21.11.2024

Управление нагрузкой 220в на тиристорных оптопарах: Управление нагрузкой 220 вольт БЕЗ реле!

Содержание

Управление мощной нагрузкой переменного тока / Хабр

Все знают, насколько ардуинщики гордятся миганием лампочками

Так как мигать светодиодами не интересно, речь пойдет про управление лампой накаливания на 220 вольт, включая управление её яркостью. Впрочем, материал относится и к некоторым другим типам нагрузки. Эта тема достаточно избита, но информация об особенностях, которые необходимо учесть, разрозненна по статьям и темам на форумах. Я постарался собрать её воедино и описать различия между схемами и обосновать выбор нужных компонентов.

Выбор управляемой нагрузки

Существует много различных типов ламп. Не все из них поддаются регулировке яркости. И, в зависимости от типа лампы, требуются разные способы управления. Про типы ламп есть хорошая статья. Я же буду рассматриваться только лампы, работающие от переменного тока. Для таких ламп существует три основных способа управления яркостью (диммирование по переднему фронту, по заднему фронту и синус-диммирование).
Иллюстрация в формате SVG, может не отображжаться в старых браузерах и, особенно, в IE
Отличаются они тем, какая часть периода переменного тока пропускается через лампу. О применимости этих методов можно прочитать тут. В этой статье речь пойдет только о диммировании по преднему фронту, так как это самая простой и распространенный способ. Он подходит для управления яркостью ламп накаливания (включая галогенные), в том числе подключенных через ферромагнитный (не электронный) трансформатор. Эта же схема может применяться для управления мощностью нагревательных элементов и, в некоторой степени, электромоторов, а также для включения/выключения других электроприборов (без управления мощностью).

Выбор элементной базы

Различных вариантов схем управления нагрузкой в интернете много. Отличаются они по следующим параметрам:Первые два пункта определяются элементной базой. Очень часто для управления нагрузкой используют реле, как проверенный многолетним опытом элемент. Но, если вы хотите управлять яркостью лампы, её необходимо включать и выключать 100 раз в секунду. Реле не рассчитаны на такую нагрузку и быстро выйдут из строя, даже если смогут переключаться так часто. Если в схеме используется MOSFET, то его можно открывать и закрывать в любой момент. Нам нем можно построить и RL, и RC, и синус димер. Но так как он проводит ток только в одну сторону, понадобится два транзистора на канал. Кроме того, высоковольтные MOSFET относительно дороги. Самым простым и дешевым способом является использование симистора. Он проводит ток в обоих направлениях и сам закрывается, когда через него прекращает течь ток. Про то, как он работает можно прочитать в статье DiHalt’а. Далее я буду полагаться на то, что вы это знаете.

Фазовая модуляция

Чтобы управлять яркостью лампы нам нужно подавать импульсы тока на затвор симистора в моменты, когда ток через симистор достигает определенной величины. В схемах без микроконтроллера для этого применяется настраиваемый делитель напряжения и динистор. Когда напряжение на симисторе превышает порог, при котором открывается динистор, ток проходит на затвор симистора и открывает его.
Если же управление ведется с микроконтроллера, то возможны два варианта:

  1. Подавать импульсы равно в тот момент времени, когда нужно. Для этого придётся завести на микроконтроллер сигнал с детектора перехода напряжения через ноль
  2. К затвору симистора подключить компаратор, на который завести сигнал с делителя напряжения и с аналогового выхода микроконтроллера

Первый способ хорош тем, что позволяет легко организовать гальваническую развязку высоковольтной части и микроконтроллера. О её важности будет сказано позже. Но любители arduino будут огорчены: чтобы лапа горела ровно, не вспыхивая и не погасая, импульсы нужно подавать вовремя. Для этого управлять выводом нужно из прерывания таймера, а моменты перехода напряжения через ноль фиксировать с помощью «input capture». Это «недокументированные» функции. Проблема решается отказом от библиотек arduino и внимательным чтением datasheet’а на процессоры avr. Это не так сложно, как кажется.
Второй способ управления симистором крайне прост в программном плане, но из-за отсутствия гальванической развязки я бы не стал его применять.

Гальваническая развязка

Самый простой способ управлять симистором — это подключить к затвору ножку микроконтроллера. Есть даже специальная серия симисторов BTA-600SW управляемых малыми токами.Но тогда контроллер и вся низковольтная часть не будет защищена от помех, гуляющих по бытовой сети. Некоторое из них могут быть достаточно мощными, чтобы сжечь микроконтроллер, другие будут вызывать сбои. Кроме того, сразу возникают проблемы со связью микроконтроллера с компьютером или другими микроконтроллерами: нужно будет делать развязку в линии связи или использовать дифференциальные линии, ведь, чтобы управлять симистором прямо с ноги микроконтроллера, нулевой потенциал для него должен совпадать с потенциалом нуля в бытовой сети. У компьютера или другого такого же микроконтроллера, подключенного в другой точке сети, нулевой потенциал почти наверняка будет другим. Результат будет плачевным.
Простой способ обеспечить гальваническую развязку: использовать драйвер симистора MOC30XX. Эти микросхемы отличаются:

  1. Расчетным напряжением. Если для сетей 110 вольт, есть для 220
  2. Наличием детектора нуля
  3. Током, открывающим драйвер

Драйвер с детектором нуля (MOC306X) переключается только в начале периода. Это обеспечивает отсутствие помех в электросети от симистора. Поэтому, если нет необходимости управлять выделяемой мощностью или управляемый прибор обладает большой инерционностью (например это нагревательный элемент в электроплитке), драйвер с детектором нуля будет оптимальным выбором. Но, если вы хотите управлять яркостью лампы освещения, необходимо использовать драйвер без детектора нуля (MOC305X) и самостоятельно открывать его в нужные моменты.
Ток, необходимый для открытия важен, если вы хотите управлять несколькими нагрузками одновременно. У MOC3051 он 15 мА, у MOC3052 10мА. При этом микроконтроллеры stm могут пропускать через себя до 80-120 мА, а avr до 200 мА. Точные цифры нужно смотреть в соответствующих datasheet’ах.

Устойчивость к помехам/возможность коммутации индуктивной нагрузки

В электросети могут быть помехи, вызывающие самопроизвольное открытие симистора или его повреждение. Источником помех может служить:

  1. Нагрузка, управляемая симистором (обмотка мотора)
  2. Фильтр (snubber), расположенный рядом с симистором и призванный его защищать
  3. Внешняя помеха (грозовой разряд)

Помеха может быть как по напряжению, так и по току, причем более критичны скорости изменения соответствующих значений, чем их амплитуды. В datasheet’ах соответствующие значения указаны как:
V — максимальное напряжение, при котором может работать симистор. Максимальное пиковое напряжение не намного больше.
I — Максимальный ток, который может пропускать через себя симистор. Максимальный пиковый ток как правило значительно больше.
dV/dt — Максимальная скорость изменения напряжения на закрытом симисторе. При превышении этого значения он самопроизвольно откроется.
dI/dt — Максимальная скорость изменения тока при открытии симистора. При превышении этого значения он сгорит из-за того, что не успеет полностью открыться.
(dV/dt)c — Максимальная скорость изменения напряжения в момент закрытия симистора. Значительно меньше dV/dt. При превышении симистор продолжит проводить ток.
(dI/dt)c — Максимальная скорость изменения тока в момент закрытия симистора. Значительно меньше dI/dt. При превышении симистор продолжит проводить ток.
Подробно о природе этих ограничений и о том, как сделать фильтр, защищающий от превышения этих величин описано в Application Note AN-3008. К немо можно только добавить, что существуют 3Q симисторы, у которых значения dV/dt и dI/dt выше, чем у обычных за счет невозможности работать в 4ом квадранте (что обычно не требуется).

Выбор симистора

Максимальный ток коммутации

Максимальный ток коммутации ограничивается двумя параметрами: максимальным током, который может пропустить симистор и количеством тепла, которое вы можете от него отвести. С первым параметром все просто, он указан в datasheet’е. Но если посмотреть внимательно, то при токе в 16 ампер на BTA16-600BW выделяется около 20 ватт. Такую грелку уже не получится засунуть в коробку выключателя без вентиляции.

Минимальный ток коммутации

Симистор сохраняет проводимость до тех пор, пока через него идёт ток. Минимально необходимый ток указан в datasheet’е под именем latching current. Соответственно, слишком мощный симистор не сможет включать маломощную лампочку так как будет выключаться, как только с затвора пропадёт управляющий сигнал. Но так, как этот сигнал мы самостоятельно формируем микроконтроллером, то можно удерживать управляющий сигнал почти до самого конца полупериода, тем самым убрав ограничение на минимальную нагрузку. Однако, если не успеть снять сигнал, симистор не закроется и лампа не погаснет. При плохо подобранных константах лампы, работающие на не полной яркости периодически вспыхивают.

Изоляция

Симисторы в корпусе TO-220 могут быть изолированными или не изолированными. Я сначала сделал ошибку и купил BT137, в результате радиаторы охлаждения оказались под напряжением, что в моем случае нежелательно. Симисторы с маркировкой BTA изолированы, с маркировкой BTB нет.

Защита от перегрузки

Не стоит полагаться на автоматические выключатели. Посмотрите на спецификацию, при перегрузке в 1.4 раза автомат обязан выключиться не ранее, чем через час. А быстрое размыкание происходит только при перегрузке в 5 раз (для автоматов типа C). Это сделано для того, чтобы автомат не отключался при включении приборов, требующих при старте значительно больше энергии, чем при постоянной работе. Примером такого прибора является холодильник.
Симистор нужно защитить отдельным предохранителем, либо контролировать ток через него и отключать его при перегрузке, давая остыть.

Защита от короткого замыкания

При перегорании лампы накаливания может образовываться искровой разряд, имеющий очень низкое сопротивление. В результате цепь фактически замыкается накоротко, что приводит к выгоранию симистора.
Симистор может выгорать из-за двух причин:

  1. Превышение dI/dt. Симистор не успевает открыться полностью, ток идет не через весь кристалл, образуются локальные горячие области, выжигающие кристалл.
  2. Превышение интеграла Джоуля I^2t. Задает количество теплоты, накопление которой в кристалле приведет к разрушению кристалла.

dI/dt ограничивается индуктивностью проводки и внутренней ёмкостью симистора. Так как dI/dt достаточно велика (50 А/с для BTA16), может хватить индуктивности подводящей проводки, если она достаточно длинная. Можно подстраховаться и добавить небольшую индуктивность в виде нескольких витков провода вокруг сердечника.
С превышением интеграла Джоуля можно бороться либо уменьшая время прохождения тока через симистор, либо ограничивая ток. Так как симистор не закроется, пока ток не перейдет через ноль, не вводя дополнительных размыкателей нельзя сделать время прохождения тока менее одного полупериода. В качестве такого размыкателя можно использовать:

  1. Быстродействующий плавкий предохранитель. Обычный предохранитель не подойдет так как симистор сгорит до того, как он сработает. Но стоят такие предохранители дороже новых симисторов.
  2. Геркон/реле. Если удастся найти такое, чтобы выдерживало кратковременные большие токи.

Можно пойти по другому пути. BTA16-600 может выдержать ток в 160 амер в течении одного периода. Если сопротивление замыкаемой цепи будет порядка 1.5 Ом, то полупериод он выдержит. Сопротивление проводки даст 0.5 Ом. Остается добавить в цепь сопротивление в 1 Ом. Схема станет менее эффективной и появится еще одна грелка, выделяющая при штатной работе до 16 Вт тепла (0.45 Вт при работе 100 ваттной лампы), зато симистор не сгорит, если успеть его вовремя выключить и позаботиться о хорошем охлаждении, чтобы оставался запас на нагрев во время КЗ.
Из этого сопротивления можно извлечь дополнительную выгоду: измеряя падение напряжения на нем, можно узнавать ток, протекающий через симистор. Полученное значение можно использовать для того, чтобы определять короткое замыкание или перегрузку и отключать симистор.

Заключение

Я не претендую на абсолютную верность всего написанного. Статья писалась для того, чтобы упорядочить знания, прочитанные на просторах интернета и проверить, не забыл ли я чего. В частности раздел, касающийся защиты от перегрузок я еще не опробовал на практике. Если я где-то не прав, мне было бы интересно узнать об ошибках.
В статье нет ни одной схемы: знакомые с темой и так знают их наизусть, а новичку придётся заглянуть в datasheet к MOC3052 или в AN-3008 и, возможно, он заодно узнает что-то еще и не будет бездумно реализовывать готовую схему.

Управление мощной нагрузкой · Вадим Великодный

06 Jan 2017

На практике часто возникает необходимость управлять при помощи
цифровой схемы (например, микроконтроллера) каким-то мощным
электрическим прибором. Это может быть мощный светодиод, потребляющий
большой ток, или прибор, питающийся от электрической сети. Рассмотрим типовые
решения этой задачи.

Будем считать, что нам нужно только включать или выключать нагрузку с
низкой частотой. Части схем, решающие эту задачу, называют
ключами. ШИМ-регуляторы, диммеры и прочее рассматривать не будем
(почти).

Условно можно выделить 3 группы методов:

  1. Управление нагрузкой постоянного тока.
    • Транзисторный ключ на биполярном транзисторе.
    • Транзисторный ключ на МОП-транзисторе (MOSFET).
    • Транзисторный ключ на IGBT.
  2. Управление нагрузкой переменного тока.
    • Тиристорный ключ.
    • Симисторный ключ.
  3. Универсальный метод.

Выбор способа управления зависит как от типа нагрузки, так и от вида
применяемой цифровой логики. Если схема построена на ТТЛ-микросхемах,
то следует помнить, что они управляются током, в отличие от КМОП, где
управление осуществляется напряжением. Иногда это важно.

Простейший ключ

Простейший ключ на биполярном
транзисторе проводимости n-p-n
выглядит следующим образом.

Простейший ключ

Вход слева подключается к цифровой схеме. Если у нас цифровая схема
построена на основе КМОП-логики с двухтактным («push-pull»)
выходом,
то логическая «1» фактически означает подключение этого входа к
питанию, а логический «0» — к земле.

Таким образом, при подаче «1» на вход нашей схемы ток от источника
питания потечёт через резистор R1, базу и эмиттер на землю. При этом
транзистор откроется (если, конечно, ток достаточно большой), и ток
сможет идти через переход коллектор — эмиттер, а значит и через
нагрузку.

Резистор R1 играет важную роль — он ограничивает ток через переход
база — эмиттер. Если бы его не было, ток не был бы ничем ограничен и
просто испортил бы управляющую микросхему (ведь именно она связывает
линию питания с транзистором).

Максимальный ток через один выход микроконтроллера обычно ограничен
значением около 25 мА (для STM32). В интернете можно встретить
утверждения, что микроконтроллеры AVR выдерживают ток в 200 мА, но это
относится ко всем выводам в сумме. Предельное допустимое значение тока
на один вывод примерно такое же — 20-40 мА.

Это, кстати, означает, что подключать светодиоды напрямую к выводам
нельзя. Без токоограничивающих резисторов, микросхема просто сгорит, а
с ними светодиодам не будет хватать тока, чтобы светить ярко.

Обратите внимание, что нагрузка (LOAD) подключена к коллектору, то
есть «сверху». Если подключить её «снизу», у нас возникнет несколько
проблем.

Допустим, мы хотим при помощи 5 В (типичное значение для цифровых
схем) управлять нагрузкой в 12 В. Это значит, что на базе мы можем
получить максимум 5 В. А с учётом падения напряжения на переходе база
— эмиттер, на эмиттере будет напряжение ещё меньше. Если падение
напряжения на переходе равно 0,7 В,то получаем, что на нагрузку
остаётся только 4,3 В, чего явно недостаточно. Если это, например,
реле, оно просто не сработает. Напряжение не может быть выше, иначе
тока через базу вообще не будет. Наличие падения напряжения на
нагрузке также приведёт к уменьшению тока через базу.

Для расчёта сопротивления R1 нужно вспомнить соотношение для
упрощённой модели транзистора:

Коэффициент — это коэффициент усиления по току. Его ещё
обозначают или . У разных транзисторов он
разный.

Зная мощность нагрузки и напряжение питания , можно найти ток
коллектора, а из него и ток базы:

По закону Ома получаем:

Коэффициент не фиксированная величина, он может меняться даже
для одного транзистора в зависимости от режима работы, поэтому лучше
брать значение тока базы при расчёте чуть больше, чтобы был запас по
току коллектора. Главное помнить, что ток базы не должен превышать
предельно допустимое для микросхемы.

Также важно при выборе модели транзистора помнить о предельном токе
коллектора и напряжении коллектор — эмиттер.

Ниже как пример приведены характеристики некоторых популярных
транзисторов с проводимостью n-p-n.

Модель
КТ315Г50…350100 мА35 В
КТ3102Е400…1000100 мА50 В
MJE1300225…401,5 А600 В
2SC4242107 А400 В

Модели выбраны случайно, просто это транзисторы, которые легко найти
или откуда-то выпаять. Для ключа в рассматриваемой схеме, конечно,
можно использовать любой n-p-n-транзистор, подходящий по параметрам и
цене.

Доработка схемы

Если вход схемы подключен к push-pull выходу, то особой доработки не
требуется. Рассмотрим случай, когда вход — это просто выключатель,
который либо подтягивает базу к питанию, либо оставляет её «висеть в
воздухе». Тогда для надёжного закрытия транзистора нужно добавить ещё
один резистор, выравнивающий напряжение между базой и эмиттером.

Кроме того, нужно помнить, что если нагрузка индуктивная, то
обязательно нужен защитный диод. Дело в том, что энергия, запасённая
магнитным полем, не даёт мгновенно уменьшить ток до нуля при
отключении ключа. А значит, на контактах нагрузки возникнет напряжение
обратной полярности, которое легко может нарушить работу схемы или
даже повредить её.

Совет касательно защитного диода универсальный и в равной степени
относится и к другим видам ключей.

Если нагрузка резистивная, то диод не нужен.

В итоге усовершенствованная схема принимает следующий вид.

Усовершенствованная схема на биполярном ключе

Резистор R2 обычно берут с сопротивлением, в 10 раз большим, чем
сопротивление R1, чтобы образованный этими резисторами делитель не
понижал слишком сильно напряжение между базой и эмиттером.

Для нагрузки в виде реле можно добавить ещё несколько
усовершенствований. Оно обычно кратковременно потребляет большой ток
только в момент переключения, когда тратится энергия на замыкание
контакта. В остальное время ток через него можно (и нужно) ограничить
резистором, так как удержание контакта требует меньше энергии.

Для этого можно применить схему, приведённую ниже.

Ограничение тока удержания реле

В момент включения реле, пока конденсатор C1 не заряжен, через него
идёт основной ток. Когда конденсатор зарядится (а к этому моменту реле
перейдёт в режим удержания контакта), ток будет идти через резистор
R2. Через него же будет разряжаться конденсатор после отключения реле.

Ёмкость C1 зависит от времени переключения реле. Можно взять,
например, 10 мкФ.

С другой стороны, ёмкость будет ограничивать частоту переключения
реле, хоть и на незначительную для практических целей величину.

Пример расчёта простой схемы

Пусть, например, требуется включать и выключать светодиод с помощью
микроконтроллера. Тогда схема управления будет выглядеть следующим
образом.

Управление приборами 220В

Самый простой вариант — Реле

Электромагнитное
реле — самый простой вариант управления
микроконтроллером нагрузкой 220В. По
сути это обычный электромагнит. При
подаче постоянного тока на катушку
возникает магнитное поле, сердечник
втягивается и замыкает выводы. Для
управления самим реле применимы те же
методы, описанные в статье «Как
управлять мотором постоянного тока».
Важно обращать внимание на ток удержания
реле и максимальный ток и коммутируемое
напряжение. Как правило, ток удержания
довольно высокий, около 100 мА, а напряжение
5 или 12В. Поэтому управлять напрямую от
микроконтроллера не получится. Нужен
будет транзистор.



Примерная
схема подключения реле с использованием
MOSFET транзистора. Как видно на схеме,
обязательно наличие диода. Дополнительно
можно ограничить потребляемый ток самим
реле, включив его последовательно через
резистор. Обычно ток удержания сильно
меньше стартового тока при включении
реле. Также можно добавить конденсатор,
чтобы он давал стартовый ток. Примерно
так можно будет выглядеть полная схема:



Основным
минусом схемы с реле является наличие
механической части в реле. Именно эта
часть ограничивает частоту переключений
реле и позволяет использовать реле с
частотой 0.5 Гц или меньше. Таким образом
управлять реле нагрузкой можно только
в режиме включил-выключил, без возможности
регулирования мощности подаваемой на
нагрузку.

Управляем нагрузкой 220В с
регулировкой мощности

Хотелось бы иметь возможность
регулировать мощность, подаваемую на
управляемый прибор в диапазоне от 0 до
100%. Вот эту задачу и будем решать.

Как известно бытовая электросеть
имеет переменное напряжение 220В с
частотой 50 Гц. На осциллограмме это
выглядит так:


Напряжение меняется по синусоиде,
меняя полярность каждые 10 мс. Ограничить
полную мощность синусоиды можно двумя
методами:

В фазовом методе нагрузка отключается
от сети на часть времени каждого
полупериода, отключение производится
обычно после перехода через 0. Напряжение
подаваемое на нагрузку в этом случае
выглядит так:



Во
втором методе, полных периодов или
полупериодов, нагрузка отключается на
целое количество периодов:



Например
это может выглядеть так, в случае с
полупериодами. При таком управлении
важно следить за тем, чтобы средний ток
был равен нулю.

Рассмотрим подробнее как управлять
нагрузкой методом полных периодов. Он
обеспечивает меньшие помехи на сеть
220В, так как ток и напряжение в нагрузке
нарастают синхронно и дают меньшие
выбросы в сеть.

Симистор
— мощный ключ для сети 220 В

Самый простой способ управления
нагрузкой 220В — использовать реле. Оно
позволяет с помощью постоянного
напряжения управлять мощной нагрузкой.
В этой статье не будет рассматривать
этот метод, он достаточно простой.
Достаточно подать напряжение на магнит
реле и он замкнёт контакты. К сожалению,
реле не позволяет управлять нагрузкой
достаточно быстро. При большом количестве
включений\выключений оно быстро выходит
из строя. Также, в момент переключения
возникают большие импульсные помехи.
Использовать реле лучше при частоте
управления не больше одного раза в 2-3
секунды.

Как мы уже знаем по статье «Как
управлять мотором постоянного тока»
в цепях постоянного тока транзистор
является электронным ключом, устройством,
которое позволяет малым напряжением
или током управлять более мощной
нагрузкой.

Для переменного тока тоже существуют
такие электронные ключи — Симисторы.

Симистор проводит ток в обоих
направлениях, поэтому используется в
сетях переменного тока. Для управления
нагрузкой основные электроды симистора
включаются в цепь последовательно с
нагрузкой. В закрытом состоянии
проводимость симистора отсутствует,
нагрузка выключена. При подаче на
управляющий электрод отпирающего
сигнала между основными электродами
симистора возникает проводимость,
нагрузка оказывается включённой.

Для удержания симистора в открытом
состоянии нет необходимости постоянно
подавать сигнал на управляющий электрод
(в отличие от транзистора). Он остаётся
открытым, пока протекающий через основные
выводы ток превышает некоторую величину,
называемую током удержания. Отсюда
следует, что выключение нагрузки в цепи
переменного тока происходит вблизи
моментов времени, когда ток через
основные электроды симистора меняет
направление (обычно это совпадает по
времени со сменой полярности напряжения
в сети переменного тока). Эта точка на
синусоиде называется переходом через
ноль.

Симистором можно управлять напрямую
от микроконтроллера, но для этого нужен
довольно большой ток — 10-20 мА. Существуют
также логические симисторы. У них ток
управления составляет около 5 мА. В
схемах лучше использовать обычные
симисторы, они более защищены от
самопроизвольного открытия. Что это
такое и как можно управлять обычными
симисторами? Читаем дальше.

Для начала посмотрим насколько мощной
нагрузкой может управлять типичный
симистор. Возьмём для примера симистор
BT139-800. В datasheet
обычно приводят графики выделяемой
мощности на симисторе при управлении
нагрузкой. Вот пример такого графика.



Зная
выделяемую мощность, используем параметры
рассеивания тепла корпусом, чтобы
получить температуру нагрева симистора
и оценить его работоспособность.


Из всех этих параметров следует, что
без радиатора данный симистор может
рассеять около 2Вт тепла. При управлении
полными полупериодами нужно брать
график тока для a=180 градусам. График в
этой области практически линейный,
поэтому можно сказать, что средний ток
будет около 2А.

То есть без радиатора этот симистор
сможет управлять нагрузкой в 2А * 220В =
440 Вт. В остальных случаях нужен будет
радиатор.

Теперь разберёмся как микроконтроллер
может управлять мощным симистором?

Оптосимистор — удобный метод
управления мощным симистором
микроконтроллером

Так как симистор проводит ток в обоих
направлениях, то по отношению к его
основным терминалам, управляющий ток
может находится в четырёх квадратах.



Можно
это также представить в виде таблицы:


В datasheet приводят, в каких квадрантах
управляется конкретный симистор и какой
для этого нужен ток. Например, выбранный
симистор управляется во всех 4-х
квадрантах. Но при этом различается
управляющий ток и защитные свойства от
ложных срабатываний.


Видно, что 4-ый квадрант самый невыгодный.
Управляющий ток резко возрастает. Также
и защитные свойства при таком управлении
падают.



Отсюда
следует вывод, что при управлении
микроконтроллером лучше управлять в
1-3 квадранте.

Если управление прямое, то МК необходимо
уметь менять полярность вывода, что
сложно, или иметь общее с терминалом A1
плюсовое питание (управление будет во
втором и третьем квадранте). Второй
вариант не сложно реализовать при
конденсаторном источнике питания. В
этом appnote AN2986 подробно
рассматривается этот случай.


Второй вариант — управлять через
оптосимистор. Таких устройств довольно
много и они стоят недорого. Например —
MOC3041. Есть оптосимисторы со встроенной
схемой контроля перехода через ноль,
они могут выключаться только около
нуля. Такой нам и нужен для схемы
управления полными периодами. А есть
без этой схемы. С их помощью можно
управлять фазовым методом.

Схема управления с использование
оптосимистора получается такая:


само устройство внутри выглядит так:



Управление
в этом случае получается одной полярности
с терминалом A2, то есть в первом и третьем
квадранте.

Дополнительно оптосимистор изолирует
схему работы микроконтроллера от сети,
что уменьшает помехи, и повышает
надёжность прибора. Если нет требований
к компактности прибора, то рекомендуем
использовать оптосимисторы для управления
другими более мощными симисторами.

Цепь защиты симистора от
помех в сети

В случае слишком быстрого изменения
напряжения на основных выводах симистора
или тока он может самопроизвольно
открыться и начать проводить ток. Это
очень неприятно. В основном это может
произойти при управлении индуктивной
нагрузкой (индуктивность сопротивляется
изменению тока). Но также это может
происходить и при работе прибора с
индуктивностью рядом в сети (например,
когда через одну розетку работает мотор
и управляемый микроконтроллером паяльный
фен). В этом случае независимо от
микроконтроллера управляемая нагрузка
не будет отключаться от сети и ток будет
продолжать идти. Например, при управлении
паяльным феном эта ситуация может
привести даже к пожару.

Простой защитой от этого случая
является снабберная цепь (резистор плюс
конденсатор):



Но
она не гарантирует работу во всех
случаях. Параметры рассчитываются под
конкретную индуктивность. Appnote AN-3004
подробно рассматривает расчет снаббера.

Второй вариант — использование
симисторов работающих в 1-3 квадранте.
Например, T405. Производитель указывает,
что они могут использоваться для
управления даже индуктивной нагрузкой
без снаббера.

Фазовый метод

Для решения задачи фазового управления
нагрузкой микроконтроллеру необходимо
знать когда был совершён переход через
ноль. Тогда можно будет рассчитать время
задержки включения нагрузки.

Самый простой метод получения события
перехода через ноль в сети переменного
тока подробно описан в appnote AN521
от компании Microchip. Практически каждый
микроконтроллер имеет высоковольтные
защитные диоды на каждом цифровом входе.
Это можно использовать, чтобы получить
информацию о переходе через ноль.
Достаточно на входе поставить высокоомный
резистор, ограничивающий ток на выводе
МК, до значений указанных в datasheet на МК.
В этом случае вывод в обычном цифровом
режиме будет принимать значение 0 в
момент перехода через ноль. Временная
задержка от реального состояния до
реального будет минимальна и составляет
около 50 мкс.


Минусом такой схемы является отсутствие
гальванической развязки схемы управления
от сети 220В. Если это необходимо, то можно
использовать оптопару.

Ну а далее, уже можно управлять мощным
симистором как было описано ранее,
только если делать это через оптосимистр,
то без схемы перехода через ноль.

В этой статье разобраны основные
методы управления мощной нагрузкой
сети переменного тока 220В с помощью
симисторов. После прочтения теоретической
части перейдём к практике. Паяльная
станция — прибор, в котором
микроконтроллер управляет мощным
паяльным феном работающим от сети 220В.

Тиристорные коммутаторы нагрузки (10 схем)

Для включения и отключения нагрузки (ламп накаливания, обмоток реле, электродвигателей и т.п.) зачастую используют тиристоры. Особенность этого вида полупроводниковых приборов и основное их отличие от транзисторов заключается в том, что они обладают двумя устойчивыми состояниями, без каких-либо промежуточных.

Это состояние «включено», когда сопротивление полупроводникового прибора минимально, и состояние «выключено», когда сопротивление тиристора максимально. В идеале эти сопротивления приближаются к нулю или бесконечности.

Для включения тиристора на его управляющий электрод достаточно хотя бы кратковременно подать управляющее напряжение. Отключить тиристор (запереть) можно кратковременным выключением питания тиристора, сменой полярности питающего напряжения либо уменьшением тока в нагрузке ниже тока удержания тиристора.

Обычно включают и отключают тиристорные коммутаторы двумя кнопками. Значительно меньшее распространение получили однокнопочные схемы управления тиристорами.

Здесь подробно рассмотрены методы однокнопочного управления тиристорными коммутаторами. Принцип работы тиристорных однокнопочных управляющих устройств основан на динамических зарядно-разрядных процессах в цепи управления тиристора [EW 4/01-299].

Схема однокнопочного управления тиристором

На рисунке 1 показана одна из простейших схем однокнопочного управления тиристорным коммутатором. В схеме (здесь и далее) используют кнопки без фиксации положения. В исходном состоянии нормально замкнутые контакты кнопки шунтируют цепь управления тиристором.

Сопротивление тиристора максимально, ток через нагрузку не протекает. Диаграммы основных процессов, протекающих в схеме на рис. 1, рассмотрены на рис. 2.

Для включения тиристора (ON) нажимают на кнопку SB1. При этом нагрузка оказывается подключенной к источнику питания через контакты кнопки SB1, а конденсатор С1 заряжается через резистор R1 от источника питания.

Скорость заряда конденсатора определяется постоянной времени цепи R1C1 (см. диаграмму). После того как кнопку отпустят, конденсатор С1 разряжается на управляющий электрод тиристора. Если напряжение на нем равно или превышает напряжение включения тиристора, тиристор отпирается.

Принципиальная схема управления тиристором с помощью одной кнопки

Рис. 1. Принципиальная схема управления тиристором с помощью одной кнопки.

 Диаграммы основных процессов, протекающих в схеме с тиристором

Рис. 2. Диаграммы основных процессов, протекающих в схеме с тиристором.

Отключить нагрузку (OFF) можно кратковременным нажатием на кнопку SB1. При этом конденсатор С1 не успевает зарядиться. Поскольку контакты кнопки шунтируют электроды тиристора (анод — катод), это равноценно отключению источника питания тиристора. В результате нагрузка будет отключена.

Следовательно, для включения нагрузки необходимо с большей продолжительностью нажать на управляющую кнопку, для отключения — еще раз кратковременно нажать ту же кнопку.

Простые силовые ключи на тиристорах

На рис. 3 и 4 показаны варианты схемной идеи, представленной на рис. 1. На рис. 3 использована цепочка последовательно соединенных диодов VD1 и VD2 для ограничения максимального напряжения заряда конденсатора.

Вариант схемы управления тиристором одной кнопкой

Рис. 3. Вариант схемы управления тиристором одной кнопкой.

Это позволило заметно снизить рабочее напряжение (до 1,5…3 В) и емкость конденсатора С1. В следующей схеме (рис. 4) резистор R1 включен последовательно с нагрузкой, что позволяет создать двухполюсный коммутатор нагрузки. Сопротивление нагрузки должно быть намного ниже, чем сопротивление R1.

Схема электронного ключа на тиристоре с последовательным подключением нагрузки

Рис. 4. Схема электронного ключа на тиристоре с последовательным подключением нагрузки.

Тиристорный коммутатор с двумя кнопками

Тиристорное устройство управления нагрузкой (рис. 5) может быть использовано для включения и выключения нагрузки любой из нескольких последовательно включенных кнопок, работающих на разрыв цепи. Принцип действия тиристорного коммутатора заключается в следующем.

 

При включении устройства напряжение, подаваемое на управляющий электрод тиристора, недостаточно для его включения. Тиристор, и, соответственно, нагрузка отключены. При нажатии на любую из кнопок SB1 — SBn (и удержании ее нажатой) конденсатор С1 заряжается через резистор R1 от источника питания. Цепь управления тиристора и сам тиристор при этом отключены.

Схема простого тиристорного коммутатора нагрузки с двумя кнопками

Рис. 5. Схема простого тиристорного коммутатора нагрузки с двумя кнопками.

После отпускания кнопки и восстановления цепи питания тиристора накопленная конденсатором С1 энергия оказывается приложенной к управляющему электроду тиристора. В результате разряда конденсатора через управляющий электрод тиристор включается, подсоединяя тем самым нагрузку к цепи питания.

Для отключения тиристора (и нагрузки) кратковременно нажимают на любую из кнопок SB1 — SBn. При этом конденсатор С1 не успевает зарядиться. В то же время цепь питания тиристора размыкается, тиристор запирается.

Величина резистора R2 зависит от напряжения питания устройства: при напряжении 15 В его сопротивление — 10 кОм при 9 В — 3,3 кОм при 5 6-1,2 кОм.

Схема с эквивалентом тиристора на транзисторах

При использовании вместо тиристора его транзисторного аналога (рис. 6) величина этого резистора меняется, соответственно, от 240 кОм (15 В) до 16 кОм (9 В) и до 4,7 кОм (5 В).

Тиристорные коммутаторы нагрузки

Рис. 6. Схема электронного коммутатора нагрузки с транзистор

Управление мощной нагрузкой с Arduino

Управление нагрузкой с Arduino


Как вы уже знаете из урока о питании, Ардуино (микроконтроллер) является логическим устройством, то есть по своей сути может только раздавать сигналы другим устройствам. Это касается в первую очередь управления нагрузкой: от пина МК можно запитать максимум светодиод или простенький модуль/микросхему с током потребления не более 20 мА (максимум 40 мА, но на таком токе напряжение просядет и стабильная работа не гарантируется). Если вам захочется управлять светодиодной лентой, электромагнитным клапаном, моторчиком или сетевым обогревателем – понадобится промежуточное устройство, такое как реле или транзистор. Давайте обо всем по порядку.

“Универсальное” электромагнитное реле


Электромагнитное реле является по сути управляемым механическим выключателем: подали на него ток – оно замкнуло контакты, сняли ток – разомкнуло. Контакты являются именно контактами: металлическими “пятаками”, которые прижимаются друг к другу. Именно поэтому такое реле может управлять как нагрузкой постоянного, так и переменного тока. 

Сама катушка реле является неслабой индуктивной нагрузкой, что приводит к дополнительным проблемам (читай ниже), поэтому для управления “голым” реле нам понадобится дополнительная силовая и защитная цепь.

После изучения данного урока вы сами сможете её составить (транзистор и диод), а сейчас мы поговорим о модулях реле: готовая плата, на которой стоит само реле, а также цепи коммутации, защиты и даже оптическая развязка. Такие модули бывают “семейными” – с несколькими реле на борту. Спасибо китайцам за это! Купить можно на Aliexpress, также смотрите варианты у меня в каталоге ссылок на Али.

Такое реле сделано специально для удобного управления с микроконтроллера: пины питания VCC (Vin, 5V) и GND подключаются к питанию, а далее реле управляется логическим сигналом, поданным на пин IN. С другой стороны стоит клеммник для подключения проводов, обычно контакты подписаны как NO, NC и COM. Это общепринятые названия пинов кнопок, переключателей и реле:

  • COM – Common, общий. Реле является переключающим, и пин COM является общим.
  • NO – Normal Open, нормально открытый. При неактивном реле данный контакт не соединён с COM. При активации реле он замыкается с COM.
  • NC – Normal Closed, нормально закрытый. При неактивном реле данный контакт соединён с COM. При активации реле он размыкается с COM.

Подключение нагрузки через реле думаю для всех является очевидным:

Важный момент: катушка реле в активном режиме потребляет около 60 мА, то есть подключать больше одного модуля реле при питании платы от USB не рекомендуется – уже появятся просадки по напряжению и помехи:

Такие модули реле бывают двух типов: низкого и высокого уровня. Реле низкого уровня переключается при наличии низкого сигнала (GND) на управляющем пине digitalWrite(pin, LOW). Реле высокого уровня соответственно срабатывает от высокого уровня digitalWrite(pin, HIGH). Какого типа вам досталось реле можно определить экспериментально, а можно прочитать на странице товара или на самой плате. Также существуют модули с выбором уровня:

На плате, справа от надписи High/Low trigger есть перемычка, при помощи которой происходит переключение уровня.

Электромагнитное реле имеет ряд недостатков перед остальными рассмотренными ниже способами, вы должны их знать и учитывать:

  • Ограниченное количество переключений: механический контакт изнашивается, особенно при большой и/или индуктивной нагрузке.
  • Противно щёлкает!
  • При большой нагрузке реле может “залипнуть”, поэтому для больших токов нужно использовать более мощные реле, которые придётся включать при помощи… маленьких реле. Или транзисторов.
  • Необходимы дополнительные цепи для управления реле, так как катушка является индуктивной нагрузкой, и нагрузкой самой по себе слишком большой для пина МК (решается использованием китайского модуля реле).
  • Очень большие наводки на всю линию питания при коммутации индуктивной нагрузки.
  • Относительно долгое переключение (невозможно поставить детектор нуля, читай ниже), при управлении индуктивными цепями переменного тока можно попасть на большой индуктивный выброс, необходимо ставить искрогасящие цепи.

При помощи реле можно плавно управлять сильно инерционной нагрузкой, такой как большой обогреватель. Для этого нужно использовать сверхнизкочастотный ШИМ сигнал, у меня есть готовая библиотека. Не забываем, что реле противно щёлкает и изнашивается, поэтому для таких целей лучше подходит твердотельное реле, о котором мы поговорим ниже.

Постоянный ток

Оптопара


Оптопара – отличный элемент, позволяет выполнять две функции: коммутировать нагрузку (пусть и небольшую) и полностью физически развязывает микроконтроллер с ней. Оптопары можно использовать для имитации нажатия кнопок у других внешних устройств, то есть замыкать чисто логический сигнал. Также можно использовать для разрывания питания различных датчиков и модулей в устройстве вместо транзистора.

Оптопара состоит из двух частей: светодиод, который мы включаем при помощи микроконтроллера, и выходная часть, которая может быть разной (транзистор, симистор и проч.), таким образом сигнал с микроконтроллера отделяется от нагрузки через луч света, что очень важно при коммутации высоковольтных или каких-то чувствительных цепей. Для управления внешними устройствами надо брать оптопары с транзисторным выходом, например очень распространённую PC814 и её аналоги (FOD814, LTV814 и прочие), при желании можно выковырять почти из любого блока питания. Данная оптопара позволяет коммутировать нагрузку с напряжением до 60 Вольт и током до 50 мА. Покажу вырезку из даташита с этими параметрами, у остальных оптопар параметры будут называться точно так же:

 

Подключается оптопара следующим способом: светодиодом мы управляем с МК через резистор, а выход подключаем в разрыв нагрузки, соблюдая полярность. Что касается светодиода на управляющем входе оптопары – для него нужен резистор, как считать резистор для светодиода было рассказано в уроке про светодиоды. В большинстве случаев достаточно поставить резистор на 220 Ом, как и для любых светодиодов. Если ток светодиода будет меньше указанного, соответственно уменьшится максимальный ток выхода, что для этой оптопары уже критично (светодиод хочет аж 50 мА). Оптопара не предусмотрена для управления большой нагрузкой, обычно это коммутация других логических цепей, поэтому о токе можно не думать.

Подключение нагрузки (условный нагрузочный резистор):

Для управления “кнопкой” другого устройства (фотоаппарат, кофемашина) достаточно подключить оптопару параллельно кнопке. Во избежание замыкания оптопары на кнопку (что сожгёт оптопару) желательно поставить защитный резистор с номиналом 200-1000 Ом. Тут будет две схемы, по сути одинаковые. Перед подключением нужно проверить мультиметром, где у кнопки “плюс”, а где “минус”, так как выход с оптопары у нас полярный.

Существует также интересная оптопара TLP172 с мосфетным выходом, причём неполярным (может коммутировать нагрузку в любую сторону)! Управляет напряжением до 60 Вольт при токе до 400 мА – уже вполне серьёзная игрушка.

Транзистор


Самый компактный способ управлять нагрузкой постоянного тока – транзистор. Транзисторы бывают биполярные и полевые (MOSFET, полевик, ключ). Биполярные уже морально и физически устарели, имеют много характеристик и требуют дополнительного изучения темы, поэтому мы рассмотрим только полевые транзисторы. Схема типовая и выглядит вот так:Или вот так, конкретно для корпуса to220. Также на этой схеме плата Ардуино питается от внешнего источника в пин Vin:Полевики бывают и в других корпусах, для подключения по первой принципиальной схеме нужно загуглить распиновку (pinout) на свой конкретный транзистор. Но в основном там всё обстоит вот так:Что за резисторы? Резистор на 100 Ом (можно ставить в диапазоне 100-500 Ом) выполняет защитную функцию: затвор полевика представляет собой конденсатор, в момент открытия затвора конденсатор начнёт заряжаться и в цепи пойдёт большой ток (практически короткое замыкание), который может повредить пин Ардуино. Резистор просто ограничивает ток в цепи пин-затвор и спасает пин от скачков тока. В целом можно его не ставить, но когда-нибудь оно обязательно сломается =)

Резистор на 10 кОм (можно ставить в диапазоне 5-50 кОм) выполняет подтягивающую функцию для затвора. Если случится так, что плата Ардуино выключена или сигнальный провод от неё отвалился – на затвор будут приходить случайные наводки и он может случайно открыться. Если в этот момент будет подключен источник питания – нагрузка тоже включится! Восстание машин начнётся именно с этого момента. Подтягивающий к GND резистор позволяет “прижать” затвор, чтобы он не открылся сам по себе. Имеет смысл ставить его прямо на корпус транзистора, если монтаж производится навесом:Я привёл схему, в которой используется N-канальный полевой транзистор, который управляет линией GND. Существуют также P-канальные мосфеты, они управляют линией питания. Такие транзисторы в целом дороже, реже встречаются и имеют высокий порог напряжения открытия, т.е. для их работы придётся ставить ещё один транзистор (биполярный) и с его помощью подавать более высокий сигнал от внешнего источника на затвор P-канального полевика. Поэтому в 99% случаев просто используют более удобные N-канальные ключи.

Как выбрать транзистор для своей задачи? Первым делом смотрим на напряжение открытия транзистора (как читать график в даташите – см. видео урок ниже), 100% подойдёт транзистор с пометкой Logic Level в описании или даташите: такие мосфеты точно будут работать на полную катушку от пина МК. Само собой ток и напряжение должны соответствовать (взяты с запасом) для нагрузки, которую будет коммутировать мосфет. Есть ещё параметр сопротивление открытого канала, на этом сопротивлении будет падать напряжение и превращаться в тепло. Для мощных нагрузок нужно рассматривать полевики с низким сопротивлением канала, чтобы сильно не грелись. Приведу свой список мосфетов в двух основных корпусах: выводной to220 и dpack для поверхностного монтажа, в нём “Ток при 3V” и “Ток при 5V” означает максимальный ток через транзистор (на нагрузку) в Амперах при управлении логическим сигналом 3 и 5 Вольт. Максимальное напряжение для нагрузки смотрите у конкретного транзистора, но у всех оно выше 24V. “R” – сопротивление открытого канала в миллиомах (10^-3 Ом). Также полевики отсортированы по увеличению цены в российских магазинах =)

МаркировкаR, мОмТок при 3VТок при 5V
IRF3704ZPBF7.910120
IRLB8743PBF3.220>100
IRL2203NPBF730>100
IRLB8748PBF4.810>100
IRL8113PBF640>100
IRL3803PBF620>100
IRLB3813PBF1.9520>100
IRL3502PBF7>100>100
IRL2505PBF820>100
IRF3711PBF680>100
IRL3713PBF320>100
IRF3709ZPBF6.340>100
AUIRL3705N6.520>100
IRLB3034PBF1.7>100>100
IRF3711ZPBF620>100
МаркировкаR, мОмТок при 3VТок при 5V
STD17NF03LT450540
IRLR024NPBF65420
IRLR024NPBF40540
IRLR8726PBF610110
IRFR1205PBF2710
IRFR4105PBF4510
IRLR7807ZPBF1210100
IRFR024NPBF758
IRLR7821TRPBF1011100
STD60N3LH5830160
IRLR3103TRPBF1911100
IRLR8113TRPBF640110
IRLR8256PBF610110
IRLR2905ZPBF13100
IRLR2905PBF272090

Для слаботочных цепей мне нравится использовать полевик 2n7000 (купить мешок) – тянет до 400 мА. Корпус – компактный выводной to-92.

Также у друзей-китайцев есть удобные готовые модули с мосфетами и всей необходимой обвязкой:

Ну и самый важный момент: на полевой транзистор можно подавать ШИМ сигнал для “плавного” управления нагрузкой: плавно менять скорость вращения мотора, яркость светодиодной ленты, мощность обогревателя и прочее прочее!

Внимание! При управлении индуктивной нагрузкой (клапан, мотор, электромагнит, соленоид) обязательно нужен диод! См. последнюю главу.

Твердотельное реле DC


Более простой вариант – твердотельное реле (Solid State Relay, SSR) для постоянного тока (DC), найти можно на том же Aliexpress по запросу SSR DC. Внимательно смотрим на маркировку: под выходными клеммами должно быть написано VDC, т.е. постоянное напряжение. Твердотельное реле имеет стандартный корпус для моделей постоянного и переменного тока, поэтому нужно читать что написано и не перепутать. Также в маркировке после слова SSR обычно указан ток в Амперах, т.е. SSR-25 это реле на 25 Ампер. Максимальное напряжение указано под выходными клеммами.

Твердотельное реле подключается напрямую к Arduino, пин “-” к GND, “+” к любому цифровому пину. Выход реле ставится в разрыв цепи питания нагрузки, как выключатель. Важно не перепутать плюс и минус, потому что внутри реле представляет собой полевой транзистор на радиаторе =)

Внимание! При управлении индуктивной нагрузкой (клапан, мотор, электромагнит, соленоид) обязательно нужен диод! См. последнюю главу.

Переменный ток

Симистор


Симистор – радиоэлемент, похожий на транзистор, но может работать на переменном токе. Высокое напряжение – штука опасная, поэтому для управления симистором используется оптопара с симисторным выходом (например MOC302x). Простейшая схема подключения выглядит вот так:Здесь стоят резисторы: 220 Ом – для ограничения тока на светодиод оптопары (можно ставить с номиналом вплоть до 1 кОм). И резистор между оптопарой и симистором: 220-470 Ом с мощностью 1-2 Вт (будет греться). Распиновка компонентов:У китайцев есть готовые модули с симистором и всей обвязкой. Кстати да, симистор греется под нагрузкой! Наличие радиатора обязательно, начиная с 200 Ватт нагрузки.Для плавного управления нагрузкой переменного тока задача сильно усложняется: нужно ловить момент переключения напряжения, засекать время и выключать симистор, отсекая часть синусоиды. Схема для такой поделки может выглядеть вот так:Также готовый модуль можно купить на Али. Выглядит он вот так и имеет пины питания, пин контроля симистора и вывод детектора нуля. Как со всем этим работать – смотрите видос:

Твердотельное реле AC


Твердотельное реле для переменного тока (SSR AC) выглядит и подключается точно так же, как твердотельное для постоянного. Единственное отличие в том, что нет полярности:

По сравнению с электромагнитным реле работает бесшумно, а также имеет неограниченный ресурс переключений. Но есть и минус: твердотельные реле основаны на полупроводниковых симисторах и греются под нагрузкой. Нижняя часть корпуса представляет собой толстую алюминиевую пластину. При большой нагрузке (несколько киловатт) желательно брать SSR с хорошим запасом по току и/или крепить на радиатор. Вот такие дела.

Также существуют твердотелки чуть другого формата в виде Ардуино-модулей:

Такие модули бывают низкого и высокого уровня (High/Low level trigger), подключаются точно так же как модули реле: к питанию GND-VCC и отдельно пин на управление. Сами SSRки здесь стоят маленькие и слабые: всего 2А (в районе 500 Ватт). Но для управления например освещением этого более чем достаточно.

При помощи реле можно плавно управлять сильно инерционной нагрузкой, такой как большой обогреватель. Для этого нужно использовать сверхнизкочастотный ШИМ сигнал, у меня есть готовая библиотека.

Искрогасящие цепи


При размыкании контактов в цепи питания индуктивной нагрузки происходит так называемый индуктивный выброс, который резко подбрасывает напряжение в цепи вплоть до того, что между контактами реле или выключателя может проскочить электрическая дуга (искра). В дуге нет ничего хорошего – она выжигает частички металла контактов, из за чего они изнашиваются и со временем приходят в негодность. Также такой скачок в цепи провоцирует электромагнитный выброс, который может навести в электронном устройстве сильные помехи и привести к сбоям или даже поломке! Самое опасное, что индуктивной нагрузкой может являться сам провод: вы наверняка видели, как искрит обычный выключатель света в комнате. Лампочка – не индуктивная нагрузка, но идущий к ней провод имеет индуктивность.

Для постоянного тока


Для защиты от выбросов в цепи постоянного тока используют обыкновенный диод, установленный встречно-параллельно нагрузке и максимально близко к ней. Диод просто закоротит на себя выброс, и все дела:

Где VD – защитный диод, U1 – выключатель, а R и L олицетворяют индуктивную нагрузку.

Диод нужно ОБЯЗАТЕЛЬНО ставить при управлении индуктивной нагрузкой (электромотор, соленоид, клапан, электромагнит, катушка реле) при помощи транзистора. То есть вот так:

При управлении ШИМ сигналом рекомендуется ставить быстрые диоды (диоды Шоттки) на соответствующее напряжение и ток.

Для переменного тока


В цепях переменного тока есть два важных момента: сама искрогасящая (шунтирующая, или снабберная) цепь и момент выключения нагрузки. Напряжение в сети является синусоидой, которая 100 раз в секунду пересекает значение 0. Если выключить нагрузку в тот момент, когда напряжение в сети равно нулю – это сильно уменьшит выброс. Для этих целей проще всего использовать твердотельные реле (SSR) с детектором нуля (Zero-Crossing Detector). Такие реле сами отключат нагрузку в нужный момент.

Что касается искрогасящих цепей – теорию по расчёту можно посмотреть вот в этой статье, а для большинства применений подойдёт резистор 39 Ом 0.5 Вт и конденсатор 0.1 мкФ 400V, установленные вот по такой схеме:

Важные страницы


5
/
5
(
6

голосов
)

Простое управление тиристором » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)

Предлагаю для любителей схемку, которую «открыл» (для себя) сам.
Случилось это, когда искал возможность плавно регулировать (через тиристор) яркость ламп накаливания. Применения: Цветомузыка, плавно включить/выключить свет в помещении (круто и лампы реже перегорают), мощность на паяльнике, позже появилась мысль использовать в зарядном устройстве для автомобильных АКБ. При простой схеме ведёт себя как довольно сложные с фазоимпульсным управлением тиристором. Позже, уже имея осцилограф, понял как примерно она работает. Естественно, делюсь мнением.
Зависимость яркости лампы от напряжения на входе примерно такая:

Это было то, что мне нужно.

Думаю, что изменением R1 можно пропорционально изменить U упр, при котором достигается максимальная яркость (уменьшить этот порог меньше 2…3 Вольт не получится, но я и не пробовал). R2 стоит на всякий случай, чтобы уменьшить рассеиваемую на транзисторе мощность (где-то видел и решил что надо). От транзистора требуется выдержать максимальное приложенное к нему напряжение, в моём случае более 300V. От диода тоже, а нужен он в случае, если на аноде тиристора возможно отрицательное напряжение.

Рассмотрим работу этого «открытия». Если управляющее напряжение менее 1V – всё закрыто. Лампа не горит. В других случаях: когда начинается положительный полупериод сети, начинает заряжаться и конденсатор через цепь управления. Потенциал на управляющем электроде тиристора будет повторять потенциал на верхней обкладке конденсатора, но со сдвигом 0.6V вниз. При достижении порога открывания тиристора он и откроется. Напряжение на коллекторе транзистора станет меньше, чем на эмитере, и усиливать ток базы он уже не будет. Ток базы станет равен току эмитера (в 20…50 раз больше, чем был до открывания тиристора). Конденсатор, вследствие этого, начнёт разряжаться, напряжение на нём падать до уровня ниже уровня запуска тиристора и будет таким, пока не закроется тиристор. А закроется он при прохождении напряжения сети через ноль. Затем всё начнётся заново. И чем больше будет управляющее напряжение, тем ближе к началу полупериода откроется тиристор, ярче будет гореть лампа. Вот и всё.

Несколько наблюдений: для ламп до 100 ватт – радиатор под тиристор необязателен, при двух- и при одно-полупериодном применении ничего менять не надо (выпрямитель, конечно, нужен), подойдут тиристоры с током запуска, отличающимся не более чем в два раза в большую или меньшую сторону по сравнению с КУ 202 (КУ201, более современные с током анода 5…25А), для одно-полупериодного применения пойдут и симисторы с током анода 5…30А без других изменений. Я нигде не ставил радиатор транзистору (не грелся), ток управления тиристором должен быть не более 10 mA (не замерял), следовательно транзистор и диод на 100 mA дадут достаточную надёжность.

Мне это кажется таким простым, что даже не знаю, о чём ещё писать.
Постараюсь позже представить Вашему вниманию пару применений данной идеи.
И ещё: дико извиняюсь если всем это давно известно.

Камрад, рассмотри датагорские рекомендации

Аурел (AKM)

Молдова, Кишинёв

Люблю что-то делать своими руками. электросеть,отопление,мебель,и особенно разные схемы. До паяльника дорвался в 8 классе.
Начал как положено с детекторного. Напаял ЦМУ, зарядные для автомобильных АКБ, УЗЧ, Собирал телевизоры, дорабатывал Ноту 220С,
таймера, ДУ, БП, разную мелочь.
Есть небольшие свои разработки. Пришёл за информацией. Не верю мелким дом. кинотеатрам. Хочу сделать всё из «авто»-динамиков. Вижу я не один.

 

Симисторный регулятор мощности с микроконтроллерным управлением / Хабр

Однажды для одного небольшого домашнего проекта мне потребовался регулятор мощности, пригодный для регулировки скорости вращения электромотора переменного тока. В качестве основы использовалась вот такая плата на базе микроконтроллера STM32F103RBT6. Плата была выбрана как имеющая честный RS232 интерфейс и имеющая при этом минимум дополнительных компонентов. На плате отсутствует слот под литиевую батарейку для питания часов, но приживить его — дело пятнадцати минут.

Итак, начнём с теории. Все знакомы с так называемой широтно-импульсной модуляцией, позволяющей управлять током в (или, что реже, напряжением на) нагрузке с максимальным КПД. Лишняя мощность в таком случае просто не будет потребляться, вместо того, чтобы рассеиваться в виде тепла, как при линейном регулировании, представляющем собой не более чем усложнённый вариант реостата. Однако, по ряду причин такое управление, будучи выполненным «в лоб», не всегда подходит для переменного тока. Одна из них — бо́льшая схемотехническая сложность, поскольку требуется диодный мост для питания силовой части на MOSFET или IGBT транзисторах. Этих недостатков лишено симисторное управление, представляющее собой модификацию ШИМ.


Симистор (TRIAC в англоязычной литературе) — это полупроводниковый прибор, модификация тиристора, предназначенный для работы в качестве ключа, то есть он может быть либо открыт, либо закрыт и не имеет линейного режима работы. Основное отличие от тиристора — двусторонняя проводимость в открытом состоянии и (с некоторыми оговорками) независимость от полярности тока (тиристоры и симисторы управляются током, как и биполярные транзисторы) через управляющий электрод. Это позволяет легко использовать симистор в цепях переменного тока. Вторая особенность, общая с тиристорами, — это свойство сохранять проводимость при исчезновении управляющего тока. Закрывается симистор при отключении тока между основными электродами, то есть, когда переменный ток переходит через ноль. Побочным эффектом этого является уменьшение помех при отключении. Таким образом, для открывания симистора нам достаточно подать на управляющий электрод открывающий импульс небольшой, порядка десятков микросекунд, длительности, а закроется он сам в конце полупериода переменного тока.

Симисторное управление учитывает вышеперечисленные свойства этого прибора и заключается в отпирании симистора на каждом полупериоде переменного тока с постоянной задержкой относительно точки перехода через ноль. Таким образом, от каждого полупериода отрезается «ломтик». Заштрихованная на рисунке часть — результат этой процедуры. Таким образом, на выходе вместо синусоиды мы будем иметь что-то, в известной степени напоминающее пилу:

Теперь наша задача — вовремя отпирать симистор. Эту задачу мы возложим на микроконтроллер. Приведённая ниже схема является результатом анализа имеющихся решений а также документации к оптронам. В частности, силовая часть взята из документации на симисторный оптрон производства Texas Instruments. Схема не лишена недостатков, один из которых — мощный проволочный резистор-печка, через который включён оптрон, детектирующий переход через ноль.

Как это работает? Рассмотрим рисунок.

На положительном полупериоде, когда ток через оптрон превышает некоторое пороговое значение, оптрон открывается и напряжение на входе микроконтроллера опускается практически до нуля (кривая «ZC» на рисунке). Когда же ток снова опускается ниже этого значения, на микроконтроллер снова поступает единица. Происходит это в моменты времени, отстоящие на dz от нуля тока. Это dz ощутимо, в моём случае составляет около 0.8 мс, и его необходимо учитывать. Это несложно: мы знаем период T и длительность импульса высокого уровня h, откуда dz = (h — T / 2) / 2. Таким образом, нам необходимо открывать симистор через dz + dP от переднего фронта сигнала с оптрона.

О фазовом сдвиге dP стоит поговорить отдельно. В случае c ШИМ постоянного тока среднее значение тока на выходе будет линейно зависеть от скважности управляющего сигнала. Но это лишь потому, что интеграл от константы даёт линейную зависимость. В нашем случае необходимо отталкиваться от значения интеграла синуса. Решение простого уравнения даёт нам искомую зависимость: для линейного изменения среднего значения тока необходимо менять фазовый сдвиг по закону арккосинуса, для чего достаточно ввести в управляющую программу LUT таблицу.

Всё, о чём я расскажу в дальнейшем, имеет прямое отношение к архитектуре микроконтроллеров серии STM32, в частности, к архитектуре их таймеров. Микроконтроллеры этой серии имеют разное число таймеров, в STM32F103RBT6 их семь, из которых четыре пригодны для захвата и генерации ШИМ. Таймеры можно каскадировать: для каждого таймера одно из внутренних событий (переполнение, сброс, изменение уровня на одном из входных или выходных каналов и т.д.; за подробностями отсылаю вас к документации) можно объявить выходным и направить его на другой таймер, назначив на него определённое действие: старт, стоп, сброс и т.д. Нам потребуются три таймера: один из них, работая в т.н. PWM input режиме, замеряет период входного сигнала и длительность импульса высокого уровня. По окончании измерения, после каждого периода генерируется прерывание. Одновременно с этим запускается связанный с этим событием таймер фазового сдвига, работающий в ждущем режиме. По событию переполнения этого таймера происходит принудительный сброс таймера, генерирующего выходной управляющий сигнал на симистор, таким образом, через каждый полный период переменного тока подстраивается фаза управляющего сигнала. Только первый таймер генерирует прерывание, и задача обработчика сводится к подстройке фазового сдвига (регистр ARR ждущего таймера) и периода ШИМ таймера (также регистр ARR) так, чтобы он всегда был равен половине периода переменного тока. Таким образом, всё управление происходит на аппаратном уровне и влияние программных задержек полностью исключается. Да, это можно было сделать и программно, но грех было не воспользоваться такой возможностью, как каскадируемые таймеры.

Выкладывать на обозрение код всего проекта я не вижу смысла, к тому же, он далёк от завершения. Приведу лишь фрагмент, содержащий описанный выше алгоритм. Он абсолютно независим от прочих частей и легко может быть портирован в другой проект на совместимом микроконтроллере.

И напоследок, видеоролик, показывающий устройство в действии:

Yyac-2 Scr Module Thyristor Control Board Trigger Switch Dc Control Ac 220v Optocoupler Isolation

Что мы делаем
Разнообразие каналов поставки электронных компонентов — это наше превосходство,
Военные и промышленные интегральные схемы (IC) — наш основной бизнес.
Для наилучшего обслуживания и наиболее удобной покупки мы также предлагаем перечень технических средств (список BOM), включая резисторы, конденсаторы, диоды, транзисторы, светодиоды, разъемы и т. Д.
Чтобы быть вашим надежным и удобным партнером при покупке наша цель.
Наша цель — быть партнером мирового уровня по распространению электронных компонентов.

1. Практически 20 лет опыта в области электронных компонентов.
2. 100% контроль качества перед покупкой, лучшие производственные возможности, лучший контроль качества, лучшее обслуживание, конкурентоспособная цена.
3. Множество каналов для удовлетворения различных требований, включая военное и промышленное производство.
4. Достаточный запас на ваш срочный запрос.
5. Своевременный ответ в течение 2 часов в рабочее время.

Отгрузка:

1.- Мы можем отправить продукцию по всему миру.

2. — Доступны DHL, FedEx, TNT, UPS, EMS, China Post, Hongkong Post.

3.- Товар будет отправлен в течение 3 дней после получения оплаты.

4.- Пожалуйста, убедитесь, что ваш адрес доставки и контактный номер телефона верны, когда вы предлагаете цену.

5.- Вы можете отслеживать состояние своего продукта на веб-сайте после его отправки

Налоги или пошлины на импорт

1.- Ввозные пошлины, налоги и другие сборы произошли в Ваша сторона не входит в стоимость товара. Эти сборы оплачивает покупатель.

2.- Пожалуйста, свяжитесь с таможней вашей страны, чтобы определить, какие дополнительные расходы будут возникать перед покупкой.

3.- Пожалуйста, подтвердите подробную информацию о накладной доставки. Например, какую цену мы должны указать в накладной, или как описать товар и т. Д.

Быстрое предложение с доставкой!
Качественные детали с проверенными!
Ваше удовлетворение, это наша первая миссия!

.

YYAC 2 Модуль SCR Плата управления тиристором Триггерный переключатель Управление постоянным током 220 В переменного тока Изоляция оптопары Professional | |

YYAC-2 SCR модуль плата управления тиристором триггерный переключатель постоянного тока управления AC 220 В

1. Модель продукта: YYAC-2 использует оригинальный SCR, DC управляет включением-выключением переменного тока, вход и выход полностью изолированы оптической связью.
2. Напряжение входного сигнала: DC3.3V ~ 24V; Ток: около 5 мА, может быть подключен к порту ввода-вывода микрокомпьютера, интерфейсу ПЛК, управлению источником постоянного тока
3.Выходная мощность: Может управлять нагрузкой в ​​пределах 220 В, 5 А
4. Выходные порты могут управлять мощным оборудованием переменного тока, двигателем, лампой, светодиодной лампой, водяным насосом, соленоидным клапаном и т. Д.
5. Размер печатной платы: 49,6 * 27,8 мм / 1,95 * 1,10 дюйма

ОБ ОБРАТНОЙ СВЯЗИ:

Если вы удовлетворены нашей продукцией, пожалуйста, дайте нам 5 звезд

Ваше удовлетворение и положительные отзывы очень важны для нас. Пожалуйста, оставьте положительный отзыв и 5 звезд, если вы удовлетворены нашими товарами и услугами.Если у вас возникли проблемы с нашими товарами или услугами, пожалуйста, свяжитесь с нами, прежде чем оставить отрицательный отзыв. Мы сделаем все возможное, чтобы решить любую проблему и предоставить вам лучшее обслуживание клиентов. Мы дадим вам положительный отзыв после получения оплаты. Если вы не удовлетворены своими товарами, обратитесь в нашу службу поддержки клиентов.

Мы поддерживаем высокие стандарты качества и стремимся к 100% удовлетворенности клиентов! Отзывы очень важны. Мы просим вас немедленно связаться с нами, ПРЕЖДЕ чем оставить нейтральный или отрицательный отзыв, чтобы мы могли удовлетворительно решить ваши проблемы.
Невозможно решить проблемы, если мы о них не знаем!

ОПЛАТА:

1) Мы принимаем Alipay, West Union, TT. Все основные кредитные карты принимаются через безопасный платежный процессор ESCROW.
2) Оплата должна быть произведена в течение 3 дней с момента заказа.
3) Если вы не можете оформить заказ сразу после закрытия аукциона, подождите несколько минут и повторите попытку. Платежи должны быть завершены в течение 3 дней.

О ДОСТАВКЕ:

1.ДОСТАВКА ПО ВСЕМУ МИРУ. (За исключением некоторых стран и APO / FPO)
2. Заказы обрабатываются своевременно после подтверждения оплаты.
3. Мы отправляем только по подтвержденным адресам заказа. Адрес вашего заказа ДОЛЖЕН СООТВЕТСТВОВАТЬ вашему адресу доставки.
4. Представленные изображения не являются фактическим товаром и предназначены только для справки.
5. ВРЕМЯ ПЕРЕХОДА ОБСЛУЖИВАНИЯ предоставляется перевозчиком и не включает выходные и праздничные дни. Время доставки может меняться, особенно во время курортного сезона.
6. Если вы не получили посылку в течение указанного срока, свяжитесь с нами.Мы отследим доставку и свяжемся с вами в кратчайшие сроки. Нашей целью является удовлетворение клиента!
7. Из-за наличия на складе и разницы во времени мы отправим ваш товар с нашего первого доступного склада для быстрой доставки.
8. Мы, продавец, не несем ответственности за импортные пошлины, ответственность за это несет покупатель. Любой спор, вызванный этим, необоснован.
9. Покупатель BR, пожалуйста, предоставьте cpf или cnpj, вам будет лучше получить их быстрее. спасибо

ВОЗВРАТ И ВОЗВРАТ:

1.У вас есть 7 дней, чтобы связаться с нами и 30 дней, чтобы вернуть его со дня получения. Если этот предмет находится в вашем распоряжении более 7 дней, он считается использованным, и МЫ НЕ ВЫДАЕМ ВАМ ВОЗВРАТ ИЛИ ЗАМЕНУ. БЕЗ ИСКЛЮЧЕНИЙ! Стоимость доставки оплачивается как продавцом, так и покупателем пополам.
2. Все возвращаемые товары ДОЛЖНЫ БЫТЬ в оригинальной упаковке, и вы ДОЛЖНЫ ПРЕДОСТАВИТЬ нам номер отслеживания доставки, конкретную причину возврата и ваш почтовый номер.
3. Мы вернем ВАШУ ПОЛНУЮ СУММУ ВЫИГРЫШНОЙ ЗАЯВКИ после получения товара в его первоначальном состоянии и в упаковке со всеми компонентами и аксессуарами ПОСЛЕ того, как Покупатель и Продавец отменят транзакцию с aliexpress.ИЛИ вы можете выбрать замену.
4. Мы будем нести всю стоимость доставки, если товар (ы) не соответствует рекламе.

.

Высокомощный модуль SCR Плата управления тиристором Триггерный переключатель Управление постоянным током 220 В переменного тока Профессиональный YYAC 2S | |

Мощный модуль SCR, плата управления тиристором, триггерный переключатель, управление постоянным током, 220 В переменного тока

1. Модель продукта: YYAC-2S принимает оригинальный SCR, DC контролирует включение-выключение переменного тока, вход и выход полностью изолированы оптической связью.
2. Напряжение входного сигнала: DC3.3v ~ 12V; Ток: около 2 мА, может быть подключен к порту ввода-вывода микрокомпьютера, интерфейсу ПЛК, контроллеру источника постоянного тока
3.Выходная мощность: Может управлять нагрузкой в ​​пределах 2500 Вт.
4. Выходные порты могут управлять мощным оборудованием переменного тока, двигателем, лампой, светодиодной цепочкой, водяным насосом, соленоидным клапаном и т. Д.
5. Примеры управления: Например, IN + подключает + 5В , IN- подключает однокристальный порт ввода-вывода; Когда выход IO равен 0, он выдает 220 В; Когда выход IO равен 1, он останавливает выход 220 В.

ОБ ОБРАТНОЙ СВЯЗИ:

Если вы удовлетворены нашей продукцией, пожалуйста, дайте нам 5 звезд

Ваше удовлетворение и положительные отзывы очень важны для нас.Пожалуйста, оставьте положительный отзыв и 5 звезд, если вы удовлетворены нашими товарами и услугами. Если у вас возникли проблемы с нашими товарами или услугами, пожалуйста, свяжитесь с нами, прежде чем оставить отрицательный отзыв. Мы сделаем все возможное, чтобы решить любую проблему и предоставить вам лучшее обслуживание клиентов. Мы дадим вам положительный отзыв после получения оплаты. Если вы не удовлетворены своими товарами, обратитесь в нашу службу поддержки клиентов.

Мы поддерживаем высокие стандарты качества и стремимся к 100% удовлетворенности клиентов! Отзывы очень важны. Мы просим вас немедленно связаться с нами, ПРЕЖДЕ чем оставить нейтральный или отрицательный отзыв, чтобы мы могли удовлетворительно решить ваши проблемы.
Невозможно решить проблемы, если мы о них не знаем!

ОПЛАТА:

1) Мы принимаем Alipay, West Union, TT. Все основные кредитные карты принимаются через безопасный платежный процессор ESCROW.
2) Оплата должна быть произведена в течение 3 дней с момента заказа.
3) Если вы не можете оформить заказ сразу после закрытия аукциона, подождите несколько минут и повторите попытку. Платежи должны быть завершены в течение 3 дней.

О ДОСТАВКЕ:

1.ДОСТАВКА ПО ВСЕМУ МИРУ. (За исключением некоторых стран и APO / FPO)
2. Заказы обрабатываются своевременно после подтверждения оплаты.
3. Мы отправляем только по подтвержденным адресам заказа. Адрес вашего заказа ДОЛЖЕН СООТВЕТСТВОВАТЬ вашему адресу доставки.
4. Представленные изображения не являются фактическим товаром и предназначены только для справки.
5. ВРЕМЯ ПЕРЕХОДА ОБСЛУЖИВАНИЯ предоставляется перевозчиком и не включает выходные и праздничные дни. Время доставки может меняться, особенно во время курортного сезона.
6. Если вы не получили посылку в течение указанного срока, свяжитесь с нами.Мы отследим доставку и свяжемся с вами в кратчайшие сроки. Нашей целью является удовлетворение клиента!
7. Из-за наличия на складе и разницы во времени мы отправим ваш товар с нашего первого доступного склада для быстрой доставки.
8. Мы, продавец, не несем ответственности за импортные пошлины, ответственность за это несет покупатель. Любой спор, вызванный этим, необоснован.
9. Покупатель BR, пожалуйста, предоставьте cpf или cnpj, вам будет лучше получить их быстрее. спасибо

ВОЗВРАТ И ВОЗВРАТ:

1.У вас есть 7 дней, чтобы связаться с нами и 30 дней, чтобы вернуть его со дня получения. Если этот предмет находится в вашем распоряжении более 7 дней, он считается использованным, и МЫ НЕ ВЫДАЕМ ВАМ ВОЗВРАТ ИЛИ ЗАМЕНУ. БЕЗ ИСКЛЮЧЕНИЙ! Стоимость доставки оплачивается как продавцом, так и покупателем пополам.
2. Все возвращаемые товары ДОЛЖНЫ БЫТЬ в оригинальной упаковке, и вы ДОЛЖНЫ ПРЕДОСТАВИТЬ нам номер отслеживания доставки, конкретную причину возврата и ваш почтовый номер.
3. Мы вернем ВАШУ ПОЛНУЮ СУММУ ВЫИГРЫШНОЙ ЗАЯВКИ после получения товара в его первоначальном состоянии и в упаковке со всеми компонентами и аксессуарами ПОСЛЕ того, как Покупатель и Продавец отменят транзакцию с aliexpress.ИЛИ вы можете выбрать замену.
4. Мы будем нести всю стоимость доставки, если товар (ы) не соответствует рекламе.

.

Бесплатная доставка !!! Тиристорный модуль SCM / триггерный переключатель платы управления тиристором / управление постоянным током / изоляция оптопары 220 В переменного тока | |

Тиристорный модуль SCM / триггерный переключатель платы тиристорного управления / управление постоянным током / изоляция оптопары 220 В переменного тока

Описание продукта

1: Модель продукта: YYAC-2 использует оригинальный тиристор, управление постоянным током, включение и выключение переменного тока, полностью изолированную входную и выходную оптопару

2: напряжение входного сигнала: DC5V; ток: около 5 мА, может быть подключен к порту ввода-вывода микроконтроллера, интерфейсу ПЛК, управлению мощностью постоянного тока

3: Выходная мощность: может управлять нагрузкой в ​​пределах 220 В переменного тока 5A

4: Выход может управлять высокой мощностью Оборудование переменного тока, двигатели, лампы, светодиодные ленты, двигатели постоянного тока, микронасосы, электромагнитные клапаны и т. Д.

5: Размер: 45 мм * 33 мм

Добро пожаловать в наш магазин, наслаждайтесь доставкой здесь, вы можете

мы принимаем оплату только кредитной картой ,Western Union.

Приносим извинения за то, что мы не принимаем другие способы оплаты, такие как чеки или почтовые переводы.

Доставка:

  1. Мы отправляем по всему миру, но Италия, Нигерия, Бразилия займет много времени доставки.
  2. Перед покупкой убедитесь, что ваш адрес правильный. Или нет, пожалуйста, исправьте его перед оплатой.
  3. Доставка по всему миру из Гонконга в течение 12-24 часов после получения платежа, и мы предоставим вам номер для отслеживания как можно скорее. Иногда мы отправляем его авиапочтой, если только один заказ по низкой цене. Надеюсь, вы понимаете.
  4. мы рекомендуем доставку через DHL или EMS, и мы сделали для вас скидку, вы можете получить ее в течение 4-9 рабочих дней.
  5. обычно занимает около 15-30 дней, если доставка воздушной почтой Китая / Гонконга

Отзывы:

отзывы очень важны для нас, пожалуйста, оставьте мне 5 звезд обратная связь, если вы удовлетворены нашим обслуживанием и нашими товарами, или, пожалуйста, свяжитесь со мной, если есть какие-то проблемы с нашими товарами.Мы решим их как можно скорее.

Гарантия и возврат:

  1. 12-месячная гарантия на дефектные изделия (за исключением предметов, поврежденных и / или неправильно использованных после получения).

Покупайте с уверенностью

  1. Запрос на возврат или замену доступен только для запросов в течение 1 недели после получения посылки и возврата товара в том же состоянии, в котором он был получен.
  2. Свяжитесь с нами, чтобы запросить разрешение на возврат. Ваше имя, номер аукциона и причина возврата должны быть указаны в электронном письме. Все возвращенные детали должны содержать все оригинальные упаковочные материалы.
  3. Тщательно упакуйте товар.Возвращенные товары будут проверены, и новая замена будет отправлена ​​покупателю сразу после обнаружения дефекта. Если подходящая замена недоступна, будет произведен возврат. Доставка, обработка и страховые взносы не подлежат возврату.
  4. Обратная доставка оплачивается Покупателем.

О НАС:

у нас есть гораздо больше продуктов, пожалуйста, свяжитесь с нами, если вам нужно. Добро пожаловать в оптовую продажу.БОЛЬШОЕ СПАСИБО!!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *