виды, особенности конструкции и применение
Регулирующие клапаны используют для управления давлением передаваемых по трубопроводам жидких и газообразных веществ. Регулирующий клапан позволяет непрерывно или дискретно регулировать поступление рабочей среды в трубопровод.
Назначение и конструктивные особенности
Для систем, в которых особенно важно точно распределить потоки рабочей среды, необходим узел регулирования давления.
Это особенно актуально, например, для теплосетей, так как от объемов поступающего в трубы и радиаторы теплоносителя зависит климат в помещениях. Пропускная способность трубопровода снижается или увеличивается соответственно при уменьшении или увеличении сечения отверстия внутри клапана.
Проблема решается путем постоянного изменения пропускной способности трубы, по которой движется жидкость или газ с помощью регулирующего клапана.
По назначению различают три основных вида регулирующих клапанов:
- двухходовой проходной – служит только для управления расходом жидкости или газа, используется на прямых участках трубопровода;
- двухходовой угловой – регулирует напор и изменяет его направление, используется на местах поворота трубопровода;
- трехходовой – смешивает два вида рабочей среды в общий поток или разделяет один поток на два.
Простейший регулирующий клапан – проходной, он состоит из следующих деталей:
- корпус в виде тройника, имеющего внутри проходное отверстие;
- фланец или резьба на концах патрубков;
- узел уплотнения, поддерживающий герметичность клапана;
- затвор – регулирующий орган клапана;
- шток – деталь, служащая для изменения положения затвора.
Регулирование потока рабочей среды происходит путем изменения размера проходного отверстия при перемещении положения затвора по отношению к проходному отверстию.
Конструкция частично меняется и дополняется новыми элементами в зависимости от назначения регулировочного клапана.
Обратите внимание! Существуют запорно-регулирующие клапаны, которые доработаны так, чтобы можно было полностью прекратить поступление рабочей среды. В этом случае затвор изготавливается таким образом, чтобы в закрытом положении его части смыкались герметично.
Преимущества регулирующих клапанов
Этот вид регулятора используется в бытовых и промышленных системах водо– и газоснабжения, теплосетях и нефтяных магистралях.
Широкая популярность регулирующих клапанов обусловлена их достоинствами:
- Надежность и долговечность. Корпус изготавливают из прочных материалов, таких как нержавеющая сталь, латунь, чугун, легированные сплавы металлов, устойчивых к воздействию агрессивных химических веществ.
- Простота конструкции и эффективность. Механизм работы клапана прост и при этом достаточен для выполнения задачи точного регулирования напора рабочей среды.
Обратите внимание! Использование регулировочных клапанов в отопительных системах позволяет, регулируя климат в помещении, снизить расход теплоносителя. Запорно-регулирующие клапаны упрощают ремонтные работы, позволяя перекрывать отдельные участки трубопровода, не останавливая работу всей системы.
- Разнообразие видов, типов и размеров. Подобрать регулирующий клапан можно для трубопровода любого назначения. Существуют клапаны с корпусами разного размера, с затворами различной конструкции, с ручным и автоматическим управлением, разнообразными датчиками.
Технические характеристики
Выбирают регулировочные клапаны, опираясь следующие технические характеристики:
- диаметр патрубков и пропускного отверстия;
- тип запирания – регулировочный и регулировочно-запорный;
- диапазон применения – давление и температура пропускаемой жидкости или газа, при которых сохраняется работоспособность клапана;
- материалы, из которых изготовлен корпус и уплотнители;
- тип фиксации на трубопроводе;
- способ управления;
- тип регулирующего механизма.
Размер корпуса регулировочного клапана должен совпадать с размером трубы, на которую будет производиться монтаж.
Материалы корпуса и уплотнителей выбираются устойчивые к воздействию того вещества, которое будет поступать через трубопровод.
Существует три типа фиксации клапанов: фланцевый, резьбовой и приварной:
- В первом случае на конце патрубка располагается фланец – плоская деталь с отверстиями под болты или шпильки. Такое соединение деталей чаще используется в промышленности.
- В бытовых трубопроводах используют регулировочную арматуру с резьбой на концах патрубков.
- Сварные устройства требуют дополнительных трудозатрат и используются редко.
По способу управления выделяют ручной и автоматический регуляторы. При ручном управлении пропускную способность меняют путем вращения вентиля или штурвала.
Для вращения штурвала на трубопроводах с большим диаметром требуются значительные трудозатраты, поэтому регулировочные клапаны с ручным управлением применяются чаще в бытовой сфере.
Клапаны с автоматическим управлением оснащаются датчиками, контролирующими давление и температуру. Изменение расхода рабочей среды происходит в соответствии с заложенным в датчики алгоритмом и на основании показаний приборов. Шток, перемещающий затвор, приводится в действие электро–, пневмо– или гидравлическим приводом.
Типы затворов и принцип их действия
Основной рабочей деталью регулирующей арматуры является затвор. По конструкции регулирующего органа выделяют следующие типы арматуры:
- седельная,
- мембранная,
- клеточная,
- золотниковая.
Седельный затвор
Основными элементами седельного затвора являются плунжер и седло. Плунжером называют цилиндрический поршень, у которого длина значительно больше диаметра. Седло – деталь затвора, расположенная между проходным отверстием клапана и его внутренней частью.
При перемещении поршня через седло меняется размер проходного отверстия. Выпускается одно– и двухседельная регулирующая арматура. Односедельная используется на трубах небольшого диаметра.
Двухседельный затвор позволяет точнее регулировать давление в трубах и может использоваться в трубопроводах диаметром до 30 см, так как в двухседельной системе плунжер лучше уравновешен и проще обеспечить герметичность затвора.
Мембранный затвор
В затворах этого типа также имеется седло, но вместо поршня его перекрывает гибкая мембрана. Мембрана не только позволяет регулировать давление рабочей среды, она защищает внутренние части арматуры от воздействия агрессивных веществ. В затворах этого типа высокий показатель герметичности подвижных элементов.
Однако регулирующий клапан с мембранным затвором вынужденно дополнительно оснащают контролирующими положение штока позиционерами. Необходимость усложнения конструкции обусловлена возможным снижением точности регулировки из-за трения между элементами.
Затвор клеточного типа
В качестве направляющего устройства для подвижного элемента затвора такого типа используется клетка – седло с радиальными отверстиями для управления расходом рабочей среды.
Внутри клетки, меняя ее пропускную способность, перемещается полый цилиндр. Таким образом, клетка выполняет функцию седла и пропускного отверстия.
Золотниковый затвор
Золотниковая регулирующая арматура имеет другое название – регулирующий кран, механизм ее работы действительно больше похож на работу крана.
Для изменения давления находящийся внутри корпуса золотник поворачивают на нужный угол, тогда как в затворах остальных типов уменьшение сечения пропускного отверстия происходит при поступательном, а не вращательном движении штока.
Регулирующие клапаны – типы и сфера применения
Востребованный вид трубопроводной арматуры представляют регулирующие клапаны, которые отличаются нюансами конструкции и областью применения. Согласно положениям ГОСТ 24856-2014 они устанавливаются в трубопроводах разного назначения и служат для управления рабочей средой, обеспечивая изменение ее объема или проходного сечения. Используя клапаны, выполняют контроль давления и других параметров, обеспечивая эффективное регулирование технологических процессов.
Классификация и сфера применения клапанов
Согласно положениям ГОСТ 12893-2005 регулировочные клапаны классифицируют по нескольким параметрам. По способу движения рабочей среды различают следующие варианты арматуры:
- проходные, которые размещаются на прямых отрезках и позволяют сохранить прежнее направление транспортировки среды;
- угловые модели, изменяющие перемещение на 90°.
Проходной регулирующий клапан
Угловой регулирующий клапан
Перемешивание двух вариантов рабочей среды с разными характеристиками происходит с помощью трехходовых моделей, которые комплектуются тремя патрубками.
Сырьем для производства регулировочных клапанов служат чугун, нержавеющая и легированная сталь, латунь и другие сплавы. Корпус изготавливают с помощью сварки, ковки, литья, штамповки и комбинированных методов. Выбор материалов определяет тип среды, с которой будет взаимодействовать арматура. Бытовые и промышленные клапаны устанавливают на трубопроводах, предназначенных для транспортировки:
- горячей и холодной воды;
- нефтепродуктов;
- воздуха;
- пара;
- химических составов в жидком и газообразном состоянии.
По способу управления клапаны бывают ручные и автоматические. Арматура первого типа предназначена для трубопроводов малого сечения и чаще всего используется для контроля технических параметров транспортируемых веществ в быту. На промышленных объектах востребованы автоматические клапаны, укомплектованные специальными датчиками. Средства измерения оценивают величину уровня давления и способствуют изменению потребляемого объема среды. Механизм перекрывания автоматического клапана приводится в движение с помощью привода, который бывает пневматическим, электрическим или гидравлическим.
Монтаж клапана на трубопроводе выполняется несколькими вариантами соединения. По способу фиксации арматуру разделяют на фланцевую, приварную, муфтовую и штуцерную. Разнообразие оборудования для регулировки давления и способов крепежа позволяет использовать клапаны при монтаже инженерных коммуникаций. Также они востребованы в газовой промышленности и применяются для контроля давления в трубопроводах на нефтеперерабатывающих предприятиях и на производстве химических веществ и продуктов питания.
Особенности конструкции и принцип действия регулирующих клапанов
Конструкция регулирующего клапана
Нюансы регулирующего устройства, которое применяется для контроля рабочей среды, определяются типом рабочего механизма и способом фиксации арматуры к бытовому или промышленному трубопроводу. Среднестатистический регулировочный клапан состоит из следующих элементов:
- корпуса;
- уплотнительного блока, который обеспечивает герметичность арматуры после установки и препятствует выходу рабочей среды;
- запорного узла;
- штока, соединяющего ручной или механический привод клапана с запорным механизмом;
- пропускного отверстия;
- деталей крепления, с помощью которых арматура для управления давлением и другими показателей закрепляется на трубопроводе.
Принцип функционирования арматуры, которая используется для контроля давления рабочей среды, заключается в уменьшении пропускного отверстия. Оно происходит с помощью запорного механизма, приходящего в движение благодаря приводу клапана. В результате объем транспортируемых продуктов уменьшается, а уровень давления падает.
При выборе арматуры, которая регулирует перемещение рабочей среды по трубам, нужно обращать внимание на следующие параметры оборудования:
- условный диаметр прохода;
- рабочее и пробное давление;
- пропускную способность.
К важным параметрам регулирующей арматуры относятся материалы, которые необходимы для изготовления оборудования, а также вид привода.
Разновидности регулирующих клапанов
По типу затворного механизма арматура для контроля давления в трубопроводе разделяется на следующие устройства:
Седельный клапан
Клеточный клапан
Золотниковый клапан
Мембранный клапан
- Седельные. Функции рабочего элемента клапана выполняет плунжер, который по своей конструкции бывает тарельчатым, игольчатым или стержневым. Он передвигается через одно или два седла арматуры, уменьшая ее проходное сечение. Односедельные модели устанавливают на трубопроводы малого диаметра, а клапаны с двумя седлами востребованы на магистралях значительных размеров.
- Клеточные. При использовании арматуры контроль и регулировка давления в трубопроводе происходят за счет затвора, который имеет форму полого цилиндра с радиальной перфорацией. Он двигается по клетке, выполняющей функции направляющего элемента и пропускного узла. Благодаря нюансам конструкции клеточные клапаны отличаются малой вибрацией и небольшим уровнем шума.
- Золотниковые. Регулирование параметров транспортируемых веществ выполняется с помощью золотника, который поворачивается на определенный угол. Управление золотниковым арматурным устройством не требует больших усилий, поскольку транспортируемые жидкие и газообразные вещества почти не оказывают сопротивления при перемещении запорного механизма клапана. Однако такая арматура не в состоянии обеспечить полную герметичность, поэтому ее не следует устанавливать на магистралях высокого давления.
- Мембранные. Перекрытие сечения трубопровода в арматуре такого типа происходит с помощью мембраны, изготовленной из эластичной резины или фторопласта. Чтобы избежать погрешностей при регулировании мембранные клапаны комплектуются специальными элементами, которые обеспечивают контроль положения штока. Среди преимуществ арматуры выделяют устойчивость к коррозии и агрессивным средам, что позволяет ее использовать в нефтехимической промышленности. Мембранные клапаны выпускаются с гидравлическим или пневматическим приводом, который бывает встроенным или выносным.
Востребованы при монтаже трубопроводов разного назначения и запорно-регулирующие клапаны, которые помимо изменения расхода транспортируемых веществ позволяют полностью перекрывать их циркуляцию. Функции запорного устройства в арматуре выполняет плунжер. При контакте с седлом в полном объеме он обеспечивает герметичное отсечение, а при частичном — уменьшение проходного отверстия.
Пример маркировки регулирующих клапанов
Маркировка выпускаемых регулирующих клапанов выполняется согласно ГОСТ Р 52720-2007 и таблицам фигур, в которых представлены данные об обозначениях по типу арматуры и ее конструктивным нюансам. Кроме того, в нормативной документации указаны материал, используемый для производства корпуса и уплотняющих элементов.
Пример расшифровки для 25с947нж:
- первые две цифры обозначают тип арматуры: 25 — регулирующий клапан;
- буква указывает материал корпуса: с — изготовлен из углеродистой стали;
- при наличии трех цифр первая обозначает тип привода, а две следующих номер модели: 947 — модель 47 с электрическим приводом;
- последние буквы указывают материал уплотнителей: нж — уплотнительные поверхности клапана наплавлены сталью, устойчивой к коррозии.
Регулирующий клапан 25с947нж
Если арматура для регулирования давления и расхода среды производится без направленных или вставных уплотнительных колец, то на ее корпусе или затворе это отражается в виде двух букв — «бк». В случае наличия покрытия на внутренних поверхностях клапанов оно указывается согласно последней таблице фигур.
Компания «Авангард» — главный поставщик клапанов для регулировки давления и других параметров рабочей среды на территории России. Мы предлагаем регулирующие клапаны, которые отличаются приемлемой ценой и соответствуют требованиям ГОСТ.
Старый Оскол:
- Телефон: +7 (4725) 46-93-70, 46-94-70
- E-mail: [email protected], [email protected]
- Адрес: Котел, Промузел, площадка «Монтажная», проезд Ш-6, стр. 19
- Часы работы: С пн. по пт.: с 8:00 до 17:00, пятница — сокращенный день на 1 час.
Москва:
- Телефон: +7 (495) 229-45-77, 648-91-91
- E-mail: [email protected]
- Часы работы: С пн. по пт.: с 9:00 до 18:00, пятница — сокращенный день на 1 час.
Казань:
- Телефон: +7 (843) 533-16-67, 570-00-47
- E-mail: [email protected]
- Часы работы: С пн. по пт.: с 8:00 до 17:00, пятница — сокращенный день на 1 час.
виды, принцип работы, применение и правила монтажа
Здравствуйте, уважаемый читатель! В промышленных трубопроводах, по которым беспрерывно продвигается огромный поток жидкостей, необходимо регулировать это движение, уменьшая или увеличивая скорость потока, давление в трубах. В таких случаях незаменимую роль играет клапан запорно регулирующий с электроприводом. В нашей статье рассмотрим его виды и характеристики, способы подключения, правила использования, познакомимся с советами специалистов по установке и эксплуатации агрегата.
Что это такое и для чего он нужен
Запорный кран с различными типами приводов представляет собой устройство, с помощью которого можно полностью или частично перекрывать движущийся поток жидкости в трубопроводе.
Особенность конструкции с электроприводом заключается в том, что позволяет производить эти действия дистанционно, практически в любой точке магистрали.
Назначение и сферы применения
Регулирующие клапаны позволяют автоматически управлять на расстоянии процессом регулирования расхода жидкости, силы давления в трубопроводах.
Применяются в крупных магистральных, технологических и коммунально-сетевых каналах, по которым транспортируется среда.
Электроприводные устройства могут быть как запорными, с функцией только полного перекрытия трубы, так и с функцией регулирования силы потока путем полного или частичного его приостановления.
Управление и технические характеристики
Управление клапаном осуществляется за счёт линейного перемещения штока с плунжером. Пуск устройства осуществляется нажатием пусковой кнопки на пульте. Под действием электротока привод передает усилие на плунжер. Тот, перемещаясь вверх-вниз, меняет площадь сечения пропускного отверстия.
Основными техническими характеристиками запорно регулирующей арматуры являются:
- значение номинального давления в системе, которое способно выдержать устройство;
- размер диаметра условного прохода в мм;
- условная пропускная способность в м3/ч;
- пределы температурных значений, при которых агрегат функционирует нормально;
- напряжение в сети, предназначенное для электропривода.
Тип подключения
По типу подключения запорно-регулирующие устройства подразделяют на
- фланцевые,
- штуцерные,
- муфтовые,
- цапковые,
- сварные.
Первый вариант наиболее предпочтительный. Как правило, клапаны подобного типа уже укомплектованы фланцами. Их используют в сетях с высоким давлением. Через фланец агрегат можно прикрепить к любым, подходящим по размеру условного прохода трубам. Также не зависит, какого типа устройство будет подключаться.
Сварной метод соединения не рекомендуется использовать, когда предстоит установить обратный механизм, съемные модели и задвижки. Применяют его только для стальных агрегатов.
Устройство
Простейший регулирующий клапан состоит из корпуса с фланцами, в котором расположены седло, шток с плунжером на конце и уплотняющий узел, отвечающий за герметизацию всей запорной арматуры.
Когда плунжер закрывает только часть проходного отверстия, расход воды в системе уменьшается. Плотно опущенный в седло плунжер перекрывает поток, давление в трубе после арматуры падает до нуля.
Если в бытовых трубопроводах применяются шаровые краны, то в магистралях промышленного назначения и коммунальных сетях предпочтения отдаются золотникам и задвижкам с электродвигателем.
Принцип работы
Принцип действия клапана с электроприводом во много схож с работой обычного вентиля. Отличают их способ управления и функциональность.
По принципу действия выделяют перекрывающие, смешивающие или разделяющие магистральный поток устройства.
К перекрывающим агрегатам относят двухходовые седельные затворы, широко применяемые в коммунальных тепловых сетях.
Для смешения и разделения потока используют трёхходовые варианты, имеющие три патрубка для подсоединения к магистрали.
Виды и отличия конструкций
Клапаны по устройству привода разделяют на управляемые:
- вручную;
- электроприводами;
- пневмоприводами;
- электромагнитным способом.
По запорному механизму конструкции подразделяют на:
- запорные, рассчитанные только на перекрытие среды;
- мембранные, с резиновой мембраной в корпусе, приспособленные для работы в газовых сетях;
- обратный, закрывающийся при перемене направления потока;
- золотниковый, регулирующий интенсивность потока за счет перемещения подвижного золотника;
- седельный, с линейным перемещением штока с плунжером, закрывающего или открывающего с помощью седелок путь для потока.
Преимущества и недостатки
Достоинства пневматического привода заключаются в его демократичной цене, устройства с такими управлением дешевле электрических аналогов.
Клапаны с электромагнитным приводом значительно облегчают процесс дистанционного управления средой на длительном отрезке магистрали, позволяют внедрять электронную систему управления.
Устройство само сможет снимать точные показатели состояния того же теплоносителя в трубопроводах, передавать оператору сведения об уровне давления, количестве жидкости в потоке и даже переустанавливать позиции запорных деталей конструкции.
Однако цена и сложность аппаратов будет возрастать.
Советы по выбору
Оптимальный выбор устройства должен обеспечить высокую точность в регулировании. Необходимо учесть множество факторов, чтобы принять правильное решение по приобретению агрегата.
Важно обратиться к опытному и зарекомендовавшему себя на рынке поставщику, обладающему заслуженной репутацией.
При подборе арматуры обращайте внимание на:
- маркировку изделия, где указаны пропускная способность и номинальное давление для прибора;
- условия технического обслуживания устройства, можно ли провести его ремонт без снятия с линии;
- возможно ли изменять пропускную способность прибора;
- наличие конструктивных элементов в устройстве, снижающих величину шума.
Правила монтажа и эксплуатации прибора
Перед установкой аппарата проверяют крепежи, внутреннюю часть клапана и труб магистрали на предмет выявления и удаления посторонних частиц. Если возникла необходимость, прибор промывают и делают его продувку.
После установки проверяют аппарат на работоспособность.
В ходе эксплуатации необходимо периодически, не реже двух раз в год, осматривать прибор и проводить регламентные работы.
Проверяют общее состояние устройства и его крепежа.
Все работы с электроклапаном необходимо вести, руководствуясь прилагаемой к нему инструкцией.
Необходимые инструменты и материалы
Понадобится следующий набор инструментов:
шуруповерт с соответствующими насадками;
- отвертка;
- плоскогубцы;
- шланг для промывки.
Материалы:
- набор болтов;
- медные трубки для проводов;
- электропровод.
Схема подключения
Классическая схема монтажа двухходового регулирующего клапана
Ход работ
Устанавливая фланцы, следят за тем, чтобы не было перекосов. Нельзя применять излишнюю силу при устранении перекоса, иначе можно деформировать фланцы корпуса прибора.
При монтаже строго следят за тем, чтобы стрелка на корпусе совпадала с направлением движения потока.
После установки прибор открывают, тщательно промывают и продувают.
Проверяют герметизацию соединений и уплотнительного узла штока.
Проверку работоспособности устройства производят подключением к электросети. Клапан должен пятикратно сработать на полный ход без подачи среды. Все детали должны перемещаться легко и без рывков.
Частые ошибки и проблемы при установке
Приобретение изделия с завышенным условным проходом (ДУ). Пропускная способность выше нормируемой повлияет отрицательно на точность регулирования.
При выборе клапана с заниженным условным проходом он будет не в состоянии дать нужный расход пара при выставленных показателях давления. Это приведет к тому, что давление и температура среды в трубе после запорного устройства станут ниже значений, которые необходимы для нормального функционирования тепловой сети.
Несоблюдение технологии при монтаже арматуры.
Указанные ошибки способны вызвать нестабильность в работе системы регулирования и привести к неисправности клапана и электропривода.
Советы специалистов
В паропроводах перед регулирующей арматурой обязательно устанавливается конденсатоотводчик, обеспечивающий своевременный вывод конденсата.
В период монтажа нельзя вести сварку на трубопроводе с установленным клапаном, чтобы не повредить уплотнения.
От нежелательных последствий гидроударов трубопровод может защитить система обратных поворотных затворов, в которых запорным элементом является стальной диск. Они устанавливаются посредством фланцевых соединений через определенные промежутки, что позволяет эффективно противостоять гидроударам.
Видео
На данном видео наглядно продемонстрированы устройство и принцип работы запорно-регулирующего затвора.
Заключение
Надеемся, что статья для вас оказалась познавательной и полезной. Желаем вам удачи в ремонтных работах, подписывайтесь на наши статьи и делитесь своим опытом в социальных сетях.
Загрузка…
Регулирующий клапан — Википедия
Современный регулирующий клапан с электрическим приводом.
Регулирующий клапан — один из конструктивных видов регулирующей трубопроводной арматуры. Это наиболее часто применяющийся тип регулирующей арматуры как для непрерывного (аналогового), так и для дискретного регулирования расхода и давления. Выполнение этой задачи регулирующие клапаны осуществляют за счёт изменения расхода среды через своё проходное сечение[1]. Материал изготовления регулирующих клапанов зависит напрямую от типа рабочей среды, с которой клапан будет иметь контакт.
В зависимости от назначения и условий эксплуатации применяются различные виды управления регулирующей арматурой, чаще всего при этом используются специальные приводы и управление с помощью промышленных микроконтроллеров по команде от датчиков, фиксирующих параметры среды в трубопроводе. Используются электрические, пневматические, гидравлические и электромагнитные приводы для регулирующих клапанов. В современной промышленности уже редко, но все же встречается, основной способ управления регуляторами в прошлом — ручное управление[2].
Проходной запорно-регулирующий клапан с электрическим приводом.
Также применяются запорно-регулирующие клапаны, с помощью этих устройств осуществляется как регулирование по заданной характеристике, так и уплотнение затвора по нормам герметичности для запорной арматуры, что обеспечивается специальной конструкцией плунжера, имеющего профильную часть для регулирования, а также уплотнительную поверхность для плотного контакта с седлом в положении «закрыто».
Для присоединения регулирующих клапанов к трубопроводам применяются все известные способы (фланцевый, муфтовый, штуцерный, цапковый, приваркой), но приварка к трубопроводу используется только для клапанов, изготовленных из сталей.
Большинство из регулирующих клапанов весьма схожи по конструкции с запорными клапанами, но есть и свои специфические виды.
По направлению потока рабочей среды регулирующие клапаны делятся на:
- проходные — такие клапаны устанавливаются на прямых участках трубопровода, в них направление потока рабочей среды не изменяется;
- угловые — меняют направление потока на 90°;
- трехходовые (смесительные) — имеют три патрубка для присоединения к трубопроводу (два входных и один выходной) для смешивания двух потоков сред с различными параметрами в один. В сантехнике такое устройство имеет название смеситель.
Основные различия регулирующих клапанов заключаются в конструкциях регулирующих органов[1][3].
Устройство и принцип действия
На поясняющем рисунке справа изображен простейший проходной односедёльный регулирующий клапан в разрезе. Где:
- B — корпус арматуры;
- F — фланец для присоединения арматуры к трубопроводу.
- P — узел уплотнения, обеспечивающий герметичность арматуры по отношению к внешней среде;
- S — шток арматуры, передающий поступательное усилие от механизированного или ручного привода затвору, состоящему из плунжера и седла;
- T — плунжер, своим профилем определяет характеристику регулирования арматуры;
- V — седло арматуры, элемент, обеспечивающий посадку плунжера в крайнем закрытом положении.
Усилие от привода с помощью штока передается на затвор, состоящий из плунжера и седла. Плунжер перекрывает часть проходного сечения, что приводит к уменьшению расхода через клапан. Согласно закону Бернулли при этом увеличивается скорость потока среды, а статическое давление в трубе падает. При полном закрытии плунжер садится в седло, поток перекрывается, и, если затвор будет полностью герметичен, давление после клапана будет равно нулю[1].
Конструкции регулирующих органов
Односедёльные и двухседёльные
В седёльных клапанах подвижным элементом служит плунжер, который может быть игольчатым, стержневым или тарельчатым. Плунжер перемещается перпендикулярно оси потока среды через седло (или сёдла), изменяя проходное сечение. Наиболее часто встречаемые — двухседёльные клапаны, так как их затвор хорошо уравновешен, что позволяет их применять для непрерывного регулирования давления до 6,3 МПа в трубопроводах диаметром до 300 мм, при этом используя исполнительные механизмы меньшей мощности, чем односедёльные. Односедёльные клапаны применяются чаще всего для небольших диаметров прохода из-за своего неуравновешенного плунжера. Также преимущество двухседёльных клапанов состоит в том, что такой конструкцией гораздо легче обеспечить требуемую для запорно-регулирующей арматуры герметичность с помощью плунжера, имеющего специальный регулирующий профиль для контакта с одним седлом, а для посадки в другое седло — уплотнительную поверхность для более плотного контакта[1][3].
Клеточные
Затвор клеточных клапанов выполняется в виде полого цилиндра, который перемещается внутри клетки, являющейся направляющим устройством и, одновременно, седлом в корпусе. В клетке имеются радиальные отверстия (перфорация), позволяющие регулировать расход среды. Ранее такие клапаны назывались поршневыми перфорированными. Клеточные клапаны за счёт своей конструкции позволяют снизить шум, вибрацию и кавитацию при работе арматуры[1][3].
Мембранные
В клапанах этого типа используются встроенные или вынесенные мембранные пневмо- или гидроприводы. В случае встроенного привода расход рабочей среды напрямую изменяется за счёт перекрытия прохода в седле гибкой мембраной из резины, фторопласта или полиэтилена, на которую воздействует давление управляющей среды. Если привод вынесен, то перестановочное усилие передаётся через мембрану на опору штока клапана, а через него на регулирующий орган; когда давление управляющей среды сбрасывается, пружина возвращает мембрану в начальное положение. Чтобы усилия от среды и сила трения в направляющих и уплотнении не приводили к снижению точности работы клапана, в такой арматуре часто используются дополнительные устройства — позиционеры, контролирующие положение штока. Мембранные клапаны могут быть как одно-, так и двухседёльные. Основным достоинством таких клапанов является высокая герметичность подвижного соединения и коррозионная стойкость материалов, из которых изготавливаются мембраны, что позволяет обеспечить хорошую защиту внутренних поверхностей арматуры от воздействия рабочих сред, которые могут быть агрессивными[1][3][2].
Золотниковые
В этих устройствах регулирование расхода среды происходит при повороте золотника на необходимый угол, в отличие от других клапанов с поступательным движением штока или мембраны. Такие клапаны применяются, как правило, в энергетике и имеют альтернативное название «регулирующий кран», так как по принципу действия принадлежат к кранам[1][3].
См. также
Примечания
- ↑ 1 2 3 4 5 6 7 Поговорим об арматуре. Р.Ф.Усватов-Усыскин — М.: Vitex, 2005.
- ↑ 1 2 Трубопроводная арматура с автоматическим управлением. Справочник. Под общей редакцией С.И.Косых. — Л.: Машиностроение, 1982.
- ↑ 1 2 3 4 5 Трубопроводная арматура. Справочное пособие. Д.Ф.Гуревич — Л.: Машиностроение, 1981.
Регулирующий клапан – электропривод, МИМ или позиционер?
Многие задачи автоматизации технологических процессов в той или иной мере требуют плавного изменения параметров рабочей среды. Это может быть поддержание нужного расхода теплоносителя на входе в теплообменник, или заданного давления воздуха внутри рабочей камеры пневмоцилиндра для регулировки усилия прижима, или поддержание соотношения газ/воздух при подаче топлива в горелку котла и т. д. Эти и многие другие задачи требуют применения регулирующих клапанов для их решения.
1. Клапаны с электроприводом и трёхпозиционным управлением
Рисунок 1 — Регулирующий шаровый клапан с электроприводом VALMA0
Одним из наиболее распространённых типов регулирующих клапанов являются клапаны с электроприводом и трёхпозиционным управлением, который в народе часто называют «больше/меньше». Данный способ управления характеризуется наличием трёх состояний клапана: открывается (сигнал «больше»), закрывается (сигнал «меньше») и не изменяет состояния (оба сигнала: и «больше» и «меньше» отсутствуют).
Электроприводы с таким способом управления применяются как совместно с запорно-регулирующими клапанами (линейное перемещение рабочего органа), так и совместно с регулирующими шаровыми кранами или заслонками (поворот рабочего органа). В обои случаях принцип работы электропривода одинаковый: подача одного из сигналов «больше» или «меньше» приводит к вращению
электромотора в различных направлениях, а редуктор преобразует это вращение в линейное (для клапанов) или поворотное (для кранов) движение. При этом необходимость обеспечения высокого выходного момента заставляет использовать редукторы с большим передаточным отношением, что приводит к уменьшению скорости работы привода.
Время полного хода регулирующих клапанов с электроприводом составляет, как правило, от нескольких десятков до нескольких сотен секунд. Для многих медленно протекающих процессов быстродействие не является критичным и на первый план при выборе выходят цена и общая надёжность конструкции. Примером таких процессов может служить задача поддержания температуры в контурах отопления или горячего водоснабжения в индивидуальных тепловых пунктах (ИТП).
2. Клапаны с мембранным исполнительным механизмом (МИМ)
Рисунок 2 — Регулирующий клапан с МИМ
Использование клапанов с электроприводом и управлением «больше/меньше» требует применения специальных регуляторов. Однако, данные регуляторы не являются редкостью, а их настройка не вызывает больших трудностей, так что этот факт следует отнести скорее к особенностям таких клапанов, а не к их недостаткам.
Впрочем, некоторые процессы для качественного управления требуют быстродействующих клапанов со временем полного хода не более нескольких секунд. Примерами таких процессов могут служить пастеризационно-охладительные установки (ПОУ) или уже упоминаемый процесс поддержания оптимального соотношения газ/воздух. Для решения этих задач используют клапаны с пропорциональным способом управления и одними из наиболее распространённых клапанов такого типа являются клапаны с мембранным исполнительным механизмом (МИМ).
Рисунок 3 — ЭПП ASCO Sentronic LP
В качестве входного сигнала управления, определяющего положение рабочего органа клапана чаще всего выступает унифицированный пневматический сигнал 20…100 кПа. При этом для подключения к электронной системе автоматики используют специальные электропневмопреобразователи (ЭПП). С помощью этих устройств унифицированный электрический сигнал 4…20 мА или 0…10 В преобразуется в пневматический сигнал управления 20…100 кПа.
Клапаны с МИМ совместно с ЭПП имеют на порядок большее быстродействие по сравнению с клапанами с электроприводом, что позволяет обеспечивать большую точность в динамическом режиме работы. Однако, такой подход при построении системы управления несёт в себе одну скрытую угрозу.
Дело в том что в цепи управления присутствует преобразование без обратной связи (ЭПП ➝ МИМ ➝ процент открытия клапана) и на обоих этапах этого преобразования возможны нелинейности, вызывающие уменьшение динамической точности. Таким образом одна и та же величина сигнала управления генерируемая регулятором может приводить к различному проценту открытия клапана и, как следствие, к отличающемуся от ожидаемого воздействию на объект управления.
Рисунок 4 — Схема контура регулирования при ипользовании клапана с МИМ и ЭПП
Неточная передача управляющих воздействий на объект управления связана с естественными отклонениями реальных устройств от их идеального представления. Эти отклонения присущи любым устройствам, хотя
разные модели разных производителей могут иметь различную величину данных отклонений. Применительно к пропорциональным клапанам отклонение реальных устройств от их идеальных моделей обычно характеризуют четырьмя параметрами: линейность, чувствительность, гистерезис и повторяемость.
Линейность
Характеризует отклонение реального положения рабочего органа клапана от расчётного, соответствующего текущему уровню входного сигнала. Идеальная зависимость между управляющим сигналом и положением рабочего органа клапана представляет из себя прямую линию. Однако, фактическое положение может отличаться от расчётного по ряду причин. Максимальное отклонение фактического положения от расчётного выражают в процентах и называют линейностью (или нелинейностью). На рисунке 5 характеристика идеального клапана показана чёрной линией, а реального зелёной. Для клапанов с трёхпозиционным управлением значение линейности не указывают, т. к. однозначная зависимость между сигналами управления и положением рабочего органа клапана отсутствует.
Чувствительность
Если придерживаться формального подхода, определяет минимально возможное перемещение рабочего органа клапана. Выражается в процентах от общего перемещения. Чем меньше значение чувствительности, тем более
незначительные изменения управляющего сигнала может отработать регулирующий клапан. Однако, не следует забывать что частые перемещения рабочего органа на малые расстояния приводят к повышенному износу и сокращают срок службы клапана. Поэтому, чаще всего, чувствительность клапана обозначает максимально возможную точность остановки рабочего органа в требуемом положении, а для того что-бы избежать микроперемещений при работе клапана в устройстве управления Рисунок 6 – Чувствительность вводится зона нечувствительности, превышающая чувствительность клапана и предотвращающая повышенный износ.
Гистериз
Под гистерезисом регулирующих клапанов понимают разность положений рабочего органа, которые он занимает при одной и той-же величине управляющего сигнала но при движении в разных направлениях – при закрытии и открытии. Наибольшее влияние на процесс регулирования гистерезис оказывает при изменении направления движения рабочего органа. Допустим, система управления открывает клапан. При этом рабочий орган движется по нижней кривой от точки 0 до точки 1. Если в этот момент требуется изменить направление движения, система управления уменьшает величину входного сигнала, однако, положение рабочего органа клапана не изменится до тех пор пока не будет достигнута точка 2.
Рисунок 5 — Линейность
Рисунок 6 — Чувствительность
Рисунок 7 — Гистериз
Высококачественные клапаны имеют небольшой гистерезис, 1…2%, который не оказывает существенного влияния на процесс управления. Однако, гистерезис некоторых типов регулирующих клапанов может достигать 10…15%, что заставляет инженеров внедрять в систему управления дополнительные устройства или программные модули для компенсации влияния гистерезиса. В процессе эксплуатации, значение гистерезиса клапана может сильно увеличиваться вследствие износа. При критическом увеличении гистерезиса его называют люфтом.
Повторяемость это способность рабочего органа клапана занимать одинаковые положения при многократной подаче на него одинаковых входных сигналов. В отличии от измерительных приборов для клапанов значение повторяемости, обычно не является критичным, т. к. повторяемости почти любого современного клапана оказывается достаточно высокой чтобы не оказывать сколько-нибудь существенного влияния на процесс регулирования. Все эти отклонения возникают в разомкнутой части системы управления (ЭПП ➝ МИМ ➝ процент открытия клапана) и их качественная компенсация без введения обратной связи является сложным процессом, требующим применения нетрадиционных регуляторов и длительной настройки на этапе пусконаладочных работ.
В связи с высокой сложностью компенсации нелинейностей в цепи управления при использовании клапанов с МИМ и ЭПП от неё часто отказываются. При этом оценить точность системы управления в динамическом режиме работы становится практически невозможно и при построении системы приходится опираться на личный опыт проектировщиков, а представления о применимости тех или иных клапанов для решения поставленных задач формируются исходя из успехов (или неудач) уже реализованных проектов. Избежать неясностей при построении подобных систем управления позволяет введение в цепь управления обратной связи по положению штока клапана с формированием второго, стабилизирующего, контура. В качестве регулятора в этом контуре используется позиционер.
Рисунок 8 — Схема контура регулирования при спользовании клапана с позиционером
3. Позиционер управления клапаном
Рисунок 9 — Позиционер
Это устройство которое полностью берёт на себя функцию управления клапаном. Примером может служить позиционер ASCO 60566318, который устанавливается на все регулирующие клапаны серий E290(резьбовой), S290(приварной) и T290(фланцевый). После установки позиционера на клапан запускается процедура инициализации, в процессе которой позиционер в автоматическом режиме собирает всю необходимую информацию о клапане и настраивает встроенный регулятор таким образом чтобы обеспечить оптимальное управление. После завершения инициализации из системы управления достаточно подать на позиционер пропорциональный сигнал с требуемым процентом открытия клапана, а позиционер приведёт клапан в нужное положение.
Рисунок 10 — Регулирующий клапан ASCO с позиционером
Использование клапанов с позиционером позволяет скомпенсировать нелинейности на этапах преобразования пропорционального электрического сигнала от регулятора в процент открытия клапана. Благодаря этому можно почти полностью отказаться от сложной процедуры ручной настройки регуляторов, управляющих пропорциональными клапанами.
Клапан с позиционером уже имеет в своём составе замкнутый контур управления с оптимально настроенным регулятором, среди прочего в автоматическом режиме компенсирующим гистерезис и нелинейность клапана. Таким образом время пусконаладочных работ сокращается до минимума, а расчёт точности упрощается и представляет из себя один параметр – зону нечувствительности встроенного в позиционер регулятора.
Для регулирующих клапанов ASCO с позиционером заводское значение зоны нечувствительности составляет 1%. Инженерам-проектировщикам следует, однако, помнить что даже такие высокие показатели точности не гарантируют высококачественного регулирования в случае неправильно выбранного регулирующего клапана. Так, например, часто встречающейся ошибкой при проектировании систем является выбор регулирующего клапана по диаметру трубопровода на котором он устанавливается.
При таком подходе реальный расход среды через регулирующий клапан может оказаться существенно ниже номинального расхода, а значит и показатели качества процесса регулирования ухудшатся в несколько раз. Поэтому при высоких требованиях к точности регулирования следует уделить особое внимание выбору клапана с коэффициентом расхода Kv соответствующим проектируемой системе.
4. Выводы
На современном рынке технических средств автоматизации представлено большое количество различных регулирующих клапанов. Наиболее распространёнными являются три типа: клапаны с электроприводом с трёхпозиционным способом управления («больше/меньше»), клапаны с МИМ и ЭПП, клапаны с позиционером. Преимущества и недостатки каждого из них можно резюмировать следующим образом.
Клапаны с электроприводом и управлением «больше меньше»
Рисунок 11 — Клапаны с электроприводом и управлением «больше меньше»
Плюсы:
| Минусы:
|
Клапаны с МИМ и ЭПП
Рисунок 11 — Клапаны с МИМ и ЭПП
Плюсы:
| Минусы:
|
Клапаны с позиционером
Рисунок 11 — Клапаны с позиционером
Плюсы:
| Минусы:
|
Инженер ООО «КИП-Сервис»
Быков А.Ю.
Дополнительные материалы:
Читайте также:
Регулирующий клапан — это… Что такое Регулирующий клапан?
Современный регулирующий клапан с электрическим приводом.
Регулирующий клапан — один из конструктивных видов регулирующей трубопроводной арматуры. Это наиболее часто применяющийся тип регулирующей арматуры как для непрерывного (аналогового), так и для дискретного регулирования расхода и давления. Выполнение этой задачи регулирующие клапаны осуществляют за счёт изменения расхода среды через своё проходное сечение[1].
В зависимости от назначения и условий эксплуатации применяются различные виды управления регулирующей арматурой, чаще всего при этом используются специальные приводы и управление с помощью промышленных микроконтроллеров по команде от датчиков, фиксирующих параметры среды в трубопроводе. Используются электрические, пневматические, гидравлические и электромагнитные приводы для регулирующих клапанов. В современной промышленности уже редко, но все же встречается, основной способ управления регуляторами в прошлом — ручное управление[2].
Проходной запорно-регулирующий клапан с электрическим приводом.
Также применяются запорно-регулирующие клапаны, с помощью этих устройств осуществляется как регулирование по заданной характеристике, так и уплотнение затвора по нормам герметичности для запорной арматуры, что обеспечивается специальной конструкцией плунжера, имеющего профильную часть для регулирования, а также уплотнительную поверхность для плотного контакта с седлом в положении «закрыто».
Для присоединения регулирующих клапанов к трубопроводам применяются все известные способы (фланцевый, муфтовый, штуцерный, цапковый, приваркой), но приварка к трубопроводу используется только для клапанов, изготовленных из сталей.
Большинство из регулирующих клапанов весьма схожи по конструкции с запорными клапанами, но есть и свои специфические виды.
По направлению потока рабочей среды регулирующие клапаны делятся на:
- проходные — такие клапаны устанавливаются на прямых участках трубопровода, в них направление потока рабочей среды не изменяется;
- угловые — меняют направление потока на 90°;
- трехходовые (смесительные) — имеют три патрубка для присоединения к трубопроводу (два входных и один выходной) для смешивания двух потоков сред с различными параметрами в один. В сантехнике такое устройство имеет название смеситель.
Основные различия регулирующих клапанов заключаются в конструкциях регулирующих органов[1][3].
Устройство и принцип действия.
На поясняющем рисунке справа изображен простейший проходной односедёльный регулирующий клапан в разрезе. Где:
- B — корпус арматуры;
- F — фланец для присоединения арматуры к трубопроводу.
- P — узел уплотнения, обеспечивающий герметичность арматуры по отношению к внешней среде;
- S — шток арматуры, передающий поступательное усилие от механизированного или ручного привода затвору, состоящему из плунжера и седла;
- T — плунжер, своим профилем определяет характеристику регулирования арматуры;
- V — седло арматуры, элемент, обеспечивающий посадку плунжера в крайнем закрытом положении.
Усилие от привода с помощью штока передается на затвор, состоящий из плунжера и седла. Плунжер перекрывает часть проходного сечения, что приводит к уменьшению расхода через клапан. Согласно закону Бернулли при этом увеличивается скорость потока среды, а статическое давление в трубе падает. При полном закрытии плунжер садится в седло, поток перекрывается, и, если затвор будет полностью герметичен, давление после клапана будет равно нулю[1].
Конструкции регулирующих органов
Односедёльные и двухседёльные
В седёльных клапанах подвижным элементом служит плунжер, который может быть игольчатым, стержневым или тарельчатым. Плунжер перемещается вдоль оси потока среды через седло (или сёдла), изменяя проходное сечение. Наиболее часто встречаемые — двухседёльные клапаны, так как их затвор хорошо уравновешен, что позволяет их применять для непрерывного регулирования давления до 6,3 МПа в трубопроводах диаметром до 300 мм, при этом используя исполнительные механизмы меньшей мощности, чем односедёльные. Односедёльные клапаны применяются чаще всего для небольших диаметров прохода из-за своего неуравновешенного плунжера. Также преимущество двухседёльных клапанов состоит в том, что такой конструкцией гораздо легче обеспечить требуемую для запорно-регулирующей арматуры герметичность с помощью плунжера, имеющего специальный регулирующий профиль для контакта с одним седлом, а для посадки в другое седло — уплотнительную поверхность для более плотного контакта[1][3].
Клеточные
Затвор клеточных клапанов выполняется в виде полого цилиндра, который перемещается внутри клетки, являющейся направляющим устройством и, одновременно, седлом в корпусе. В клетке имеются радиальные отверстия (перфорация), позволяющие регулировать расход среды. Ранее такие клапаны назывались поршневыми перфорированными. Клеточные клапаны за счёт своей конструкции позволяют снизить шум, вибрацию и кавитацию при работе арматуры[1][3].
Мембранные
В клапанах этого типа используются встроенные или вынесенные мембранные пневмо- или гидроприводы. В случае встроенного привода расход рабочей среды напрямую изменяется за счёт перекрытия прохода в седле гибкой мембраной из резины, фторопласта или полиэтилена, на которую воздействует давление управляющей среды. Если привод вынесен, то перестановочное усилие передаётся через мембрану на опору штока клапана, а через него на регулирующий орган; когда давление управляющей среды сбрасывается, пружина возвращает мембрану в начальное положение. Чтобы усилия от среды и сила трения в направляющих и уплотнении не приводили к снижению точности работы клапана, в такой арматуре часто используются дополнительные устройства — позиционеры, контролирующие положение штока. Мембранные клапаны могут быть как одно-, так и двухседёльные. Основным достоинством таких клапанов является высокая герметичность подвижного соединения и коррозионная стойкость материалов, из которых изготавливаются мембраны, что позволяет обеспечить хорошую защиту внутренних поверхностей арматуры от воздействия рабочих сред, которые могут быть агрессивными[1][3][2].
Золотниковые
В этих устройствах регулирование расхода среды происходит при повороте золотника на необходимый угол, в отличие от других клапанов с поступательным движением штока или мембраны. Такие клапаны применяются, как правило, в энергетике и имеют альтернативное название «регулирующий кран», так как по принципу действия принадлежат к кранам[1][3].
См. также
Примечания
- ↑ 1 2 3 4 5 6 7 Поговорим об арматуре. Р.Ф.Усватов-Усыскин — М.: Vitex, 2005.
- ↑ 1 2 Трубопроводная арматура с автоматическим управлением. Справочник. Под общей редакцией С.И.Косых. — Л.: Машиностроение, 1982.
- ↑ 1 2 3 4 5 Трубопроводная арматура. Справочное пособие. Д.Ф.Гуревич — Л.: Машиностроение, 1981.
Регулирующая арматура, запорно-регулирующая назначение
Любой трубопровод включает в свою конструкцию устройства, предназначенные для регулировки, отключения и включения, перемещения веществ, которые носят название «арматура». Все они обладают своей классификацией, в том числе и регулирующая арматура. Этот вид позволяет поддерживать давление, уровень и расход в нужных пределах. Рассмотрим подробнее основные виды регулирующей арматуры и их назначение.
Виды регулирующей арматуры
В силу своих конструкционных особенностей регулирующая арматура очень походит на запорную. Поэтому зачастую данные элементы имеют одинаковую марку. Регулирующие устройства делятся на 2 типа:
- редукционный, который работает на снижение давления рабочей среды;
- запорно-регулирующий.
Теперь о видах регулирующей арматуры. Наиболее распространенным видом принято считать регулирующие клапаны, которые также делятся на несколько подвидов:
- проходные;
- угловые;
- смесительные, обладающие трехходовой конструкцией.
К остальным видам регулирующих устройств относятся запорно-регулирующие клапаны, регуляторы давления прямого действия, а также регуляторы уровня.
Обо всех перечисленных устройствах далее более подробно.
Особенности работы регулирующих клапанов
Регулирующие клапаны, как уже говорилось ранее, относятся к наиболее распространенным видам запорных устройств. Их основная функция – это изменение давления среды, которая проходит по определенной трубопроводной системе. Сфера применения данных устройств:
- водопроводные системы;
- системы газоснабжения;
- магистрали, предназначенные для перемещения нефтепродуктов и газообразных веществ.
Материал, использующийся для изготовления этой арматуры, может быть разнообразным: латунь, чугун, сталь, высоколегированные сплавы. Выбор определенного исполнения зависит от трубопроводной системы и находящейся в ней среды.
В зависимости от особенностей работы все регулирующие клапаны делятся на 2 вида:
- с ручным приводом, где управление происходит с помощью специально встроенного штурвала, который при необходимости нужно собственноручно вращать. Для труб с большими параметрами такой вариант практически не используется, поскольку приведение регулирующего устройства в работу требует значительных усилий;
- с автоматическими управлением, где работа выполняется за счет встроенного гидравлического, пневматического либо электрического привода. Для обеспечения своевременного срабатывания затвора в регулирующее устройство входят датчики, которые измеряют существующее давление в системе.
Также существует классификация клапанов-регуляторов в зависимости от их формы:
- проходные устанавливаются на прямом трубопроводе и никак не воздействуют на направление среды;
- угловые изменяют направление среды, а значит и самого трубопровода на 90˚;
- смесительные включают в свою конструкцию 3 патрубка, которые две рабочие среды в совместный поток.
Принцип работы запорно-регулирующих клапанов
Основное назначение запорно-регулирующих клапанов – это контроль рабочей среды в трубопроводе и изменение ее расхода. Эта регулирующая арматура может использоваться в следующих системах:
- сети отопления и горячего водоснабжения;
- центральные и индивидуальные тепловые пункты;
- вентиляционная система.
Для каждого из условий существует определенный тип исполнения и используемого материала.
Запорно-регулирующие клапаны являются универсальными регулирующими устройствами. Это объясняется тем, что они не только контролирует расход используемой в трубопроводе среды, но еще и выполняет запорную функцию, способную полностью перекрыть движение потока.
Рассмотрим принцип действия запорно-регулирующей арматуры: внутри корпуса запорный элемент перемещается благодаря вращению штока, который приводится в движение собственноручно либо при помощи предусмотренного привода. Особенностью этого регулирующего устройства является присутствие уплотнителя, благодаря которому при опускании штока происходит полная герметизация системы.
Запорно-регулирующая арматура обладает рядом достоинств, самыми главными из которых является простота в использовании и обслуживании, надежность в эксплуатации. Установка регулирующих устройств возможна не только на трубопроводы стандартного типа, но и на магистрали с нестандартными углами и поворотами. К тому же зачастую они используются для работы в агрессивных средах.
Регуляторы давления прямого действия
Регулятор давления прямого действия необходим для того чтобы автоматически поддерживать нужный показатель перепада давления на одном из участков системы.
Эта регулирующая арматура делится на 2 вида:
- до себя;
- после себя.
Регулятор давления состоит из корпуса, клапана двухседельной конструкции, крышки, дополненной сальниковым устройством, грузового механизма и исполнительного механизма мембранного типа.
Особенностью конструкции такой регулирующей арматуры является наличие сразу двух клапанов на одном штоке. Такая особенность необходима для уравновешивания показателя давления рабочей среды на клапан, и соответственно, на шток.
Оба типа регуляторов отличаются друг от друга только расположением клапанов относительно седел. Регулирующая арматура «после себя» под воздействием давления от грузового механизма благодаря клапанам образует проход в седлах. Суть работы этого регулирующего устройства достаточно проста: при поступлении рабочей среды к нему проходное сечение находится в открытом состоянии, поэтому она проходит за него в трубопровод. Там и происходит увеличение показателя давления, которое перемещается по импульсной трубке к мембране и создает нагрузку для штока в противоположном направлении от воздействия груза, размещенного на рычаге. При достижении усилия большего, чем усилие груза движение штока будет направлено книзу и клапаны закроют отверстия в корпусе.
При настройке такой регулирующей арматуры на определенный показатель давления необходимо подобрать величину груза и его расположением на рычаге.
Отличие принципа работы регулирующей арматуры «до себя» от предыдущего вида в закрытых клапанах под воздействием имеющегося груза. Когда давление в системе увеличивается, то при передаче его через импульсную трубку на мембрану и тем самым создается усилие на шток по направлению противоположную действию груза. Это и приводит к открытию клапанов, что впоследствии ведет к выводу рабочей среды за них. А это значит, что давление в системе начинает снижаться.
Информация о регуляторах уровня
Предназначение регулятора уровня в поддержке уровня рабочей среды (жидкости) в необходимых пределах и заданной высоте. Используемый сосуд может находиться под давлением, а может соединяться непосредственно с атмосферой, что встречается значительно чаще. Такие условия характерны для резервуаров, наполненных нефтепродуктами или водой. Поддержка показателя давления здесь на заданном уровне осуществляется за счет впуска дополнительного объема жидкости. В этом случае регулирующая арматура носит название регулятор питания. Когда жидкость выпускается из резервуара под действием избыточного давления, регулирующая арматура называется регулятором перелива.
Действующими и главными элементами в такой регулирующей арматуре являются датчик положения уровня, чаще называющийся чувствительным элементом и элемент исполнительного действия, представленный в виде клапана регулирующего или запорного действия.
Принцип работы такого приспособления основан на прекращении или регулировании подачи рабочей среды (жидкости) с помощью исполнительного устройства, работа которого зависит от командного оповещения встроенного датчика.
Для регуляторов уровня прямого действия датчик обычно представлен в виде поплавка полой шарообразной формы, подсоединенного к затвору клапана. При увеличении или уменьшении уровня воды больше установленных пределов поплавок создает подъемную силу, которая и перемещает рычаг клапана в направление, заданное для работы исполнительного механизма регулятора.
Заключение
Регулирующая арматура относится к очень важным элементам, присутствующим во всех трубопроводных системах. В функции данных регулирующих устройств входит поддержание давления в системе на должном уровне. Некоторые также дополнительно выполняют и запорную функцию. Можно неустанно перечислять различные виды регулирующей арматуры, но самыми часто используемыми являются регулирующие и запорно-регулирующие клапаны, регуляторы давления прямого действия и регуляторы уровня.
Приводы и позиционеры регулирующих клапанов
Приводы
В блоке 5, «Теория управления», была использована аналогия для описания простого управления процессом:
• Мышца руки и кисть (привод) повернули клапан (управляемое устройство).
Рассмотрена одна из форм регулирующего устройства, регулирующий клапан. Привод — следующая логическая область интереса.
Работа регулирующего клапана заключается в установке его подвижной части (плунжера, шара или лопасти) относительно неподвижного седла клапана.Цель привода клапана — точно установить плунжер клапана в положение, определяемое управляющим сигналом.
Привод принимает сигнал от системы управления и в ответ переводит клапан в полностью открытое или полностью закрытое положение, или в более открытое, или в более закрытое положение (в зависимости от того, «включен / выключен» или используется непрерывное управляющее воздействие).
Есть несколько способов обеспечить это срабатывание. Этот модуль будет сосредоточен на двух основных:
Другие важные приводы включают гидравлические приводы и приводы прямого действия.Они обсуждаются в Блоке 7 «Управляющее оборудование: самодействующие органы управления».
Пневматические приводы — управление и опции
Пневматические приводы обычно используются для приведения в действие регулирующих клапанов и доступны в двух основных формах; поршневые приводы (рисунок 6.6.1) и диафрагменные приводы (рисунок 6.6.2)
Поршневые приводы
Поршневые приводы обычно используются там, где ход диафрагменного привода был бы слишком коротким или усилие слишком мало.Сжатый воздух подается к твердому поршню, находящемуся внутри твердого цилиндра. Поршневые приводы могут быть одностороннего или двустороннего действия, могут выдерживать более высокие входные давления и могут иметь цилиндры меньшего объема, которые могут действовать с высокой скоростью.
Мембранные приводы
В мембранных приводах сжатый воздух подается на гибкую мембрану, называемую диафрагмой. На рисунке 6.6.2 показана подвижная диафрагма, эффективная площадь которой практически постоянна на протяжении всего хода привода.Эти типы приводов одностороннего действия, поскольку воздух подается только на одну сторону диафрагмы, и они могут быть либо прямого действия (пружина втягивает), либо обратного действия (пружина выдвигает).
Обратное действие (пружина выдвигает)
Рабочая сила определяется давлением сжатого воздуха, приложенного к гибкой диафрагме. Привод сконструирован таким образом, что сила, создаваемая давлением воздуха, умноженная на площадь диафрагмы, преодолевает силу, действующую (в противоположном направлении) пружиной (пружинами).
Диафрагма (рисунок 6.6.2) подталкивается вверх, вытягивая шпиндель вверх, и если шпиндель подсоединен к клапану прямого действия, заглушка открывается. Привод сконструирован таким образом, что при определенном изменении давления воздуха шпиндель будет двигаться достаточно, чтобы переместить клапан на протяжении всего его хода от полностью закрытого до полностью открытого.
По мере уменьшения давления воздуха пружина (и) перемещает шпиндель в противоположном направлении. Диапазон давления воздуха равен заявленному номиналу пружины привода, например 0.2 — 1 бар.
При работе с большим клапаном и / или более высоким перепадом давления требуется большее усилие для достижения полного движения клапана.
Для создания большего усилия требуется большая площадь диафрагмы или больший диапазон пружины. Вот почему производители средств управления предлагают ряд пневматических приводов, подходящих к ряду клапанов, включая увеличивающуюся площадь диафрагмы и выбор диапазонов пружин для создания различных сил.
На схемах на рисунке 6.6.3 показаны компоненты базового пневматического привода и направление движения шпинделя при увеличении давления воздуха.
Привод прямого действия (пружина втягивает)
Привод прямого действия спроектирован с пружиной под диафрагмой, при этом воздух подается в пространство над диафрагмой. В результате с увеличением давления воздуха шпиндель перемещается в направлении, противоположном направлению привода обратного действия.
Влияние этого движения на открытие клапана зависит от конструкции и типа используемого клапана и показано на рисунке 6.6.3.
Однако есть альтернатива, показанная на рисунке 6.6.4. Пневматический привод прямого действия соединен с регулирующим клапаном с заглушкой обратного действия (иногда называемой «подвесной заглушкой»).
Выбор между пневматическим управлением прямого и обратного действия зависит от того, в какое положение клапан должен вернуться в случае отказа подачи сжатого воздуха. Клапан должен быть закрыт или полностью открыт? Этот выбор зависит от характера приложения и требований безопасности. Имеет смысл закрывать паровые клапаны при отсутствии воздуха, а клапаны охлаждения открываться при отказе воздуха.Необходимо учитывать сочетание типа привода и клапана.
На рисунках 6.6.5 и 6.6.6 показан чистый эффект различных комбинаций.
Влияние перепада давления на подъем клапана
Воздух, подаваемый в камеру диафрагмы, является управляющим сигналом от пневматического регулятора. Наиболее широко используемое сигнальное давление воздуха составляет от 0,2 до 1 бара. Рассмотрим привод обратного действия (с пружинным растяжением) со стандартной пружиной (пружинами) от 0,2 до 1,0 бар, установленный на клапан прямого действия (Рисунок 6.6.7).
После калибровки клапана и привода в сборе (или «стендовой установки») он регулируется так, что давление воздуха 0,2 бар начинает преодолевать сопротивление пружин и перемещать плунжер клапана от его гнезда.
По мере увеличения давления воздуха плунжер клапана постепенно перемещается дальше от своего седла, пока, наконец, при давлении воздуха 1 бар клапан не откроется на 100%. Графически это показано на рисунке 6.6.7.
Теперь рассмотрим эту сборку, установленную в трубопроводе для понижения давления, с 10 бар изб. На входе и регулированием давления на выходе до 4 бар изб.
Перепад давления на клапане составляет 10–4 = 6 бар. Это давление действует на нижнюю часть плунжера клапана, создавая силу, стремящуюся открыть клапан. Эта сила добавляется к силе, создаваемой давлением воздуха в приводе.
Следовательно, если в привод подается воздух под давлением 0,6 бар (на полпути между 0,2 и 1 бар), например, вместо того, чтобы клапан занимал ожидаемое положение открытия на 50%, фактическое открытие будет больше из-за дополнительных сила, обеспечиваемая перепадом давления.
Кроме того, эта дополнительная сила означает, что клапан не закрывается при давлении 0,2 бар. Чтобы закрыть клапан в этом примере, управляющий сигнал должен быть уменьшен примерно до 0,1 бар.
Ситуация немного отличается с паровым клапаном, регулирующим температуру в теплообменнике, так как перепад давления на клапане будет варьироваться в пределах:
- Минимум, когда технологический процесс требует максимального нагрева и регулирующий клапан открыт на 100%.
- Максимум, когда процесс идет до температуры и регулирующий клапан закрыт.
Давление пара в теплообменнике увеличивается по мере увеличения тепловой нагрузки. Это можно увидеть в Модуле 6.5, Примере 6.5.3 и Таблице 6.5.7.
Если давление перед регулирующим клапаном остается постоянным, то при повышении давления пара в теплообменнике перепад давления на клапане должен уменьшаться.
На рис. 6.6.8 показана ситуация с воздухом, подаваемым на привод прямого действия. В этом случае сила на плунжере клапана, создаваемая перепадом давления, действует против давления воздуха.В результате, если в привод подается воздух под давлением 0,6 бар, например, вместо того, чтобы клапан занимал ожидаемое 50% -ное открытое положение, процент открытия будет больше из-за дополнительной силы, создаваемой перепадом давления. В этом случае управляющий сигнал необходимо увеличить примерно до 1,1. бар, чтобы полностью закрыть клапан.
Можно повторно откалибровать клапан и привод, чтобы учесть силы, создаваемые перепадом давления, или, возможно, использовать различные комбинации пружин, давления воздуха и привода.Такой подход может обеспечить экономичное решение для небольших клапанов с низким перепадом давления и там, где не требуется точное управление. Однако практичность такова:
- Клапаны большего размера имеют большие площади, на которые действует перепад давления, таким образом увеличивая создаваемые силы и увеличивая влияние на положение клапана.
- Более высокие дифференциальные давления означают, что создаются более высокие силы.
- Клапаны и приводы создают трение, вызывая гистерезис.Клапаны меньшего размера, вероятно, будут иметь большее трение по сравнению с общими задействованными силами.
Решение состоит в том, чтобы установить позиционер на узел клапан / привод. (Более подробная информация о позиционерах представлена далее в этом Модуле).
Примечание: Для простоты в приведенных выше примерах предполагается, что позиционер не используется, а гистерезис равен нулю.
Формулы, используемые для определения усилия, доступного для удержания клапана на его седле для различных комбинаций клапана и привода, показаны на рисунке 6.6.9.
Где:
A = эффективная площадь диафрагмы
Pmax = максимальное давление на привод (обычно 1,2 бар)
Smax = максимальная заводская настройка пружины
Pmin = минимальное давление на привод (обычно 0 бар)
Smin = Минимальная стендовая установка пружины
Усилие, доступное для закрытия клапана, должно обеспечивать три функции:
- Для преодоления перепада давления жидкости в закрытом положении.
- Для преодоления трения в клапане и приводе, прежде всего в уплотнениях штока клапана и привода.
- Для обеспечения уплотняющей нагрузки между плунжером клапана и седлом клапана для обеспечения требуемой степени герметичности.
Производители регулирующих клапанов обычно предоставляют полную информацию о максимальных дифференциальных давлениях, против которых будут работать их различные комбинации клапана и привода / пружины; Таблица на Рисунке 6.6.10 является примером этих данных.
Примечание: При использовании позиционера необходимо обращаться к документации производителя для получения информации о минимальном и максимальном давлении воздуха.
.
Симптомы клапана регулировки холостого хода — Полное техническое руководство
]]]]>]]>
С режимом холостого хода автомобиля знаком любой водитель. Но когда обороты холостого хода не кажутся правильными, есть множество причин, по которым вызывает симптомы клапана регулировки холостого хода . Неправильный уход и пропуск ремонта — важнейшие причины простоя автомобиля.
Давайте поговорим о симптомах неисправности клапана управления воздухом холостого хода , задав вопрос: Что происходит, когда клапан управления воздухом холостого хода выходит из строя?
Но сначала, чтобы понять симптомы, нам нужно разобраться с пациентом, верно? В этом случае нам нужно понять клапан управления холостым воздухом, прежде чем копаться в симптомах клапана управления холостым воздухом .
Что такое регулирующий клапан холостого хода (клапан IAC)?
В любом автомобиле клапан управления подачей воздуха на холостом ходу или более известный как привод управления подачей воздуха на холостом ходу представляет собой небольшое устройство, которое регулирует скорость вращения двигателя на холостом ходу. Скорость вращения двигателя на холостом ходу — это скорость, с которой двигатель работает, когда автомобиль стоит на месте. Единица измерения — обороты в минуту / обороты в минуту / об / мин.
Клапан регулировки холостого хода (IAC) для Cadillac Oldsmobile Deville Eldorado Aurora 4.6L
Почему этот клапан управляет воздухом? Потому что он точно регулирует количество воздуха, попадающего во впускное отверстие на холостом ходу, чтобы регулировать скорость двигателя. Упомянутый здесь воздухозаборник — это просто отверстие для входа воздуха в двигатель.
Клапан IAC — это электрически управляемое устройство, которое, в свою очередь, управляется компьютером двигателя, точное имя компьютера — блок управления двигателем (ECU). Клапан установлен где-нибудь в двигателе, чтобы либо обойти дроссельную заслонку, либо управлять дроссельной заслонкой.Дроссельная заслонка здесь — это всего лишь механизм для управления воздушным потоком за счет сужения или препятствия.
Что касается конструкции, клапан IAC включает в себя линейный сервопривод, а именно серводвигатель, задачей которого является управление плунжером для изменения потока воздуха через дроссель. Этот серводвигатель представляет собой комбинацию цифрового оптического кодировщика, ходового винта и двигателя постоянного тока. Что действительно контролирует воздушный поток, так это положение серводвигателя. Этой позицией точно управляет компьютер двигателя.
Мы рассмотрели природу клапана IAC, включая определение, назначение, структуру и общий принцип работы. В следующей части мы подробно расскажем, как это работает.
Как работает клапан IAC?
Обратите внимание, что каждый производитель разрабатывает разные типы клапанов IAC, но у них одинаковые принципы работы. Принцип работы МАК делится на 4 этапа.
Шаг 1: Клапан РХХ в большинстве случаев устанавливается на отверстие дроссельной заслонки для регулировки поступления воздуха в двигатель на холостом ходу.Модуль управления мощностью получил данные обратной связи от датчиков, чтобы дать команду открывать или закрывать воздушный канал. Помните, что клапан не будет использоваться и не будет иметь ничего общего с двигателем на оборотах выше режима холостого хода. Обороты холостого хода двигателя должны быть постоянными и фиксированными.
Шаг 2: Когда воздушный поток проходит через клапан IAC, объем воздуха регулируется открытыми / закрытыми портами внутри клапана. Эти порты закрыты прокладкой для предотвращения утечки воздуха. Некоторые клапаны имеют часть, использующую охлаждающую жидкость для охлаждения воздуха до 85 градусов Цельсия, чтобы улучшить объем всасываемого воздуха.
Шаг 3: Когда клапан IAC работает, воздушный поток обходит клапан через проход перед дроссельной заслонкой. Затем он попадает в отверстие дроссельной заслонки через проход рядом с ним, в это время бабочка полностью закрывается.
Шаг 4: Из-за того, что через клапан регулярно проходит большой объем воздуха, состояние, называемое закоксовыванием, усиливает и затрудняет работу клапана. Следовательно, необходимо периодически очищать клапан, чтобы избежать симптомов клапана регулировки холостого хода .
Признаки неисправного или неисправного клапана IAC
Поняв, как работает клапан IAC, нам было бы намного легче узнать природу некоторых симптомов, которые требуют наличия клапана регулировки холостого хода, а именно:
1 # Плавающая скорость
Регулирующий воздушный клапан управляет холостым ходом двигателя автомобиля. Поврежденный воздушный клапан нарушит мощность, что приведет к колебаниям холостого хода. Возможно, больше нельзя будет контролировать скорость.Сохранение одной постоянной скорости становится более чем трудным, когда мощность начинает колебаться. Изменение скорости является одним из императивных признаков клапана регулировки холостого хода.
Обратите внимание на нестабильные холостые обороты
2 # Зависание двигателя
Заглох или замерзание двигателя — еще одна из симптомов клапана управления воздухом на холостом ходу , которая приводит к тому, что автомобиль «не движется». Вы можете задаться вопросом, что происходит, когда выходит из строя регулирующий клапан холостого хода. Автомобиль не может двигаться в этой ситуации, но двигатель работает.Если произойдет заглох, вы не сможете управлять автомобилем. Это потому, что вся клапанная система выйдет из строя сразу после запуска зажигания. Однако советы экспертов по уходу могут помочь в лечении этих симптомов.
3 # Более глубокий шаг на педаль тормоза
На холостом ходу, когда педаль акселератора не действует, мы все знаем, что торможение очень тонкое, чтобы предотвратить движение вперед. Любое чрезмерное усилие на тормозе, чтобы автомобиль не двигался на красный свет, может быть симптомом неисправности клапана IAC .Это происходит из-за того, что двигатель работает на холостом ходу быстрее, чем обычно, и поэтому автомобиль работает на более высоких оборотах холостого хода. В качестве дополнительного признака симптомов клапана управления воздушным клапаном холостого хода водитель может также попытаться прислушаться к звуку двигателя на холостом ходу, чтобы увидеть, вращается ли он странно быстро и резко, что также является хорошим способом помочь прояснить ощущения от тормозная ножка.
4 # Поврежденный клапан
Исправный или исправный клапан смягчает езду. Но поврежденный клапан может привести к колебаниям и вибрациям, вызывающим немедленную остановку автомобиля.Это связано с тем, что через клапан будет проходить меньше воздуха, и двигатель начнет сильно трястись. Вот и все, что происходит, когда выходит из строя регулирующий клапан холостого хода. Надеюсь, у вас есть ответ на некоторые симптомы клапана регулировки холостого хода до сих пор.
Клапан может быть поврежден по некоторым причинам
СМОТРЕТЬ БОЛЬШЕ:
5 # Перегрузка двигателя, вызывающая зависание
Есть еще одна причина остановки двигателя. Когда клапан IAC уже вышел из строя, двигатель все еще может работать, но будет выдерживать увеличение нагрузки.Тогда, если водитель включит обогреватель или кондиционер, двигатель может перегружаться и сразу же остановиться. Еще один знак, на который стоит обратить внимание, — это отодвинутое в сторону рулевое колесо.
Чтобы снова отправиться в путь, «первая помощь» состоит в том, чтобы выключить обогреватель или кондиционер, подождать несколько минут, а затем снова включить охлажденный двигатель. Тем не менее, на этот раз, пожалуйста, держитесь подальше от нагревателя и кондиционера с точки зрения симптомов клапана управления холостым воздухом, уклоняясь от .
6 # Сигнальная лампа для проверки двигателя
Центральный компьютер включает контрольную лампу «проверьте двигатель» на приборной панели всякий раз, когда что-то не так, связанное с двигателем, включая отказавший клапан управления воздухом холостого хода. Чтобы объяснить, что в случае, если блок управления двигателем обнаруживает различное количество оборотов в минуту, он отправит команды на приборную панель, чтобы включить сигнальную лампу. Хотя симптомы клапана регулировки холостого хода не всегда возникают из-за неисправности клапана , вам лучше поехать в ближайший автомагазин для обслуживания.
Управление сигнальной лампой неисправности двигателя на приборной панели автомобиля.
>> Ищете подержанный автомобиль из Японии? Нажмите здесь <<
Три способа проверки клапана регулировки холостого хода после выявления симптомов
Этот раздел предназначен только для справки по механике, мы советуем вам сдать свой автомобиль в профессиональный гараж для качественного технического осмотра. Однако мы надеемся, что эти три способа окажут большую помощь тем, кто достаточно уверен в себе, чтобы экспериментировать со своими автомобилями, и любым ученикам механиков.
1 # Проверьте, может ли клапан IAC работать
После подтверждения симптомов клапана регулировки холостого хода, подключит сканер кода к порту под приборной панелью, чтобы вывести коды ошибок, которые заставляют загораться сигнальная лампа двигателя. Посмотрите описание кода, чтобы узнать причину.
Как выглядит сканер кода
Затем вы запускаете двигатель и записываете установившиеся обороты холостого хода. Заглушите автомобиль, выньте ключ автомобиля, откройте капот, найдите в клапане электродвигатель управления холостым ходом и отсоедините его.Следуйте инструкциям по отключению двигателя согласно руководству по обслуживанию автомобиля.
Теперь запустите двигатель снова и на этот раз запишите установившиеся обороты холостого хода. Отсутствие разницы между двумя оборотами холостого хода означает, что двигатель управления холостым ходом не работает.
Этот метод для симптомов клапана управления холостым ходом подтверждает наличие проблемы с электродвигателем управления холостым ходом, а не саму проблему.
2 # Определение того, что не так с клапаном IAC
Двигатель с плохой работой на холостом ходу может работать слишком быстро или слишком медленно или заглохнуть.Запустите двигатель и посмотрите на тахометр на приборной панели.
1000 об / мин — это нормальный предел для холостого хода. Сравните текущую скорость холостого хода вашего автомобиля с 1000 об / мин. Если оно выше 1000 об / мин, это слишком много. Если вам известны нормальные обороты холостого хода автомобиля, сравните их с текущими оборотами холостого хода, и тогда они должны быть ниже.
- Низкая работа двигателя на холостом ходу или глохнет:
Холостой ход на тахометре ниже и нестабильнее, чем вы обычно чувствуете и помните? Автомобиль периодически глохнет? Если да, это может быть следствием неисправного клапана IAC.
Следите за тахометром при проверке холостого хода. Пришло время диагностировать любые утечки в вакуумных линиях в моторном отсеке на предмет трещин или изношенных участков, подключив линию к вакуумметру, чтобы измерить уровень и постоянство вакуума, или распылить смесь мыла и воды на линии, чтобы посмотреть для пузырей в месте утечки. Если есть утечки, в то же время проверьте контрольную лампу «проверьте двигатель», чтобы подтвердить проблему клапана IAC.
3 # Обнаружение проблем для конкретных марок
и.Дженерал Мотор
Подсоедините отрицательный провод контрольной лампы к кузову автомобиля и вставьте контрольную лампу в каждую из четырех цепей на электродвигателе управления холостым ходом GM. Контрольная лампа должна мигать или переходить от яркого к тусклому в каждой цепи при работающем двигателе.
- Если вспышки нет, это значит, что в ЭБУ возникли проблемы вместо двигателя управления холостым ходом.
- Если есть мигания, необходимо заменить электродвигатель управления холостым ходом в клапане.
Контрольная лампа для проверки клапана IAC
ii.Ford
Найдите два электрических контакта на соленоиде двигателя управления холостым ходом и подключите омметр, чтобы измерить сопротивление между ними. Сопротивление должно составлять от 7,0 до 13,0 Ом, в противном случае необходимо заменить двигатель управления холостым ходом.
iii. Крайслер
Подключите двунаправленный сканер к тому же порту OBD, который вы используете для подключения сканера кода. Увеличьте холостой ход с помощью диагностического прибора. Если увеличения нет, значит, у электродвигателя управления холостым ходом определенно возникла проблема в цепи, не позволяющая сигналу изменить холостой ход.
iv. Прочие популярные марки
Другие популярные модели автомобилей, в том числе Ford Ranger, Honda Civic, Chevrolet, BMW, особенно Nissan Maxima, также, по-видимому, подвержены этой проблеме в вышеупомянутом содержании. После подтверждения симптомов клапана регулирования подачи воздуха на холостом ходу общих рекомендаций по проверке будут заключаться в очистке клапана, иначе это может быть ошибка компьютера, неисправная электрическая проводка или цепи, утечка воздуха или утечка вакуума. Перед заменой клапана проверьте проблему утечки.Хотя замена клапана стоит дорого, но оно того стоит.
Примечание
Наконец, в случае некоторого регулятора холостого хода
.
Smart Electric Valve Control Device 220В
интеллектуальное устройство управления электрическим клапаном 220 В
Спецификация продукта
Электропривод
Двухпозиционный тип: сигнал обратной связи: сигнал пассивного контакта / 4-20 мА / сигналы сопротивления.
Тип регулирования: входной сигнал 4-20 мА / 0-10 В / 1-5 В;
Сигнал обратной связи: 4-20 мА / 0-10 В / 1-5 В
Напряжение: AC220V \ 380V \ 110V \ 24V, DC12V \ 24V и т. Д .; Специальное напряжение можно настроить.
Класс взрывозащиты: можно выбрать взрывозащищенный тип EX d IIBT4
Тип | Тип управления | Функция |
Электрический привод | Тип ON-OFF | Обратная связь: активный сигнал, пассивный контактный сигнал, сопротивление, 4-20 мА |
Тип регулирования | Входной и выходной сигнал: 4-20 мА, 0-10 В, 1-5 В, переключатель, MODBUS, полевая шина PROFIBUS | |
Зарегистрированная операция | Полевое управление, дистанционное управление переключателем и полевая шина MODBUS, PROFIBUS |
Путь управления электроприводом
90 003
Спецификация электропривода
Позиции Параметр | FOSD-05 | FOSD-10 | FOSD-16 -30 | FOSD-60 | FOSD-125 | FOSD-250 | FOSD-400 | ||
Выходной крутящий момент | 50 Нм | 10012 Нм | 300 Нм | 600 Нм | 1250 Нм | 2500 Нм | 4000 Нм | ||
Номинальное время хода | 20S | 15S / 30S | 30S / 60S | 100S | 100S | 100S | 100S | ||
0 ° -90 ° | 0 ° -90 ° | 0 ° -90 ° | 0 ° -90 ° | 0 ° -90 ° | 0 ° -90 ° | 0 ° -90 ° | 0 ° -90 ° | ||
Рабочий ток | 0.25A | 0,48A | 0,68A | 0,8A | 1,2A | 2A | 2A | 2.7A | |
Пусковая мощность | 0,25A | 0,48A | 0,72A | 0,48A | 0,72A | 1.38A | 2.3A | 2.3A | 3A |
Мощность двигателя | 10W / F | 25W / F | 30W / F | 40W / F | 90W / F | 100W / F | 120W / F | 140W / F | |
Вес | 3 кг | 5 кг | 5.5 кг | 8 кг | 8,5 кг | 15 кг | 15,5 кг | 16 кг | |
Питание | AC220V, AC24V, AC110V, AC220, AC380, DC24V (выберите варианты) | ||||||||
4-20 мА ( Тип регулирования ) | |||||||||
Выходной сигнал | 4-20 мА ( Тип регулирования ) | ||||||||
Сопротивление изоляции | 100 м / 500 В постоянного тока | ||||||||
Выдерживаемое давление | 1500 В переменного тока, одна минута | ||||||||
Защита от взлома | IP65 / IP67 | ||||||||
Угол установки | 360 ° любой угол | ||||||||
Электрическое взаимодействие | один G1 / 2 CNCO , один порт подключения шнура питания, один порт подключения сигнального провода | ||||||||
от -30 ° C до + 60 ° C | |||||||||
Опции схемы управления | A: с переключателем конечного положения (стандарт) B: с переключателем нейтрального положения (пассивный контакт) C: с потенциометром D: с потенциометром и переключателем нейтрального положения E: с модулем управления типа (модулирующие приложения) F: Тип цепи управления двигателем постоянного тока G: Трехфазный ток 380 В, стиль цепей управления H : Трехфазный ток 380 В, переключатель нейтрального положения и потенциометр |
Изображение электрического привода
Интеллектуальное устройство управления электрическим клапаном 220 В
Продукты Применение
Информация о компании
Guangzhou Fols Valve Technology Co., ltd является производителем, который специализируется на электрических приводах пневматических клапанов
, а также на исследованиях, разработках, производстве, продаже и обслуживании автоматической системы управления
Наша основная продукция — электрические приводы серии FOLS. тщательно спроектированы и изготовлены по самой передовой технологии
в соответствии с практической ситуацией. Электроприводы серии FOLS
характеризуются приводным устройством и трансмиссией в одном корпусе, малым объемом, легким весом, красивым внешним видом, и замечательная производительность.Они широко используются в различных областях, таких как производство бумаги
, фармацевтика, пищевая, химическая, нефтяная, электроэнергетическая, противопожарная защита, кондиционирование воздуха, водоснабжение
, промышленная автоматизация и так далее.
Сертификаты
Торговые условия
1.Условия торговли: EXW FOB CIF и т. Д.
2. Способ доставки: Экспресс, по морю, по воздуху.
3. Срок оплаты: TT Western Union L / C и т. Д.
4. Условия оплаты:
Оплата: T / TSample Стоимость: 100% оплата.
Оплата заказа: T / T, 35% депозита до производства, 65% остаток должен быть оплачен до доставки
5. Срок поставки:
Дни образца: 5 рабочих дней
Дни заказа: 15 дней
6. Доставка грузов указаны по вашим запросам
7.Порт доставки: Гуанчжоу, Шэньчжэнь
8. Скидки предоставляются в зависимости от количества заказа
9. MOQ: 1 шт. Образец
Деталь упаковки: мы используем стандартную экспортную деревянную упаковку
Заявление
.
Gj1135b Гидравлический регулирующий клапан Джойстик с перекрестным контуром Трос Боудена Устройство управляющего клапана
Описание продукта
Перекрестный рычаг для управления гидравлическими клапанами, которые используются для фронтального погрузчика и управления устройством трактора.
Положение покоя (фиксируемое), левое, правое, заднее, переднее, крайнее переднее (для функции плавающего положения)
Рукоятка для управления 0,1,2 или 3 электронными функциями (8/3 ходовой клапан и 6/2 ходовой клапан)
электронная функция переключателя размыкается в состоянии покоя, замыкается при срабатывании соответствующего переключателя
Прочная конструкция для длительного использования
Такое же качество, как и у оригинального Indemar
Подключение двухтактных кабелей через основание прилагаемых розеток
Подключите переключатели через кабель, который выводится из основания внизу.
1 | Рукоятка для управления 0,1,2 или 3 электронными функциями (8/3 ходовой клапан и 6/2 ходовой клапан) |
2 | электронная функция переключателя разомкнуто в состоянии покоя, замкнуто при срабатывании соответствующего переключателя |
Информация о компании
Компания Luoyang Guanjie Push Pull Cable Controller Co., Ltd, основанная в 2003 году, является производителем и продавцом, специализирующимся на исследованиях, разработке и производстве двухтактных кабелей управления и двухтактных кабелей. рычаг управления.Вся наша продукция соответствует международным стандартам качества и высоко ценится на различных рынках по всему миру. Он постепенно рос благодаря упорным усилиям и поддержке всей команды и клиентов по всему миру. Мы будем продолжать работать с высоким качеством и хорошим обслуживанием для клиентов.
FAQ
Если вас интересует наша продукция, сообщите, пожалуйста, какую модель, качество вы хотите заказать.
По вашему заказу будет выставлен счет-фактура.
Мы доставим товар как можно скорее после получения оплаты.
Срок поставки обычно в течение 20 рабочих дней.
Гарантия 12 мес.
Отправьте детали вашего запроса в виде образца ниже. Нажмите «Отправить» прямо сейчас!
.