07.07.2024

Транзистор характеристики: основные параметры и характеристики, маркировка транзисторов

Содержание

Как работает транзистор [ПРОСТО И КРАТКО]


Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. Полупроводниковые транзисторы пришли на смену морально устаревшим ламповым, которые устанавливались в старые телевизоры. Для изготовления полупроводниковых моделей ранее использовался германий, но сферы его применения ограничены из-за чувствительности к температурным колебаниям. На смену германию пришел кремний, т.к. кремниевые детали стоят дешевле германиевых и более устойчивы к скачкам температуры. Транзисторы небольшой мощности изготавливают в прямоугольных корпусах из полимерных материалов или в металлических цилиндрических. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.



Принцип работы и устройство транзистора

Транзисторы

Устройство транзисторов


Наиболее популярный вид полупроводникового транзистора – биполярный. В устройство транзистора этого типа входит монокристалл, разделенный на 3 зоны: база (Б), коллектор (К) и эмиттер (Э), каждая из которых имеет свой вывод.


  • Б – база, очень тонкий внутренний слой;
  • Э – эмиттер, предназначается для переноса заряженных частиц в базу;
  • К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.

Типы проводимости:


  • n-типа — носителями зарядов являются электроны.
  • p-типа — носители зарядов – положительно заряженные «дырки».

Требуемый тип проводимости достигается путем легирования различных частей кремниевого монокристалла. Легирование – это добавление в состав материала различных примесей для улучшения физических и химических свойств этого материала. Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p.


Принцип работы транзистора


Транзистор работает в режимах «Открыто» и «Закрыто». Рассмотрим, как работает транзистор биполярного типа на уровне «чайников», и на каких физических процессах основано его функционирование. В таком транзисторе коллектор и эмиттер сильно легированы, база тонкая, содержит малое количество примесей.


Простое изложение принципа работы биполярного транзистора:


  • Подключение к зажимам одноименного напряжения к эмиттеру и базе (p подсоединяется к «+», а n – к «-») приводит к появлению тока между эмиттером и базой. В базе образуются носители зарядов. Чем выше напряжение, тем больше количество носителей зарядов появляется в базе. Ток, подаваемый на базу, называется управляющим.
  • Если к коллектору подключить обратное напряжение (n-коллектор подключается к плюсу, p-коллектор – к минусу), то между эмиттером и коллектором появится разница потенциалов, и между ними потечет ток. Чем больше носителей заряда скапливается в базе, тем сильнее будет ток между коллектором и эмиттером.
  • При увеличении управляющего напряжения на базе растет ток «эмиттер-коллектор». Причем несущественный рост напряжения приводит к значительному усилению тока «эмиттер-коллектор». Этот принцип используется при производстве усилителей.

Если к эмиттеру и базе подключают напряжение, противоположное по знаку, ток прекращается, и транзистор переходит в закрытое состояние.


Кратко принцип работы полупроводникового транзистора можно изложить так: при подключении к зажимам эмиттера и базы напряжения одноименного заряда прибор переходит в открытое состояние, при подключении к этим выводам обратных зарядов транзистор закрывается.


Как работает транзистор — видео





Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме





Анатолий Мельник


Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.











Схема, принцип работы, характеристики биполярных транзисторов

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.


Особенности устройства биполярного транзистора


Биполярный транзистор включает в себя три области:

  • эмиттер;
  • базу – очень тонкую, которая изготавливается из слаболегированного полупроводника, сопротивление этой области высокое;
  • коллектор – его область больше по размерам, чем область эмиттера.

К каждой области припаяны металлоконтакты, служащие для подсоединения прибора в электроцепь.


Электропроводность коллектора и эмиттера одинакова и противоположна электропроводности базы. В соответствии с видом проводимости областей, различают p-n-p или n-p-n приборы. Устройства являются несимметричными из-за разницы в площади контакта – между эмиттером и базой она значительно ниже, чем между базой и коллектором. Поэтому К и Э поменять местами путем смены полярности невозможно.


Принцип работы биполярного транзистора


Этот тип транзистора имеет два перехода:

  • электронно-дырочный между эмиттером и базой – эмиттерный;
  • между коллектором и базой – коллекторный.

Дистанция между переходами маленькая. Для высокочастотных деталей она составляет менее 10 мкм, для низкочастотных – до 50 мкм. Для активации прибора на него подают напряжение от стороннего ИП. Принцип действия биполярных транзисторов с p-n-p и n-p-n переходами одинаков. Переходы могут функционировать в прямом и обратном направлениях, что определяется полярностью подаваемого напряжения.


Режимы работы биполярных транзисторов


Режим отсечки


Переходы закрыты, прибор не работает. Этот режим получают при обратном подключении к внешним источникам. Через оба перехода протекают обратные малые коллекторные и эмиттерные токи. Часто считается, что прибор в этом режиме разрывает цепь.


Активный инверсный режим


Является промежуточным. Переход Б-К открыт, а эмиттер-база – закрыт. Ток базы в этом случае значительно меньше токов Э и К. Усиливающие характеристики биполярного транзистора в этом случае отсутствуют. Этот режим востребован мало.


Режим насыщения


Прибор полностью открыт. Оба перехода подключаются к источникам тока в прямом направлении. При этом снижается потенциальный барьер, ограничивающий проникновение носителей заряда. Через эмиттер и коллектор начинают проходить токи, которые называют «токами насыщения».


Схемы включения биполярных транзисторов


В зависимости от контакта, на который подается источник питания, различают 3 схемы включения приборов.


С общим эмиттером


Эта схема включения биполярных транзисторов обеспечивает наибольшее увеличение вольтамперных характеристик (ВАХ), поэтому является самой востребованной. Минус такого варианта – ухудшение усилительных свойств прибора при повышении частоты и температуры. Это означает, что для высокочастотных транзисторов рекомендуется подобрать другую схему.


С общей базой


Применяется для работы на высоких частотах. Уровень шумов снижен, усиление не очень велико. Каскады приборов, собранные по такой схеме, востребованы в антенных усилителях. Недостаток варианта – необходимость в двух источниках питания.


С общим коллектором


Для такого варианта характерна передача входного сигнала обратно на вход, что существенно уменьшает его уровень. Коэффициент усиления по току – высокий, по напряжению – небольшой, что является минусом этого способа. Схема приемлема для каскадов приборов в случаях, если источник входного сигнала обладает высоким входным сопротивлением.


Схема включения биполярных транзисторов


Какие параметры учитывают при выборе биполярного транзистора?

  • Материал, из которого он изготовлен, – арсенид галлия или кремний.
  • Частоту. Она может быть – сверхвысокая (более 300 МГц), высокая (30-300 МГц), средняя – (3-30 МГц), низкая (менее 3 МГц).
  • Максимальную рассеиваемую мощность.

Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?



Анатолий Мельник


Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.











описание, типы, устройство, маркировка, применение.

В  этой статье рассказывается об важно элементе радиоэлектронике — транзисторах. Про принцип действия диодов и их характеристики читайте по ссылке — http://www.radioingener.ru/diody-i-ix-primenenie/

Что такое транзистор.

Термин «транзистор» образован из двух английских слов: transfer — преобразователь и resistor — сопротивление.

В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как — то отличить их от вторых, часто называют обычными транзисторами.

Биполярный (обычный) транзистор

Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем.  В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис. 1), которые образуют два р — n перехода.

Две крайние области обладают электропроводностью одного типа, средняя — электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p — n — р. У транзистора структуры n — p — n, наоборот, по краям расположены области с электронной электропроводностью, а между ними — область с дырочной электропроводностью (рис. 1, б).

Схематическое устройство и графическое обозначение на схемах транзисторов структуры p - n - p и n - p - n.

Рис. 1 Схематическое устройство и графическое обозначение на схемах транзисторов структуры p — n — p и n — p — n.

Устройство и структура.

Если мысленно прикрыть любую из крайних областей транзисторов, изображенных схематически на (рис.1). Что получилось? Оставшиеся две области есть не что иное, как плоскостной диод. Если прикрыть другую крайнюю область, то тоже получится диод. Значит, транзистор можно представить себе как два плоскостных диода с одной общей областью, включенных навстречу друг другу.

Общую (среднюю) область транзистора называют базой, одну крайнюю область — эмиттером, вторую крайнюю область — коллектором.

Это три электрода транзистора. Во время работы эмиттер вводит (эмитирует) в базу дырки (в структуре p — n — р) или электроны (в структуре n — p — n), коллектор собирает эти электрические заряды, вводимые в базу эмиттером.

Различие в обозначениях транзисторов разных структур на схемах заключается лишь в направлении стрелки эмиттера: в p — n — р транзисторах она обращена в сторону базы, а в n — p — n — от базы.

Электронно — дырочные переходы в транзисторе могут быть получены так же, как в плоскостных диодах. Например, чтобы изготовить транзистор структуры p — n — р, берут тонкую пластину германия с электронной электропроводностью и наплавляют на ее поверхность кусочки индия. Атомы индия диффундируют (проникают) в тело пластины, образуя в ней две области типа р — эмиттер и коллектор, а между ними остается очень тонкая (несколько микрон) прослойка полупроводника типа n — база. Транзисторы, изготовляемые по такой технологии, называют сплавными.

Запомни наименования р — n переходов транзистора: между коллектором и базой — коллекторный, между эмиттером и базой — эмиттерный.

Схематическое устройство и конструкция сплавного транзистора показаны на (рис. 2).

