26.11.2024

Тиристорная система возбуждения: виды, схемы, достоинства и недостатки

Содержание

виды, схемы, достоинства и недостатки

Системы возбуждения синхронных генераторовВсе турбогенераторы, гидрогенераторы, дизель-генераторы, синхронные компенсаторы и двигатели, изготавливаемые в настоящее время, оснащаются современными полупроводниковыми системами возбуждения – рис.5.2 – 5.7. В этих системах используется принцип выпрямления трехфазного переменного тока повышенной или промышленной частоты возбудителей или напряжения возбуждаемой машины.

Электромашинные системы возбуждения (рис.5.1), выпускавшиеся заводами более 30 лет назад и находящиеся до сих пор в эксплуатации, могут быть заменены на современные полупроводниковые статические системы с любым набором заданных функций.

Системы возбуждения обеспечивают следующие режимы работы синхронных машин:

  1. начальное возбуждение;
  2.  холостой ход;
  3. включение в сеть методом точной синхронизации или самосинхронизации;
  4. работу в энергосистеме с допустимыми нагрузками и перегрузками;
  5. форсировку возбуждения по напряжению и по току с заданной кратностью;
  6. разгрузку по реактивной мощности и развозбуждение при нарушениях в энергосистемах;
  7. гашение поля генератора в аварийных режимах и при нормальной остановке;
  8. электрическое торможение агрегата.

Система независимого возбуждения с возбудителем постоянного тока

Рис.5.1. Система независимого возбуждения с возбудителем постоянного тока.
КК – контактные кольца, Rсс и КСС – сопротивление и контактор самосинхронизации, РВ – резервный возбудитель, АГП – автомат гашения поля, АГПВ – автомат гашения поля возбудителя, Rр – регулировочный реостат, Rд и Rгасв – резисторы добавочный и гасительный в цепи ОВВ, ДОВВ – добавочная обмотка возбуждения возбудителя.

Для оснащения турбо- и гидрогенераторов выпускается три типа систем возбуждения:
• системы тиристорные независимые (СТН) – рис.5.2;
• системы тиристорные самовозбуждения (СТС) – рис.5.3;
• системы бесщеточные диодные (СБД) – рис.5.4


Системы тиристорного независимого возбуждения (СТН)

Системы тиристорные независимые (СТН) предназначены для питания обмотки возбуждения крупных турбо- и гидрогенераторов выпрямленным регулируемым током, применяемые при выработке электроэнергии на ГЭС и других генерирующих станциях – рис.5.2.

В отличие от систем самовозбуждения (СТС), в СТН тиристорные выпрямители главного генератора получают питание от независимого источника напряжения переменного тока промышленной частоты – от вспомогательного синхронного генератора, вращающемся на одном валу с главным генератором.

Система тиристорная независимая (СТН)

Рис.5.2. Система тиристорная независимая (СТН) с возбудителем переменного тока и двумя группами тиристоров, в сочетании со схемой резервного возбуждения от двухмашинного агрегата асинхронный двигатель-возбудитель постоянного тока. В – возбудитель (вспомогательный генератор) переменного тока, ОВВ обмотка возбуждения возбудителя, ВРГ, ВФГ – тиристорные вентили рабочей и форсировочной групп, ВВВ – тиристорные вентили выпрямителя возбудителя, СУВРГ, СУВФГ, СУВВВ – системы управления вентилями соответствующих групп, ВТВ – выпрямительный трансформатор возбудителя, ТСНВ – трансформатор СН тиристорных выпрямителей.

Вспомогательный генератор переменного тока возбуждения построен по схеме самовозбуждения. СТН обладает важным преимуществом – её параметры не зависят от процессов, протекающих в энергосистеме.

Благодаря наличию вспомогательного генератора, сохраняется независимость возбуждения от длительности и удаленности КЗ и других возмущений в энергосистеме, и высокая скорость нарастания напряжения возбуждения: не более 25 мс до достижения максимального значения при уменьшении напряжения прямой последовательности в точке регулирования на 5%.

В системе СТН обеспечивается быстрое снятие возбуждения за счет изменения полярности напряжения возбуждения: время развозбуждения от максимального положительного до отрицательного минимального напряжения возбуждения не превышает 100 мс.

Система тиристорного самовозбуждения (СТС)
Рис.5.3. Система тиристорного самовозбуждения (СТС) с выпрямительным трансформатором (ВТ) и двумя группами тиристоров. ТСНР, ТСНФ – трансформаторы СН тиристорных выпрямителей рабочей и форсировочной групп.

В системе СТН выпрямленное номинальное напряжение может составлять 700 В, а выпрямленный номинальный ток – до 5500А. Кратности форсировки по напряжению и току составляют не менее двух единиц, а длительность форсировки – от 20 до 50 с. Точность поддержания напряжения генератора – не хуже ±0,5% и до ±1%. Система охлаждения тиристорного выпрямителя в системах СТН и СТС может быть принудительно воздушной, естественной воздушной или водяной.


Система тиристорного самовозбуждения (СТС)

Система тиристорного самовозбуждения (СТС) предназначена для питания обмоток возбуждения турбо и гидрогенераторов выпрямленным регулируемым током – рис.5.3.
Питание тиристорного выпрямителя осуществляется через трансформатор, подключенный к генераторному токопроводу. Для запуска генератора предусмотрена цепь начального возбуждения, которая автоматически формирует кратковременный импульс напряжения на обмотке ротора до появления ЭДС обмотки статора генератора. Импульс напряжения достаточен для поддержания устойчивой работы тиристорного преобразователя в цепи самовозбуждения. Питание цепей начального возбуждения осуществляется как от источника переменного тока, так и от станционной аккумуляторной батареи.

В системе СТС выпрямленное номинальное напряжение составляет до 500 В, а выпрямленный номинальный ток – не более 4000 А, т.е. эти значения несколько ниже, чем в системах СТН.

Благодаря высокому быстродействию управляемого выпрямителя и предельным уровням напряжения и тока возбуждения в сочетании с эффективными законами управления система СТС обеспечивает высокое качество регулирования и большие запасоустойчивости энергосистем. По этим показателям система СТС соответствует значениям системы СТН.

В системе СТН интенсивное гашение поля генераторов в нормальных условиях эксплуатации достигается за счет перевода тиристорного преобразователя в инверторный режим изменением полярности напряжения возбуждения – время развозбуждения не превышает 100 мс.

Экстренное снятие возбуждения в аварийных режимах обеспечивается автоматом гашения поля – электрическим аппаратом специальной конструкции, который при срабатывании производит оптимальное гашение поля генератора (АГП).

Система бесщеточная диодная (СБД)

Рис.5.4. Система бесщеточная диодная (СБД) независимого возбуждения: а – с подвозбудителем (ПВ), б – без подвозбудителя, с питанием обмотки возбуждения возбудителя (ОВВ) от выпрямительного трансформатора (ВТ). ДВ – вращающиеся диодные вентили.

Действие АГП заключается в уменьшении времени гашения поля при соблюдении предельно допустимой по условиям электрической прочности изоляции величины напряжения на обмотке возбуждения. Защита ротора от перенапряжений выполняется на основе быстродействующих тиристорных разрядников.

Учитывая высокую надежность тиристорных выпрямителей и улучшение их параметров по токам и напряжениям, в схемах возбуждения могут применяться вместо двух групп вентилей (ВРГ, ВФГ) одну группу с необходимой кратностью форсировки – рис.5.5.


Система тиристорного самовозбуждения резервная (СТСР)

В схемах рис.5.1, 5.2, 5.3 благодаря наличию контактных колец на роторе можно использовать систему резервного возбуждения. В прежних системах использовался двухмашинный агрегат из асинхронного двигателя, соединенного с генератором постоянного тока. Асинхронный двигатель получал питание от шин собственных нужд и был общим для нескольких генераторов.

В современной системе тиристорного самовозбуждения резервной (СТСР) использован принцип тиристорного выпрямления от разделительного трансформатора, также присоединенного к системе собственных нужд станции.

Назначение этих систем – питание обмотки ротора синхронной машины в случаях, когда основная система вследствие неисправности или технического обслуживания выведена из работы. На электростанциях устанавливают одну резервную систему на группу генераторов. На многих станциях продолжают использовать двухмашинные агрегаты, питаемые от шин собственных нужд. Более совершенной является статическая система СТСР, представляющая собой мощный регулируемый источник постоянного тока. Система оснащена всеми необходимыми средствами защиты, управления и коммутации.


Системы бесщеточные диодные (СБД)

Системы бесщеточные диодные (СБД) предназначены для питания обмотки возбуждения турбогенераторов выпрямленным регулируемым током – рис.5.4а,б.
Бесщеточный возбудитель представляет собой синхронный генератор обращенного исполнения, якорь которого с обмоткой переменного тока и диодным выпрямителем жестко соединен с ротором возбужденного турбогенератора. Обмотка возбуждения возбудителя расположена на его статоре.

Главное достоинство бесщеточных возбудителей состоит в отсутствии контактных колец и щеточного контакта в цепи обмотки ротора турбогенератора и в сокращении длины машины.

Это позволяет обеспечить возбуждение сверхмощных машин, токи возбуждения которых превышают 5500А, свойственных системе СТН – рис.5.2. Выпрямленное номинальное напряжение составляет до 600В, а выпрямленный номинальный ток до 7800А. Система охлаждения вращающегося диодного выпрямителя – естественная воздушная.

Регулирование возбуждения генератора осуществляется путем управления током обмотки возбуждения обращенного возбудителя. Типовой комплект системы включает в себя автомат гашения поля, тиристорный разрядник и два преобразовательно-регулирующих канала (AVR-1, AVR-2) автоматических регуляторов возбуждения основного и резервного каналов соответственно. Один из каналов (AVR-1) находится в активном режиме, другой (AVR-2) – в горячем резерве. В частном случае основной канал регулирования получает питание от выпрямительного трансформатора, подключенного к генераторному токопроводу, а резервный – через выпрямительный трансформатор от шин собственных нужд электростанции.

Система бесщеточная диодная (СБД)

Рис.5.5. Система бесщеточная диодная (СБД) с тиристорным возбуждением (ТВ-1, ТВ-2) обмотки возбуждения возбудителя (ОВВ). СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель и его обмотка возбуждения ОВВ; ТВ-1, ТВ-2 – тиристорные выпрямители первого и второго канала для питания ОВВ; ВТ-1, ВТ-2 – выпрямительные трансформаторы первого и второго каналов; АРВ-1, АРВ-2 – автоматические регуляторы возбуждения первого и второго каналов; Р1, Р2, Р3, Р4 – разъединители; ТТ1, ТТ2, ТН1, ТН2 – измерительные трансформаторы тока и напряжения первого и второго каналов; ТА11, ТА12 – датчики тока возбуждения возбудителя; АГП – автомат гашения поля; ТР – тиристорный разрядник.

Система бесщеточная диодная (СБД)

Рис.5.6. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный дизель-генератор; ОВГ – обмотка возбуждения; ДВ – диодный выпрямитель; Т – тиристор; АРВ – автоматический регулятор возбуждения; ИТТ, ИТН – измерительные трансформаторы тока и напряжения; ТСТ с МШ – трехобмоточный суммирующий трансформатор с магнитным шунтом.

Бесщеточная диодная система возбуждения (СБД) обладает меньшим быстродействием по сравнению с тиристорными системами (СТС и СТН). Так, время нарастания напряжения возбуждения до максимального значения при уменьшении напряжения прямой последовательности в точке регулирования на 5% от номинального составляет величину не более 50мс, тогда как в тиристорных системах – не более 25 мс.

В схеме на рис.5.4а питание обмотки возбуждения диодного возбудителя осуществляется от магнитоэлектрического подвозбудителя с постоянными магнитами, а в схеме на рис.5.4б – от выпрямительного трансформатора, подключенного у генераторному токопроводу возбужденной машины. В обоих случаях для питания обмотки возбуждения (ОВВ) обращенного возбудителя (В) используется тиристорный выпрямитель, управляемый системой АРВ.
Система бесщеточная диодная (СБД)

Рис.5.7. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель; ОВВ – обмотка возбуждения возбудителя; ПВ – магнитоэлектрический подвозбудитель с постоянными магнитами; АРВ – автоматический регулятор возбуждения; ТВ – тиристорный выпрямитель для питания ОВВ.

Как один из современных вариантов схемы рис.5.4б с выпрямительным трансформатором (ВТ) на рис.5.5 представлена бесщеточная диодная система (СБД) с тиристорным питанием по двум каналам (от сети СН через ВТ-2 и от токопровода генератора через ВТ-1) обмотки возбуждения возбудителя (ОВВ).


Системы возбуждения для дизель-генераторов

АО «Электросила” является производителем дизель-генераторов мощностью от 200 до 6300 кВт с широким спектром напряжений и частот вращения. Для дизель-генераторов изготавливаются два типа систем возбуждения: паундированием, реализованная на базе трехобмоточного суммирующего трансформатора с магнитным шунтом и управляемого тиристорно-диодного преобразователя представлена на рис.5.6. Силовая часть выполнена в виде блока с принудительным охлаждением и размещена на корпусе генератора. Малогабаритный регулятор напряжения устанавливается в щите управления энергоблоком.

Система бесщеточная с диодным синхронным возбудителем (СБД), магнитоэлектрическим подвозбудителем с постоянными магнитами и статическим тиристорным регулятором возбуждения представлена на рис.5.7.

Вращающаяся часть оборудования системы (дизель-генератор, диодный синхронный возбудитель и магнитоэлектрический подвозбудитель) за счетсовмещения конструкции изготавливается в виде компактного блока, установленного на валу генератора.

Регулятор возбуждения размещен в отдельном шкафу. Основные характеристики систем возбуждения дизель-генераторов представлены в таблице 5.1.

Основные характеристики систем возбуждения дизель-генераторов

Таблица 5.1. Основные характеристики систем возбуждения дизель-генераторов. Системы возбуждения дизель-генераторов характеризуются полной автономностью – начальное возбуждение обеспечивается исключительно за счет внутренних источников.


Автоматы гашения поля (АГП)

Автоматы гашения поля предназначены для коммутации цепей обмоток возбуждения турбо- и гидрогенераторов, имеющих контактные кольца на роторе, а также для гашения поля этих машин.

Оптимальные условия для интенсивного снижения тока ротора до нулевого значения обеспечиваются при разряде обмотки возбуждения на нелинейный резистор, сопротивление которого изменяется обратно пропорционально величине тока.

Благодаря специальной конструкции кольцевой дугогасительной решетки автомата гашения поля, горящая в ней дуга обладает вольтамперной характеристикой нелинейного резистора, обеспечивающей минимальное время гашения поля и безопасный уровень напряжения на кольцах ротора. Основные характеристики АГП производства АО «Электросила” представлены в табл.5.2.

Основные характеристики АГП

тиристорная система возбуждения — это… Что такое тиристорная система возбуждения?



тиристорная система возбуждения

3.18 тиристорная система возбуждения: Система возбуждения турбогенератора (гидрогенератора, синхронного компенсатора), в которой переменный ток источника питания преобразуется в постоянный ток возбуждения синхронной машины тиристорными преобразователями;

Словарь-справочник терминов нормативно-технической документации.
academic.ru.
2015.

  • Тиреотоксикоз
  • тиристорный электропривод

Смотреть что такое «тиристорная система возбуждения» в других словарях:

  • тиристорная система возбуждения — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN thyristor excitation system …   Справочник технического переводчика

  • бесщёточная тиристорная система возбуждения — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN rotating thyristor excitation system …   Справочник технического переводчика

  • ГОСТ 21558-2000: Системы возбуждения турбогенераторов, гидрогенераторов и синхронных компенсаторов. Общие технические условия — Терминология ГОСТ 21558 2000: Системы возбуждения турбогенераторов, гидрогенераторов и синхронных компенсаторов. Общие технические условия оригинал документа: 3.10 бесщеточная система возбуждения: Система возбуждения турбогенератора… …   Словарь-справочник терминов нормативно-технической документации

  • Турбогенератор — Разобранный турбогенератор Балаковской АЭС Турбогенератор  работающий в паре с турбиной синхронный генератор. Основная функция в преобразовании механической энергии вращения паровой или …   Википедия

  • СТН — система телевизионного наблюдения Источник: http://www.rzd.ru/agency/showarticle.html?article id=26970&he id=2 СТН сеялка туковая навесная Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с. СТН… …   Словарь сокращений и аббревиатур

Моделирование в электроэнергетике — Основные элементы системы возбуждения


Основные элементы системы возбуждения

Неотъемлемой частью синхронных машин является система возбуждения. Система возбуждения предназначена для питания обмотки возбуждения генератора, автоматически регулируемым постоянным током.

Системой возбуждения (СВ) называется совокупность оборудования, аппаратов и устройств, объединённых соответствующими цепями, которая обеспечивает необходимое возбуждение генераторов и синхронных компенсаторов в нормальных и аварийных режимах, предусмотренных ГОСТ и техническими условиями. В систему возбуждения входят: возбудитель, автоматический регулятор возбуждения (АРВ), коммутационная аппаратура, измерительные приборы, средства защиты ротора от перенапряжений и защиты оборудования системы возбуждения от повреждений [п.5.2.36, ПУЭ].

Обобщенная схема соединения генератора, системы возбуждения и АРВ приведена на рис. 1.

Рис. 1. Обобщенная схема соединения генератора, системы возбуждения и АРВ

Напряжение на выходе системы возбуждения Uf  и ток возбуждения if  изменяются под действием сигнала, поступающего от АРВ. Требуемый вид этого сигнала зависит от технического исполнения системы возбуждения. В целом схема рис. 1 представляет собой замкнутую систему автоматического регулирования, управляемую на основе обработки по определенному алгоритму режимных параметров, получаемых от трансформаторов напряжения и тока.

Основной элемент системы возбуждения (СВ) – возбудитель, являющийся регулируемым источником постоянного тока. Он может быть выполнен в виде коллекторного генератора постоянного тока, генератора переменного тока с выпрямительным преобразователем или трансформатора с выпрямительным преобразователем. Применение генератора постоянного тока для возбуждения турбогенератора ограничено трудностями, связанными с работой коллектора при высокой скорости вращения. Поэтому на более мощных генераторах применяются возбудители с выпрямителями. Если источником переменного тока, питающим возбудитель, является генератор, выпрямитель может быть неуправляемым (диодным) или управляемым (тиристорным). В первом случае выпрямительный преобразователь проще и надежнее, во втором обеспечено более высокое быстродействие. Если выпрямительный преобразователь питается от трансформатора, он выполняется тиристорным.

Неотъемлемым элементом системы возбуждения является АРВ. Основными задачами АРВ являются поддержание заданного уровня напряжения на выводах генератора (на шинах высокого напряжения электростанций) с заданным статизмом (1-5%). Также с помощью АРВ обеспечивается повышение устойчивости параллельной работы генераторов при нарушениях нормального режима работы энергосистемы. Наиболее распространённым видом АРВ является АРВ сильного действия (АРВ-СД), в котором содержатся каналы демпфирования по производным напряжения и частоты статора и тока ротора.

Помимо перечисленных устройств, в систему возбуждения входят автомат гашения поля (АГП) и устройство начального возбуждения.

Классификация систем возбуждения.

Системы возбуждения генераторов и СК классифицируются по разным признакам.

П.1. Системы возбуждения по способу получения питания разделяют на системы независимого возбуждения (СНВ) и системы самовозбуждения (ССВ) и комбинированные.

Независимость оценивается относительно цепи якоря возбуждаемой машины. В схеме СНВ источником является вспомогательный генератор (ВГ), сочленённый с валом возбуждаемой машины (рис. 2г, д, е). Основным преимуществом этого способа является независимость возбуждения от режима работы электрической сети и, как следствие, большая надёжность. Недостатки такой системы определяются недостатками самого возбудителя: невысокая скорость нарастания возбуждения, сниженная надёжность работы коллекторного узла при высоких частотах вращения. В схемах ССВ источниками являются выпрямительные трансформаторы ВТ и ПТ, подключенные непосредственно к цепи якоря генератора (рис. 1а, б). Такие системы возбуждения менее надёжны, чем СНВ. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих режимах должна обеспечивать форсировку тока в обмотке ротора генератора. В комбинированных системах главный преобразователь – диодный выпрямитель питается от ВГ, а тиристорный преобразователь (ТП) питается через выпрямительный трансформатор от выводов генератора (рис. 1в). Примеры каждого из видов показаны на рис. 2.

Рис. 2. Структурные схемы систем возбуждения

а – статическая тиристорная система параллельного самовозбуждения,

б – статическая система смешанного возбуждения,

в – комбинированная одномашинная диодная система возбуждения (как правило, бесщёточная),

г – одномашинная система независимого тиристорного возбуждения,

д – одномашинная диодная система независимого возбуждения (высокочастотная),

е – двухмашинная диодная система независимого возбуждения (высокочастотная или бесщёточная)

П.2. Системы возбуждения по типу вентилей главного преобразователя разделяют на диодные и тиристорные.

В тиристорных системах АРВ воздействует на управление тиристорными преобразователями, в диодных – на управление возбуждением ВГ.

П.3. Системы возбуждения также разделяют на статические, бесщёточные (вращающиеся) и комбинированные.

Статические СВ – это системы, содержащие только неподвижные элементы. Статическими являются только ССВ. У бесщёточных СВ вращаются вентильный преобразователь и якорь обращённого ВГ, и поэтому связь с обмоткой возбуждения генератора осуществляется жёстким соединением без контактных колец и щёток. У комбинированных СВ статическим является вентильный преобразователь, питаемый от ВГ традиционного исполнения.

Помимо сказанного, выделяют параллельные и комбинированные ССВ. Первые (рис. 2а) содержат только один выпрямительный трансформатор, подключаемый к зажимам генератора. Вторые имеют еще и последовательный трансформатор (ПТ), включаемый последовательно в цепь статора (рис. 2б).

У бесщёточных СВ генератор и преобразователь выполняются трёхфазными и многофазными, у комбинированных СНВ вспомогательный генератор выполняется синхронным или индукторным (высокочастотным).

Независимые СВ выполняются одномашинными (рис. 2г, д) и двухмашинными (рис. 2е). У одномашинных СВ ВГ имеет систему самовозбуждения, у двухмашинных – на основе подвозбудителя, выполняемого в виде генератора с постоянными магнитами или индукторного генератора.

Кроме этого, тиристорные СВ могут иметь одногрупповой или двухгрупповой ТП. У последних одна группа, рабочая, рассчитывается на уровни напряжения нормальных режимов, а вторая, форсировочная, имеет повышенное напряжение питания, обеспечивающее форсировку возбуждения.

Общие требования к системам возбуждения.

В нормальном режиме источник возбуждения должен обеспечивать на кольцах ротора номинальное напряжение и номинальный ток возбуждения, при которых генератор выдаёт номинальную мощность. В целях создания запаса по нагреву номинальные значения напряжения и тока системы возбуждения должны превышать номинальные значения напряжения и тока обмотки возбуждения генератора или компенсатора не менее чем 10%.

В аварийном режиме к источнику возбуждения предъявляются требования в отношении быстродействия и предела изменения напряжения на кольцах ротора. С этих позиций система возбуждения оценивается двумя величинами: скоростью нарастания напряжения и кратностью максимального значения напряжения по отношению к номинальному.

Рис. 3. Изменение напряжения возбуждения при форсировке

В соответствии с изложенным количественные характеристики систем возбуждения определяются следующим образом.

П.1.Кратность форсировки возбуждения по напряжению – это потолочное установившееся напряжение системы возбуждения, выраженное в долях номинального напряжения возбуждения

                                       

где   – потолочное напряжение СВ,   – номинальное напряжение СВ.

Для современных систем возбуждения кратность форсировки возбуждения по напряжению составляет

П.2.Скорость изменения напряжения возбуждения – это скорость нарастания или снижения напряжения системы возбуждения или возбудителя при необходимости изменения этого напряжения, выраженная в вольтах в секунду или в относительных единицах в секунду по отношению к номинальному напряжению возбуждения синхронной машины.

  , о.е./с.

где – разница между потолочным и номинальным значением напряжения возбуждения, – номинальное напряжение возбуждения, t1 – время, за которое напряжение возрастает от номинального значения до значения 

Так как скорость изменения напряжения возбуждения определяется по точке эквивалентного экспоненциального процесса, то представляется возможным заменить в приближенных исследованиях (!) систему возбуждения инерционным звеном первого порядка с передаточной функцией

                                      где  – коэффициент усиления звена, замещающего систему возбуждения, – постоянная времени звена.

Различные системы возбуждения имеют ориентировочно следующие постоянные времени:

Тиристорные= 0.02-0.04 с.

Бесщеточная  = 0.1-0.15 с.

Высокочастотная  = 0.35 с.

Электромашинная с генератором постоянного тока = 0.3-0.5 с.

Номинальная скорость нарастания напряжения возбуждения принимается равной 2 относительных единиц в секунду. Большинство современных вентильных СВ имеет скорость нарастания напряжения значительно большую, чем представленная.

Системы возбуждения / ПУЭ 7 / Библиотека / Элек.ру

5.2.35. Требования, приведенные в 5.2.36-5.2.52, распространяются на стационарные установки систем возбуждения турбо- и гидрогенераторов и синхронных компенсаторов.

5.2.36 Системой возбуждения называется совокупность оборудования, аппаратов и устройств, объединенных соответствующими цепями, которая обеспечивает необходимое возбуждение генераторов и синхронных компенсаторов в нормальных и аварийных режимах, предусмотренных ГОСТ и техническими условиями.

В систему возбуждения генератора (синхронного компенсатора) входят: возбудитель (генератор постоянного тока, генератор переменного тока или трансформатор с преобразователем), автоматический регулятор возбуждения, коммутационная аппаратура, измерительные приборы, средства защиты ротора от перенапряжений и защиты оборудования системы возбуждения от повреждений.

5.2.37. Электрооборудование и аппаратура систем возбуждения должны соответствовать требованиям ГОСТ на синхронные генераторы и компенсаторы и техническим условиям на это оборудование и аппаратуру.

5.2.38. Системы возбуждения, у которых действующее значение эксплуатационного напряжения или длительного перенапряжения (например, при форсировке возбуждения) превышает 1 кВ, должны выполняться в соответствии с требованиями настоящих Правил, предъявляемыми к электроустановкам выше 1 кВ. При определении перенапряжений для вентильных систем возбуждения учитываются и коммутационные перенапряжения.

5.2.39. Системы возбуждения должны быть оборудованы устройствами управления, защиты, сигнализации и контрольно-измерительными приборами в объеме, обеспечивающем автоматический пуск, работу во всех предусмотренных режимах, а также останов генератора и синхронного компенсатора на электростанциях и подстанциях без постоянного дежурства персонала.

5.2.40. Пульты и панели управления, приборы контроля и аппаратура сигнализации системы охлаждения, а также силовые преобразователи тиристорных или иных полупроводниковых возбудителей должны размещаться в непосредственной близости один от другого. Допускается установка теплообменников в другом помещении, при этом панель управления теплообменником должна устанавливаться рядом с ним.

Пульт (панель), с которого может производиться управление возбуждением, должен быть оборудован приборами контроля возбуждения.

5.2.41. Выпрямительные установки систем возбуждения генераторов и синхронных компенсаторов должны быть оборудованы сигнализацией и защитой, действующими при повышении температуры охлаждающей среды или вентилей сверх допустимой, а также снабжены приборами для контроля температуры охлаждающей среды и силы тока установки. При наличии в выпрямительной установке нескольких групп выпрямителей должна контролироваться сила тока каждой группы.

5.2.42. Системы возбуждения должны быть оборудованы устройствами контроля изоляции, позволяющими осуществлять измерение изоляции в процессе работы, а также сигнализировать о снижении сопротивления изоляции ниже нормы. Допускается не выполнять такую сигнализацию для бесщеточных систем возбуждения.

5.2.43. Цепи систем возбуждения, связанные с анодами и катодами выпрямительных установок, должны выполняться с уровнем изоляции, соответствующим испытательным напряжениям анодных и катодных цепей.

Связи анодных цепей выпрямителей, катодных цепей отдельных групп, а также других цепей при наличии нескомпенсированных пульсирующих или переменных токов должны выполняться кабелем без металлических оболочек.

Цепи напряжения обмотки возбуждения генератора или синхронного компенсатора для измерения и подключения устройства АРВ должны выполняться отдельным кабелем с повышенным уровнем изоляции без захода через обычные ряды зажимов. Присоединение к обмотке возбуждения должно производиться через рубильник.

5.2.44. При применении устройств АГП с разрывом цепи ротора, а также при использовании статических возбудителей с преобразователями обмотка ротора должна защищаться разрядником многократного действия. Допускается применение разрядника однократного действия. Разрядник должен быть подключен параллельно ротору через активное сопротивление, рассчитанное на длительную работу при пробое разрядника в режиме с напряжением возбуждения, равным 110% номинального.

5.2.45. Разрядники, указанные в 5.2.44, должны иметь сигнализацию срабатывания.

5.2.46. Система возбуждения генераторов и синхронных компенсаторов должна выполняться таким образом, чтобы:

1. Отключение любого из коммутационных аппаратов в цепях АРВ и управления возбудителем не приводило к ложным форсировкам в процессе пуска, останова и работы генератора на холостом ходу.

2. Исчезновение напряжения оперативного тока в цепях АРВ и управления возбудителем не приводило к нарушению работы генератора и синхронного компенсатора.

3. Имелась возможность производить ремонтные и другие работы на выпрямителях и их вспомогательных устройствах при работе турбогенератора на резервном возбудителе. Это требование не относится к бесщеточным системам возбуждения.

4. Исключалась возможность повреждения системы возбуждения при КЗ в цепях ротора и на его контактных кольцах. В случае применения статических преобразователей допускается защита их автоматическими выключателями и плавкими предохранителями.

5.2.47. Тиристорные системы возбуждения должны предусматривать возможность гашения поля генераторов и синхронных компенсаторов переводом преобразователя в инверторный режим.

В системах возбуждения со статическими преобразователями, выполненными по схеме самовозбуждения, а также в системах возбуждения с электромашинными возбудителями должно быть применено устройство АГП.

5.2.48. Все системы возбуждения (основные и резервные) должны иметь устройства, обеспечивающие при подаче импульса на гашение поля полное развозбуждение (гашение поля) синхронного генератора или компенсатора независимо от срабатывания АГП.

5.2.49. Система водяного охлаждения возбудителя должна обеспечивать возможность полного спуска воды из системы, выпуска воздуха при заполнении системы водой, периодической чистки теплообменников.

Закрытие и открытие задвижек системы охлаждения на одном из возбудителей не должны приводить к изменению режима охлаждения на другом возбудителе.

5.2.50. Пол помещений выпрямительных установок с водяной системой охлаждения должен быть выполнен таким образом, чтобы при утечках воды исключалась возможность ее попадания на токопроводы, КРУ и другое электрооборудование, расположенное ниже системы охлаждения.

5.2.51. Электромашинные возбудители постоянного тока (основные при работе без АРВ и резервные) должны иметь релейную форсировку возбуждения.

5.2.52. Турбогенераторы должны иметь резервное возбуждение, схема которого должна обеспечивать переключение с рабочего возбуждения на резервное и обратно без отключения генераторов от сети. Для турбогенераторов мощностью 12 МВт и менее необходимость резервного возбуждения устанавливается главным инженером энергосистемы.

На гидроэлектростанциях резервные возбудители не устанавливаются.

5.2.53. На турбогенераторах с непосредственным охлаждением обмотки ротора переключение с рабочего возбуждения на резервное и обратно должно производиться дистанционно.

5.2.54. Система возбуждения гидрогенератора должна обеспечивать возможность его начального возбуждения при отсутствии переменного тока в системе собственных нужд гидроэлектростанции.

5.2.55. По требованию заказчика система возбуждения должна быть рассчитана на автоматическое управление при останове в резерв синхронных генераторов и компенсаторов и пуске находящихся в резерве.

5.2.56. Все системы возбуждения на время выхода из строя АРВ должны иметь средства, обеспечивающие нормальное возбуждение, развозбуждение и гашение поля синхронной машины.

Системы возбуждения генераторов — Студопедия

У турбогенераторов возбуждение является неотъемлемой частью, и от надёжности его работы в большой степени зависит надежная и устойчивая работа всего турбогенератора.

Обмотка возбуждения укладывается в пазы ротора генератора, и к ней с помощью контактных колец и щёток, исключением является бесщёточная система возбуждения, подводится постоянный ток от источника. В качестве источника энергии может применяться генератор постоянного или переменного тока, который принято называть возбудителем, а систему возбуждения электромашинной. В безмашинной системе возбуждения источником энергии является сам генератор, поэтому её называют системой самовозбуждения.

Основные системы возбуждения должны:

• обеспечивать надежное питание обмотки ротора в нормальных и аварийных режимах;

• допускать регулирование напряжения возбуждения в достаточных пределах;

• обеспечивать быстродействующее регулирование возбуждения с высокими кратностями форсирования в аварийных режимах;

• осуществлять быстрое развозбуждение и в случае необходимости производить гашение поля в аварийных режимах.

Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке V=0,632∙(Uf потUf ном)/Uf номt1, и отношение потолочного напряжения к номинальному напряжению возбуждения Ufпот/Ufном=Кф — так называемая кратность форсировки.

Согласно ГОСТ турбогенераторы должны иметь Кф≥2, а скорость нарастания возбуждения — не менее 2 с-1. Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения. Скорость нарастания напряжения возбуждения должна быть не менее 1,3 с-1 для гидрогенераторов мощностью до 4 MBА включительно и не менее 1,5 с-1 для гидрогенераторов больших мощностей.



Для мощных гидрогенераторов, работающих на дальние элек­тропередачи, к системам возбуждения предъявляются более высокие требования: Кф=3—4, скорость нарастания возбуждения до 10∙UfH0Mв секунду.

Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному ток в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20 с, для генераторов мощностью 800—1000 МВт принято время 15 с, 1200 МВт — 10 с (ГОСТ 533-85Е).


Мощность источника возбуждения составляет обычно 0,5 — 2% мощности турбогенератора, а напряжение возбуждения 115—575 В.

Чем больше мощность турбогенератора, тем выше напряжение и тем меньше относительная мощность возбудителя.

Системы возбуждения можно разделить на два типа: независимое (прямое) возбуждение и зависимое (косвенное) возбуждение (самовозбуждение).

К первому типу относятся все электромашинные возбудители постоянного и переменного тока, сопряжённые с валом турбогенератора (рис. 4.1).

Ко второму типу относятся системы возбуждения, получающие питание непосредственно от выводов генератора через специальные понижающие трансформаторы (рис. 4.2, а) и отдельно установленные электромашинные возбудители, вращаемые двигателями переменного тока, питающимися от шин собственных нужд станции (рис. 4.2, б).

Электромашинные возбудители постоянного тока (рис. 4.1, а) ранее применялись на турбогенераторах малой мощности. В настоящее время такая система возбуждения практически не применяется, так как является маломощной и при скорости вращения 3000 об/мин данную систему возбуждения трудно выполнить из-за тяжелых условий работы коллектора и щеточного аппарата (ухудшение условий коммутации).

На действующих турбогенераторах применяют:

• высокочастотную систему возбуждения;

• бесщёточную систему возбуждения;

• статическую тиристорную независимую систему возбуждения;

• статическую тиристорную систему самовозбуждения.

В перечисленных системах возбуждения возбудителем является генератор переменного тока различного исполнения, не имеющий ограничения по мощности. Для преобразования переменного тока в постоянный применяются неуправляемые и управляемые полупроводниковые выпрямители-вентили.

Принцип работы высокочастотного возбуждения (рис. 4.1, б) заключается в том, что на одном валу с генератором вращается высокочастотный генератор трёхфазного тока 500 Гц, который через полупроводниковые выпрямители В подаёт выпрямленный ток на кольца ротора турбогенератора. При такой системе возбуждения исключается влияние изменения режимов работы внешней сети на возбуждение генератора, что повышает его устойчивость при коротких замыканиях в энергосистеме.

Рис. 4.1. Принципиальные схемы независимой системы возбуждения генераторов:

а — электромашинная с генератором постоянного тока; б — высокочастотная;

СГ — синхронный генератор; ВГ — возбудитель постоянного тока;

ВЧГ — высокочастотный генератор; ПВ — подвозбудитель; В — выпрямитель

Рис. 4.2. Принципиальные схемы зависимой системы возбуждения генераторов;

ВТ — вспомогательный трансформатор; АД — асинхронный двигатель

На современных турбогенераторах высокочастотную систему возбуждения не применяют, как устаревшую. Для мощных турбогенераторов токи возбуждения составляют 5—8 кА. Это создает большие трудности подвода постоянного тока к обмотке возбуждения генератора с помощью скользящих контактов — колец и щёток. Поэтому в настоящее время для ряда генераторов применяется бесщёточная система возбуждения, в которой выпрямительное устройство располагается на роторе, а питается от обратимой машины через воздушный зазор. Поэтому электрическая связь между выпрямителем и обмоткой возбуждения выполняется жестким токопроводом без применения контактных колец и щёток.

В независимой статической системе и системе самовозбуждения применяются управляемые полупроводниковые кремниевые выпрямители — тиристоры. Это позволило увеличить быстродействие данных систем возбуждения по сравнению с системой, например, высокочастотной, где применяются неуправляемые выпрямители. Так как в данных системах возбуждения применяется группа статических управляемых выпрямителей, то для подвода постоянного тока к обмотке возбуждения генератора также применяются скользящие контакты, что является недостатком. Тиристорные системы возбуждения нашли применение для турбогенераторов мощностью 160—500 МВт. На рис. 4.2, а приведена принципиальная схема статического тиристорного самовозбуждения.

На случай повреждения системы возбуждения предусматривается установка резервных возбудителей: по одному на каждые четыре генератора.

В качестве резервного возбудителя устанавливают генераторы постоянного тока, приводимые во вращение асинхронными двигателями, подключёнными к шинам собственных нужд станции (рис. 4.2, б). Чтобы при посадке напряжения, например при КЗ, резервный возбудитель не затормозился, на его валу устанавливают маховик.

Системы возбуждения генераторов – «СКБ ЭЦМ»

Модули управления SINAMICS (Siemens) оснащены схемой самодиагностики. Кроме того, диагностику состояния работающего канала управления дополнительно осуществляет канал, находящийся в резерве.

Устройство диагностики фиксирует следующие неисправности оборудования:

  • потерю тока возбуждения при работе генератора в сети;
  • потерю проводимости параллельных ветвей в плече преобразователя;
  • потерю проводимости плеча преобразователя;
  • неисправность источников питания;
  • потерю оперативного тока;
  • потерю питания цепей сигнализации;
  • потерю резервного питания;
  • обрыв цепей управления выключателями.

Схемой сигнализации обеспечивается индикация состояния коммутационных аппаратов, режимных параметров и информации о возникающих неисправностях на дисплее панели управления, расположенной на двери шкафа управления возбуждением, а также передача этой информации на верхний уровень управления по прямым проводным связям и цифровому каналу.

Модуль управления SINAMICS обеспечивает следующие возможности:

  • осуществлять непрерывную самодиагностику;
  • выполнять осциллографирование процессов как во время наладки, так и при возникновении аварийной ситуации, хранение аварийных осциллограмм в энергонезависимой памяти;
  • каждый канал управления имеет в своем составе панель управления с сенсорным дисплеем 7”, на которой отображаются параметры режима работы генератора, предупредительные и аварийные сообщения. Панель управления позволяет просматривать дневник событий, а так же производить наладку системы возбуждения.

Системы возбуждения генераторов имеют следующие показатели надежности работы:

  • полный срок службы — не менее 25 лет;
  • коэффициент готовности — не менее 99,8%;
  • средняя наработка на отказ (отключение генератора) — не менее 25000 ч.

ООО «СКБ ЭЦМ» предоставляет гарантию 3 год на системы возбуждения генераторов.
По просьбе заказчика гарантийный срок может быть увеличен.

РД 34.45.620-96 Правила технического обслуживания тиристорных систем возбуждения

РОССИЙСКОЕ
АКЦИОНЕРНОЕ ОБЩЕСТВО

ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ «ЕЭС РОССИИ»

ДЕПАРТАМЕНТ НАУКИ И ТЕХНИКИ

 

ПРАВИЛА


ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ТИРИСТОРНЫХ

СИСТЕМ ВОЗБУЖДЕНИЯ

РД 34.45.620-96

 

Вводятся в действие с
01.03.98 г.

РАЗРАБОТАНО АО «Фирма
ОРГРЭС»

ИСПОЛНИТЕЛЬ И.Ф. Перельман

УТВЕРЖДЕНО Департаментом науки и техники 05.09.96 г.

Начальник
электротехнического отдела    К.М. АНТИПОВ

ВЫПУСКАЮТСЯ ВПЕРВЫЕ

 

Настоящие Правила обязательны
для работников, занимающихся наладкой и эксплуатацией тиристорных систем
возбуждения (СВ) в энергосистемах РАО «ЕЭС России».

Правила определяют виды и
периодичность технического обслуживания работающего и находящегося в резерве
оборудования СВ, плановых профилактическо-ремонтных работ выведенного из работы
оборудования СВ, программы и объемы работ при разных видах технического
обслуживания и ремонта.

Основные положения данных
Правил технического обслуживания базируются на материалах [1 ¸ 6]. При рассмотрении
вопросов старения, износа оборудования СВ использованы материалы по
совершенствованию и реконструкции СВ, изложенные в [7]. Понятия и термины в области
эксплуатации, надежности, системы технического обслуживания и ремонта
применительно к СВ приведены в приложении 1. Особенностью СВ является
то, что она представляет собой единый технологический комплекс, состоящий как
из силовых аппаратов (силовые трансформаторы, вспомогательные синхронные
генераторы, силовые преобразователи), так и из устройств регулирования,
управления, контроля, сигнализации. Вместе с тем, хотя в [1], в
[2]
и [5]
при классификации плановых профилактическо-ремонтных работ электрооборудования
не делается разницы между силовым и вторичным оборудованием, в [3]
приводятся для этих работ иные обозначения, отличные от приводимых в [1], [2], [5].
Поэтому в настоящих Правилах для удобства пользования ими обозначение плановых
профилактическо-ремонтных работ в соответствии с [3] указываются в скобках (см.
приложение 1,
п. 6.3).

Другой особенностью
устройств СВ является то, что они являются устройствами непрерывного действия (в
отличие от устройств релейной защиты, которые являются устройствами со
статической готовностью к действию, т.е. выполняющими свои функции по
требованию) и любой отказ устройства приводит к отказу функционирования. В
связи с этим при обслуживании СВ более четко различаются проверки на работающем
оборудовании СВ (техническое обслуживание) и проверки, восстанов

Что такое система возбуждения? Определение и типы системы возбуждения

Определение: Система, которая используется для подачи необходимого тока возбуждения в обмотку ротора синхронной машины, такой тип системы называется системой возбуждения. Другими словами, система возбуждения определяется как система, которая используется для создания магнитного потока путем пропускания тока в обмотке возбуждения. Основное требование к системе возбуждения — надежность при любых условиях эксплуатации, простота управления, легкость обслуживания, стабильность и быстрая реакция на переходные процессы.

Требуемая величина возбуждения зависит от тока нагрузки, коэффициента мощности нагрузки и скорости машины. Чем больше возбуждения требуется в системе, когда ток нагрузки велик, скорость меньше и коэффициент мощности системы становится запаздывающим.

Система возбуждения представляет собой единый блок, в котором каждый генератор имеет свой возбудитель в виде генератора. Централизованная система возбуждения имеет два или более возбудителя, питающих шину. Централизованная система стоит очень дешево, но неисправность системы отрицательно сказывается на генераторах переменного тока на электростанции.

Типы систем возбуждения

Системы возбуждения в основном подразделяются на три типа. Их

  1. Система возбуждения постоянного тока
  2. Система возбуждения переменного тока
    • Система возбуждения ротора
    • Бесщеточная система возбуждения
  3. Система статического возбуждения

Их типы подробно описаны ниже.

1. Система возбуждения постоянного тока

Система возбуждения постоянного тока имеет два возбудителя — основной возбудитель и пилотный возбудитель.Выход возбудителя регулируется автоматическим регулятором напряжения (АРН) для управления выходным напряжением на клеммах генератора. Вход трансформатора тока в АРН обеспечивает ограничение тока генератора переменного тока во время повреждения.

Когда выключатель возбуждения разомкнут, резистор разряда возбуждения подключается к обмотке возбуждения, чтобы рассеивать накопленную энергию в обмотке возбуждения, которая имеет высокую индуктивность.

dc-excitation-system

Главный и пилотный возбудители могут приводиться в движение либо от главного вала, либо отдельно от двигателя.Возбудители с прямым приводом обычно предпочтительны, так как они сохраняют единичную систему работы и возбуждение не возбуждается внешними возмущениями.

Номинальное напряжение главного возбудителя составляет около 400 В, а его мощность составляет около 0,5% от мощности генератора переменного тока. Неполадки в возбудителях турбогенератора довольно часты из-за их высокой скорости, поэтому в качестве резервного возбудителя используются отдельные возбудители с приводом от двигателя.

2. Система возбуждения переменного тока

Система возбуждения переменного тока состоит из генератора переменного тока и тиристорного выпрямительного моста, напрямую подключенных к главному валу генератора.Главный возбудитель может быть самовозбужденным или отдельно возбужденным. Системы возбуждения переменного тока можно в общих чертах разделить на две категории, которые подробно поясняются ниже.

а. Вращающаяся тиристорная система возбуждения

Система возбуждения ротора показана на рисунке ниже. Вращающаяся часть обведена пунктирной линией. Эта система состоит из возбудителя переменного тока, стационарного поля и вращающегося якоря. Выход возбудителя выпрямляется двухполупериодной схемой тиристорного мостового выпрямителя и подается на обмотку возбуждения главного генератора.

rotating-thyristor-excitation-system

Обмотка возбуждения генератора также запитана через другую схему выпрямителя. Напряжение возбудителя можно увеличить, используя его остаточный поток. Блок управления источником питания и выпрямителем генерирует управляемый пусковой сигнал. Сигнал напряжения генератора усредняется и сравнивается напрямую с настройкой напряжения оператором в автоматическом режиме работы. В ручном режиме работы ток возбуждения генератора сравнивается с отдельной ручной регулировкой напряжения.

г. Бесщеточная система возбуждения

Эта система показана на рисунке ниже. Вращающаяся часть обведена прямоугольником из пунктирной линии. Бесщеточная система возбуждения состоит из генератора, выпрямителя, главного возбудителя и генератора переменного тока с постоянными магнитами. Главный и пилотный возбудители приводятся в движение главным валом. Главный возбудитель имеет стационарное поле и вращающийся якорь, напрямую подключенные через кремниевые выпрямители к полю главных генераторов переменного тока.

brushless-excitation-system

Пилотный возбудитель — это приводимый от вала генератор с постоянными магнитами, имеющий вращающиеся постоянные магниты, прикрепленные к валу, и трехфазный неподвижный якорь, который питает поле главного возбудителя через кремниевые выпрямители в поле главного генератора переменного тока. Пилотный возбудитель представляет собой генератор постоянных магнитов с приводом от вала, имеющий вращающиеся постоянные магниты, прикрепленные к валу, и трехфазный неподвижный якорь, который питает главный возбудитель через трехфазные двухполупериодные тиристорные мосты с фазовым управлением.

Система исключает использование коммутатора, коллектора и щеток, имеет короткую постоянную времени и время отклика менее 0,1 секунды. Короткая постоянная времени имеет преимущество в улучшенных динамических характеристиках слабого сигнала и облегчает применение дополнительных сигналов стабилизации энергосистемы.

3. Система статического возбуждения

В этой системе питание берется от самого генератора через трехфазный понижающий трансформатор, подключенный по схеме звезда / треугольник.Первичная обмотка трансформатора подключена к шине генератора, а их вторичная обмотка подает питание на выпрямитель, а также подает питание на схему управления сетью и другое электрическое оборудование.

static-excitation-using-scrs

Эта система имеет очень малое время отклика и обеспечивает отличные динамические характеристики. Эта система снизила эксплуатационные расходы за счет устранения потерь на сопротивление воздуха в возбудителе и технического обслуживания обмоток.

.

Типы систем возбуждения — Центр электротехники

В моем последнем посте я уже рассказывал о системе возбуждения для генератора. Я объясняю в целом основные принципы работы и применения для системы возбуждения.

Чтобы получить более подробную информацию об этой теме, я хочу поделиться некоторой информацией о нескольких типах систем возбуждения, которые обычно используются для генератора.

Я надеюсь, что с его помощью я смогу дать некоторые рекомендации и базовые знания о системе возбуждения для генератора.Я предлагаю для получения более подробной информации и понимания, пожалуйста, свяжитесь с вашим местным поставщиком генераторов. Ниже перечислены типы систем возбуждения для генератора: —

Какие бывают системы возбуждения?

1) Возбуждение переменного тока.

Этот тип возбудителя работает от переменного тока. напряжение питания и номинальная частота от 50 до 250 Гц. На выходе имеется контактное кольцо для выпрямления для встроенных диодных ячеек. Эти типы могут быть заменены на коммутатор на d.c с твердотельным выпрямителем.

Выход питания выпрямителя на ротор генератора с контактным кольцом для системы возбуждения постоянного тока. Обычно пилотный возбудитель изготавливается из постоянного магнита для питания основного возбудителя.

В качестве основного возбудителя, который обычно делается в трех фазах, используется комбинация диодов в виде моста. Плечо моста состоит из нескольких параллельно включенных диодов.

Метод защиты от короткого замыкания заключается в том, что каждый диод имеет индивидуальный предохранитель, чтобы удалить его из электрической цепи, когда это произойдет.

2) Бесщеточное возбуждение.

Эта система возбуждения имеет аналогичную функцию между возбуждением переменного тока с предварительным применением. Выпрямительный диод, установленный на валу возбудителя. Главный возбудитель имеет свою выходную обмотку якоря на роторе, а его поле — на статоре.

Обычно для выходной частоты ротора с номинальной частотой около 100 и 250 Гц, он подключен к установленным на валу диодам. Ротор главного генератора может обеспечивать выходную мощность напрямую.

Пилотный возбудитель может быть генератором на постоянных магнитах с частотой до 400 Гц. Для небольшого генератора питание может подаваться от вывода генератора к полю возбудителя.

3) Тиристорное возбуждение.

Для этого типа системы возбуждения он использовал тиристорный выпрямитель для непосредственного управления током поля генератора, и он может реагировать с более быстрой системой, управляя током возбуждения возбудителя. Система возбуждения тиристора необходима для обеспечения контактных колец и щеток для подключения к ротору машины .

Эта функция важна для предупреждения и реагирования на ошибку или неисправность для стабильности системы из-за критического приложения. Но у нее есть недостаток, потому что эта система не была разработана коммерчески и не является общей системой для генераторов во всем мире. Также трудно обеспечить надежно контролировать сигналы к ним от стационарного оборудования.

Мощность возбуждения может подаваться напрямую на связанные главный и пилотный возбудители, или она может подаваться от выводов основного генератора с использованием понижающего трансформатора.

Обычно коэффициент трансформации рассчитан на обеспечение полной выходной мощности при возникновении неисправности системы и снижает напряжение на клеммах машины для системы защиты.

.

Обеспечивает систему возбуждения для синхронной машины и регулирует ее напряжение на клеммах.
в режиме генерации

Постоянная времени фильтра нижних частот

Постоянная времени Tr в секундах (с) системы первого порядка, которая представляет
преобразователь напряжения на клеммах статора. По умолчанию 20e-3 .

Коэффициент усиления и постоянная времени регулятора

Коэффициент усиления Ka и постоянная времени Ta в секундах (с) системы первого порядка
представляющий основной регулятор.По умолчанию [300, 0,001] .

Возбудитель

Коэффициент усиления Ke и постоянная времени Te в секундах (с) системы первого порядка
представляющий возбудитель. По умолчанию [1, 0] .

Кратковременное снижение усиления

Постоянные времени Tb в секундах (с) и Tc в секундах (с)
система первого порядка, представляющая собой компенсатор опережения-запаздывания. По умолчанию [0, 0
]
.

Коэффициент усиления демпфирующего фильтра и постоянная времени

Коэффициент усиления Kf и постоянная времени Tf в секундах (с) системы первого порядка
представляет собой производную обратную связь. По умолчанию [0,001, 0,1] .

Пределы выхода и усиление регулятора

Пределы Efmin и Efmax накладываются на выход регулятора напряжения. Верхний
предел может быть постоянным и равным Efmax, или переменным и равным выпрямленному статору
напряжение на клеммах Vtf, умноженное на пропорциональное усиление Kp.Если Kp установлен на 0 ,
применяется первое. Если Kp установлено на положительное значение, применяется последнее. По умолчанию [
-11,5, 11,5, 0]
.

Начальные значения напряжения на клеммах и напряжения возбуждения

Начальные значения напряжения на клеммах Vt0 (pu) и напряжения возбуждения Vf0 (pu). Когда установлено
правильно, они позволяют начать моделирование в устойчивом состоянии. Начальное напряжение на клеммах
обычно должно быть установлено на 1 о.е. Оба значения Vt0 и Vf0 автоматически обновляются нагрузкой.
служебная программа потока блока Powergui.По умолчанию [1.0 1.28] .

.Система статического и бесщеточного возбуждения генератора

На электростанции мощностью сотни МВт мы используем статическую систему возбуждения, но она требует большего обслуживания, чем бесщеточная. Почему бы нам не перейти на бесщеточную систему? В чем причина этого?

Насколько мне известно, повышенные требования к техническому обслуживанию связаны с контактными кольцами и щетками. Заменить статическую систему возбуждения бесщеточной системой не так-то просто, так как вам пришлось бы поменять вещи в роторе и валу машины (удалить соединения со щетками и контактными кольцами, добавить диодный мост, установленный в роторе машины , добавьте новую вращающуюся машину, соединенную с валом и т. д.). Вероятно, настолько дорого (раз уж устройство будет построено), что не стоит его рассматривать.

Кроме того, система статического возбуждения обычно обеспечивает гораздо более быстрый отклик, что повышает стабильность. Кроме того, стабилизатор энергосистемы более эффективен в гашении электромеханических колебаний, чем в бесщеточной системе возбуждения.

Обратите внимание, что в некоторых регионах Северной Америки код сети по существу требует систем возбуждения с высоким коэффициентом усиления и быстрого отклика (системы возбуждения с высоким начальным откликом) из соображений стабильности.Эти требования на практике делают практически невозможным применение бесщеточной (ну, вращающейся) системы возбуждения в этих областях.

Бесщеточные системы возбуждения стали гораздо более распространенными в последние годы из-за улучшения характеристик отклика бесщеточных систем и надежности компонентов. Но бесщеточный не подходит для такого большого генератора. Посмотрите на генераторы мощностью 100 и 200 МВт, и вы обнаружите, что большинство из них имеют бесщеточную систему возбуждения (вращающийся диод).Когда вы достигнете 300 МВт, вы увидите, что большинство из них статичны. У каждого вида есть свои преимущества.

Бесщеточные вращающиеся возбудители довольно распространены. И они могут быть применены к крупным установкам, но все зависит от региональных требований или сетевых кодов. Я хотел бы упомянуть один очень важный вопрос, связанный с бесщеточными и статическими системами возбуждения: способность к запуску с нуля.

Обычно статические системы возбуждения питаются от трансформатора возбуждения, подключенного к клеммам генератора или вспомогательной служебной шине установки.Тогда у завода должен быть независимый источник питания для питания трансформатора возбуждения (по крайней мере, для первого блока в установке), иначе установка не сможет запустить черный.

Способность к черному запуску намного проще достичь с помощью бесщеточной системы возбуждения, поскольку небольшой PMG может использоваться в качестве независимого источника возбуждения.

По этой причине в дизель-генераторах с черным пуском почти всегда используется ГПМ с бесщеточной системой возбуждения. Но я не видел PMG (генератор с постоянными магнитами) на среднем или большом генераторе (скажем,> 50 МВт).У них есть вспомогательное оборудование, которое должно работать, такое как насосы смазочного масла, поэтому они редко используются для запуска с нуля. Небольшие турбины внутреннего сгорания также могут хорошо работать в черной стартовой струне. И вы правы, если вы обозначаете установку как «черный старт», вам нужно, чтобы хотя бы первая машина имела PMG. В противном случае вам нужно оставить некоторый запас заряда батареи для мощности возбуждения.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *