Maha PowerEx MH-C9000 - умная зарядка для Ni-Mh аккумуляторов AAA и AA, продлевающая срок их жизни. Умная зарядка
BM110 - умное зарядное устройство
В последнее время я все чаще заказываю разные полезные вещи на aliexpress.com, моя жена ещё чаще 🙂 Я уже описывал китайский металлоискатель Md3009, который я купил месяц назад и до сих пор не продал (не очень пока старался, так как поисковый сезон уже практически закончился) И вот не так давно мне пришла ещё одна посылочка — умное зарядное устройство Bm110.
Почему я пишу об этом зарядном устройстве на компьютерном сайте? Да потому что современная электроника — это компьютер десятилетней давности. А современный компьютеры через десять лет будут для нас, как умное зарядное устройство для аккумуляторов сегодня. А теперь к делу.
Чем же так хороша зарядка BM110?
Чем же интересно это умное зарядное устройство и почему оно умное? Вот в такой коробке оно ко мне прилетело:
Думал будет хуже, но коробка выглядит очень качественно, не то что мне прислали металлоискатель — простая коробка и там завёрнуто все в целлофан 🙁 Вот как оно выглядит:
Все шикарно, корпус просто замечательный, не какая то халтура, заводской Китай. Хорошо, что блок питания отдельный, так как запихать в корпус мощный блок питания сложно. А так даже если он сгорит (хотя вряд ли конечно), то можно легко найти замену.
Что же тут умного? Обратите внимание на три кнопки на передней панели:
У простых зарядок никаких кнопок ВООБЩЕ нет, разве что дисплей или светодиод. Вставил аккумулятор и вытащил после зарядки. А тут есть несколько режимов и хорошая визуальная индикация. И хотя оно сложнее обычного зарядного устройства, но разобраться все же нужно, чтобы использовать устройство на полную мощь — иначе зачем было платить так много? Какие режимы тут есть.
1. Режим зарядки.
Тут все просто: вставил и аккумулятор заряжается. На дисплее будет надпись CHARGE. После окончания процесса появится слово FULL.
2. Разрядка и потом зарядка.
Это очень полезный режим. Может вы не знаете (а это плохо, если не знаете), но все пальчиковые аккумуляторы имеют эффект памяти, особенно никель-кадмиевые (Ni-Cd)/ Металл гидридные (Ni-MH) тоже имеют, но не в такой степени. Что такое эффект памяти?
Аккумулятор запоминает, сколько он работал в последний раз и ровно настолько заряжается в следующий раз. На практике: вы зарядили аккумулятор, разрядили на половину, а потом опять поставили заряжать. Так вот, аккумулятор (злопамятный тип) запомнил это и не возьмёт заряд полностью.
То есть, все эти аккумуляторы лучше всего сначала разряжать полностью, а потом заряжать. Оно все так, но бывают ситуации, когда вы ещё не успели посадить батарейки, а вам нужно, чтобы они имели полный заряд. Что делать?
Вот тут то и поможет этот режим, который сначала полностью разрядит аккумулятор, а потом заново его зарядит.
Чтобы выставить этот режим, нужно сначала вставить аккумулятор, а потом несколько секунд подержать кнопку MODE, пока на дисплее не появится надпись DISCHARGE.
Процесс пошёл, после разрядки и зарядки на дисплее появится надпись FULL.
3. Режим восстановления.
Это тоже отличный режим, который нужен для восстановления аккумуляторов, которые вы по неопытности убили, заряжая их не разрядив до конца. Нажимаем опять кнопку MODE и выбираем режим REFRESH.
Теперь зарядное будет насколько раз будет разряжать и заряжать аккумулятор, прокачивая его и пытаясь вернуть ему былую молодость. У меня оказался один такой «злодей», который очень быстро разряжался. Процесс этот долгий и может занять целый день, а может и все ночь 😉
Для чего нужны остальные кнопки?
DISPLAY — нажимая эту кнопку во время зарядки вы увидите ток заряда, нажав ещё раз — текущий вольтаж аккумулятора, и потом что то ещё и так далее. В общем разные текущие параметры.
CURRENT — этой кнопкой можно выставлять ток заряда. По умолчанию зарядное не спешит заряжать — большие токи вредны для аккумулятора. Но представим, что у вас времени в обрез, вам срочно нужно зарядить аккумуляторы. Тогда вы поддаёте тока и существенно ускоряете процесс.
Это умное зарядное устройство для аккумуляторных батареек имеет ещё какие то функции (скорее всего), но инструкция bm110 на английском и очень мала. Всё что я рассказал вам, я узнал из видео роликов на Ютубе. Но даже этим функционалом я доволен, даже 25 долларов было не жалко.
Где это умное зарядное устройство купить? Вот ссылка, где покупал я. Лично я не пожалел об этой покупке 🙂
Да, как видите, все серьёзно, внутри все тоже качественно….
А вот и ССЫЛКА на продавца.
Если вы еще не решили для себя, покупать это зарядное устройство или нет, то посмотрите несколько видео, которые сняли счастливые обладатели данного девайса.
[pvg list=»bm110″]
aliprofi.ru
умная зарядка видео YouTube
...
1 лет назад
Покупал тут: http://smo.to/q9k7m.
...
5 лет назад
IMHO: IMAX B6 одно из лучших, умных зарядных устройств для большинства типов аккумуляторов, таких как Li Ion, NiMH,...
...
2 лет назад
ПОМОЩНИК В ПОКУПКАХ НА ALIEXPRESS http://www.aliprice.com/go.php?z=Mb8JXBw2Op&ext=1 Зарядка тут: https://goo.gl/IQS6vX Аналог другой ...
...
12 меc назад
Не плохое зарядное автомобильное устройство. Покупал на Алиэкспресс.
...
2 лет назад
Покупал тут: http://ali.pub/36hiy Русская инструкция: https://yadi.sk/i/nLm12XIxrwH6s Lii-202: http://got.by/19jb7h Lii-100: http://ali.pub/afdb8 zanflare С4: ...
...
3 лет назад
Nitecore UM20 умная зарядка для Li-Ion и IMR аккум-ов. Обзор. С функцией зарядки мобильного телефона/планшета. Характер...
...
3 лет назад
Покупаем тут - https://goo.gl/iOIDgB - Умная зарядка Tronsmart TS WC3PC. VoltIQ ♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢...
...
5 лет назад
Комментируйте, ставьте лайк и подписывайтесь на канал...
...
6 лет назад
Умная зарядка La Crosse BC1000 unboxing http://skimen.su/ Мои контакты: http://skimen.su/kontakty/ Партнёрская программа YouTube: http://join.air.io/ski...
...
2 лет назад
Куплено здесь: http://fas.st/UE_Gta Зарядное устройство для аккумуляторов АА/ААА La Crosse BC1000, так же покажем подарок...
...
2 лет назад
Новый подход к зарядке различных аккумуляторов и устройств! Зарядка Charsoon Magic Cube! Быстрый осмотр и первонача...
...
10 меc назад
Как известно аккумуляторы смартфонов не любят длительную зарядку. При длительной зарядке возможно вздутие...
...
3 лет назад
УМНАЯ ЗАРЯДКА БАТАРЕЙ.
...
5 меc назад
Экономьте при помощи EPN Cashback: https://www.youtube.com/watch?v=A6nuSk0tcDk 1) Зарядное Liito Kala Lii-500: http://ali.pub/2inl4o 2) Мои ...
...
12 меc назад
ПОКУПАЛ ТУТ - https://goo.gl/Pt3ViM ====================================== ПОДПИШИСЬ на канал "КИТАЙ В SHOPe" - https://goo.gl/PazuON И ...
...
3 лет назад
Распаковка З/У на 5 USB портов. Отличная штука когда мешает большое количество разных зарядок)) Покупал тут:...
...
2 лет назад
Победители тестов, от хороших продавцов: ЗУ BlitzWolf: https://goo.gl/n3ozv4 ЗУ Nillkin: https://goo.gl/T6y04B ЗУ SONOVO: https://goo.gl/...
...
10 меc назад
Эти зарядные устройства - лучший выбор по скромному мнению нашего небольшого сообщества единомышленников....
...
3 лет назад
Нашел тут: https://goo.gl/NPP74S и https://goo.gl/HKkTLU и https://goo.gl/7PJegy Продавец ставил 90 дней доставки, а дошла она за 32 дня....
...
2 лет назад
Зарядка: http://ali.ski/n0IEd Аккумуляторы АА: http://ali.ski/3hZs3 Аккумуляторы ААА: http://ali.ski/u4BEP Группа в контакте: https://new.vk.com/...
syoutube.ru
Maha PowerEx MH-C9000 - умная зарядка для Ni-Mh аккумуляторов AAA и AA, продлевающая срок их жизни: athunder
После приобретения множества игрушек Fisher Price встал вопрос, какие батарейки или аккумуляторы использовать. Все они используют AA или AAA аккумуляторы/батарейки, так что в этом плане проблем данные покупки в США не доставили. Обычные батарейки конечно стоят дешево, но служат не очень долго. Утилизация батареек в России появилась совсем недавно, да и требует поездок в магазины, что вкупе с высокой себестоимостью утилизации не делает батарейки привлекательными в плане экологичности.На радиотелефоне Panasonic я пробовал обычные аккумуляторы Panasonic, Duracell и GP. Последние были самыми экономичными, но, к сожалению, через год их можно было выбросить. Для игрушек мне такой вариант не подходил. К счастью, на рынке есть никель-металл-гидридные (Ni-Mh) аккумуляторы с низким саморазрядом (low self-discharge). Они долго не теряют свой заряд, да и перезаряжать их можно приличное количество раз. Почитав обзоры, остановился на аккумуляторах Sanyo Eneloop AA/1900mAh и AAA/850mAh.
Кроме того, я приобрел и интеллектуальное зарядное устройство Maha PowerEx MH-C9000 (рассматривал также зарядное устройство La Crosse BC-900, но решил не экономить). В отличии от обычных зарядных устройств, данное очень сильно продлевает срок жизни аккумуляторов. Суть метода зарядки заключается в том, что она анализирует не максимум напряжения на аккумуляторе, а максимум производной напряжения по времени. Быстрая зарядка аккумулятора прекращается, когда скорость роста напряжения становится максимальной. Это позволяет завершить фазу быстрой зарядки раньше, пока температура аккумулятора еще не успела значительно подняться. Далее следует дозарядка в течение двух часов током порядка 200 мА.
Первоначально расходы на аккумуляторы и зарядное устройство очень большие, окупится это все только через несколько лет. Хотя конечно при использовании аккумуляторов для радиоуправляемых моделей, фотоаппаратов, радиотелефонов и прочей часто заряжаемой техники ситуация меняется кардинально. При этом для вспышек и другой мощной техники вместо стандартных Eneloop лучше воспользоваться Sanyo Eneloop XX.И зарядное устройство, и аккумуляторы приобретались за рубежом, в основном на американском Амазоне. Зарядное устройство Maha PowerEx MH-C9000 поддерживает 110-240В, 50/60Гц, так что никаких трансформаторов не нужно (тем более, что использовать понижающие трансформаторы с зарядной техникой - не лучшее решение).
За 3+ года эксплуатации зарядное устройство Maha PowerEx MH-C9000 вместе с аккумуляторами Sanyo Eneloop показали себя отлично. Емкость аккумуляторов почти не снизилась, чего я, честно говоря, совершенно не ожидал.
Правда восстановить старые аккумуляторы GP, Duracell и Panasonic при помощи режима Break-In мне не удалось. Что конечно не удивительно после нещадного использования в радиотелефоне Panasonic. Что касается последнего, то обычные Sanyo Eneloop AAA для моих трубок Panasonic не подошли, показывая низкий заряд вне зависимости от того, заряжал их сам телефон или зарядка Maha PowerEx MH-C9000.Также к недостаткам можно отнести невозможность применения настроек для всех четырех слотов одновременно (нужно выставлять режим и параметры для каждого аккумулятора), хотя чаще всего приходится заряжать однотипные аккумуляторы в одном и том же режиме. Помимо этого не понравилось, что подсветка дисплея не отключается автоматически. Помимо того, что это приводит в повышению расхода электроэнергии, подсветка достаточно яркая, что мешает ночью. А ведь некоторые режимы очень долгие. Рассмотрим их поподробнее.
После включения зарядного устройство оно автоматически переходит в режим CHARGE (при наличии хотя бы одного аккумулятора). При этом сам процесс зарядки не начинается, сначала нужно выбрать настройки. Если настройки не выбрать в течение 10 секунд, то начнется зарядка аккумулятора током 1А. Если же аккумуляторы отсутствуют в слотах, то зарядное устройство перейдет в режим ожидания, подсветка дисплея выключится.
Для переключения между режимами используются стрелочки вниз и вверх, они же позволяет изменить параметры режима. Кнопка Enter позволяет выбрать режим (Charge, Refresh/Analyze, Break-In, Discharge, Cycle), а после изменения настроек при помощи стрелок запускает его. Кнопка Slot используется для перехода к следующему слоту, в котором находится аккумулятор. При зарядке она может использоваться для просмотра данных о процессе зарядки/разрядки для каждого отдельного слота с аккумулятором.
Режимы:
- CHARGE (Зарядка) позволяет произвести зарядку аккумулятора. Для начала зарядки выбираем силу тока (от 200 мА до 2А). Рекомендуется использовать ток равный половине емкости аккумулятора. Если аккумулятор на 1900 MAh, то выбираем чуть менее половины - 900 мА. Это самый быстрый режим. Не рекомендуется использовать для зарядки силу тока 0,33С и менее (за исключением режима Break-In), поскольку при этом процесс заряда закончится преждевременно.
В первые несколько секунд зарядное устройство использует проверку с высоким комплексным сопротивлением, что позволяет обнаружить небезопасные для зарядки аккумуляторы, в том числе неперезаряжаемые батарейки. В данном режиме применяется высокий ток и измеряется напряжение, чтобы вычислить полное сопротивление аккумулятора. Через некоторое время значение напряжения приходит в норму, поэтому пугаться слишком высоких значений в первые несколько секунд не стоит.
- REFRESH/ANALYZE (Обновление/Анализ) позволяет восстановить и проанализировать пролежавшие некоторое время без дела аккумуляторы. В данном режиме зарядное устройство заряжает аккумулятор, если он был не заряжен, затем делает перерыв. Далее происходит разрядка аккумулятора, а также в процессе измеряется его емкость, после чего опять перерыв. На последнем этапе происходит зарядка. Производитель утверждает, что перерыв дает электрохимическим процессам в аккумуляторе прийти в равновесие.
В данном режиме помимо тока заряда нужно выставлять ток разряда. Рекомендованный током заряда все также равен половине емкости, тогда как ток разряда 1/4 емкости аккумулятора.
Токи заряда/разряда для самых распространенных аккумуляторов AAA и AA:
Емкость аккумулятора Ток заряда Ток разряда 2700 мАч 1300 мА 700 мА 2650 мАч 1300 мА 700 мА 2500-2400 мАч 1200 мА 600 мА 2300-2200 мАч 1100 мА 600 мА 2100 мАч 1000 мА 500 мА 2000 мАч 1000 мА 500 мА 1000 мАч 500 мА 200 мА 900-700 мАч 400 мА 200 мА - BREAK-IN (Тренировка) позволяет зарядить новые или хранившиеся дольше 3 месяцев аккумуляторы. В качестве параметров устанавливается емкость аккумулятора (округляем ее до сотен в большую сторону).В данном режиме сначала производится заряд аккумуляторов током 0,1С (1/10 емкости) в течении 16 часов, после чего один час отдыха. Далее разряд током 0,2С и снова 16 часов заряда током 0,1C. Процесс достаточно долгий (около 2 суток). Причем в случае скачка напряжения или после его отключения зарядное устройство сбросит режим (и конечно же автоматически через десять секунд начнется зарядка током 1А). Именно данный режим больше всего подходит для восстановления емкости аккумулятора, близкой к паспортной.
- DISCHARGE (Разрядка) позволяет разрядить аккумуляторы. Он позволяет измерять остаточную емкость аккумуляторов, а также измерить емкость неперезаряжаемых батареек. В данном режиме необходимо установить силу тока разряда.
- CYCLE (Цикл) позволяет задать несколько циклов заряда/разряда, в результате чего можно проследить за поведением аккумулятора под длительной нагрузкой. Всего доступно 12 циклов, каждый из которых сохраняется в памяти зарядного устройства.
После завершения любого из режимов на дисплее для каждого слота отдельно загорается надпись DONE (Готово). Чтобы посмотреть параметры по нужному слоту, можно нажать на кнопку Slot.
После приобретения зарядного устройства Maha PowerEx MH-C9000 и аккумуляторов Sanyo Eneloop я начал вести журнал, в котором отмечаю дату Break-In, зарядки, а также полученную емкость каждого аккумулятора. Чтобы различать аккумуляторы, перманентным маркером поставил на каждом номер.
Вот такое умное зарядное устройство. Сейчас бы опять приобрел для игрушек и его, и те же самые аккумуляторы, поскольку качеством остался очень доволен.
Обновление (4 марта 2015)Альтернатива зарядному устройству Maha PowerEx MH-C9000
В зарядном устройстве Opus BT-C2000 исправлены недостатки зарядного устройства Maha PowerEx MH-C9000:
- Настройки можно выставить сразу для всех аккумуляторов (что значительно ускоряет процесс в большинстве случаев) или для каждого по отдельности.
- Режим зарядки запоминается, а не сбрасывается на режим по умолчанию
- Подсветка выключается через 10 секунд, а не горит постоянно
- Параметры зарядки видны для каждого аккумулятора сразу, нет необходимости ждать обновления экрана
Opus BT-C3100 V2.2 может похвастаться всеми преимуществами BT-C2000, но при этом способен заряжать помимо NiMh, NiCd аккумуляторов еще и Li-ion. Opus BT-C3100 V2.2 с бесплатной доставкой по всему миру в проверенном китайском Интернет-магазине Gearbest продаётся сейчас за $32,21.
athunder.livejournal.com
Умная зарядка NiMh AA аккумуляторов. 2ZV.ru
Рассказать в:Плюсы и минус.1. Простоя и дешевая схема. 2. Определение окончания заряда по спаду/прекращению роста напряжения на аккумуляторе. 3. Зарядное устройство заряжает аккумулятор NiMh 2300mAh примерно за 3-4 часа. 4. Зарядное устройство позволить Вам увидеть на компьютере графики напряжения и температуры аккумулятора и оценить достоверность определения окончания заряда. Также позволяет посмотреть приблизительное внутреннее сопротивление аккумулятора, на мой взгляд, статистика этого параметра дает самое лучшее представление о состоянии аккумулятора. (Но это не означает, что для зарядки нужен компьютер, это дополнительная возможность.) 5. И наконец, главный <эксплуатационный> минус - зарядка заряжает один аккумулятор, поглядев на схему, Вы поймете почему. Немного рассуждений. Тема живая, почти каждый сейчас имеет цифровой фотоаппарат и сталкивался с тем, что покупная зарядка или перезаряжает, сильно разогревая аккумулятор или наоборот не дозаряжает. В первом случае жизненный цикл аккумулятора сильно сокращается, во втором, аккумулятор не оправдывает своих потребительских характеристик. Было решено сделать <народную> зарядку, по очень простой схеме содержащей дешевые детали и обладающей характеристиками <навороченной зарядки> основной уклон на правильное определение окончания заряда. Тем более что имеется богатый опыт в этом вопросе. Основой зарядного устройства служит импульсная зарядка от сотового. Я взял самую дешевую, на выходе без нагрузки 7-8 вольт, ток 600мА. Примененный <блок питания> внес ограничение 1 зарядка на 1 аккумулятор. Тех, кто любит заряжать несколько аккумуляторов последовательно, отправлю почитать статью <Немного о зарядке NiMH и NiCd аккумуляторов> c Ридико Леонид Иванович http://www.caxapa.ru/faq/charge_nimh.pdf, а затем подумать, как можно правильно зарядить несколько последовательно включенных аккумуляторов. В такой связке будут проблемы описанные выше, один аккумулятор перезарядится другой не дозарядится. Конечно можно сначала разрядить аккумуляторы до 1 вольта, а потом заряжать током 0.1С 16 часов, но это слишком долго. Еще один плюс этой зарядки в том, что можно предварительно не разряжать аккумулятор. Но постоянно так делать не рекомендую, хотя бы через 5 зарядок аккумулятор нужно разряжать до 1 вольта. Ниже приведены графики напряжений и температур разных аккумуляторов.
Не удивляйтесь тому, что графики имеют такие отличия в уровне напряжений. Я специально их так подобрал, что бы показать, что уровень напряжения на аккумуляторе сильно зависит от его внутреннего сопротивления (в этом зарядном устройстве напряжение на аккумуляторе измеряется при разрядном импульсе). Как определить конец заряда? Человеку он сразу виден, а вот как принять решение в программе? Например, брать такой алгоритм - останавливать заряд, если в течение 15 минут напряжение равно или меньше предыдущему. К сожалению, такой алгоритм сработает только в половине случаев, а после анализа графиков ясно, что это уже сильный перезаряд. При токе 500-700мА для хороших (новых) аккумуляторов, емкостью выше 2000mAh, отрицательное приращение явление редкое. К тому же, его приходится долго ждать и когда оно наступит (вернее если), то согласно выше приведенной статье это уже фаза перезаряда. Так же нельзя, например, что бы пропустить середину заряда, где напряжение растет медленно, начинать ждать прекращения роста напряжения после какого либо абсолютного напряжения на аккумуляторе. Это напряжение для всех аккумуляторов разное, если посмотреть на нижний график, то видно, что для одного аккумулятора конец заряда, для другого только начало. В середине заряда, при таких токах, напряжение может не расти в течение 12 минут. А вот в конце заряда ждать 15 минут, что бы наверняка, это много, цитата из выше приведенной статьи "в конце зарядки КПД этого процесса резко падает и практически вся подводимая к аккумулятору энергия начинает превращаться в тепло. Это вызывает резкий рост температуры и давления внутри аккумулятора, что может вызвать его повреждение". Это для зарядного тока 1С, но и при 600мА наблюдается быстрый рост температуры, а значит и всего перечисленного. Ровной полки на профиле напряжения скорей всего не будет, алгоритм ожидания может не сработать. Признаюсь, это не первое мое зарядное устройство. Поэтому очень многое я использовал от старого, в частности алгоритм определения окончания заряда. Софт для компьютера я также использовал от старой зарядки. Сначала была набрана статистика, затем была написана программа для проверки алгоритма на компьютере.
В файлах к статье я приложил эту программу с двадцатью двумя файлами статистики. Я намерено подобрал файлы, в которых затрудненно определение конца заряда, например, когда заряжается не разряженный аккумулятор и т. д. такие аккумуляторы были специально перезаряжены, что бы показать достоверность принятия решения об окончании заряда. Попытаюсь в двух словах рассказать об алгоритме. Для того, что бы избавиться от влияния помех и не очень стабильного питания, напряжение на аккумуляторе измеряется в конце разрядного импульса, перед измерением ожидается два подряд одинаковых значения АЦП, затем делается подряд восемь измерений и они же усредняется на восемь. В свою очередь эти измерения усредняются за минуту (512 значений), в итоге имеем хорошие стабильные данные. Раз в минуту считается приращение за прошедшие восемь минут и если максимальное приращение больше текущего на 2, то останавливаем заряд. Такой алгоритм полностью отвязан от абсолютных значений АЦП. Приблизительное внутренние сопротивление аккумулятора считается так, измеряется напряжение аккумулятора без нагрузки, затем измеряется напряжение под нагрузкой, на основании разницы напряжений считается внутренние сопротивление. Так как сопротивление разрядного резистора довольно маленькое 1 Ом и токи соответственно большие, большую погрешность вносит падение напряжения на контактах <держалки> аккумулятора (автор знает о правильных способах (http://kit-e.ru/assets/files/pdf/2005_03_230.pdf) измерения внутреннего сопротивления, но в рамках этой схемы они не реализуемы). Кстати, судить о внутреннем сопротивлении аккумулятора можно по графикам, чем ниже напряжение на аккумуляторе, тем выше у него внутреннее сопротивление. Схема:
Как видите, схема довольно проста.Микроконтроллер AtMega8 был выбран только из-за того, что он был в наличие и по привычке :). Транзисторы VT3 и VT4 должны быть MOSFET серии Logic-level gate drive (IRL), это ограничение схемы. При включении зарядного импульса или что тоже самое подаче высокого уровня напряжения на затвор VT3 напряжение на разъеме Х1 падает примерно до 2-3В. При этом стабилизатор 78L05 питается за счет емкости C1, и если вместо VT3 поставить биполярный транзистор, то базовой ток сразу же разрядит С1. Кстати, микроконтроллер почти всегда находится в режиме IDLE и ток потребляет маленький, конденсатор разряжает сама 7805 (в реальной схеме именно 7805, L у меня не было). Вместо VT4 можно было бы применить биполярный транзистор, но до его полного открытия нужен большой базовый ток, что не позволит С1 заряжаться во время разрядного импульса. Вместо VT4 IRLML2502 можно применить любой MOSFET серии IRL с максимальным током стока более 2А, VT3 можно ставить любой из серии IRL. Составной транзистор тоже желательно заменить на P-канальный MOSFET серии IRL. Ниже приведены графики зарядного и разрядного импульса.
Длительность зарядного импульса 100мс. Длительность разрядного импульса 6.5мс, пауза между зарядными импульсами 20мс. Пауза необходима для зарядки конденсатора С1. Как говорилось раньше, что бы ни делать двойную работу я использовал софт для компьютера от старой зарядки. Для данной зарядки второй канал не используются. В странице настроек, следует указать только сопротивление разрядного резистора (Rd), по умолчанию равно номиналу в схеме. Программа принимает данные с ком порта со скоростью 4800 бод. Данные от зарядки отсылаются раз в минуту, и они же используются в алгоритме определения конца заряда. Скриншот программы приводить не буду, там и так все понятно, нажимаете кнопку старт включается прием данных с выбранного ком порта и начинается построение графиков. Для передачи данных на компьютер я использовал переходник usb-com. Если у кого-то возникнет желание пользоваться преобразователем уровней MAX232, то надо убедиться, что помехи от MAX232 не проникают в схему зарядки. Эта микросхема довольно сильно фонит по питанию.
Руководство пользователя:)При включении, зарядка начинает цикл проверки наличия аккумулятора. Напряжение на аккумуляторе измеряется при разрядном импульсе. Если напряжение ниже 1 вольта, зарядка пытается растолкать аккумулятор до 1 вольта и только затем переходит к выполнению программы заряда. Если напряжение аккумулятора более 1 вольта и замкнут переключатель <предварительный разряд>, то аккумулятор будет разряжен до 1 вольта перед зарядом (у меня переключатель заменен на кнопку, мне так показалось удобней). После детектирования окончания заряда, зарядка переходит в режим капельной подзарядки. Зарядный импульс подаётся на 5мс через 1 секунду. Переключателями SA1-SA3 в двоичном коде задается максимальное время заряда. Не замкнутое состояние соответствует логической единице, все разомкнуты - 7 часов. Переключатели опрашиваются, только при старте заряда. Датчик DS18B20 устанавливается по желанию, нужен для того, что бы видеть температуру на компьютере. Сначала думал активно его использовать, но как оказалось, при таких токах, информация больше наглядна, чем полезна. Да и капризная это вещь, включили настольную лампу или закрыли балкон и этим вызвали ложное детектирование окончания заряда (метод dT/dt скорость изменения температуры в минуту).
Индикация.Предусмотрена одним светодиодом. При включении заряда светодиод загорается на одну секунду. Светодиод горит - конец заряда/капельная подзарядка. Светодиод мигает с периодом 1 сек.- конец заряда по времени (ошибка по времени). Часто мигает - идет заряд аккумулятора. Данные на компьютер посылаются раз в минуту. Выключен - режим ожидания, подзаряд до одного вольта или разряд до одного вольта. В режиме подзаряда данные на компьютер посылаются раз в 30 секунд. В режиме разряда данные на компьютер посылаются раз в минуту.
Микроконтроллер тактируется от внутреннего RC генератора частота 1 мегагерц. Следует запрограммировать fuse бит BODEN, значения остальных fuse бит оставлены по умолчанию. Мои подопытные:)
Как просто и быстро сделать держалку аккумулятора. Я разобрал старый пускатель, взял контакты, они кстати посеребренные, согнул их и припаял на текстолит. Получилось довольно хорошо, контакт с аккумулятором получился намного лучше, чем с пружинными версиями. А сначала было так:
Здесь тоже использованы контактные площадки от пускателя. Спасибо, что прочитали статью:) Радиокоту и всем, хорошего настроения.
Файлы:Прошивка МК.Софт для ПК.
Раздел: [Зарядные устройства (для батареек)] Сохрани статью в:
2zv.ru
Интеллектуальные зарядные устройства для автомобильных аккумуляторов: общие сведения, особенности, отзывы
В холодный сезон всегда существует риск разрядки автомобильного аккумулятора. Спасти машину от превращения в остывшее недвижимое имущество поможет специализированное зарядное устройство. Благодаря ему вам не придётся, в который уж раз, обращаться за посторонней помощью.
Причина, по которой машина может не завестись в самый неподходящий момент, – это разрядившаяся аккумуляторная батарея, а наступление холодов, ко всему прочему, в разы увеличивает эту вероятность. Чтобы владельцы авто не попадали в подобные неприятности, были изобретены интеллектуальные зарядные устройства для автомобильных аккумуляторов.
Постоянное совершенствование
Чтобы безошибочно определить, какое устройство наиболее целесообразно для вашего автомобиля, необходимо знать параметры его аккумулятора, то есть его тип, ёмкость и номинальное значение тока заряда. На сегодняшний день прогресс в изготовлении АКБ налицо: если раньше срок их службы был в среднем примерно 2 года, то сейчас эта цифра уверенно подошла к 5 годам. Но, несмотря на постоянно совершенствующуюся технологию изготовления современных аккумуляторов, надеяться, что будет изобретена АКБ с вечным сроком службы, отнюдь не стоит.
Каким бы качественным ни был аккумулятор, он всё равно периодически будет нуждаться в подзарядке. И потому для поддержки его во всегда исправном и заряженном состоянии необходимо иметь в гараже или в салоне автоподзарядку. Тем более что сегодня интеллектуальные зарядные устройства для автомобильных аккумуляторов не являются таким уж дефицитным товаром. И вы поэтому всегда можете выбрать и приобрести ЗУ, которое лучше всего подойдёт по параметрам для аккумулятора вашей машины. О сделанной покупке, судя по отзывам, ещё не пожалел никто.
Какие бывают интеллектуальные зарядные устройства для автомобильных аккумуляторов. Общие сведения
Перед приобретением ЗУ, естественно, нужно ознакомиться как с параметрами самой аккумуляторной батареи вашего автомобиля, так и с параметрами приобретаемого прибора. Основная масса аккумуляторных батарей относится к свинцово-кислотному типу, остальные же её показатели производитель указывает на этикетке АКБ.
Теперь рассмотрим интеллектуальные зарядные устройства для автомобильных аккумуляторов более подробно. Из всех имеющихся на сегодняшний день в продаже моделей можно выделить два основных типа: трансформаторные и импульсные. Мощные трансформаторные модели – вариант надёжный, но постепенно переходящий в разряд экзотики по причине своей габаритности и некоторого неудобства в использовании.
Более современный и, следовательно, лучший вариант – это импульсные устройства. Основа данного зарядного оборудования – импульсный блок питания, работающий на очень высоких частотах. Благодаря этому в значительной степени уменьшились габариты устройства. Такие приборы защищены от попадания влаги и замыкания. В них автоматизировано все, что только можно было автоматизировать. Вот почему их называют "умные", то есть интеллектуальные, зарядные устройства для автомобильных аккумуляторов. Эти модели – оптимальный вариант на сегодняшний день.
Принципы действия зарядного устройства
Принцип функционирования всех зарядных устройств идентичен. Устройство получает питание от сети переменного тока в 220 В и понижает его величину почти до номинальной, которая требуется каждой конкретной аккумуляторной батарее, обеспечивая выпрямление.
В теории классическое зарядное устройство представлено как автоматизированная система управления. Ну а схематично прибор этот достаточно сложный, но радует то, что нам достаточно всего лишь просто включить вилку в розетку и выключить, когда загоревшаяся на индикаторе лампочка сообщит о полном заряде батареи.
Интеллектуальные зарядные устройства для автомобильных аккумуляторов. Особенности применения для разных АКБ
Условия подзарядки для разных видов аккумуляторных батарей бывают различными. Например, кислотно-свинцовые батареи лучше не допускать до полной разрядки, и потому частые подзаряживания им только на пользу. Щелочные же, как раз наоборот, требуют полного разряда, потому что для них это страховка от уменьшения емкости, так как они обладают всем известным «эффектом памяти». Но как и кислотные, так и щелочные аккумуляторы заряжать необходимо до полного заряда.
Умное зарядное оборудование
Составим небольшой обзор интеллектуальных зарядных устройств для автомобильных аккумуляторов. В основе этих приборов используется высокотехнологическая электроника, при помощи которой производителям удалось добиться полностью автоматизированного процесса зарядки. В программу установленного внутри устройства микроконтроллера входит множество различных режимов и всевозможных защит.
Вам просто нужно подключить устройство к аккумулятору, и можете преспокойно заниматься своими делами, лишь изредка поглядывая на индикатор. Когда батарея зарядится, устройство известит вас сигналом. Каким именно будет сигнал, зависит от того, какую модель вы используете, возможно, это будет просто световой сигнал, а может быть, это будет специальная надпись на дисплее жидкокристаллического экрана.
Особенности интеллектуальных ЗУ, плюсы и минусы
Интеллектуальные зарядные устройства для автомобильных аккумуляторов, сведения о которых можно найти в нашей статье, обладают множеством плюсов. Один из них - это вес таких устройств. Благодаря применению современных радиокомпонентов, средний вес данного оборудования составил примерно около 600 граммов.
К минусам можно отнести то, что если подобный зарядный прибор выходит из строя, то отремонтировать его можно только в специализированном сервисном центре, потому что при отсутствии соответствующих знаний, необходимого оборудования и программного обеспечения починить прибор такого уровня самостоятельно невозможно. Некоторые из таких устройств вы даже не сможете разобрать, так как они запаяны целиком для полного предотвращения попадания влаги.
Возьмите на заметку ещё тот факт, что данные приборы зарядить аккумулятор быстро не смогут, им нужно время, именно так они запрограммированы. И потому, если вы опаздываете на работу или торопитесь куда-то, а аккумулятор не в состоянии запустить двигатель, то придётся некоторое время подождать, пока подзарядится батарея. Во избежание подобных случаев проверяйте аккумулятор вашего автомобиля хотя бы раз в месяц.
Характеристика интеллектуального 9-ступенчатого зарядного устройства Hyundai HY 400
Интеллектуальное зарядное устройство для автомобильного аккумулятора "Хендай" предназначено также для подзарядки автофургонов, мотоциклов, садовой техники, катеров и т. д. ЗУ полностью автоматическое и имеет 9 стадий процесса зарядки. Кроме этого модель HY 400 предоставляет 5 рабочих режимов, включая также режим зимнего пользования и десульфатирование. Эти специализированные режимы предназначены для скоростного восстановления и поддержания аккумуляторной батареи в рабочем состоянии, даже в случае её полной и глубокой разрядки.
Влаго- и пылезащита зарядного устройства - IP 65. Есть интеллектуальный подбор силы тока и напряжения, а также защита от перегрева и неверно выполненного подключения. Помимо перечисленного, имеется температурная компенсация и встроенный в систему ЗУ тестер с функцией отображения вольтажа.
Также интеллектуальное зарядное устройство для автомобильного аккумулятора "Хендай" отличается такими особенностями, как LCD-дисплей с подсветкой, функция памяти на 12 часов и световой индикатор. И ещё стоит отметить отличные быстросъёмные клеммы устройства. Температурный режим оборудования - 20-50 °C. Входное напряжение ЗУ - 220-240 В, на выходе - 6-12 В, зарядный ток - 4 A RMS.
Отзывы об интеллектуальных автомобильных ЗУ
Что же говорят те, кто уже используют интеллектуальные зарядные устройства для автомобильных аккумуляторов? Отзывы в большинстве своём положительные. Люди отмечают, что хотя устройства для зарядки и дороговаты, но в действительно они того стоят. Кто-то рассказывает, как его выручили, дав на время ЗУ, чтобы оживить севший аккумулятор, и этот человек, впервые воспользовавшись подобным прибором, сразу же решил, что и ему необходим такой же. Трудно переоценить удобство и качество. Что и говорить, устройство компактное, не занимает много места, а работает отлично и без нареканий. С таким устройством зарядить аккумулятор стало не сложнее, чем подзарядить сотовый телефон.
Выбор автоматического зарядного устройства
Конечно же, отзывы покупателей при выборе устройства так же важны, как и заявленные в инструкции ЗУ параметры. Представляем небольшой список пунктов, на которые стоит обращать внимание, выбирая интеллектуальные зарядные устройства для автомобильных аккумуляторов. Общие советы для моделей, наиболее подходящих для российских условий:
- При покупке отдавайте предпочтение моделям ЗУ, имеющим некоторый запас зарядного тока.
- Отдавайте предпочтение моделям известных производителей.
- Оптимальный выбор - комбинированные приборы.
- Лучше выбирать ЗУ, которое способно работать в стандартном смарт-режиме, а также, кроме этого, функционировать в виде стабилизированного источника питания.
- Обратите внимание на дизайн и размеры устройства и на его приборы индикации.
- Стоит отдать предпочтение моделям импортного производства, но также стоит отметить, что и многие отечественные модели зарекомендовали себя очень неплохо.
Технические характеристики, какие могут присутствовать у современных интеллектуальных ЗУ
Современные модели ЗУ отличаются хорошим качеством сборки. Такие зарядные устройства отлично справляются с возложенной на них задачей (зарядкой АКБ). Одни делают это быстрее, другие же – медленнее, но, если начистоту, на самом деле не это главное, главное - что поставленная задача решена -аккумулятор заряжен. Различные показатели могут характеризовать интеллектуальные зарядные устройства для автомобильных аккумуляторов. Техническая характеристика в общем виде может быть представлена так:
- Тип зарядного устройства: 1) многоступенчатое, 2) автоматическое, 3) интеллектуальное.
- Максимальная емкость АКБ: 9.
- 0 Ач, 110 Ач, до 300 А-ч (RESC612) или до 220 А-ч (RESC608).
- Ток заряда (RMS): 2/4 A, 5 A, 8 А и 12 A.
- Ток (режим ожидания) - 0.1 А.
- Напряжение заряжаемых акк. - 12 В.
- Типы заряжаемых батарей: кальциевые, сурьмяные, гелевые и AGM.
- Длина проводов - 1,8 м.
- Работа в режимах: заряд и поддержка.
- Дополнительный функционал: зимний режим зарядки, функция, (десульфатация) ремонт аккумулятора, включены возможности для ремонта батареи, увеличена производительность и срок службы аккумулятора.
- Тип дисплея: нет, ЖК-дисплей, LED-панель.
Собственное ЗУ – избавление от многих проблем
Некоторые владельцы авто полагают, что, в принципе, им могут никогда не понадобится интеллектуальные зарядные устройства для автомобильных аккумуляторов. Описание наиболее частых и распространённых ситуаций, скорее всего, убедит их в обратном. Например, длительная вынужденная стоянка автомобиля, особенно в холодный зимний период может стать причиной разрядки аккумуляторной батареи. Также часто это происходит с АКБ тех владельцев, у кого отсутствует привычка отключать электроприборы на время простоя авто. Кроме этого, неожиданная неприятность может случиться во время движения в режиме городских пробок или при езде по бездорожью.
Зимой продолжительная стоянка авто разряжает АКБ по причине снижения плотности электролита на холоде, вследствие чего происходит замедление необходимых химических реакций. В результате этого получается существенное снижение пускового тока, что делает, в свою очередь, невозможным запуск автомобиля. Как правило, во время сильного мороза у владельца авто есть только одна попытка для запуска. Тут уж любой вспомнит про интеллектуальные зарядные устройства для автомобильных аккумуляторов, техническая сторона дела, испытанная в реальности, как правило, приводит к решению заранее позаботиться об оснащении своего автомобиля, чтобы впредь не попадать в подобные передряги.
Обеспечение постоянной мобильности автомобилю
Обычно во время движения АКБ постоянно подзаряжается от работы автомобильного генератора. И, например, многим непонятно, чем может навредить движение по бездорожью. Причина проста: при движении по бездорожью происходит угроза разрушения аккумуляторных пластин, что, в свою очередь, может спровоцировать короткое замыкание и разрядку аккумуляторной батареи.
Как влияет на ресурс батареи движение в традиционных пробках, объясняется тоже довольно просто. В этой ситуации за довольно короткий отрезок времени осуществляется несколько частых запусков и остановок двигателя. А это угроза потери емкости АКБ и значительное сокращение времени для её разрядки. В вышеперечисленных ситуациях автомобильное ЗУ, питающееся от 220 вольт, буквально станет вашим спасением.
В любом случае интеллектуальные зарядные устройства для автомобильных аккумуляторов, характеристика которых включает в себя компактный размер, обеспечат вашей машине своевременный заряд аккумуляторной батареи. И, надо сказать, что это не такое уж и дорогостоящее удовольствие, чтобы рисковать своей мобильностью и комфортом.
fb.ru
Умная зарядка NiMh AA аккумуляторов. 2ZV.ru
Рассказать в:Плюсы и минус.1. Простоя и дешевая схема. 2. Определение окончания заряда по спаду/прекращению роста напряжения на аккумуляторе. 3. Зарядное устройство заряжает аккумулятор NiMh 2300mAh примерно за 3-4 часа. 4. Зарядное устройство позволить Вам увидеть на компьютере графики напряжения и температуры аккумулятора и оценить достоверность определения окончания заряда. Также позволяет посмотреть приблизительное внутреннее сопротивление аккумулятора, на мой взгляд, статистика этого параметра дает самое лучшее представление о состоянии аккумулятора. (Но это не означает, что для зарядки нужен компьютер, это дополнительная возможность.) 5. И наконец, главный <эксплуатационный> минус - зарядка заряжает один аккумулятор, поглядев на схему, Вы поймете почему. Немного рассуждений. Тема живая, почти каждый сейчас имеет цифровой фотоаппарат и сталкивался с тем, что покупная зарядка или перезаряжает, сильно разогревая аккумулятор или наоборот не дозаряжает. В первом случае жизненный цикл аккумулятора сильно сокращается, во втором, аккумулятор не оправдывает своих потребительских характеристик. Было решено сделать <народную> зарядку, по очень простой схеме содержащей дешевые детали и обладающей характеристиками <навороченной зарядки> основной уклон на правильное определение окончания заряда. Тем более что имеется богатый опыт в этом вопросе. Основой зарядного устройства служит импульсная зарядка от сотового. Я взял самую дешевую, на выходе без нагрузки 7-8 вольт, ток 600мА. Примененный <блок питания> внес ограничение 1 зарядка на 1 аккумулятор. Тех, кто любит заряжать несколько аккумуляторов последовательно, отправлю почитать статью <Немного о зарядке NiMH и NiCd аккумуляторов> c Ридико Леонид Иванович http://www.caxapa.ru/faq/charge_nimh.pdf, а затем подумать, как можно правильно зарядить несколько последовательно включенных аккумуляторов. В такой связке будут проблемы описанные выше, один аккумулятор перезарядится другой не дозарядится. Конечно можно сначала разрядить аккумуляторы до 1 вольта, а потом заряжать током 0.1С 16 часов, но это слишком долго. Еще один плюс этой зарядки в том, что можно предварительно не разряжать аккумулятор. Но постоянно так делать не рекомендую, хотя бы через 5 зарядок аккумулятор нужно разряжать до 1 вольта. Ниже приведены графики напряжений и температур разных аккумуляторов.
Не удивляйтесь тому, что графики имеют такие отличия в уровне напряжений. Я специально их так подобрал, что бы показать, что уровень напряжения на аккумуляторе сильно зависит от его внутреннего сопротивления (в этом зарядном устройстве напряжение на аккумуляторе измеряется при разрядном импульсе). Как определить конец заряда? Человеку он сразу виден, а вот как принять решение в программе? Например, брать такой алгоритм - останавливать заряд, если в течение 15 минут напряжение равно или меньше предыдущему. К сожалению, такой алгоритм сработает только в половине случаев, а после анализа графиков ясно, что это уже сильный перезаряд. При токе 500-700мА для хороших (новых) аккумуляторов, емкостью выше 2000mAh, отрицательное приращение явление редкое. К тому же, его приходится долго ждать и когда оно наступит (вернее если), то согласно выше приведенной статье это уже фаза перезаряда. Так же нельзя, например, что бы пропустить середину заряда, где напряжение растет медленно, начинать ждать прекращения роста напряжения после какого либо абсолютного напряжения на аккумуляторе. Это напряжение для всех аккумуляторов разное, если посмотреть на нижний график, то видно, что для одного аккумулятора конец заряда, для другого только начало. В середине заряда, при таких токах, напряжение может не расти в течение 12 минут. А вот в конце заряда ждать 15 минут, что бы наверняка, это много, цитата из выше приведенной статьи "в конце зарядки КПД этого процесса резко падает и практически вся подводимая к аккумулятору энергия начинает превращаться в тепло. Это вызывает резкий рост температуры и давления внутри аккумулятора, что может вызвать его повреждение". Это для зарядного тока 1С, но и при 600мА наблюдается быстрый рост температуры, а значит и всего перечисленного. Ровной полки на профиле напряжения скорей всего не будет, алгоритм ожидания может не сработать. Признаюсь, это не первое мое зарядное устройство. Поэтому очень многое я использовал от старого, в частности алгоритм определения окончания заряда. Софт для компьютера я также использовал от старой зарядки. Сначала была набрана статистика, затем была написана программа для проверки алгоритма на компьютере.
В файлах к статье я приложил эту программу с двадцатью двумя файлами статистики. Я намерено подобрал файлы, в которых затрудненно определение конца заряда, например, когда заряжается не разряженный аккумулятор и т. д. такие аккумуляторы были специально перезаряжены, что бы показать достоверность принятия решения об окончании заряда. Попытаюсь в двух словах рассказать об алгоритме. Для того, что бы избавиться от влияния помех и не очень стабильного питания, напряжение на аккумуляторе измеряется в конце разрядного импульса, перед измерением ожидается два подряд одинаковых значения АЦП, затем делается подряд восемь измерений и они же усредняется на восемь. В свою очередь эти измерения усредняются за минуту (512 значений), в итоге имеем хорошие стабильные данные. Раз в минуту считается приращение за прошедшие восемь минут и если максимальное приращение больше текущего на 2, то останавливаем заряд. Такой алгоритм полностью отвязан от абсолютных значений АЦП. Приблизительное внутренние сопротивление аккумулятора считается так, измеряется напряжение аккумулятора без нагрузки, затем измеряется напряжение под нагрузкой, на основании разницы напряжений считается внутренние сопротивление. Так как сопротивление разрядного резистора довольно маленькое 1 Ом и токи соответственно большие, большую погрешность вносит падение напряжения на контактах <держалки> аккумулятора (автор знает о правильных способах (http://kit-e.ru/assets/files/pdf/2005_03_230.pdf) измерения внутреннего сопротивления, но в рамках этой схемы они не реализуемы). Кстати, судить о внутреннем сопротивлении аккумулятора можно по графикам, чем ниже напряжение на аккумуляторе, тем выше у него внутреннее сопротивление. Схема:
Как видите, схема довольно проста.Микроконтроллер AtMega8 был выбран только из-за того, что он был в наличие и по привычке :). Транзисторы VT3 и VT4 должны быть MOSFET серии Logic-level gate drive (IRL), это ограничение схемы. При включении зарядного импульса или что тоже самое подаче высокого уровня напряжения на затвор VT3 напряжение на разъеме Х1 падает примерно до 2-3В. При этом стабилизатор 78L05 питается за счет емкости C1, и если вместо VT3 поставить биполярный транзистор, то базовой ток сразу же разрядит С1. Кстати, микроконтроллер почти всегда находится в режиме IDLE и ток потребляет маленький, конденсатор разряжает сама 7805 (в реальной схеме именно 7805, L у меня не было). Вместо VT4 можно было бы применить биполярный транзистор, но до его полного открытия нужен большой базовый ток, что не позволит С1 заряжаться во время разрядного импульса. Вместо VT4 IRLML2502 можно применить любой MOSFET серии IRL с максимальным током стока более 2А, VT3 можно ставить любой из серии IRL. Составной транзистор тоже желательно заменить на P-канальный MOSFET серии IRL. Ниже приведены графики зарядного и разрядного импульса.
Длительность зарядного импульса 100мс. Длительность разрядного импульса 6.5мс, пауза между зарядными импульсами 20мс. Пауза необходима для зарядки конденсатора С1. Как говорилось раньше, что бы ни делать двойную работу я использовал софт для компьютера от старой зарядки. Для данной зарядки второй канал не используются. В странице настроек, следует указать только сопротивление разрядного резистора (Rd), по умолчанию равно номиналу в схеме. Программа принимает данные с ком порта со скоростью 4800 бод. Данные от зарядки отсылаются раз в минуту, и они же используются в алгоритме определения конца заряда. Скриншот программы приводить не буду, там и так все понятно, нажимаете кнопку старт включается прием данных с выбранного ком порта и начинается построение графиков. Для передачи данных на компьютер я использовал переходник usb-com. Если у кого-то возникнет желание пользоваться преобразователем уровней MAX232, то надо убедиться, что помехи от MAX232 не проникают в схему зарядки. Эта микросхема довольно сильно фонит по питанию.
Руководство пользователя:)При включении, зарядка начинает цикл проверки наличия аккумулятора. Напряжение на аккумуляторе измеряется при разрядном импульсе. Если напряжение ниже 1 вольта, зарядка пытается растолкать аккумулятор до 1 вольта и только затем переходит к выполнению программы заряда. Если напряжение аккумулятора более 1 вольта и замкнут переключатель <предварительный разряд>, то аккумулятор будет разряжен до 1 вольта перед зарядом (у меня переключатель заменен на кнопку, мне так показалось удобней). После детектирования окончания заряда, зарядка переходит в режим капельной подзарядки. Зарядный импульс подаётся на 5мс через 1 секунду. Переключателями SA1-SA3 в двоичном коде задается максимальное время заряда. Не замкнутое состояние соответствует логической единице, все разомкнуты - 7 часов. Переключатели опрашиваются, только при старте заряда. Датчик DS18B20 устанавливается по желанию, нужен для того, что бы видеть температуру на компьютере. Сначала думал активно его использовать, но как оказалось, при таких токах, информация больше наглядна, чем полезна. Да и капризная это вещь, включили настольную лампу или закрыли балкон и этим вызвали ложное детектирование окончания заряда (метод dT/dt скорость изменения температуры в минуту).
Индикация.Предусмотрена одним светодиодом. При включении заряда светодиод загорается на одну секунду. Светодиод горит - конец заряда/капельная подзарядка. Светодиод мигает с периодом 1 сек.- конец заряда по времени (ошибка по времени). Часто мигает - идет заряд аккумулятора. Данные на компьютер посылаются раз в минуту. Выключен - режим ожидания, подзаряд до одного вольта или разряд до одного вольта. В режиме подзаряда данные на компьютер посылаются раз в 30 секунд. В режиме разряда данные на компьютер посылаются раз в минуту.
Микроконтроллер тактируется от внутреннего RC генератора частота 1 мегагерц. Следует запрограммировать fuse бит BODEN, значения остальных fuse бит оставлены по умолчанию. Мои подопытные:)
Как просто и быстро сделать держалку аккумулятора. Я разобрал старый пускатель, взял контакты, они кстати посеребренные, согнул их и припаял на текстолит. Получилось довольно хорошо, контакт с аккумулятором получился намного лучше, чем с пружинными версиями. А сначала было так:
Здесь тоже использованы контактные площадки от пускателя. Спасибо, что прочитали статью:) Радиокоту и всем, хорошего настроения.
Файлы:Прошивка МК.Софт для ПК.
Раздел: [Зарядные устройства (для батареек)] Сохрани статью в:
2zv.ru
Умная зарядка NiMh AA аккумуляторов. CAVR.ru
Рассказать в:Плюсы и минус.1. Простоя и дешевая схема. 2. Определение окончания заряда по спаду/прекращению роста напряжения на аккумуляторе. 3. Зарядное устройство заряжает аккумулятор NiMh 2300mAh примерно за 3-4 часа. 4. Зарядное устройство позволить Вам увидеть на компьютере графики напряжения и температуры аккумулятора и оценить достоверность определения окончания заряда. Также позволяет посмотреть приблизительное внутреннее сопротивление аккумулятора, на мой взгляд, статистика этого параметра дает самое лучшее представление о состоянии аккумулятора. (Но это не означает, что для зарядки нужен компьютер, это дополнительная возможность.) 5. И наконец, главный <эксплуатационный> минус - зарядка заряжает один аккумулятор, поглядев на схему, Вы поймете почему. Немного рассуждений. Тема живая, почти каждый сейчас имеет цифровой фотоаппарат и сталкивался с тем, что покупная зарядка или перезаряжает, сильно разогревая аккумулятор или наоборот не дозаряжает. В первом случае жизненный цикл аккумулятора сильно сокращается, во втором, аккумулятор не оправдывает своих потребительских характеристик. Было решено сделать <народную> зарядку, по очень простой схеме содержащей дешевые детали и обладающей характеристиками <навороченной зарядки> основной уклон на правильное определение окончания заряда. Тем более что имеется богатый опыт в этом вопросе. Основой зарядного устройства служит импульсная зарядка от сотового. Я взял самую дешевую, на выходе без нагрузки 7-8 вольт, ток 600мА. Примененный <блок питания> внес ограничение 1 зарядка на 1 аккумулятор. Тех, кто любит заряжать несколько аккумуляторов последовательно, отправлю почитать статью <Немного о зарядке NiMH и NiCd аккумуляторов> c Ридико Леонид Иванович http://www.caxapa.ru/faq/charge_nimh.pdf, а затем подумать, как можно правильно зарядить несколько последовательно включенных аккумуляторов. В такой связке будут проблемы описанные выше, один аккумулятор перезарядится другой не дозарядится. Конечно можно сначала разрядить аккумуляторы до 1 вольта, а потом заряжать током 0.1С 16 часов, но это слишком долго. Еще один плюс этой зарядки в том, что можно предварительно не разряжать аккумулятор. Но постоянно так делать не рекомендую, хотя бы через 5 зарядок аккумулятор нужно разряжать до 1 вольта. Ниже приведены графики напряжений и температур разных аккумуляторов.
Не удивляйтесь тому, что графики имеют такие отличия в уровне напряжений. Я специально их так подобрал, что бы показать, что уровень напряжения на аккумуляторе сильно зависит от его внутреннего сопротивления (в этом зарядном устройстве напряжение на аккумуляторе измеряется при разрядном импульсе). Как определить конец заряда? Человеку он сразу виден, а вот как принять решение в программе? Например, брать такой алгоритм - останавливать заряд, если в течение 15 минут напряжение равно или меньше предыдущему. К сожалению, такой алгоритм сработает только в половине случаев, а после анализа графиков ясно, что это уже сильный перезаряд. При токе 500-700мА для хороших (новых) аккумуляторов, емкостью выше 2000mAh, отрицательное приращение явление редкое. К тому же, его приходится долго ждать и когда оно наступит (вернее если), то согласно выше приведенной статье это уже фаза перезаряда. Так же нельзя, например, что бы пропустить середину заряда, где напряжение растет медленно, начинать ждать прекращения роста напряжения после какого либо абсолютного напряжения на аккумуляторе. Это напряжение для всех аккумуляторов разное, если посмотреть на нижний график, то видно, что для одного аккумулятора конец заряда, для другого только начало. В середине заряда, при таких токах, напряжение может не расти в течение 12 минут. А вот в конце заряда ждать 15 минут, что бы наверняка, это много, цитата из выше приведенной статьи "в конце зарядки КПД этого процесса резко падает и практически вся подводимая к аккумулятору энергия начинает превращаться в тепло. Это вызывает резкий рост температуры и давления внутри аккумулятора, что может вызвать его повреждение". Это для зарядного тока 1С, но и при 600мА наблюдается быстрый рост температуры, а значит и всего перечисленного. Ровной полки на профиле напряжения скорей всего не будет, алгоритм ожидания может не сработать. Признаюсь, это не первое мое зарядное устройство. Поэтому очень многое я использовал от старого, в частности алгоритм определения окончания заряда. Софт для компьютера я также использовал от старой зарядки. Сначала была набрана статистика, затем была написана программа для проверки алгоритма на компьютере.
В файлах к статье я приложил эту программу с двадцатью двумя файлами статистики. Я намерено подобрал файлы, в которых затрудненно определение конца заряда, например, когда заряжается не разряженный аккумулятор и т. д. такие аккумуляторы были специально перезаряжены, что бы показать достоверность принятия решения об окончании заряда. Попытаюсь в двух словах рассказать об алгоритме. Для того, что бы избавиться от влияния помех и не очень стабильного питания, напряжение на аккумуляторе измеряется в конце разрядного импульса, перед измерением ожидается два подряд одинаковых значения АЦП, затем делается подряд восемь измерений и они же усредняется на восемь. В свою очередь эти измерения усредняются за минуту (512 значений), в итоге имеем хорошие стабильные данные. Раз в минуту считается приращение за прошедшие восемь минут и если максимальное приращение больше текущего на 2, то останавливаем заряд. Такой алгоритм полностью отвязан от абсолютных значений АЦП. Приблизительное внутренние сопротивление аккумулятора считается так, измеряется напряжение аккумулятора без нагрузки, затем измеряется напряжение под нагрузкой, на основании разницы напряжений считается внутренние сопротивление. Так как сопротивление разрядного резистора довольно маленькое 1 Ом и токи соответственно большие, большую погрешность вносит падение напряжения на контактах <держалки> аккумулятора (автор знает о правильных способах (http://kit-e.ru/assets/files/pdf/2005_03_230.pdf) измерения внутреннего сопротивления, но в рамках этой схемы они не реализуемы). Кстати, судить о внутреннем сопротивлении аккумулятора можно по графикам, чем ниже напряжение на аккумуляторе, тем выше у него внутреннее сопротивление. Схема:
Как видите, схема довольно проста.Микроконтроллер AtMega8 был выбран только из-за того, что он был в наличие и по привычке :). Транзисторы VT3 и VT4 должны быть MOSFET серии Logic-level gate drive (IRL), это ограничение схемы. При включении зарядного импульса или что тоже самое подаче высокого уровня напряжения на затвор VT3 напряжение на разъеме Х1 падает примерно до 2-3В. При этом стабилизатор 78L05 питается за счет емкости C1, и если вместо VT3 поставить биполярный транзистор, то базовой ток сразу же разрядит С1. Кстати, микроконтроллер почти всегда находится в режиме IDLE и ток потребляет маленький, конденсатор разряжает сама 7805 (в реальной схеме именно 7805, L у меня не было). Вместо VT4 можно было бы применить биполярный транзистор, но до его полного открытия нужен большой базовый ток, что не позволит С1 заряжаться во время разрядного импульса. Вместо VT4 IRLML2502 можно применить любой MOSFET серии IRL с максимальным током стока более 2А, VT3 можно ставить любой из серии IRL. Составной транзистор тоже желательно заменить на P-канальный MOSFET серии IRL. Ниже приведены графики зарядного и разрядного импульса.
Длительность зарядного импульса 100мс. Длительность разрядного импульса 6.5мс, пауза между зарядными импульсами 20мс. Пауза необходима для зарядки конденсатора С1. Как говорилось раньше, что бы ни делать двойную работу я использовал софт для компьютера от старой зарядки. Для данной зарядки второй канал не используются. В странице настроек, следует указать только сопротивление разрядного резистора (Rd), по умолчанию равно номиналу в схеме. Программа принимает данные с ком порта со скоростью 4800 бод. Данные от зарядки отсылаются раз в минуту, и они же используются в алгоритме определения конца заряда. Скриншот программы приводить не буду, там и так все понятно, нажимаете кнопку старт включается прием данных с выбранного ком порта и начинается построение графиков. Для передачи данных на компьютер я использовал переходник usb-com. Если у кого-то возникнет желание пользоваться преобразователем уровней MAX232, то надо убедиться, что помехи от MAX232 не проникают в схему зарядки. Эта микросхема довольно сильно фонит по питанию.
Руководство пользователя:)При включении, зарядка начинает цикл проверки наличия аккумулятора. Напряжение на аккумуляторе измеряется при разрядном импульсе. Если напряжение ниже 1 вольта, зарядка пытается растолкать аккумулятор до 1 вольта и только затем переходит к выполнению программы заряда. Если напряжение аккумулятора более 1 вольта и замкнут переключатель <предварительный разряд>, то аккумулятор будет разряжен до 1 вольта перед зарядом (у меня переключатель заменен на кнопку, мне так показалось удобней). После детектирования окончания заряда, зарядка переходит в режим капельной подзарядки. Зарядный импульс подаётся на 5мс через 1 секунду. Переключателями SA1-SA3 в двоичном коде задается максимальное время заряда. Не замкнутое состояние соответствует логической единице, все разомкнуты - 7 часов. Переключатели опрашиваются, только при старте заряда. Датчик DS18B20 устанавливается по желанию, нужен для того, что бы видеть температуру на компьютере. Сначала думал активно его использовать, но как оказалось, при таких токах, информация больше наглядна, чем полезна. Да и капризная это вещь, включили настольную лампу или закрыли балкон и этим вызвали ложное детектирование окончания заряда (метод dT/dt скорость изменения температуры в минуту).
Индикация.Предусмотрена одним светодиодом. При включении заряда светодиод загорается на одну секунду. Светодиод горит - конец заряда/капельная подзарядка. Светодиод мигает с периодом 1 сек.- конец заряда по времени (ошибка по времени). Часто мигает - идет заряд аккумулятора. Данные на компьютер посылаются раз в минуту. Выключен - режим ожидания, подзаряд до одного вольта или разряд до одного вольта. В режиме подзаряда данные на компьютер посылаются раз в 30 секунд. В режиме разряда данные на компьютер посылаются раз в минуту.
Микроконтроллер тактируется от внутреннего RC генератора частота 1 мегагерц. Следует запрограммировать fuse бит BODEN, значения остальных fuse бит оставлены по умолчанию. Мои подопытные:)
Как просто и быстро сделать держалку аккумулятора. Я разобрал старый пускатель, взял контакты, они кстати посеребренные, согнул их и припаял на текстолит. Получилось довольно хорошо, контакт с аккумулятором получился намного лучше, чем с пружинными версиями. А сначала было так:
Здесь тоже использованы контактные площадки от пускателя. Спасибо, что прочитали статью:) Радиокоту и всем, хорошего настроения.
Файлы:Прошивка МК.Софт для ПК.
Раздел: [Зарядные устройства (для батареек)] Сохрани статью в: Оставь свой комментарий или вопрос:
www.cavr.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.