Изготовление транзисторов.

Прибор собран на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу — ее наружный проволочный вывод. Внутренние выводы коллектора и эмиттера приварены к проволочкам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Цельнометаллический колпак защищает прибор от механических повреждений и влияния света. Так устроены наиболее распространенные маломощные низкочастотные транзисторы серий МП39, МП40, МП41, МП42 и их разновидности. Буква (М) в обозначении говорит о том, что корпус прибора холодносварной, буква (П)- первоначальная буква слов «плоскостной», а цифры — порядковые заводские номера приборов. В конце обозначения могут быть буквы А, Б, В (например, МП39Б), указывающие разницу в параметрах данной серии. Существуют другие способы изготовления, например, диффузионно — сплавной (рис. 3). Коллектором транзистора, изготовленного по такой технологии, служит пластина исходного полупроводника. На поверхность пластины наплавляют очень близко один от другого два маленьких шарика примесных элементов. Во время нагрева до строго определенной температуры происходит диффузия примесных элементов в пластинку полупроводника. При этом один шарик (на рис. 3 — правый) образует в коллекторе тонкую базовую область, а второй (на рис. 3 — левый) эмиттерную область.

Устройство и конструкция сплавного и диффузионно - сплавного транзистора структуры p - n - p.

Рис. 2 — Устройство и конструкция сплавного слева и диффузионно — сплавного справа транзистора структуры p — n — p.

В результате в пластине исходного полупроводника получаются два р — n перехода, образующие транзистор структуры р — n — р. По такой технологии изготовляют, в частности, наиболее массовые маломощные высокочастотные транзисторы серий П401-П403, П422, П423, ГТ308. В настоящее время действует система обозначения, по которой выпускаемые серийно приборы имеют обозначения, состоящие из четырех элементов, например: ГТ109А, КТ315В, ГТ403И.

  • Первый элемент этой системы обозначения — буква Г, К или А (или цифра 1, 2 и 3) — характеризует полупроводниковый материал и температурные условия работы прибора. Буква Г (или цифра 1) присваивается германиевым транзисторам, буква К (или цифра 2) — кремниевым, буква А (или цифра 3) — транзисторам, полупроводниковым материалом которых служит арсенид галлия. Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах (германиевый — выше 4- 60°С, кремниевый — выше +85°С).
  • Второй элемент — буква Т — начальная буква слова «транзистор».
  • Третий элемент — трехзначное число от 101 до 999 — указывает порядковый номер разработки и назначение прибора. Это число присваивается транзистору по признакам, приведенным в таблице.
  • Четвертый элемент обозначения — буква, указывающая разновидность прибора данной серии.

Удобная таблица для запоминания характеристик транзистора по частоте, мощности.

Вот некоторые примеры расшифровки обозначений по этой системе :

ГТ109А — германиевый маломощный низкочастотный транзистор, разновидность А;

ГТ404Г — германиевый средней мощности низкочастотный транзистор, разновидность Г;

КТЗ15В — кремниевый маломощный высокочастотный транзистор, разновидность В.

Применение транзисторов

Наряду с такой системой продолжает действовать и прежняя система обозначения, например П27, П401, П213, МП39 и т.д. Объясняется это тем, что такие или подобные транзисторы были разработаны до введения современной маркировки полупроводниковых приборов. Внешний вид некоторых биполярных транзисторов, наиболее широко используемых радиолюбителями, показан на (рис. 4). Маломощный низкочастотный транзистор ГТ109 (структуры р — n — р) имеет в диаметре всего 3, 4 мм. Транзисторы этой серии предназначены для миниатюрных радиовещательных приемников. Их используют также в слуховых аппаратах, в электронных медицинских приборах т.д.

Диаметр транзисторов ГТ309 (р — n — р) 7,4 мм. Такие транзисторы применяют в различных малогабаритных электронных устройствах для усиления и генерирования колебаний высокой частоты.

Транзисторы КТЗ15 (n — p — n) выпускают в пластмассовых корпусах. Эти маломощные приборы предназначены для усиления и генерирования колебаний высокой частоты. Транзисторы МП39 — МП42 (р — n — р) — самые массовые среди маломощных низкочастотных транзисторов. Точно так выглядят и аналогичные им, но структуры n — p — n, транзисторы МП35 — МП38. Диаметр корпуса любого из этих транзисторов 11,5 мм. Наиболее широко их используют в усилителях звуковой частоты.

Так выглядят и маломощные высокочастотные р — n — р транзисторы серий П401 — П403, П416, П423, используемые для усиления высокочастотных сигналов как в промышленных, так и любительских радиовещательных приемниках. Транзистор ГТ402 (р — n — р) — представитель низкочастотных транзисторов средней мощности. Такую же конструкцию имеет его «близнец» ГТ404, но он структуры (n — p — n). Их, обычно используют в паре, в каскадах усиления мощности колебаний звуковой частоты.

Транзистор П213 (германиевый структуры р — n — р) — один из мощных низкочастотных транзисторов, широко используемых в оконечных каскадах усилителей звуковой частоты. Диаметр этого, а также аналогичных ему транзисторов П214 — П216 и некоторых других, 24 мм. Такие транзисторы крепят на шасси или панелях при помощи фланцев. Во время работы они нагреваются, поэтому их обычно ставят на специальные теплоотводящие радиаторы, увеличивающие поверхности охлаждения.

КТ904 — сверхвысокочастотный кремниевый n — p — n транзистор большой мощности. Корпус металлокерамический с жесткими выводами и винтом М5, с помощью которого транзистор крепят на теплопроводящем радиаторе. Функцию радиатора может выполнять массивная металлическая пластина или металлическое шасси радиотехнического устройства. Высота транзистора вместе с выводами и крепежным винтом чуть больше 20 мм. Транзисторы этой серии предназначаются для генераторов и усилителей мощности радиоаппаратуры, работающей на частотах выше 100 МГц, например диапазона УКВ.

Внешний вид некоторых транзисторов

Рис. 4 Внешний вид некоторых транзисторов.

Советую просмотреть обучающий фильм:

Схемы включения и основные параметры биполярных транзисторов

 

Итак, биполярный транзистор, независимо от его структуры, является трехэлектродным прибором. Его электроды — эмиттер, коллектор и база. Для использования транзистора в качестве усилителя напряжения, тока или мощности входной сигнал, который надо усилить, можно подавать на два каких — либо электрода и с двух электродов снимать усиленный сигнал. При этом один из электродов обязательно будет общим. Он — то и определяет название способа включения транзистора: по схеме общего эмиттера (ОЭ), по схеме общего коллектора (ОК), по схеме общей базы (ОБ).

 

  • Включение p-n-р транзистора по схеме ОЭ показано на (рис. 5, а). Напряжение источника питания на коллекторе V подается через резистор Rк, являющийся нагрузкой, на эмиттер — через общий «заземленный» проводник, обозначаемый на схемах специальным знаком. Входной сигнал через конденсатор связи Ссв. подается к выводам базы и эмиттера, т.е. к участку база — эмиттер, а усиленный сигнал снимается с выводов эмиттера и коллектора. Эмиттер, следовательно, при таком включении является общим для входной и выходной цепей. Транзистор, по схеме с ОЭ, в зависимости от его усилительных свойств может дать 10 — 200 — кратное усиление сигнала по напряжению и 20 — 100 — кратное усиление сигнала по току. Такой способ включения по схеме с ОЭ пользуется у радиолюбителей наибольшей популярностью. Существенным недостатком усилительного каскада, включенном по такой схеме, является его сравнительно малое входное сопротивление — всего 500-1000 Ом, что усложняет согласование усилительных каскадов, транзисторы которых включают по такой же схеме. Объясняется это тем, что в данном случае эмиттерный р — n переход транзистора включен в прямом, т.е. пропускном, направлении. А сопротивление пропускного перехода, зависящее от прикладываемого к нему напряжения, всегда мало. Что же касается выходного сопротивления такого каскада, то оно достаточно большое (2-20 кОм) и зависит от сопротивления нагрузки Rк и усилительных свойств.

Схемы включения транзистора с общим эмиттером, с общим коллектором и с общей базой

  • Включение прибора схеме ОК показано на (рис. 5, б). Входной сигнал подается на базу и эмиттер через эмиттерный резистор Rэ, который является частью коллекторной цепи. С этого же резистора, выполняющего функцию нагрузки транзистора, снимается и выходной сигнал. Таким образом, этот участок коллекторной цепи является общим для входной и выходной цепей, поэтому и название способа включения транзистора — ОК. Каскад с полупроводником, включенным по такой схеме, по напряжению дает усиление меньше единицы. Усиление же по току получается примерно такое же, как если бы транзистор был включен по схеме ОЭ. Но зато входное сопротивление такого каскада может составлять 10 — 500 кОм, что хорошо согласуется с большим выходным сопротивлением каскада на транзисторе, включенном по схеме ОЭ. По существу, каскад не дает усиления по напряжению, а лишь как бы повторяет подведенный к нему сигнал. Поэтому транзисторы, включаемые по такой схеме, называют также эмиттерными повторителями. Почему эмиттерными? Потому что выходное напряжение на эмиттере практически полностью повторяет входное напряжение. Почему каскад не усиливает напряжение? Давайте мысленно соединим резистором цепь базы с нижним (по схеме) выводом эмиттерного резистора Rэ, как показано на (рис. 5, б) штриховыми линиями. Этот резистор — эквивалент внутреннего сопротивления источника входного сигнала Rвх., например микрофона или звукоснимателя. Таким образом, эмиттерная цепь оказывается связанной через резистор Rвх. с базой. Когда на вход усилителя подается напряжение сигнала, на резисторе Rэ, являющемся нагрузкой транзистора, выделяется напряжение усиленного сигнала, которое через резистор Rвх. оказывается приложенным к базе в противофазе. При этом между эмиттерной и базовой цепями возникает очень сильная отрицательная обратная связь, сводящая на нет усиление каскада. Это по напряжению. А по току усиления получается такое же, как и при включении транзистора по схеме с ОЭ.
  • Теперь о включении транзистора по схеме с ОБ (рис. 5, в). В этом случае база через конденсатор Сб по переменному току заземлена, т. е. соединена с общим проводником питания. Входной сигнал через конденсатор Ссв. подают на эмиттер и базу, а усиленный сигнал снимают с коллектора и с заземленной базы. База, таким образом, является общим электродом входной и выходной цепей каскада. Такой каскад дает усиление по току меньше единицы, а по напряжению — такое же, как транзистор, включенный по схеме с ОЭ (10 — 200). Из — за очень малого входного сопротивления, БК превышающего нескольких десятковом (30-100) Ом, включение транзистора по схеме ОБ используют главным образом в генераторах электрических колебаний, в сверхгенеративных каскадах, применяемых, например, в аппаратуре радиоуправления моделями.

Чаще всего как я уже говорил применяются схемы с включением транзистора с ОЭ, реже с ОК. Но это только способы включения. А режим работы транзистора как усилителя определяется напряжениями на его электродах, токами в его цепях и, конечно, параметрами самого транзистора. Качество и усилительные свойства биполярных транзисторов оценивают по нескольким электрическим параметрам, которые измеряют с помощью специальных приборов. Вас же, с практической точки зрения, в первую очередь должны интересовать три основных параметра: обратный ток коллектора Iкбо, статический коэффициент передачи тока h313 (читают так: аш два один э) и граничная частота коэффициента передачи тока Fгр.

  • Обратный ток коллектора Iкбо — это неуправляемый ток через коллекторный р — n переход, создающийся неосновными носителями тока транзистора. Он характеризует качество транзистора: чем численное значение параметра Iкбо меньше, тем выше качество. У маломощных низкочастотных транзисторов, например, серий МП39 — МП42, Iкбо не должен превышать 30 мкА, а у маломощных высокочастотных 5 мкА. Транзисторы с большими значениями Iкбо в работе неустойчивы.
  • Статический коэффициент передачи тока h31э характеризует усилительные свойства транзистора. Статическим его называют потому, что этот параметр измеряют при неизменных напряжениях на его электродах и неизменных токах в его цепях. Буква «Э» в этом выражении указывает на то, что при измерении полупроводник включают по схеме ОЭ. Коэффициент h31э характеризуется отношением постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор — эмиттер и токе эмиттера. Чем больше численное значение коэффициента h31э, тем большее усиление сигнала может обеспечить данный прибор.
  • Граничная частота коэффициента передачи тока Fгр, выраженная в килогерцах или мегагерцах, позволяет судить о возможности использования транзистора для усиления колебаний тех или иных частот. Граничная частота Fгр транзистора МП39, например, 500 кГц, а транзисторов П401 — П403 — больше 30 МГц. Практически транзисторы используют для усиления частот значительно меньше граничных, так как с повышением частоты коэффициент h31э уменьшается.

При конструировании радиотехнических устройств надо учитывать и такие параметры, как максимально допустимое напряжение коллектор — эмиттер Uкэ max, максимально допустимый ток коллектора Iк.max а также максимально допустимую рассеиваемую мощность коллектора Рк.max — мощность, превращающуюся в тепло.

 

Полевой транзистор

В этом полупроводниковом приборе управление рабочим током осуществляется не током во входной (базовой) цепи, как в биполярном транзисторе, а воздействием на носители тока электрического поля. Отсюда и название «полевой». Схематическое устройство и конструкция полевого транзистора с р — n переходом показаны на (рис. 6). Основой такого транзистора служит пластина кремния с электропроводностью типа n, в которой имеется тонкая область с электропроводностью типа р. Пластину прибора называют затвором, а область типа р в ней — каналом. С одной стороны канал заканчивается истоком, с другой стоком — тоже областью типа р, но с повышенной концентрацией дырок. Между затвором и каналом создается р — n переход. От затвора, истока и стока сделаны контактные выводы. Если к истоку подключить положительный, а к стоку — отрицательный полюсы батареи питания (на рис. 6 — батарея GB), то в канале появится ток, создающийся движением дырок от истока к стоку. Этот ток, называемый током стока Iс, зависит не только от напряжения этой батареи, но и от напряжения, действующего между источником и затвором (на рис. 6 — элемент G).

И вот почему. Когда на затворе относительно истока действует положительное закрывающее напряжение, обедненная область р — n перехода расширяется (на рис. 6 показано штриховыми линиями). От этого канал сужается, его сопротивление увеличивается, из — за чего ток стока уменьшается. С уменьшением положительного напряжения на затворе обедненная область р — n перехода, наоборот, сужается, канал расширяется, и ток снова увеличивается. Если на затвор вместе с положительным напряжением смещения подавать низкочастотный или высокочастотный сигнал, в цепи стока возникнет пульсирующий ток, а на нагрузке, включенной в эту цепь, — напряжение усиленного сигнала. Так, в упрощенном виде устроены и работают полевые транзисторы с каналом типа р, например — КП102, КП103 (буквы К и П означают «кремниевый полевой»). Принципиально так же устроен и работает полевой транзистор с каналом типа n. Затвор транзистора такой структуры обладает дырочной электропроводностью, поэтому на него относительно истока должно подаваться отрицательное напряжение смещения, а на сток (тоже относительно истока) — положительное напряжение источника питания. На условном графическом изображении полевого транзистора с каналом типа n стрелка на линии затвора направлена в сторону истока, а не от истока, как в обозначении транзистора с каналом типа р. Полевой транзистор — тоже трехэлектродный прибор. Поэтому его, как и биполярный транзистор, включать в усилительный каскад можно тремя способами: по схеме общего стока (ОС), по схеме общего истока (ОИ) и по схеме общего затвора (ОЗ). В радиолюбительской практике применяют в основном только первые два способа включения, позволяющие с наибольшей эффективностью использовать полевые транзисторы.

Усилительный каскад на полевом транзисторе обладает очень большим, исчисляемым мегаомами, входным сопротивлением.

Это позволяет подавать на его вход высокочастотные и низкочастотные сигналы от источников с большим внутренним сопротивлением, например от пьезокерамическрго звукоснимателя, не опасаясь искажения или ухудшения усиления входного сигнала.

В этом главное преимущество полевых транзисторов по сравнению с биполярными. Усилительные свойства полевого транзистора характеризуют крутизной характеристики S — отношением изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора, включенного по схеме ОИ. Численное значение параметра S выражают в миллиамперах на вольт; для различных транзисторов оно может составлять от 0,1 — 0,2 до 10 — 15 мА/В и больше. Чем больше крутизна, тем большее усиление сигнала может дать транзистор.

Конструкция и графическое изображение полевого транзистора с каналом типа (p).

Рис. 6 Конструкция и графическое изображение полевого транзистора с каналом типа (p).

Другой параметр полевого транзистора — напряжение отсечки Uзи.отс. — Это обратное напряжение на р — n переходе затвор — канал, при котором ток через этот переход уменьшается до нуля. У различных транзисторов напряжение отсечки может составлять от 0,5 до 10 В. О полевых транзисторах и их уникальных свойствах можно говорить еще много, я попытался рассказать о наиболее существенных.

Кодовая и цветовая маркировка транзисторов

Все картинки кликабельны. Вы можете нажать и сохранить их себе на ПК, чтобы в дальнейшем пользоваться. Или просто сохраните данную страницу нажав в браузере добавить в закладки.

 

ЦВЕТОВАЯ И КОДОВАЯ МАРКИРОВКА ТРАНЗИСТОРОВ

Рис. 1

ЦВЕТОВАЯ И КОДОВАЯ МАРКИРОВКА ТРАНЗИСТОРОВ

Рис. 2

ЦВЕТОВАЯ И КОДОВАЯ МАРКИРОВКА ТРАНЗИСТОРОВ

Рис. 3

ЦВЕТОВАЯ И КОДОВАЯ МАРКИРОВКА ТРАНЗИСТОРОВ

Рис. 4

ЦВЕТОВАЯ И КОДОВАЯ МАРКИРОВКА ТРАНЗИСТОРОВ

Рис. 5 — КТ315, КТ361

И так сказать на закуску классификацию корпусов, чтобы при заказе или обозначении на схеме иметь представление о внешнем виде транзистора

Типы корпусов транзисторов

 

Транзисторы: принцип работы,​ схема подключения, отличие биполярного от полевого

Автор Даниил Леонидович На чтение 9 мин. Просмотров 35.9k. Опубликовано

В свое время за открытие транзистора его создатели удостоились Нобелевской премии. Этот маленький прибор изменил человечество навсегда: начиная с простых радиоприемников и заканчивая процессорами, в которых их число достигает нескольких миллиардов. Между тем, чтобы узнать, как он работает, не нужно быть золотым медалистом или лауреатом «нобелевки».

Что такое транзистор

Транзистор – это прибор, изготовленный из полупроводниковых материалов. Выглядит как маленькая металлическая пластинка с тремя контактами. Назначений у него два: усиливать поступающий сигнал и участвовать в управлении компонентами электроприборов.

транзистор

Принцип действия

Полупроводники занимают промежуточное состояние между проводниками и диэлектриками. В обычном состоянии они не проводят электрический ток, но их сопротивление падает с ростом температуры. Чем она выше, тем больше энергии, которую получает вещество.

В атомах полупроводника электроны отрываются от «родительского» атома и улетают к другому, чтобы заполнить там «дырку», которую оставил такой же электрон. Получается, что внутри такого материала одновременно происходят два процесса: полет электронов (n-проводимость, от слова negative – отрицательный), и образование «дырок» (p-проводимость от слова positive – положительный). В обычном куске кремния эти процессы уравновешены: количество дырок равно количеству свободных электронов.

Однако с помощью специальных веществ можно нарушить это равновесие, добавив «лишние» электроны (вещества – доноры) или «лишние» «дырки» (вещества акцепторы). Таким образом можно получить кристалл полупроводника с преобладающей n-проводимостью, либо p-проводимостью.

Если два таких материала приложить друг к другу, то в месте их соприкосновения образуется так называемый p-n переход. Дырки и электроны проходят через него, насыщая соседа. То есть там, где был избыток дырок, идет их заполнение электронами и наоборот.

В какой-то момент в месте соприкосновения не останется свободных носителей заряда и наступит равновесие. Это своего рода барьер, который невозможно преодолеть, этакая пустыня. Этот слой принято называть обедненным слоем.

Принцип действия транзистора

Теперь, если приложить к такому материалу напряжение, то оно поведет себя интересным образом: при прямой его направленности обедненный слой истончится и через него пойдет электроток, а при обратном – наоборот, расширится.

Как говорится, если для чайников, то p-n переход обладает способностью пропускать ток только в одном направлении. Это своего рода «обратный клапан» для электрической сети. На этом их свойстве основана работа всех полупроводниковых приборов.

Существует две основные разновидности транзисторов: полевые (иногда их называют униполярными) и биполярными. Различаются они по устройству и принципу действия.

Биполярный транзистор

принцип действия биполярного транзсора

Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.

Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.

В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.

Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.

Полевой транзистор

Если в биполярном транзисторе управление происходило с помощью тока, то в полевом – с помощью напряжения. Состоит он из пластинки полупроводника, которую называют каналом. С одной стороны к ней подключен исток – через него в канал входят носители электрического тока, а с другой сток – через него они покидают канал.

Сам канал как бы «зажат» между затвором, который обладает обратной проводимостью, то есть если канал имеет n-проводимость, то затвор – p-проводимость. Затвор электрически отделен от канала. Изменяя напряжение на затворе, можно регулировать зону p-n перехода. Чем она больше, тем меньше электрической энергии проходит через канал. Существует значение напряжения, при котором затвор полностью перекроет канал и ток между истоком и стоком прекратится.

принцип действия полевого транзистора

Наиболее наглядная иллюстрация в этом случае – садовый шланг, который проходит через камеру небольшого колеса. В таком случае, даже когда в него подается небольшое давление воздуха (напряжение затвор-исток), оно значительно увеличивается в размерах и начинает пережимать шланг, перекрывается просвет шланга и прекращается подача воды (увеличивается зона p-n перехода и через канал перестает идти электроток).

Описанный выше тип полупроводникового прибора является классическим и называется транзистором с управляющим p-n переходом. Часто можно встретить аббревиатуру JFET – Junction FET, что просто перевод русского названия на английский.

Другой тип полевого триода имеет небольшое различие в конструкции затвора. На слое кремния с помощью окисления образуется слой диэлектрика оксида кремния. Уже на него методом напыления металла наносят затвор. Получаются чередующиеся слои Металл -Диэлектрик – Полупроводник или МДП-затвор.

Такой полевой транзистор с изолированным затвором обозначается латинскими буквами MOSFET.

Существует два вида МДП-затвора:

  1. МДП-затвор с индуцированным (или инверсным) каналом в обычном состоянии закрыт, то есть при отсутствии напряжения на затворе электроток через канал не проходит. Для того, чтобы открыть его, к затвору необходимо приложить напряжение.
  2. МДП-затвор со встроенным (или собственным) каналом в обычном состоянии открыт, то есть при отсутствии напряжения на затворе электроток через канал проходит. Для того, чтобы закрыть его, к затвору необходимо приложить напряжение.

транзистор с изолированным затвором

Основные характеристики

Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.

В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.

Хотя на первый взгляд кажется, что здесь важен принцип «чем больше, тем лучше», но в действительности это не так. Скорее, тут применимо изречение «лучше меньше, да лучше». В среднем биполярные транзисторы имеют коэффициент передачи тока базы в пределах 10 – 50.

Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.

Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.

Поэтому оптимальным считается максимальная рабочая частота сигнала, в 10-20 раз ниже предельного усиления частоты транзистора.

Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.

Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.

Типы подключений

Основная задача транзистора – усиливать поступающий сигнал. Проблема в том, что у любого триода имеются только три контакта, в то время как сам усилитель имеет четыре полюса – два для входящего сигнала и два для выходящего, то есть усиленного. Выход из положения – использовать один из контактов транзистора дважды: и как вход, и как выход.

схемы подключения транзистора

По этому принципу различают три вида подключения. Стоит отметить, что не имеет принципиальной разницы, какой тип прибора используется – полевой или биполярный.

  1. Подключение с общим эмиттером (ОЭ) или общим истоком (ОИ). Эта схема подключения имеет наибольшие значения усиления мощности по току и напряжению. Однако из-за эффекта Миллера его частотные характеристики значительно хуже. Борются с этим негативным явлением несколькими способами: используют подключение с общей базой, применяют каскодное подключение двух транзисторов (подключённому по общему эмиттеру добавляется второй, подключенный по общей базе).
  2. Подключение с общей базой (ОБ) или общим затвором (ОЗ). Здесь полностью исключено влияние эффекта Миллера. Однако за это приходиться платить: в этой схеме усиления тока практически не происходит, зато имеется широкий диапазон для изменения частоты сигнала.
  3. Подключение с общим коллектором (ОК) или общим стоком (ОС). Такой тип подключения часто называют эмиттерным или истоковым повторителем. Это «золотая середина» между двумя предыдущими видами схем: частотные характеристики и мощность усиления по току и напряжению находятся где-то посередине между двумя первыми.

Все три описанных выше типа подключения применяются в зависимости от того, какие цели преследуют конструкторы.

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

виды транзисторов

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

Все транзисторы. Даташиты. Описания. Основные характеристики. Справочник транзисторов

 



В справочнике приведены описания, характеристики и даташиты более 100 000 транзисторов

BJT. TOP50:
2N2222
— 2N3055
— BC547
— 2N3904
— 2N2222A
— BC107
— C945
— BC548
— BD139
— 8050
— S8050
— BC557
— BC337
— TIP31
— D882
— AC128
— BC108
— S9014
— C1815
— BD140
— 2N3906
— S8550
— 8550
— 2SC945
— 2SC5200
— BC547B
— 2N5551
— MJE13003
— 9014
— BC549
— BC148
— TIP122
— 9013
— 2N2907
— BC558
— BC327
— C102
— A733
— 2SC1815
— 2N60C
— 2N222
— 2N4401
— BC109
— BD135
— S9013
— BC546
— A1015
— 9012
— 431
— 2N3773


MOSFET. TOP30:
IRF3205
— IRFZ44N
— IRF740
— IRF540
— IRF840
— BS170
— IRFZ44
— IRF640
— IRF540N
— 2N7000
— IRF630
— IRFP460
— IRFZ46N
— IRF530
— IRF1404
— IRF3710
— IRFZ34N
— IRFP250
— BUZ11
— RFP50N06
— IRF520
— IRFP450
— IRFB3306
— IRF510
— IRF830
— 2N5484
— IRF730
— IRF150
— STF5N52U
— IRF2807


IGBT. TOP15:
IRGP4086
— CT60AM-18F
— FGPF4633
— G40N60B3
— IRG7IC28U
— G20N60B3D
— IXGR40N60C2D1
— G7N60C3D
— RJP30h2DPD
— IKW50N60h4
— 10N40F1D
— GT60M303
— FGh50N60SFD
— IRG4BC30W-S
— IRG4PC50UD

 

 

BUY TRANSISTORS

 

Подбор биполярного транзистора по параметрам. Поиск аналогов

Material =

Struct =

Pc > W

Ucb > V

Uce > V

Ueb > V

Ic > A

Tj > C

Ft > MHz

Cc pF

Hfe >

Caps =

R1 = kOhm

R2 = kOhm

R1/R2 =

Пустые или нулевые поля игнорируются при поиске

Как подобрать замену для биполярного транзистора 🔗

Сейчас в справочнике описаны 124234 транзисторов.

 

 
Back to Top

 

Принцип действия транзистора, внутреннее устройство и основные характеристики транзисторов

Транзистором называется полупроводниковый прибор, предназначенный для усиления и генерирования электрических колебаний. Так что же такое транзистор? — Он представляет собой кристалл, помещенный в корпус, снабженный выводами. Кристалл изготовляют из полупроводникового материала. По своим электрическим свойствам полупроводники занимают некоторое промежуточное положение между проводниками и непроводниками тока (изоляторами).

Небольшой кристалл полупроводникового материала (полупроводника) после соответствующей технологической обработки становится способным менять свою электропроводность в очень широких пределах при подведении к нему слабых электрических колебаний и постоянного напряжения смещения.

Кристалл помещают в металлический или пластмассовый корпус и снабжают тремя выводами, жесткими или мягкими, присоединенными к соответствующим зонам кристалла. Металлический корпус иногда имеет собственный вывод, но чаща с корпусом соединяют один из трех электродов транзистора.

В настоящее время находят применение транзисторы двух видов — биполярные и полевые. Биполярные транзисторы появились первыми и получили наибольшее распространение. Поэтому обычно их называют просто транзисторами. Полевые транзисторы появились позже и пока используются реже биполярных.

Быполярные транзисторы

Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами. В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов.

Поэтому и транзисторы называют одни кремниевыми, другие — германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.

Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость). Таким образом формируют один из электродов транзистора, называемый базой.

Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменяющие тип проводимости базы на обратную так, чтобы образовались близколежащие зоны n-р-n или р-n-р, и к каждой зоне подключить выводы, образуется транзистор.

Одну из крайних зон называют эмиттером, т. е. источником носителей заряда, а вторую — коллектором, собирателем этих носителей. Зона между эмиттером и коллектором называется базой. Выводам транзистора обычно присваивают названия, аналогичные его электродам.

Усилительные свойства транзистора проявляются в том, что если теперь к эмиттеру и базе приложить малое электрическое напряжение — входной сигнал, то в цепи коллектор — эмиттер потечет ток, по форме повторяющий входной ток входного сигнала между базой и эмиттером, но во много раз больший по значению.

Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относительно эмиттера (это напряжение часто называют напряжением смещения) должно быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.

Включение в цепь n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряжения смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.

Напряжения смещения базы для кремниевых и германиевых транзисторов

Рис. 1. Напряжения смещения базы для кремниевых и германиевых транзисторов.

На рис. 1 показаны условные графические обозначения транзисторов той и другой структуры, выполненных на основе германия и кремния, и типовое напряжение смещения. Электроды транзисторов обозначены первыми буквами слов: эмиттер — Э, база — Б, коллектор — К.

Напряжение смещения (или, как принято говорить, режим) показано относительно эмиттера, но на практике напряжение на электродах транзистора указывают относительно общего провода устройства. Общим проводом в устройстве и на схеме называют провод, гальванически соединенный с входом, выходом и часто с источником питания, т. е. общий для входа, выхода и источника питания.

Усилительные и другие свойства транзисторов характеризуются рядом электрических параметров, наиболее важные из которых рассмотрены ниже.

Статический коэффициент передачи тока базы h21Э показывает, во сколько раз ток коллектора биполярного транзистора больше тока его базы, вызвавшего этот ток. У большинства типов транзисторов численное значение этого коэффициента от экземпляра к экземпляру может изменяться от 20 до 200. Есть транзисторы и с меньшим значением — 10…15, и с большим — до 50…800 (такие называют транзисторами со сверхусилением).

Нередко считают, что хорошие результаты можно получить только с транзисторами, имеющими большое значение h21э. Однако практика показывает, что при умелом конструировании аппаратуры вполне можно обойтись транзисторами, имеющими h2lЭ, равный всего 12…20. Примером этого может служить большинство конструкций, описанных в этой книге.

Частотными свойствами транзистора учитывается тот факт, что транзистор способен усиливать электрические сигналы с частотой, не превышающей определенного для каждого транзистора предела. Частоту, на которой транзистор теряет свои усилительные свойства, называют предельной частотой усиления транзистора.

Для того, чтобы транзистор мог обеспечить значительное усиление сигнала, необходимо, чтобы максимальная рабочая частота сигнала была по крайней мере в 10…20 раз меньше предельной частоты fт транзистора. Например, для эффективного усиления сигналов низкой частоты (до 20 кГц) применяют низкочастотные транзисторы, предельная частота которых не менее 0,2…0,4 МГц.

Для усиления сигналов радиостанций длинноволнового и средневолнового диапазонов волн (частота сигнала не выше 1,6 МГц) пригодны лишь высокочастотные транзисторы с предельной частотой не ниже 16…30 МГц.

Максимальная допустимая рассеиваемая мощность — это наибольшая мощность, которую может рассеивать транзистор в течение длительного времени без опасности выхода из строя. В справочниках по транзисторам обычно указывают максимальную допустимую мощность коллектора Яктах, поскольку именно в цепи коллектор — эмиттер выделяется наибольшая мощность и действуют наибольшие ток и напряжение.

Базовый и коллекторный токи, протекая по кристаллу транзистора, разогревают

Транзисторы





цоколевка 13002Транзисторы

Транзистора 13002 (MJE13002)

0816

Биполярный кремниевый транзистор 13002 по своим характеристикам относится к высоковольтным, высокоскоростным

СхемаТок


распиновка 2sc5200Транзисторы

Транзистор 2SC5200

0564

Транзистор 2SC5200 по своим характеристикам, представляет собой устройство с NPN-структурой, изготовленный

СхемаТок


транзистор s9018 цоколевкаТранзисторы

Транзистор S9018

01.8k.

Согласно техническим характеристикам S9018 (он же SS9018) является сверхвысокочастотным биполярным кремниевым

СхемаТок


2n3055 цоколевкаТранзисторы

Транзистор 2N3055

01.6k.

Характеристики транзистора 2N3055 говорят о том, что он биполярный, силовой, NPN структуры, общего назначения.

СхемаТок


Количество ДГМ в КТ825ГТранзисторы

Содержание драгоценных металлов в КТ825Г

11k.

Содержание драгметаллов в КТ825Г зависит от года выпуска транзистора и его предприятия-изготовителя.

СхемаТок

Навигация по записям

Каковы характеристики транзистора? (с иллюстрациями)

Транзисторы — это компоненты электронных устройств, которые управляют и усиливают поток электричества в устройстве, и считаются одним из самых важных изобретений в развитии современной электроники. Важные характеристики транзистора, которые влияют на работу транзистора, включают усиление, структуру и полярность транзистора, а также материалы конструкции. Характеристики транзистора могут сильно различаться в зависимости от назначения транзистора.

A transistor amplifies electrical current.
Транзистор усиливает электрический ток. Транзисторы

полезны, потому что они могут использовать небольшое количество электричества в качестве сигнала для управления потоком гораздо большего количества. Способность транзистора делать это называется усилением транзистора, которое измеряется как отношение выходной мощности транзистора к входу, необходимому для получения этого выхода.Чем выше выход по сравнению с входом, тем выше усиление. Это соотношение можно измерить в единицах мощности, напряжения или тока электричества. Коэффициент усиления уменьшается с увеличением рабочей частоты.

Each semiconductor terminal in a transistor can have positive or negative polarity, depending on what substances the transistor
Каждый полупроводниковый вывод в транзисторе может иметь положительную или отрицательную полярность, в зависимости от того, какими веществами был легирован основной полупроводниковый материал транзистора.

Характеристики транзистора зависят от его состава. Обычные материалы включают полупроводники кремний, германий и арсенид галлия (GaAs). Арсенид галлия часто используется для транзисторов, которые работают на высоких частотах, потому что его электронная подвижность, скорость, с которой электроны движутся через полупроводниковый материал, выше.Он также может безопасно работать при более высоких температурах в кремниевых или германиевых транзисторах. Кремний имеет более низкую подвижность электронов, чем другие материалы для транзисторов, но обычно используется, поскольку кремний недорог и может работать при более высоких температурах, чем германий.

Одна из наиболее важных характеристик транзистора — это конструкция транзистора.Транзистор с биполярным переходом (BJT) имеет три вывода, называемых базой, коллектором и эмиттером, причем база расположена между коллектором и эмиттером. Небольшое количество электричества перемещается от базы к эмиттеру, а небольшое изменение напряжения вызывает гораздо большие изменения в потоке электричества между слоями эмиттера и коллектора. BJT называются биполярными, потому что они используют как отрицательно заряженные электроны, так и положительно заряженные электронные дырки в качестве носителей заряда.

В полевом транзисторе (FET) используется только один тип носителя заряда.Каждый полевой транзистор имеет три полупроводниковых слоя, называемых затвором, стоком и истоком, которые аналогичны базе, коллектору и эмиттеру BJT соответственно. Большинство полевых транзисторов также имеют четвертый вывод, называемый корпусом, корпусом, основанием или подложкой. Использует ли полевой транзистор электроны или электронные дырки для переноса зарядов, зависит от состава различных полупроводниковых слоев.

Каждый полупроводниковый вывод в транзисторе может иметь положительную или отрицательную полярность, в зависимости от того, какими веществами был легирован основной полупроводниковый материал транзистора.При легировании N-типа добавляются небольшие примеси мышьяка или фосфора. На внешней оболочке каждого атома примеси пять электронов. На внешней оболочке каждого атома кремния есть только четыре электрона, поэтому каждый атом мышьяка или фосфора обеспечивает избыточный электрон, который может перемещаться через полупроводник, придавая ему отрицательный заряд. В легировании P-типа вместо них используются галлий или бор, оба из которых имеют по три электрона на внешней оболочке. Это дает четвертому электрону во внешней оболочке атомов кремния не с чем связываться, создавая соответствующие носители положительного заряда, называемые электронными дырами, в которые могут перемещаться электроны.

Транзисторы

также классифицируются в зависимости от полярности их компонентов. В NPN-транзисторах средний вывод — база в BJT, затвор в полевых транзисторах — имеет положительную полярность, а два слоя по обе стороны от него — отрицательные. В транзисторе PNP все наоборот.

.

Что такое транзистор, его функции и характеристики [видео]

Теплые советы: Слово в этой статье составляет около 3200 слов, а время чтения — около 15 минут.

Введение

Эта статья в основном расскажет, что такое транзистор, а также его подробные характеристики и функции. Транзистор — это разновидность твердого полупроводникового устройства, которое выполняет множество функций, таких как обнаружение, выпрямление, усиление, переключение, стабилизация напряжения, модуляция сигнала и т. Д.В качестве переключателя переменного тока транзистор может управлять выходным током в зависимости от входного напряжения. В отличие от обычных механических переключателей (таких как реле и переключатели), транзисторы используют телекоммуникационные сигналы для управления их включением и выключением, а скорость переключения может быть очень высокой, которая может достигать более 100 ГГц в лаборатории. Национальная лаборатория Лоуренса Беркли преодолела физический предел и сократила самый сложный транзисторный процесс с 14 до 1 нм, сделав прорыв в вычислительной технологии.

Что такое транзистор? Определение, функции и использование

Ядро статьи

Введение в транзисторы

Назначение

Знакомство с транзистором, его функциями и характеристиками

Английское название

Транзистор

Категория

Дискретные полупроводниковые приборы

Функция

Используется как детектор, выпрямитель, усилитель, переключатель, стабилизатор напряжения, модуляция сигнала

Характеристика

Высокий отклик и высокая точность

Каталог

I Что такое транзистор?

Транзисторы — это полупроводниковые устройства, которые обычно используются в усилителях или электрически управляемых переключателях.Транзисторы являются основным строительным блоком, регулирующим работу компьютеров, мобильных телефонов и всех других современных электронных схем.

Благодаря высокому отклику и высокой точности транзисторы могут использоваться для широкого спектра цифровых и аналоговых функций, включая усилители, переключатели, стабилизаторы напряжения, модуляцию сигнала и генераторы. Транзисторы могут быть упакованы независимо или на очень небольшой площади, вмещая часть 100 миллионов или более транзисторных интегральных схем.

(Intel 3D transistor technology)

(технология транзисторов Intel 3D)

Строго говоря, под транзисторами понимаются все отдельные элементы на основе полупроводниковых материалов, включая диоды, транзисторы, полевые транзисторы, тиристоры и т. Д., Изготовленные из различных полупроводниковых материалов. Транзисторы в основном относятся к кристаллическим триодам.

Транзисторы

делятся на две основные категории: биполярные транзисторы (BJT ) и полевые транзисторы (FET) .

structure of transistor

структура транзистора

Транзистор имеет три полюса: три полюса биполярного транзистора состоят из типа N и типа P соответственно: Эмиттер, База и Коллектор ; три полюса полевого транзистора: Source, Gate, Drain .

Из-за трех полярностей транзистора их также можно использовать тремя способами: заземленный эмиттер (также называемый общим усилителем излучения / конфигурацией CE), заземленная база (также называемая конфигурацией усилителя общей базы / CB) и заземленный коллектор (также называемый общий набор усилитель / конфигурация CC / эмиттерный соединитель).


II Разработка транзисторов

В декабре 1947 года группа компаний Belle Labs, Shockley, Barding и Bratton разработала германиевый транзистор с точечным контактом, появление которого было главным изобретением 20 века и предвестником революции в микроэлектронике. С появлением транзисторов люди смогли использовать небольшое электронное устройство с низким энергопотреблением вместо лампы с большим объемом и большим потреблением энергии. Изобретение транзистора послужило толчком к рождению интегральной схемы.

В начале 1910-х годов в системах связи начали использовать полупроводники. В первой половине 20-го века рудные радиоприемники, которые были широко популярны среди радиолюбителей, использовались для обнаружения с помощью таких полупроводников. Электрические свойства полупроводников также применяются в телефонных системах.

В феврале 1939 года лаборатория Белла делает великое открытие — кремниевый PN переход. В 1942 году студент по имени Сеймур Бензер из исследовательской группы Университета Пердью, возглавляемой Ларком Горовицем, обнаружил, что монокристаллы германия обладают превосходными выпрямляющими свойствами, которых нет у других полупроводников.Эти два открытия соответствовали требованиям правительства США и заложили основу для последующего изобретения транзисторов.

  • 2.2 Точечно-контактные транзисторы

В 1945 году точечный транзистор, изобретенный Шокли и другими учеными, стал предвестником революции в области микроэлектроники человека. По этой причине Шокли подал заявку на патент на первый транзистор для Bell. Наконец, он получил разрешение на первый патент на транзистор.

  • 2.3 Биполярные и униполярные транзисторы

В 1952 году Шокли предложил концепцию униполярного переходного транзистора на основе биполярного транзистора в 1952 году, который сегодня называется переходным транзистором. Его структура аналогична структуре биполярного транзистора PNP или NPN, но на границе раздела с материалом PN имеется обедненный слой, образующий выпрямительный контакт между затвором и проводящим каналом стока истока. В то же время полупроводник на обоих концах используется как затвор.Ток между истоком и стоком регулируется затвором.

Подробное описание того, как работает биполярный переходной транзистор NPN и что он делает

Fairy Semiconductor, производящая транзисторы, выросла из компании, состоящей из нескольких человек, в большую компанию с 12 000 сотрудников.

После изобретения кремниевого транзистора в 1954 году большие перспективы применения транзисторов становились все более очевидными. Следующая цель ученых — еще более эффективно соединять транзисторы, провода и другие устройства.

  • 2.6 Полевой транзистор (FET) и МОП-транзистор

В 1962 году Стэнли, Хейман и Хофштейн, которые работали в исследовательской группе интеграции устройств RCA, обнаружили, что транзисторы, то есть МОП-транзисторы, могут быть сконструированы путем диффузии и термического окисления проводящих полос, каналов с высоким сопротивлением и оксидных изоляторов на поверхности. Подложки Si.

В начале основания Intel компания все еще фокусировалась на планках памяти.Hoff объединил все функции центрального процессора на одном кристалле, а также память. И это первый в мире микропроцессор — 4004 (1971 г.). Рождение 4004 года знаменует начало целой эпохи. С тех пор Intel стала неконтролируемой и доминирующей в области исследований микропроцессоров.

В 1989 году Intel представила 80486 процессоров. В 1993 году Intel разработала новое поколение процессоров. А в 1995 году Intel выпустила Pentium_Pro. Процессор PentiumII выпущен в 1997 году. В 1999 году выпущен процессор Pentium III, а процессор Pentium 4 — в 2000 году.

III Классификация транзисторов

  • 3.1 Как классифицировать транзистор

> Материал, используемый в транзисторе

По полупроводниковым материалам, используемым в транзисторе, его можно разделить на кремниевый транзистор и германиевый транзистор. В зависимости от полярности транзистора, его можно разделить на германиевый транзистор NPN, германиевый транзистор PNP, кремниевый транзистор NPN и кремниевый транзистор PNP.

> Технологии

По своей структуре и процессу изготовления транзисторы можно разделить на диффузионные транзисторы, транзисторы из сплава и планарные транзисторы.

> Текущая мощность

По допустимому току транзисторы можно разделить на транзисторы малой мощности, транзисторы средней мощности и транзисторы большой мощности.

> Рабочая частота

По рабочей частоте транзисторы можно разделить на низкочастотные транзисторы, высокочастотные транзисторы и сверхвысокочастотные транзисторы.

> Структура пакета

В зависимости от структуры упаковки транзисторы можно разделить на транзисторы с металлической упаковкой, транзисторы с пластиковой упаковкой, транзисторы со стеклянной оболочкой, транзисторы с поверхностной упаковкой и транзисторы с керамической упаковкой и т. Д.

> Функции и использование

В зависимости от функций и использования транзисторы можно разделить на малошумящие транзисторы усилителя, транзисторы усилителя средней и высокой частоты, переключающие транзисторы, транзисторы Дарлингтона, транзисторы с высоким обратным напряжением, полосовые транзисторы, демпфирующие транзисторы, микроволновые транзисторы, оптические транзисторы и магнитные транзисторы. транзистор и многие другие типы.

  • 3.2 Типы транзисторов и их характеристики

> Гигантский транзистор (GTR)

GTR — это высоковольтный сильноточный биполярный транзистор (BJT), поэтому его иногда называют мощным BJT.

Особенности: Высокое напряжение, высокий ток, хорошие характеристики переключения, высокая мощность привода, но схема управления сложна; Принцип работы ОТО и обычных биполярных транзисторов одинаков.

> Фототранзистор

Фототранзисторы — это оптоэлектронные устройства, состоящие из биполярных транзисторов или полевых транзисторов.Свет поглощается в активной области таких устройств, производя фотогенерируемые носители, которые проходят через внутренний механизм электрического усиления и генерируют усиление фототока. Фототранзисторы работают на трех концах, поэтому их легко реализовать с помощью электронного управления или электрической синхронизации. Материалами, используемыми в фототранзисторах, обычно являются GaAs, которые в основном делятся на биполярные фототранзисторы, полевые фототранзисторы и связанные с ними устройства. Биполярные фототранзисторы обычно имеют высокое усиление, но не слишком быстрое.Для GaAs-GaAlAs коэффициент увеличения может быть больше 1000, время отклика больше наносекунды, что часто используется в качестве фотодетектора и оптического усиления. Фототранзисторы с полевым эффектом (FET) реагируют быстро (около 50 пикосекунд), но недостатком является то, что светочувствительная площадь и малое усиление, что часто используется в качестве сверхвысокоскоростного фотодетектора. Есть много других связанных планарных оптоэлектронных устройств, отличительными чертами которых являются высокая скорость отклика (время отклика составляет десятки пикосекунд) и которые подходят для интеграции.Ожидается, что такого рода устройства будут применяться в оптоэлектронной интеграции.

> Биполярный транзистор

Биполярный транзистор — это разновидность транзистора, обычно используемого в аудиосхемах. Биполярность возникает из-за протекания тока в двух типах полупроводниковых материалов. Биполярные транзисторы можно разделить на тип NPN или тип PNP в зависимости от полярности рабочего напряжения.

> Биполярный переходной транзистор (BJT)

«Биполярный» означает, что электроны и дырки находятся в движении одновременно с работой.Биполярный переходный транзистор, также известный как полупроводниковый триод, представляет собой устройство, которое объединяет два PN перехода посредством определенного процесса. Есть две комбинированные структуры PNP и NPN. Внешнее выявление трех полюсов: коллектора, эмиттера и базы. BJT имеет функцию усиления, которая в зависимости от его эмиттерного тока может передаваться через область базы в область коллектора. Для обеспечения этого процесса переноса, с одной стороны, должны быть выполнены внутренние условия, то есть концентрация примеси в области излучения должна быть много больше концентрации примеси в области основания, а толщина области основания должно быть очень маленьким; с другой стороны, должны выполняться внешние условия.То есть эмиссионный переход должен иметь положительное смещение (плюс положительное напряжение), а коллекторный переход должен иметь обратное смещение. Есть много видов BJT, в зависимости от частоты, есть лампы высокой и низкой частоты; по мощности бывают лампы малой, средней и большой мощности; в зависимости от материала полупроводника бывают кремниевые и германиевые трубки и т. д. Схема усилителя состоит из общего эмиттера, общей базы и общего коллектора.

BJT

БЮТ

> Полевой транзистор (FET)

Значение «полевого эффекта» заключается в том, что принцип работы транзистора основан на эффекте электрического поля полупроводника.

Полевые транзисторы — это транзисторы, работающие по принципу полевых эффектов. Существует два основных типа полевых транзисторов: Junction FET (JFET) и металл-оксидные полупроводниковые полевые транзисторы (MOS-FET). В отличие от BJT, полевой транзистор состоит только из одной несущей, поэтому его также называют униполярным транзистором. Он относится к полупроводниковым устройствам с регулируемым напряжением, которые обладают такими преимуществами, как высокое входное сопротивление, низкий уровень шума, низкое энергопотребление, широкий динамический диапазон, простота интеграции, отсутствие вторичного пробоя, широкая безопасная рабочая зона и т. Д.

Эффект поля состоит в изменении направления или величины электрического поля, перпендикулярного поверхности полупроводника, для управления плотностью или типом большинства носителей в полупроводниковом проводящем слое (канале). Ток в канале модулируется напряжением, а рабочий ток переносится большинством носителей в полупроводнике. По сравнению с биполярными транзисторами, полевые транзисторы характеризуются высоким входным сопротивлением, низким уровнем шума, высокой предельной частотой, низким энергопотреблением, простым производственным процессом и хорошими температурными характеристиками, которые широко используются в различных усилителях, цифровых схемах и микроволновых схемах и т. Д.Металлические полевые МОП-транзисторы на основе кремния и полевые транзисторы с барьером Шоттки (MESFET) на основе GaAs являются двумя наиболее важными полевыми транзисторами. Они являются основными устройствами крупномасштабной интегральной схемы MOS и сверхбыстрой интегральной схемы MES соответственно.

FET

FET

> Одноэлектронный транзистор

Транзистор, который может записывать сигнал с одним или небольшим количеством электронов. С развитием технологии травления полупроводников интеграция крупномасштабных интегральных схем становится все более и более высокой.Возьмем, к примеру, динамическую память с произвольным доступом (DRAM), ее интеграция растет почти в четыре раза каждые два года, и ожидается, что одноэлектронный транзистор станет конечной целью. В настоящее время средняя память содержит 200 000 электронов, в то время как одноэлектронный транзистор содержит только один или несколько электронов, поэтому это значительно снизит энергопотребление и улучшит интеграцию интегральных схем. В 1989 году J.H. Ф. Скотт-Томас и другие исследователи открыли феномен кулоновской блокировки.Когда подано напряжение, через квантовую точку не будет проходить ток, если изменение количества электрического заряда в квантовой точке меньше одного электрона. Таким образом, зависимость тока от напряжения является не нормальной линейной зависимостью, а ступенчатой. В этом эксперименте впервые в истории движение электрона контролируется вручную, что обеспечивает экспериментальную основу для изготовления одного электрона. транзистор.

> Биполярный транзистор с изолированным затвором (IGBT)

Биполярный транзистор

с изолированным затвором сочетает в себе преимущества гигантских транзисторов GTR и силовых полевых МОП-транзисторов.Он обладает хорошими свойствами и имеет широкий спектр применения. IGBT также является трехполюсным устройством: затвор, коллектор и эмиттер.

IV Основные параметры транзисторов

Основные параметры транзистора включают коэффициент усиления тока, мощность рассеяния, характеристическую частоту, максимальный ток коллектора, максимальное обратное напряжение, обратный ток и так далее.

  • 4.1 Коэффициент усиления постоянного тока

Коэффициент усиления постоянного тока, также называемый коэффициентом усиления статического тока или коэффициентом усиления постоянного тока, относится к отношению IC тока коллектора транзистора к базовому току IB, которое обычно выражается через hFE или β, когда вход статического сигнала не изменяется. .

  • 4.2 Коэффициент усиления переменного тока

Коэффициент усиления переменного тока, также называемый коэффициентом усиления переменного тока и динамическим коэффициентом усиления тока, относится к отношению IC к IB в состоянии переменного тока, которое обычно выражается через hfe или β. hfe и β тесно связаны, но также различны. Эти два параметра близки на низкой частоте и имеют некоторые отличия на высокой частоте.

Мощность рассеивания, также известная как максимально допустимая мощность рассеивания коллектора —- PCM, относится к максимальной мощности рассеивания коллектора, когда параметр транзистора не превышает заданное допустимое значение.

Рассеиваемая мощность тесно связана с максимально допустимым переходным и коллекторным током транзистора. Фактическая потребляемая мощность транзистора не должна превышать значение PCM, когда он используется, иначе транзистор будет поврежден из-за перегрузки.

Транзистор, мощность рассеяния PCM которого меньше 1 Вт, обычно называется транзистором малой мощности, который равен или больше 1 Вт, транзистор меньше 5 Вт называется транзистором средней мощности, а транзистор, PCM которого равен или больше чем 5Вт называется мощным транзистором.

  • 4.4 Характеристическая частота (fT)

Когда рабочая частота транзистора превышает частоту отсечки fβ или fα, коэффициент усиления тока β будет уменьшаться с увеличением частоты. Характерная частота — это частота транзистора, при которой значение β уменьшается до 1.

Транзисторы, характеристическая частота которых меньше или равна 3 МГц, обычно называются низкочастотными транзисторами, транзисторы с fT больше или равными 30 МГц называются высокочастотными транзисторами, транзисторы с fT более 3 МГц и транзисторы менее 30 МГц называются транзисторы промежуточной частоты.

  • 4,5 Максимальная частота (фМ)

Максимальная частота колебаний — это частота, при которой коэффициент усиления по мощности транзистора уменьшается до 1.

В общем, максимальная частота колебаний высокочастотных транзисторов ниже, чем общая базовая частота среза fα, в то время как характеристическая частота fT выше, чем общая базовая частота среза fα, и ниже, чем частота среза общего коллектора fβ.

  • 4.6 Максимальный ток коллектора (ICM)

Максимальный ток коллектора (ICM) — это максимально допустимый ток через коллектор транзистора. Когда ток коллектора IC транзистора превышает ICM, значение β транзистора, очевидно, изменится, что повлияет на его нормальную работу и даже вызовет повреждение.

  • 4,7 Максимальное обратное напряжение

Максимальное обратное напряжение — это максимальное рабочее напряжение, которое транзистор может подавать во время работы.Оно включает в себя обратное напряжение пробоя коллектор-эмиттер, обратное напряжение пробоя коллектор-база и обратное напряжение пробоя эмиттер-база.

> Напряжение обратного пробоя коллектор-коллектор

Это напряжение относится к максимально допустимому обратному напряжению между коллектором и эмиттером при разомкнутой цепи базы транзистора, обычно выражается в VCEO или BVCEO.

> Обратное напряжение пробоя база — база

Напряжение относится к максимально допустимому обратному напряжению между коллектором и базой при включении транзистора, которое выражается в VCBO или BVCBO.

> Напряжение обратного пробоя эмиттер-эмиттер

Это напряжение относится к максимально допустимому обратному напряжению между эмиттером и базой, когда коллектор транзистора открыт, которое выражается в VEBO или BVEBO.

Обратный ток между коллектором и базовым электродом

> Коллектор — база обратного тока (ICBO)

ICBO, также называемый током обратной утечки коллектора, относится к обратному току между коллектором и базовым электродом, когда эмиттер транзистора открыт.Обратный ток чувствителен к температуре. Чем меньше значение, тем лучше температурная характеристика транзистора.

> Ток обратного пробоя коллектор — эмиттер (ICEO)

Обратный ток пробоя ICEO между коллектором и эмиттером

ICEO — обратный ток утечки между коллектором и эмиттером при открытой базе транзистора. Чем меньше ток, тем лучше производительность транзистора.


Книжное предложение

Тщательно переработанный и обновленный, этот весьма успешный учебник знакомит студентов с анализом и проектированием транзисторных схем.Он охватывает широкий спектр схем, как линейных, так и переключающих. Методы транзисторных схем: дискретные и интегрированные предоставляют студентам обзор основных качественных операций схемы с последующим изучением процедуры анализа и проектирования. Он включает в себя решенные задачи и примеры дизайна, чтобы проиллюстрировать концепции. Это третье издание включает две дополнительные главы об усилителях мощности и источниках питания, которые развивают многие методы проектирования схем, представленные в предыдущих главах.Эта книга, входящая в серию «Руководства по электронной инженерии», предназначена для студентов первого и второго курсов бакалавриата. Сам по себе полный текст, он предлагает дополнительное преимущество в виде перекрестных ссылок на другие заголовки в серии. Это идеальный учебник как для студентов, так и для преподавателей.

— Гордон Дж. Ричи

Создавайте сложные транзисторные радиоприемники, которые недороги, но очень эффективны. Создайте свои собственные транзисторные радиоприемники: «Руководство по высокопроизводительным и маломощным радиосхемам» для любителей предлагает полные проекты с подробными схемами и идеями о том, как были разработаны радиоприемники.Узнайте, как выбирать компоненты, создавать различные типы радиомодулей и устранять неполадки в своей работе. Если копнуть глубже, этот практический ресурс покажет вам, как разрабатывать инновационные устройства, экспериментируя с существующими конструкциями и радикально улучшая их.

— Рональд Куан


Актуальная информация по теме «Что такое транзистор, его функция и характеристики»

О статье «Что такое транзистор, а также его функция и характеристики», Если у вас есть лучшие идеи, не стесняйтесь писать свои мысли в следующей области комментариев.Вы также можете найти больше статей об электронных полупроводниках через поисковую систему Google или обратиться к следующим связанным статьям.

.Транзистор

< Общие сведения о транзисторах > | Основы электроники

Обратный ток при включении

В транзисторе NPN база находится под положительным смещением, коллектор — с отрицательным смещением, а обратный ток течет от эмиттера к коллектору. Также обратите внимание на проблемы, которые могут возникнуть при использовании в качестве транзисторов (например, меньшее усиление по току).

1. Было определено, что при использовании не возникнет никаких проблем, таких как деградация или разрушение.

2. В случае NPN-транзистора B симметричен с C, а E с N. Следовательно, C и E могут использоваться как транзисторы, даже если они соединены в обратном порядке. В этом случае ток будет течь от E к C.

3. Ниже приведены характеристики транзисторов, подключенных в обратном порядке.

  • Низкая h FE (примерно 10% от значения прямого направления)
  • Низкое сопротивление напряжению (около 7-8 В, примерно такое же, как у VEBO) В некоторых стандартных транзисторах напряжение может быть даже ниже (ниже 5 В) (учтите, что слишком низкое сопротивление напряжению может привести к пробою и ухудшению характеристик)
  • V CE (sat) и V BE (ON) не должны сильно меняться

Допустимая потеря мощности в корпусе

Допустимая потеря мощности в корпусе — это когда напряжение подается на транзистор, и устройство начинает выделять тепло из-за потери мощности из-за протекания тока, особенно когда температура перехода Tj достигает абсолютного максимального значения (150 ° C).

Метод расчета (где △ Tx — величина повышения температуры при подаче питания Px)

В этом случае Pc, Ta, △ Tx и Px могут быть получены непосредственно из результатов измерения. Tj — единственное значение, которое нельзя получить напрямую. Поэтому ниже показано, как измерить VBE, по которому мы можем определить температуру перехода Tj.

В кремниевых транзисторах VBE будет изменяться в зависимости от температуры.

Следовательно, температуру перехода можно определить путем измерения VBE.Из измерительной схемы, показанной на диаграмме 1, к транзистору применяется условие мощности Pc (max) корпуса (в случае транзистора мощностью 1 Вт условия для питания VCB = 10VIE = 100 мА).

Как видно на Диаграмме 2:

  • V BE 1 измеряется как начальное значение VBE
  • При подаче питания на транзистор произойдет тепловыделение на переходе
  • значение VBE после будет V BE 2

Из этих результатов: △ V BE = V BE 2-V BE 1

Здесь кремниевый транзистор будет иметь фиксированный температурный коэффициент, равный примерно -2.2 мВ / ºC. (Примечание: транзисторы Дарлингтона созданы из-за использования двух транзисторов -4,4 мВ / ºC). Следовательно, △ VBE от подаваемой мощности может быть получено из повышения температуры перехода по следующей формуле.

fT: ширина полосы частот, частота среза

fT: ширина полосы пропускания указывает максимальную рабочую частоту транзистора. В это время отношение тока коллектора к току базы ограничено до 1 (hFE = 1).

Когда частота входного сигнала, подаваемого на базу, приближается к рабочей частоте, hFE начинает уменьшаться.Когда hFE становится равным 1, рабочая частота fT называется полосой усиления. fT обозначает предел рабочей частоты. Однако в действительности для работы значение будет примерно от 1/5 до 1/10 от значения fT.

f: Зависит от измерительного оборудования. Опорная частота для измерения.
VCE: дополнительная настройка — для продуктов ROHM обычно используется стандартное значение.
Ic: дополнительная настройка — стандартное значение обычно используется для продуктов ROHM.

Транзисторы

на страницу продукта

В дополнение к низковольтным МОП-транзисторам для портативных устройств и цифровым транзисторам со встроенным резистором, ROHM предлагает ряд транзисторных продуктов, включая стандартные МОП-транзисторы, биполярные транзисторы и сложные транзисторы со встроенным диодом.

.

Характеристики транзистора | Статья о характеристиках транзисторов от The Free Dictionary

Из этих результатов мы можем найти, что наши результаты соответствуют требованиям характеристик нового транзистора. [I.sub.d10] меньше, чем некоторые значения для сравнения, но больше, чем другие, и [I.sub.d11] в том же случае. По мере того, как содержание Ga увеличивалось, пороговое напряжение ([V.sub.TH] ) повернулся в сторону положительного значения, и разница уровней тока между включенным и выключенным состояниями стала больше, четко отображая характеристики транзистора.Эти систематические изменения, в том числе сдвиг [V.sub.TH] и уменьшение отключенного тока, возможно, были вызваны добавлением Ga, поскольку ожидалось, что увеличение содержания Ga подавит генерацию носителей за счет образования кислородных вакансий и, следовательно, поможет достичь более низкого Интуитивно понятно, что эти идеальные значения не могут быть получены из-за неидеальных характеристик генератора смещения и транзисторов. Кроме того, уменьшение приведенных к входу значений шума на портах Y и X приведет к ухудшению этих значений. Реальные характеристики транзистора намного сложнее, чем любая упрощенная модель с сосредоточенными компонентами, и некоторые части нелинейностей реальных характеристик транзистора, которые не соответствуют напрямую к сосредоточенным компонентам в модели схемы, должны быть включены в описания компонентов в упрощенной эквивалентной модели.Вместо этого мы разработали общую модель, которая учитывает связанную электронную и ориентационную динамику молекулы ». Эта простая и физически прозрачная модель полностью воспроизводит экспериментально наблюдаемые характеристики одиночного транзистора. Характеристики транзистора. ВАХ устройства моделируются с помощью сохранение напряжения затвора постоянным для [V.sub.ds] = от 0 до 10 В и 0-20 В, как показано на рисунках 3 и 4. Ключевые усовершенствования включают обновления эталонных потоков AMS партнера-литейщика, более эффективную поддержку устаревшего формата данных через родной Поддержка OpenAccess (OA), встраивание сверхбыстрого моделирования схем FineSim (TM) SPICE от Magma для более быстрого и эффективного моделирования процессов, добавление нескольких новых усовершенствованных ячеек FlexCell, которые служат в качестве независимых от процесса аналоговых строительных блоков, поддержка характеристик высокочастотных транзисторов ВЧ-дизайн, увеличенная мощность для одновременной обработки сотен многоугольных сценариев, параллельная оптимизация через distr Гибкая реализация для более быстрого выполнения и лучшего качества результатов (QoR), а также тесная интеграция с инструментом цифровой реализации Magma Talus (R) для более эффективной маршрутизации верхнего уровня и финишной обработки микросхем.Темы включают в себя повреждение поверхности пластин, связанное с инструментами, влияние редактирования обратной схемы на характеристики транзисторов, неправильную оценку избыточности на устройствах DRAM, последовательную емкость в высокоскоростных дифференциальных парах и сравнение активного и пассивного контраста напряжений для локализации отказа. , КПД и мощность также являются основными факторами, влияющими на характеристики силового транзистора. Экспериментально наблюдаемые характеристики транзистора показаны на рис.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *