Трехфазные и однофазные сети - сходство и различия. Трехфазные сети
Трехфазные электрические цепи (Лекция №16)
Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.
Таким образом, понятие «фаза» имеет в электротехнике два различных значения:
- фаза как аргумент синусоидально изменяющейся величины;
- фаза как составная часть многофазной электрической системы.
Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.
Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.
Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).
Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:
- экономичность передачи электроэнергии на большие расстояния;
- самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;
- возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;
- уравновешенность симметричных трехфазных систем.
Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.
Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.
Рис.3 | Рис.4 |
Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).
Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).
Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.
Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.
Схемы соединения трехфазных систем
Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 120°. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, т.е. будет иметь место шестипроводная линия, что неэкономично. В этой связи подобные системы не получили широкого применения на практике.
Для уменьшения количества проводов в линии фазы генератора гальванически связывают между собой. Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.
Соединение в звезду
На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.
Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).
Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.
Все величины, относящиеся к фазам, носят название фазных переменных, к линии - линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи и равны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе . Если система фазных токов симметрична, то . Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.
Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А,В и С к нейтральной точке N; - фазные напряжения нагрузки.
Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать
; | (1) |
; | (2) |
. | (3) |
Отметим, что всегда - как сумма напряжений по замкнутому контуру.
На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при основании, равными 300), в этом случае
(4) |
Обычно при расчетах принимается . Тогда для случая прямого чередования фаз , (при обратном чередовании фаз фазовые сдвиги у и меняются местами). С учетом этого на основании соотношений (1) …(3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы на рис. 7. Направляя вещественную ось системы координат по вектору (его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии с (4). Так для линейных напряжений и получаем: ; .
Соединение в треугольник
В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).
Для симметричной системы ЭДС имеем
.
Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.
Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.
Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями
Аналогично можно выразить линейные токи через фазные токи генератора.
На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов
. | (5) |
В заключение отметим, что помимо рассмотренных соединений «звезда - звезда» и «треугольник - треугольник» на практике также применяются схемы «звезда - треугольник» и «треугольник - звезда».
Литература
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
Контрольные вопросы и задачи
- Какой принцип действия у трехфазного генератора?
- В чем заключаются основные преимущества трехфазных систем?
- Какие системы обладают свойством уравновешенности, в чем оно выражается?
- Какие существуют схемы соединения в трехфазных цепях?
- Какие соотношения между фазными и линейными величинами имеют место при соединении в звезду и в треугольник?
- Что будет, если поменять местами начало и конец одной из фаз генератора при соединении в треугольник, и почему?
- Определите комплексы линейных напряжений, если при соединении фаз генератора в звезду начало и конец обмотки фазы С поменяли местами.
- На диаграмме на рис. 10 (трехфазная система токов симметрична) . Определить комплексы остальных фазных и линейных токов.
- Какие схемы соединения обеспечивают автономность работы фаз нагрузки?
www.toehelp.ru
Трехфазные сети | Строительный журнал
02.10.2018 Опубликовано в рубрике: Коммуникации
Как известно, по проводам, передающим энергию на расстояние, течет трехфазный ток — так выгоднее. В квартиру он заходит однофазным. Расщепление трехфазной цепи на 3 однофазных происходит во ВРУ. Туда входит пятижильный кабель, а выходит трехжильный.На вопрос, куда деваются еще 2, ответ простой: питают другие квартиры. Это не значит, что квартир только 3, их может быть сколько угодно, лишь бы кабель выдержал. Просто внутри щита выполняется схема разъединения трехфазной цепи на однофазные. К каждой фазе, отходящей в квартиру, добавляются ноль и заземление, так и получается трехжильный кабель.
В идеале в трехфазной сети только один ноль. Больше и не надо, поскольку ток сдвинут по фазе относительно друг друга на одну треть. Ноль — это нейтральный проводник, в котором напряжения нет. Относительно земли у него нет потенциала в отличие от фазового, в котором напряжение равно 220 В. В паре «фаза — фаза» напряжение 380 В. В трехфазной сети, к которой ничего не подключено, в нейтральном проводнике нет напряжения. Самое интересное начинает происходить, когда сеть подключается к однофазной цепи. Одна фаза входит в квартиру, где стоят 2 лампочки и холодильник, а вторая — где 5 кондиционеров, 2 компьютера, душевая кабина, индукционная плита и т. д.
Понятно, что нагрузка на 2 эти фазы неодинакова и ни о каком нейтральном проводнике речи уже не идет. На нем тоже появляется напряжение, и чем неравномернее нагрузка, тем оно больше.Фазы уже не компенсируют друг друга, чтобы в сумме получился ноль.В последнее время ситуация с некомпенсацией токов в такой сети усугубилась тем, что появились новые электроприборы, которые называются импульсными. В момент включения они потребляют намного больше энергии, чем при нормальной работе. Эти импульсные приборы вкупе с разной нагрузкой на фазы создают такие условия, что в нейтральном проводнике (ноле) возникает напряжение, которое может быть раза в 2 больше, чем на любой фазе. Однако нейтраль такого же сечения, что и фазовый провод, а нагрузка больше.Вот почему в последнее время все чаще возникает явление, называемое отгоранием ноля — нейтральный проводник просто не справляется с нагрузкой и перегорает. Бороться с таким явлением непросто: надо либо увеличивать сечение нейтрального провода (а это дорого), либо распределять нагрузку между 3 фазами равномерно (что в условиях многоквартирного дома невозможно). На худой конец можно купить понижающий разделительный трансформатор, он же стабилизатор напряжения.В частном доме ситуация получше, поскольку хозяин один и распределить электроэнергию по фазам намного проще. Это даже увлекательное занятие — считать мощность электроприборов и распределять их по фазам, чтобы нагрузка была одинаковой. Все расчеты делаются примерно, и вовсе не значит, что надо включать свет и 2 телевизора, а если заработал столярный станок на улице — это перебор. Все зависит от желания хозяина дома: провести трехфазную сеть или однофазную. Здесь есть свои плюсы и минусы.
Минусов трехфазной сети 2. 1. Напряжение на отдельном участке сильно зависит от работы других. Если перегружена одна из фаз, остальные могут работать некорректно. Проявиться это может как угодно. Чтобы такого не происходило, нужен стабилизатор — вещь недешевая.ной. Кроме того, нужно знать правила эксплуатации трехфазных сетей.Плюсов трехфазной сети тоже 2.1. Трехфазная сеть позволяет получить больше мощности. Если однофазная сеть при суммарной мощности приборов в 10 кВт уже испытывает перегрузки, то трехфазная прекрасно справляется и с 30 кВт. Пример очень простой. Если с линии ЛЭП в дом заходит всего 1 фаза, то при сечении входящего проводника 16 мм1 максимальная мощность составит всего 14 кВт, а если все 3 фазы — то уже 42 кВт. Разница весьма ощутимая.
sjthemes.com
Трехфазно-однофазные сети | Онлайн журнал электрика
В сельском хозяйстве электронную энергию распределяют по трехфазным сетям напряжением, обычно, 10 кВ с трансформаторными потребительскими пт. Эта система рассредотачивания без особенных конфигураций взята из коммунальной практики электроснабжения маленьких городов и пригородов с низкоэтажной застройкой. Но в сельских критериях плотность электронной нагрузки существенно ниже, чем в городках, и потому современная система рассредотачивания электроэнергии ведет в почти всех случаях к значительному перерасходу металла проводов.
Суровым ее недочетом являются томные сети напряжением 380 В. Вследствие сравнимо большой мощности трансформаторных пт (в среднем 63 — 100 кВА) каждый трансформатор обслуживает значимый район, что просит внедрения проводов огромных сечений в сетях напряжением 380 В. В итоге этого обычно расходуется металла проводов в 2 — 3 раза больше, чем в сетях 10 кВ.
Расход проводов в низковольтных сетях можно уменьшить, увеличив число трансформаторных пт и снизив их среднюю мощность и радиус обслуживания. Но трехфазный трансформаторный пункт представляет собой сравнимо драгоценное сооружение, цена которого не достаточно понижается при уменьшении мощности установленного трансформатора. Потому уменьшение средней мощности трансформаторного пт ниже 40 либо 63 кВА в трехфазных сетях приводит к чрезмерному повышению общей цены трансформаторных пт. Как следует, таковой путь сокращения расхода проводов в сетях низкого напряжения не всегда экономичен.
С другой стороны, при трехфазном рассредотачивании электроэнергии нередко приходится подводить к маленьким потребителям три провода сети напряжением 10 кВ. Сечения проводов при всем этом берут выше надобных, исходя из критерий утраты напряжения, потому что их выбирают мало допустимыми по механической прочности. В итоге в сети высочайшего напряжения расходуют лишний металл.
С целью устранения недочетов имеющейся системы рассредотачивания электроэнергии была разработана смешанная трехфазно-однофазная система рассредотачивания электроэнергии.
Суть смешанной системы рассредотачивания электроэнергии заключается в последующем.
1. Используют смешанные трехфазно-однофазные полосы напряжением 10 кВ, в каких главные магистрали трехфазные и к ним подключены все большие, в том числе силовые, потребители. Маленькие потребители, сначала освещение и бытовая нагрузка, питаются от однофазовых ответвлений линий напряжением 10 кВ.
2. Для питания однофазовых потребителей употребляют одно фазные трансформаторные пункты маленький мощности.
Примерная схема сети с трансформаторными пт, выполненной по смешанной трехфазно-однофазной системе, показана на рисунке 1.
Рис. 1. Пример схемы смешанной трехфазно-однофазной сети
Как видно из этой схемы, большие потребители с в большей степени силовой нагрузкой имеют трехфазное питание, а маленькие потребители, сначала жилые дома, питаются от однофазовых трансформаторных пт. Однофазовые трансформаторы включают на междуфазное напряжение.
Как демонстрируют сравнительные расчеты, применение смешанной системы позволяет уменьшить расход металла в проводах высочайшего и низкого напряжений на 25 — 35 % по сопоставлению с обыкновенной трехфазной системой. Начальная цена сети при имеющихся ценах и типах оборудования может быть снижена методом внедрения смешанной системы только в границах до 5 — 10 %.
В сети высочайшего напряжения, выполненной по смешанной системе, однофазовые трансформаторы включают в треугольник на линейное напряжение 6 либо 10 кВ, как это показано на рисунке 1.
Было подтверждено, что в неравномерно нагруженной трехфазной сети сумма линейных утрат напряжения при данных нагрузках остается постоянной независимо от рассредотачивания нагрузок меж фазами, другими словами dUab + dUbc + dUca = const.
В практике всегда есть существенное количество присоединенных к магистрали однофазовых нагрузок. Эти нагрузки можно распределить так, чтоб междуфазные утраты напряжения до конечных точек были приблизительно равны меж собой: dUab ≈ dUbc ≈ dUca
В данном случае пропускная способность неравномерно нагруженной полосы такая же, как и трехфазной умеренно нагруженной полосы с теми же параметрами. Во всех других случаях пропускная способность ниже.
Разумеется, что при проектировании сети по смешанной системе необходимо, распределяя подходящим образом нагрузки, добиваться выполнения условия равенства междуфазных утрат напряжения. При всем этом утраты напряжения в трехфазной магистрали определяют по формулам для симметричной нагрузки, и они имеют меньшее вероятное значение. Расчет в данном случае существенно упрощается.
Однофазовые ответвления от сети напряжением 10 кВ владеют в 2 — 6 раз наименьшей пропускной способностью, чем трехфазные такого же сечения. Но при малой мощности трансформаторных пт очень нередко сечение проводов ответвлений определяют минимумом, допустимым из механических суждений. В данном случае однофазовые, ответвления имеют заместо 3-х два провода такого же сечения и экономия металла проводов составляет 33 %.
Однофазовую сеть низкого напряжения по смешанной системе делают трехпроводной со средним проводом. Напряжение меж средним и последними проводами 220 В (рис. 2), а меж последними проводами 440 В. Средний провод заземляют так же, как нулевой провод в системе 380 В с заземленной нейтралью, и так же соединяют с ним железные части оборудования. Осветительную нагрузку включают меж средним и последними проводами, а силовую — меж последними проводами. Малые трансформаторы мощностью 2 кВА имеют два вывода низкого напряжения — 220 либо 127 В.
Однофазовые трансформаторные пункты делают по принципной схеме, изображенной на рисунке 2.
Рис. 2. Схема однофазового трансформаторного пт
Трансформаторы подвешивают на обыденную промежную опору сети напряжением 10 кВ. Присоединяют их к сети высочайшего напряжения через разъединитель, устанавливаемый на примыкающей опоре. От маленьких замыканий трансформаторы защищают предохранителями высочайшего напряжения.
На стороне низкого напряжения устанавливают рубильник и плавкие предохранители, помещаемые в маленьком ящике.
Полосы напряжением до 1 кВ при смешанной системе делают, как в обыденных сетях. При совпадении трасс целенаправлено подвешивать их на одних опорах с линиями высочайшего напряжения.
В подавляющем большинстве случаев при смешанной системе употребляют обычно трехфазные асинхронные движки, питаемые от трехфазных линий. Однофазовые электронные движки маленький мощности используют в местах, где есть только однофазовое питание, к примеру движок вентилятора переносного горна на полевом стане, движок насоса на жд разъезде и т. п. Обычно мощность таких движков составляет 1 — 2 кВт и изредка 3 — 4 кВт.
Идеальнее всего использовать в однофазовых сетях особые асинхронные электродвигатели с пусковыми конденсаторами. При отсутствии особых движков можно применить стандартные трехфазные электродвигатели напряжением 380/220 В с пусковыми устройствами в виде конденсаторов либо даже активных сопротивлений.
Пусковой момент мотора с активным пусковым сопротивлением при напряжении 440 В составляет около 0,4 номинального момента мотора в трехфазном режиме, что соответствует 0,65 — 1,0 номинального момента в однофазовом режиме.
Если для рабочей машины пусковой момент должен быть больше 0,5Мн, выбирают движок большей мощности либо же включают его по схеме с емкостью. При включении пусковой емкости момент мотора приблизительно равен номинальному моменту в трехфазном режиме.
При питании от трансформатора мощностью 10 кВА можно запускать движки с номинальной мощностью в трехфазном режиме до 4,5 кВт.
Однофазовые движки как специального выполнения, так и переоборудованные из трехфазных в 1,5 — 2 раза дороже трехфазных той же мощности. Но удорожание движков некординально по сопоставлению с экономией, которую получают при строительстве и эксплуатации сети, применяя смешанную систему рассредотачивания электроэнергии.
Соотношение меж однофазовой и трехфазной мощностями в высоковольтной сети находится в зависимости от нрава нагрузки и критерий ее размещения.
Для большинства сельских районов однофазовые высоковольтные полосы напряжением 10 кВ получают распространение в большей степени в 2-ух случаях:
1) на окраинах больших селений с преобладающей нагрузкой жилых домов,
2) в качестве ответвлений к отдельным маленьким населенным пт, где не предусматривается в последнее время развитие силового электропотребления.
Применение однофазового питания следует считать экономически целесообразным, когда достигается значимая экономия металла проводов без роста цены сети. Это условие, обычно, выполнимо в тех случаях, когда применение однофазовой схемы не тянет за собой значимого роста протяженности высоковольтной сети.
Будзко И. А.
Школа для электрика
elektrica.info
Трехфазные и однофазные электрические сети
Как известно, по проводам, передающим энергию на расстояние, течет трехфазный ток — так выгоднее. В квартиру он заходит однофазным. Расщепление трехфазной цепи на 3 однофазных происходит во ВРУ. Туда входит пятижильный кабель, а выходит трехжильный (рис, 11.2).
Рис. 11.2. Схема расщепления трехфазной сети на однофазные потребители |
На вопрос, куда деваются еще 2, ответ простой: питают другие квартиры. Это не значит, что квартир только 3, их может быть сколько угодно, лишь бы кабель выдержал. Просто внутри щита выполняется схема разъединения трехфазной цепи на однофазные (рис, 11.3). К каждой фазе, отходящей в квартиру, добавляются ноль и заземление, так и получается трехжильный кабель.
Рис. 11.3. Однофазная электрическая цепь |
В идеале в трехфазной сети только один ноль. Больше и не надо, поскольку ток сдвинут по фазе относительно друг друга на одну треть. Ноль — это нейтральный проводник, в котором напряжения нет. Относительно земли у него нет потенциала в отличие от фазового, в котором напряжение равно 220 В. В паре «фаза — фаза» напряжение 380 В. В трехфазной сети, к которой ничего не подключено, в нейтральном проводнике нет напряжения. Самое интересное начинает происходить, когда сеть подключается к однофазной цепи. Одна фаза входит в квартиру, где стоят 2 лампочки и холодильник, а вторая — где 5 кондиционеров, 2 компьютера, душевая кабина, индукционная плита и т. д. (рис, 11.4).
Рис. 11.4. Трехфазная электрическая цепь |
Понятно, что нагрузка на 2 эти фазы неодинакова и ни о каком нейтральном проводнике речи уже не идет. На нем тоже появляется напряжение, и чем неравномернее нагрузка, тем оно больше.
Фазы уже не компенсируют друг друга, чтобы в сумме получился ноль.
В последнее время ситуация с некомпенсацией токов в такой сети усугубилась тем, что появились новые электроприборы, которые называются импульсными. В момент включения они потребляют намного больше энергии, чем при нормальной работе. Эти импульсные приборы вкупе с разной нагрузкой на фазы создают такие условия, что в нейтральном проводнике (ноле) возникает напряжение, которое может быть раза в 2 больше, чем на любой фазе. Однако нейтраль такого же сечения, что и фазовый провод, а нагрузка больше.
Вот почему в последнее время все чаще возникает явление, называемое отгоранием ноля — нейтральный проводник просто не справляется с нагрузкой и перегорает. Бороться с таким явлением непросто: надо либо увеличивать сечение нейтрального провода (а это дорого), либо распределять нагрузку между 3 фазами равномерно (что в условиях многоквартирного дома невозможно). На худой конец можно купить понижающий разделительный трансформатор, он же стабилизатор напряжения.
В частном доме ситуация получше, поскольку хозяин один и распределить электроэнергию по фазам намного проще. Это даже увлекательное занятие — считать мощность электроприборов и распределять их по фазам, чтобы нагрузка была одинаковой. Все расчеты делаются примерно, и вовсе не значит, что надо включать свет и 2 телевизора, а если заработал столярный станок на улице — это перебор. Все зависит от желания хозяина дома: провести трехфазную сеть или однофазную. Здесь есть свои плюсы и минусы.
Минусов трехфазной сети 2.
1. Напряжение на отдельном участке сильно зависит от работы других. Если перегружена одна из фаз, остальные могут работать некорректно. Проявиться это может как угодно. Чтобы такого не происходило, нужен стабилизатор — вещь недешевая.
ной. Кроме того, нужно знать правила эксплуатации трехфазных сетей.
Плюсов трехфазной сети тоже 2.
1. Трехфазная сеть позволяет получить больше мощности. Если однофазная сеть при суммарной мощности приборов в 10 кВт уже испытывает перегрузки, то трехфазная прекрасно справляется и с 30 кВт. Пример очень простой. Если с линии ЛЭП в дом заходит всего 1 фаза, то при сечении входящего проводника 16 мм1 максимальная мощность составит всего 14 кВт, а если все 3 фазы — то уже 42 кВт. Разница весьма ощутимая.
delo-elektrika.ru
Трёхфазная система электроснабжения — Википедия
Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).
Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.
Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C[1].
Распространённые обозначения фазных проводов:
А | L1 | L1 | R |
B | L2 | L2 | S |
C | L3 | L3 | T |
- Экономичность.
- Экономичность передачи электроэнергии на значительные расстояния.
- Меньшая материалоёмкость 3-фазных трансформаторов.
- Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
- Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
- Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
- Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
- Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.
Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.
Схемы соединений трехфазных цепей[править]
Звезда[править]
Файл:Surge protection.JPG
Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах. Как и требуют современные стандарты, монтаж происходит на DIN-рейку.
Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку. Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.
Шины для раздачи нулевых проводов (синяя) и проводов заземления(зеленая).Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.
Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.
Линейные и фазные величины[править]
Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
Несложно показать, что линейное напряжение сдвинуто по фазе на относительно фазных:
Мощность трёхфазного тока[править]
Для соединения обмоток звездой, при симметричной нагрузке, мощность трёхфазной сети равна:
Последствия отгорания (обрыва) нулевого провода в трехфазных сетях[править]
При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако, при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый «перекос фаз», в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной выхода из строя бытовой электроники в квартирных домах, который может приводить к пожарам. Пониженное напряжение также может послужить причиной выхода из строя техники.
Проблема гармоник, кратных третьей[править]
Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пика синусоиды питающего напряжения, в момент заряда конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания. Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ Р 54149-2010, ГОСТ 32144-2013 (с 1.07.2014), ОСТ 45.188-2001.
Треугольник[править]
Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.
Соотношение между линейными и фазными токами и напряжениями[править]
Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
Мощность трёхфазного тока[править]
Для соединения обмоток треугольником, при симметричной нагрузке, мощность трёхфазного тока равна:
Распространённые стандарты напряжений[править]
Россия | 50 | 230/400[2] |
Страны ЕС | 50 | 230/400 |
Япония | 50 (60) | 120/208 |
США | 60 | 120/208, 277/480 240 (только треугольник) |
Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.
Трёхфазная двухцепная линия электропередачиЦвета фаз[править]
Каждая фаза в трёхфазной системе имеет свой цвет. Они меняют в зависимости от страны. Используются цвета международного стандарта IEC 60446 (IEC 60445).
Россия, Украина, Казахстан, Китай | Жёлтый | Зелёный | Красный | Голубой | Жёлто/зелёный (в полоску) |
Европейский союз и все страны которые используют европейский стандарт CENELEC с апреля 2004 (IEC 60446), Гон-Конг с июля 2007, Сингапур с марта 2009 | Коричневый | Чёрный | Серый | Голубой | Жёлто/зелёный (в полоску)[3] |
Старый Европейский союз [4] | Красный | Жёлтый | Голубой | Чёрный | Жёлто/зелёный (в полоску) (зелёный в установках до 1970) |
Великобритания до апреля 2006, Гон-Конг до апреля 2009, ЮАР, Малайзия, Сингапур до февраля 2011 | Красный | Жёлтый | Голубой | Чёрный | Жёлто/зелёный (в полоску) (зелёный в установках до 1970) |
Индия | Красный | Жёлтый | Голубой | Чёрный | Жёлто/зелёный (в полоску), или зелёный |
Австралия и Новая Зеландия | Красный (или коричневый)[5] | Белый (или чёрный) (ранее. жёлтый) | Тёмно синий (или серый) | Чёрный (или голубой) | Жёлто/зелёный (в полоску) (зелёный в очень старых установках) |
Канада (обязательный)[6] | Красный | Чёрный | Голубой | Белый или серый | Зелёный или цвета меди |
Канада (в изолированных трехфазных установках)[7] | Оранжевый | Коричневый | Жёлтый | Белый | Зелёный |
США (альтернативная практика)[8] | Коричневый | Оранжевый (в системе треугольник), или фиолетовый (в системе звезда) | Жёлтый | Серый или белый | Зелёный |
США (распространённая практика)[9] | Чёрный | Красный | Голубой | Белый или серый | Зелёный, жёлто/зелёный (в полоску),[10] или провод цвета меди |
Норвегия | Чёрный | Белый/серый | Коричневый | Голубой | Жёлто/зелёный (в полоску), в более старых установках может встречаться только жёлтый или цвета меди |
- ↑ Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
- ↑ Согласно ГОСТ 29322-2014
- ↑ Жёлто-зелёная маркировка была принята как международный стандарт для защиты от поражения эл.током дальтоников. От 7% до 10% людей не могут точно распознать красный и зелёные цвета.
- ↑ В Европе ещё осталось много установок со старой цветовой схемой начала 1970-х. В новых установках используются жёлто/зелёные шины заземления в соответствии с IEC 60446. (Фаза/ноль+земля; Германия: чёрный/серый + красный; Франция зелёный/красный + белый; Россия: красный/серый + чёрный; Швейцария: красныйd/серый + жёлтый или жёлтый и красный; Дания: белый/чёрный + красный
- ↑ В Австралии и Новой Зеландии фазы могут быть люього цвета, но только не жёлто-зелёного, зелёного, жёлтого, чёрного или голубого цвета.
- ↑ Canadian Electrical Code Part I, 23rd Edition, (2002) ISBN 1-55324-690-X, rule 4-036 (3)
- ↑ Canadian Electrical Code (англ.)русск. 23-е издание 2002 года, правила 24-208(c)
- ↑ Начиная с 1975 в США National Electric Code (англ.)русск. не имел специальных обозначений фаз. По сложившейся практике для соединения звезда 120/208 фазы маркировались чёрным, красным и голубым цветом, а при соединении звезда или треугольник 277/480 фазы обозначались коричневым, оранжевым и жёлтым. В системе 120/240 треугольник с наибольшим напряжением 208 вольт (обычно фаза B) всегда обозначалась оранжевым, общая фаза A была чёрного цвета, а фаза C - красной или голубой.
- ↑ See Paul Cook: Harmonised colours and alphanumeric marking. IEE Wiring Matters, Spring 2006.
- ↑ В США провод жёлто-зелёного цвета (в полоску) может обозначать изолированную землю[неизвестный термин]. Сегодня в большинстве стран, жёлто-зелёные (в полоску) провода используются для защитного заземления и не могут быть отсоеденины и использованы для других целей.
wp.wiki-wiki.ru
ТРЁХФАЗНЫЕ И ОДНОФАЗНЫЕ СЕТИ — сходство и различия
Как известно, по проводам, передающим энергию на расстояние, течет трехфазный ток — так выгоднее. В квартиру он заходит однофазным. Расщепление трехфазной цепи на 3 однофазных происходит во ВРУ. Туда входит пятижильный кабель, а выходит трехжильный (рис, 11.2).На вопрос, куда деваются еще 2, ответ простой: питают другие квартиры. Это не значит, что квартир только 3, их может быть сколько угодно, лишь бы кабель выдержал. Просто внутри щита выполняется схема разъединения трехфазной цепи на однофазные (рис, 11.3). К каждой фазе, отходящей в квартиру, добавляются ноль и заземление, так и получается трехжильный кабель.В идеале в трехфазной сети только один ноль. Больше и не надо, поскольку ток сдвинут по фазе относительно друг друга на одну треть. Ноль — это нейтральный проводник, в котором напряжения нет. Относительно земли у него нет потенциала в отличие от фазового, в котором напряжение равно 220 В. В паре «фаза — фаза» напряжение 380 В. В трехфазной сети, к которой ничего не подключено, в нейтральном проводнике нет напряжения. Самое интересное начинает происходить, когда сеть подключается к однофазной цепи. Одна фаза входит в квартиру, где стоят 2 лампочки и холодильник, а вторая — где 5 кондиционеров, 2 компьютера, душевая кабина, индукционная плита и т. д. (рис, 11.4).Понятно, что нагрузка на 2 эти фазы неодинакова и ни о каком нейтральном проводнике речи уже не идет. На нем тоже появляется напряжение, и чем неравномернее нагрузка, тем оно больше.Фазы уже не компенсируют друг друга, чтобы в сумме получился ноль.В последнее время ситуация с некомпенсацией токов в такой сети усугубилась тем, что появились новые электроприборы, которые называются импульсными. В момент включения они потребляют намного больше энергии, чем при нормальной работе. Эти импульсные приборы вкупе с разной нагрузкой на фазы создают такие условия, что в нейтральном проводнике (ноле) возникает напряжение, которое может быть раза в 2 больше, чем на любой фазе. Однако нейтраль такого же сечения, что и фазовый провод, а нагрузка больше.Вот почему в последнее время все чаще возникает явление, называемое отгоранием ноля — нейтральный проводник просто не справляется с нагрузкой и перегорает. Бороться с таким явлением непросто: надо либо увеличивать сечение нейтрального провода (а это дорого), либо распределять нагрузку между 3 фазами равномерно (что в условиях многоквартирного дома невозможно). На худой конец можно купить понижающий разделительный трансформатор, он же стабилизатор напряжения.В частном доме ситуация получше, поскольку хозяин один и распределить электроэнергию по фазам намного проще. Это даже увлекательное занятие — считать мощность электроприборов и распределять их по фазам, чтобы нагрузка была одинаковой. Все расчеты делаются примерно, и вовсе не значит, что надо включать свет и 2 телевизора, а если заработал столярный станок на улице — это перебор. Все зависит от желания хозяина дома: провести трехфазную сеть или однофазную. Здесь есть свои плюсы и минусы.Минусов трехфазной сети 2.1. Напряжение на отдельном участке сильно зависит от работы других. Если перегружена одна из фаз, остальные могут работать некорректно. Проявиться это может как угодно. Чтобы такого не происходило, нужен стабилизатор — вещь недешевая.ной. Кроме того, нужно знать правила эксплуатации трехфазных сетей.Плюсов трехфазной сети тоже 2.1. Трехфазная сеть позволяет получить больше мощности. Если однофазная сеть при суммарной мощности приборов в 10 кВт уже испытывает перегрузки, то трехфазная прекрасно справляется и с 30 кВт. Пример очень простой. Если с линии ЛЭП в дом заходит всего 1 фаза, то при сечении входящего проводника 16 мм1 максимальная мощность составит всего 14 кВт, а если все 3 фазы — то уже 42 кВт. Разница весьма ощутимая.
Июнь 21st, 2017
termofundament.ru
Трёхфазная электрическая сеть Википедия
Трёхфазная система электроснабжения — частный случай многофазных систем электрических цепей переменного тока, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый фазовый угол. В трёхфазной системе этот угол равен 2π/3 (120°).
Многопроводная (шестипроводная) трёхфазная система переменного тока изобретена Николой Теслой. Значительный вклад в развитие трёхфазных систем внёс М. О. Доливо-Добровольский, который впервые предложил трёх- и четырёхпроводную системы передачи переменного тока, выявил ряд преимуществ малопроводных трёхфазных систем по отношению к другим системам и провёл ряд экспериментов с асинхронным электродвигателем.
Описание
Каждая из действующих ЭДС находится в своей фазе периодического процесса, поэтому часто называется просто «фазой». Также «фазами» называют проводники — носители этих ЭДС. В трёхфазных системах угол сдвига равен 120 градусам. Фазные проводники обозначаются в РФ латинскими буквами L с цифровым индексом 1…3, либо A, B и C[1].
Распространённые обозначения фазных проводов:
А | L1 | L1 | R |
B | L2 | L2 | S |
C | L3 | L3 | T |
Преимущества
Возможная схема разводки трёхфазной сети в многоквартирных жилых домах- Экономичность.
- Экономичность передачи электроэнергии на значительные расстояния.
- Меньшая материалоёмкость 3-фазных трансформаторов.
- Меньшая материалоёмкость силовых кабелей, так как при одинаковой потребляемой мощности снижаются токи в фазах (по сравнению с однофазными цепями).
- Уравновешенность системы. Это свойство является одним из важнейших, так как в неуравновешенной системе возникает неравномерная механическая нагрузка на энергогенерирующую установку, что значительно снижает срок её службы.
- Возможность простого получения кругового вращающегося магнитного поля, необходимого для работы электрического двигателя и ряда других электротехнических устройств. Двигатели 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности.
- Возможность получения в одной установке двух рабочих напряжений — фазного и линейного, и двух уровней мощности при соединении на «звезду» или «треугольник».
- Возможность резкого уменьшения мерцания и стробоскопического эффекта светильников на люминесцентных лампах путём размещения в одном светильнике трёх ламп (или групп ламп), питающихся от разных фаз.
Благодаря этим преимуществам, трёхфазные системы наиболее распространены в современной электроэнергетике.
Схемы соединений трехфазных цепей
Звезда
Звездой называется такое соединение, когда концы фаз обмоток генератора (G) соединяют в одну общую точку, называемую нейтральной точкой или нейтралью. Концы фаз обмоток потребителя (M) также соединяют в общую точку.
Провода, соединяющие начала фаз генератора и потребителя, называются линейными. Провод, соединяющий две нейтрали, называется нейтральным.
Трёхфазная цепь, имеющая нейтральный провод, называется четырёхпроводной. Если нейтрального провода нет — трёхпроводной.
Если сопротивления Za, Zb, Zc потребителя равны между собой, то такую нагрузку называют симметричной.
Линейные и фазные величины
Напряжение между фазным проводом и нейтралью (Ua, Ub, Uc) называется фазным. Напряжение между двумя фазными проводами (UAB, UBC, UCA) называется линейным. Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
IL=IF;UL=3×UF{\displaystyle I_{L}=I_{F};\qquad U_{L}={\sqrt {3}}\times {U_{F}}}
Несложно показать, что линейное напряжение сдвинуто по фазе на π/6{\displaystyle \pi /6} относительно фазных:
uLab=uFa−uFb=UF[cos(ωt)−cos(ωt−2π/3)]=2UFsin(−π/3)sin(ωt−π/3)=3UFcos(ωt+π−π/3−π/2){\displaystyle u_{L}^{ab}=u_{F}^{a}-u_{F}^{b}=U_{F}[\cos(\omega t)-\cos(\omega t-2\pi /3)]=2U_{F}\sin(-\pi /3)\sin(\omega t-\pi /3)={\sqrt {3}}U_{F}\cos(\omega t+\pi -\pi /3-\pi /2)}
uL=3UFcos(ωt+π/6){\displaystyle u_{L}={\sqrt {3}}U_{F}\cos(\omega t+\pi /6)}
Мощность трёхфазного тока
Для соединения обмоток звездой, при симметричной нагрузке, мощность трёхфазной сети равна:
P=3UFIFcosφ=3UL3ILcosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3{\frac {U_{L}}{\sqrt {3}}}I_{L}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }
Последствия отгорания (обрыва) нулевого провода в трёхфазных сетях
Существующие виды защиты от линейного напряжения, которые можно найти в продаже в электротехнических магазинах Шины для раздачи нулевых проводов (синяя) и проводов заземления (зелёная)При симметричной нагрузке в трёхфазной системе питание потребителя линейным напряжением возможно даже при отсутствии нейтрального провода. Однако при питании нагрузки фазным напряжением, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. При его обрыве или значительном увеличении сопротивления (плохом контакте) происходит так называемый перекос фаз, в результате которого подключенная нагрузка, рассчитанная на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода). Это зачастую является причиной выхода из строя бытовой электроники в квартирных домах, который может приводить к пожарам. Пониженное напряжение также может послужить причиной выхода из строя техники.
Проблема гармоник, кратных третьей
Современная техника всё чаще оснащается импульсными сетевыми источниками питания. Импульсный источник без корректора коэффициента мощности потребляет ток узкими импульсами вблизи пиков синусоиды питающего напряжения на интервалах зарядки конденсатора входного выпрямителя. Большое количество таких источников питания в сети создаёт повышенный ток третьей гармоники питающего напряжения. Токи гармоник, кратных третьей, вместо взаимной компенсации, математически суммируются в нейтральном проводнике (даже при симметричном распределении нагрузки) и могут привести к его перегрузке даже без превышения допустимой мощности потребления по фазам. Такая проблема существует, в частности, в офисных зданиях с большим количеством одновременно работающей оргтехники. Решением проблемы третьей гармоники является применение корректора коэффициента мощности (пассивного или активного) в составе схемы производимых импульсных источников питания. Требования стандарта IEC 1000-3-2 накладывают ограничения на гармонические составляющие тока нагрузки устройств мощностью от 50 Вт. В России количество гармонических составляющих тока нагрузки нормируется стандартами ГОСТ Р 54149-2010, ГОСТ 32144-2013 (с 1.07.2014), ОСТ 45.188-2001.
Треугольник
Треугольник — такое соединение, когда конец первой фазы соединяется с началом второй фазы, конец второй фазы с началом третьей, а конец третьей фазы соединяется с началом первой.
Соотношение между линейными и фазными токами и напряжениями
Для соединения обмоток треугольником, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
IL=3×IF;UL=UF{\displaystyle I_{L}={\sqrt {3}}\times {I_{F}};\qquad U_{L}=U_{F}}
Мощность трёхфазного тока при соединении треугольником
Для соединения обмоток треугольником, при симметричной нагрузке, мощность трёхфазного тока равна:
P=3UFIFcosφ=3ULIL3cosφ=3ULILcosφ{\displaystyle P=3U_{F}I_{F}cos\varphi =3U_{L}{\frac {I_{L}}{\sqrt {3}}}cos\varphi ={\sqrt {3}}U_{L}I_{L}cos\varphi }
Распространённые стандарты напряжений
Россия | 50 | 230/400[2] (бытовые сети)133/230, 230/400, 400/690, 690/1200 (промышленные сети)[источник не указан 40 дней] |
Страны ЕС | 50 | 230/400, 400/690 (промышленные сети) |
Япония | 50 (60) | 120/208 |
США | 60 | 120/208, 277/480 240 (только треугольник) |
Маркировка
Проводники, принадлежащие разным фазам, маркируют разными цветами. Разными цветами маркируют также нейтральный и защитный проводники. Это делается для обеспечения надлежащей защиты от поражения электрическим током, а также для удобства обслуживания, монтажа и ремонта электрических установок и электрического оборудования. В разных странах маркировка проводников имеет свои различия. Однако многие страны придерживаются общих принципов цветовой маркировки проводников, изложенных в стандарте Международной Электротехнической Комиссии МЭК 60445:2010.
Трёхфазная двухцепная линия электропередачиЦвета фаз
Каждая фаза в трёхфазной системе имеет свой цвет. Они меняют в зависимости от страны. Используются цвета международного стандарта IEC 60446 (IEC 60445).
Россия, Украина, Казахстан (до 2009), Китай | Жёлтый | Зелёный | Красный | Голубой | Жёлто/зелёный (в полоску) |
Европейский союз и все страны которые используют европейский стандарт CENELEC с апреля 2004 (IEC 60446), Гонконг с июля 2007, Сингапур с марта 2009, Украина, Казахстан с 2009, Аргентина | Коричневый | Чёрный | Серый | Голубой | Жёлто/зелёный (в полоску)[3] |
Европейский союз до апреля 2004[4] | Красный | Жёлтый | Голубой | Чёрный | Жёлто/зелёный (в полоску) (зелёный в установках до 1970) |
Индия, Пакистан, Великобритания до апреля 2006, Гонконг до апреля 2009, ЮАР, Малайзия, Сингапур до февраля 2011 | Красный | Жёлтый | Голубой | Чёрный | Жёлто/зелёный (в полоску) (зелёный в установках до 1970) |
Австралия и Новая Зеландия | Красный (или коричневый)[5] | Белый (или чёрный) (ранее — жёлтый) | Тёмно синий (или серый) | Чёрный (или голубой) | Жёлто/зелёный (в полоску) (зелёный в очень старых установках) |
Канада (обязательный)[6] | Красный | Чёрный | Голубой | Белый или серый | Зелёный или цвета меди |
Канада (в изолированных трехфазных установках)[7] | Оранжевый | Коричневый | Жёлтый | Белый | Зелёный |
США (альтернативная практика)[8] | Коричневый | Оранжевый (в системе треугольник), или фиолетовый (в системе звезда) | Жёлтый | Серый или белый | Зелёный |
США (распространённая практика)[9] | Чёрный | Красный | Голубой | Белый или серый | Зелёный, жёлто/зелёный (в полоску),[10] или провод цвета меди |
Норвегия | Чёрный | Белый/серый | Коричневый | Голубой | Жёлто/зелёный (в полоску), в более старых установках может встречаться только жёлтый или цвета меди |
См. также
Примечания
- ↑ Действующий в РФ ГОСТ 2.709-89 предписывает обозначение цепей фазных проводников трёхфазного переменного тока: L1, L2, L3, и при этом допускает обозначения A, B, C.
- ↑ Согласно ГОСТ 29322-2014
- ↑ Жёлто-зелёная маркировка была принята как международный стандарт для защиты от поражения эл.током дальтоников. От 7 % до 10 % людей не могут точно распознать красный и зелёные цвета.
- ↑ В Европе ещё осталось много установок со старой цветовой схемой начала 1970-х. В новых установках используются жёлто/зелёные шины заземления в соответствии с IEC 60446. (Фаза/ноль+земля; Германия: чёрный/серый + красный; Франция зелёный/красный + белый; Россия: красный/серый + чёрный; Швейцария: красныйd/серый + жёлтый или жёлтый и красный; Дания: белый/чёрный + красный
- ↑ В Австралии и Новой Зеландии фазы могут быть люього цвета, но только не жёлто-зелёного, зелёного, жёлтого, чёрного или голубого цвета.
- ↑ Canadian Electrical Code Part I, 23rd Edition, (2002) ISBN 1-55324-690-X, rule 4-036 (3)
- ↑ Canadian Electrical Code (англ.)русск. 23-е издание 2002 года, правила 24-208(c)
- ↑ Начиная с 1975 в США National Electric Code (англ.)русск. не имел специальных обозначений фаз. По сложившейся практике для соединения звезда 120/208 фазы маркировались чёрным, красным и голубым цветом, а при соединении звезда или треугольник 277/480 фазы обозначались коричневым, оранжевым и жёлтым. В системе 120/240 треугольник с наибольшим напряжением 208 вольт (обычно фаза B) всегда обозначалась оранжевым, общая фаза A была чёрного цвета, а фаза C — красной или голубой.
- ↑ See Paul Cook: Harmonised colours and alphanumeric marking. IEE Wiring Matters, Spring 2006.
- ↑ В США провод жёлто-зелёного цвета (в полоску) может обозначать изолированную землю[неизвестный термин]. Сегодня в большинстве стран, жёлто-зелёные (в полоску) провода используются для защитного заземления и не могут быть отсоеденины и использованы для других целей.
Ссылки
wikiredia.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.