускатель двигателя MS116 Ручной пускатель двигателя представляет собой электромеханическое устройство для защиты двигателя и цепи.Эти устройства предлагают средства местного отключения двигателя, ручное управление ВКЛ / ВЫКЛ и

Подробнее

Измеритель мощности серии 700

Блоки контроля мощности PowerLogic Power Meter Series 700 Технический паспорт 2007 Функции и характеристики E90463 PowerLogic Power Meter Series 700 предлагает все необходимые измерительные возможности

Подробнее

Модули цифрового ввода

8 172 TX-I / O Модули дискретного ввода TXM1.8D TXM1.16D Две полностью совместимые версии: TXM1.8D: 8 входов, каждый с трехцветным светодиодом (зеленый, желтый или красный) TXM1.16D: Как TXM1.8X, но 16 входов, каждый с

Подробнее

Реле измерения тока и напряжения

Реле измерения тока и напряжения RXIK 1, RXEEB 1 и Страница 1 Выпущено в июне 1999 г. Изменено с июля 1998 г. Данные могут быть изменены без предварительного уведомления RXIK 1 RXEEB 1 (SE980082) (SE980081) (SE970869) Функции Применение

Подробнее

MOSFET GATE DRIVER Обнаружение пониженного напряжения

значение плавающего напряжения питания

Плавающая точка — это клемма Vs.Источником питания для драйвера верхнего плеча является конденсатор начальной загрузки, установленный между Vb и Vs. Это напряжение плавающее, то есть его опорная точка, Vs перемещается по отношению к COM. Это происходит, когда включается верхний полевой МОП-транзистор, которым вы управляете; его сток соединен с положительной шиной питания, а когда он включается, его исток переходит к этой шине питания, поэтому Vs должен следовать за истоком полевого МОП-транзистора, а Vb будет выше, чем Vs на (Vb-Vs) вольт.

Имеются две цепи пониженного напряжения. Верхний блок UV DETECT относится к Vs, а другой — к COM.Причина в том, что вы управляете одним MOSFET относительно Vs, а другой — с COM, поэтому вам необходимо убедиться, что напряжения возбуждения относительно ЭТИх точек являются правильными, поскольку источники MOSFET подключены к этим точкам и ворота должны быть более положительными, чем эти точки.

Теперь верхний драйвер можно рассматривать отдельно с питанием от повышающего конденсатора, подключенного между Vb и Vs. Тогда Vs может быть любым потенциалом по отношению к COM. Проблема в том, что сигнал вашего привода относится к COM, так как же сказать этому драйверу, чтобы он включил полевой МОП-транзистор? В них используются два резистора, подключенные к Vb, в качестве резисторов стока для двух полевых МОП-транзисторов, источники которых подключены к COM.Поскольку источники имеют потенциал COM, они могут управляться сигналом, относящимся к COM.
Ток стока этих полевых МОП-транзисторов будет создавать напряжение на этих резисторах. Предположим, ради аргумента, что напряжения, возникающие на двух резисторах, равны (Vb-Vs) вольт. Тогда нижняя часть этих резисторов будет колебаться между Vb и Vs (относительно Vs). Что касается верхнего драйвера, то это все, что ему нужно для работы, два напряжения варьируются от Vs до Vb. Для этого драйвера Vs — это «земля», а его управляющие напряжения относятся к этой «земле».

Попробуйте смоделировать или даже создать макет простой схемы с биполярным транзистором. Измерьте напряжение на R2, оно всегда будет постоянным, но по отношению к Vb, независимо от того, как вы регулируете V2 (в определенных пределах; эта схема предназначена только для иллюстрации). В исходной схеме, поскольку Vb-Vs является постоянным (у вас есть конденсатор между этими выводами), можно также сказать, что напряжение относится к Vs.
Думайте о конденсаторе между Vb и Vs как о батарее.

Цепь, питаемая между Vb и Vs, содержит триггер и фактический драйвер, свой собственный УФ-блок и т. Д., но теперь Vs может быть на сотни вольт выше COM. Триггер R-S необходим, потому что полевые МОП-транзисторы рассеяли бы слишком много энергии, если бы они постоянно проводили ток, поэтому они просто пульсируют токи и используют триггер для «запоминания» последней команды и включения или выключения внешнего полевого МОП-транзистора.

В показанной схеме, если вы подключаете / отключаете V1, вы также будете генерировать импульсы через R2. Попробуйте и посмотрите, что произойдет, когда вы настроите V2.

Вот и все.

% PDF-1.6
%
4301 0 объект>
endobj

xref
4301 148
0000000016 00000 н.
0000007367 00000 н.
0000007566 00000 н.
0000007594 00000 н.
0000007640 00000 н.
0000007677 00000 н.
0000007878 00000 п.
0000008145 00000 н.
0000008260 00000 н.
0000008374 00000 п.
0000009974 00000 н.
0000011674 00000 п.
0000012297 00000 п.
0000012368 00000 п.
0000012940 00000 п.
0000014564 00000 п.
0000015002 00000 п.
0000015354 00000 п.
0000017200 00000 н.
0000018785 00000 п.
0000020575 00000 п.
0000022201 00000 п.
0000023894 00000 п.
0000024875 00000 п.
0000030117 00000 п.
0000033152 00000 п.
0000167452 00000 н.
0000167904 00000 н.
0000168004 00000 н.
0000168484 00000 н.
0000168601 00000 н.
0000169083 00000 н.
0000169203 00000 н.
0000169681 00000 н.
0000169804 00000 н.
0000170282 00000 н.
0000170405 00000 н.
0000170520 00000 н.
0000170580 00000 н.
0000170662 00000 н.
0000170743 00000 н.
0000170788 00000 н.
0000170884 00000 н.
0000171024 00000 н.
0000171139 00000 н.
0000171229 00000 н.
0000171369 00000 н.
0000171457 00000 н.
0000171563 00000 н.
0000171704 00000 н.
0000171830 00000 н.
0000171919 00000 н.
0000172059 00000 н.
0000172197 00000 н.
0000172291 00000 н.
0000172431 00000 н.
0000172532 00000 н.
0000172638 00000 н.
0000172779 00000 н.
0000172879 00000 н.
0000172979 00000 н.
0000173119 00000 н.
0000173223 00000 н.
0000173319 00000 н.
0000173458 00000 н.
0000173565 00000 н.
0000173656 00000 н.
0000173793 00000 н.
0000173884 00000 н.
0000173999 00000 н.
0000174137 00000 н.
0000174240 00000 н.
0000174352 00000 н.
0000174489 00000 н.
0000174573 00000 н.
0000174673 00000 н.
0000174811 00000 н.
0000174906 00000 н.
0000174999 00000 н.
0000175134 00000 н.
0000175218 00000 н.
0000175321 00000 н.
0000175428 00000 н.
0000175536 00000 н.
0000175647 00000 н.
0000175689 00000 н.
0000175799 00000 н.
0000175907 00000 н.
0000176016 00000 н.
0000176126 00000 н.
0000176244 00000 н.
0000176368 00000 н.
0000176485 00000 н.
0000176602 00000 н.
0000176705 00000 н.
0000176822 00000 н.
0000176943 00000 н.
0000177065 00000 н.
0000177180 00000 н.
0000177294 00000 н.
0000177402 00000 н.
0000177512 00000 н.
0000177629 00000 н.
0000177742 00000 н.
0000177855 00000 п.
0000177968 00000 н.
0000178078 00000 н.
0000178188 00000 н.
0000178301 00000 н.
0000178408 00000 н.
0000178517 00000 н.
0000178614 00000 н.
0000178717 00000 н.
0000178845 00000 н.
0000178954 00000 н.
0000179096 00000 н.
0000179220 00000 н.
0000179335 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *