Автоматический ввод резерва. Проверка работоспособности системы АВР. Время срабатывания авр норматив


Автоматический ввод резерва (АВР): назначение, виды, схема

Даже современная система электроснабжения не всегда отличается абсолютной надёжностью. В случаях возникновения аварийных ситуаций без энергии могут остаться потребители, у которых длительный перерыв в электроснабжении может привести к большим материальным потерям, и даже к угрозе жизни людей. Поэтому как в быту, так и на производстве имеет смысл организовать питание от двух источников электроэнергии, с переводом питания от одного. Такая система называется автоматический ввод резерва, сокращённо АВР. Её работа заключается в полностью автоматическом подключении цепей электрооборудования потребителей от резервного источника питания в случае отключения основного. В этой статье мы подробно рассмотрим назначение и принцип работы АВР различных видов.

Назначение АВР

Назначение данной системы в электрике схоже с организацией бесперебойного питания. Главная задача автоматического ввода резервного питания — это быстрое восстановление электроснабжения без участия в этом процессе человека. На больших подстанциях всегда имеется два ввода на две, разделённые секционным выключателем, секции распределительного устройства, работающие автономно друг от друга. Согласно ПУЭ (правила устройства электроустановок) автоматическое подключение резервного питания и снабжение на 2 ввода является обязательной мерой обеспечения электричеством потребителей первой категории.

Простой пример необходимости данной системы можно привести относительно освещения какого-то важного охраняемого участка. То есть при отключении основного ввода система сама включит питание от резервного источника, при этом данный важный участок останется осветлен. Максимум что может возникнуть — это непродолжительное прекращение питания, которое визуально даже отследить тяжело. Это зависит от скорости срабатывания АВР, время включения резерва должно составлять порядка 0,3–0,8 секунд.

Как работает автоматический ввод резервного питания

Принцип действия АВР основан на контроле напряжения в цепи. Это может осуществляться с помощью любых реле напряжения либо цифровых логических блоков защиты. Однако принцип работы всё рано остаётся неизменным. Рассмотрим его на самом простом примере.

Это однолинейная схема, на которой видно, что контроль напряжения осуществляется контактором КМ. Оба автомата QS1 и QS2 должны быть включены, при этом катушка КМ получит питание и будет втянута, а соответственно её замыкающий контакт в цепи основного ввода тоже замкнут и размыкающий контакт в цепи резервного ввода разомкнут. Тем самым электроснабжение потребителя осуществляется от основной сети и светятся соответствующие лампы. В случае неисправности питания по линии L12 и снижения напряжения до величины, когда контактор КМ отключится, произойдёт размыкание замыкающего контакта в основной линии и одновременно с этим контакт в цепи резервного питания линии L22 перейдёт в замкнутое состояние, тем самым подав напряжение к потребителю от резервного источника. Обратная ситуация произойдёт при возобновлении основного электроснабжения по линии L12.

На видео ниже наглядно рассмотрен принцип работы АВР в сетях 6 кВ:

Требования к системе

Основными требованиями, предъявляемыми к системам АВР являются:

  • Быстродействие.
  • Надёжность включения.
  • Подача напряжения только если на участке нет короткого замыкания, то есть обязательно должна быть блокировка при КЗ.
  • Однократность срабатывания.
  • Возможность настройки порога включения резервного электроснабжения, чтобы она не срабатывала, например, при просадках напряжения вовремя запуска мощных электродвигателей.
  • Срабатывание только при условии, если на резервном вводе есть электроэнергия.

Естественно, что простейшая схема на контакторах не сможет реализовать все предъявляемые требования к системе АВР. Для этого в современной электронике применяются логические системы, подающие сигнал на включение резервного источника питания только при соблюдении всех правил и блокировок. Также для дополнительной надёжности даже применяется механическая блокировка.

Классификация АВР и варианты реализации

Осуществляться резервное питание и его автоматический ввод может от отдельного генератора, аккумуляторной батареи либо отдельной линии.

В свою очередь все системы АВР по своему действию делятся на:

  1. Односторонние. Одна секция или же ввод является рабочим (основным), а второй резервный. В случае исчезновения рабочего напряжения включается резерв.
  2. Двухсторонние. Когда существуют две раздельно питающиеся секции и соответственно две линии являются рабочими, и при отключении одной любой из них, другая является резервной.

Также АВР может быть с восстановлением питания по нормальной схеме и без него. Во втором случае происходит полное погашение нерабочей сети и даже при повторном возобновлении питания схема не будет работать как прежде по двум линиям.

Особенности работы с бытовыми генераторами

Для того чтобы организовать автоматический ввод резерва в доме можно в качестве источника резервного питания использовать генератор. Он даст возможность длительное время обеспечить напряжением целый дом, его нагрузка зависит от мощности самого генератора. Вот схема подключения:

Введение генератора вместо сетевого напряжения можно использовать в однофазной и трёхфазной сети, в зависимости от его модели. Однако для того чтобы этот процесс был полностью автоматизирован необходимо, чтобы генератор был оснащён стартером, а также понадобится специальный блок, состоящий из набора коммутационных устройств, включающих стартер только на время запуска и отключающих при возобновлении подачи сетевого напряжения, выглядит он вот так:

Такой блок для генератора совместим с любым типом двигателя и имеет три положения: «Стоп», «Включен, «Запуск». Правда, в зимнее время необходим прогрев двигателя внутреннего сгорания, но этот блок можно запрограммировать, учитывая и эту особенность. Крепится он на дин рейку в распределительном щитке.

На видео доходчиво объясняется схема, по которой можно сделать автоматический ввод резерва для генератора своими руками:

АВР на аккумуляторах

С развитием преобразователей, трансформирующих постоянный ток в переменный, появляется возможность использовать, например, автомобильный аккумулятор в качестве источника резервного питания. Помимо аккумулятора, понадобится приобрести современный автомобильный инвертор, преобразующий 12 Вольт постоянного напряжения в 220 Вольт переменного.

Правда, этот источник вряд ли можно использовать для силовой нагрузки, но цепи освещения он может легко обеспечить стабильным напряжением на время непродолжительной аварии на линии. При этом длительность работы будет зависеть от мощности потребителей и емкости аккумуляторов.

Для увеличения ёмкости можно параллельно подключить несколько аккумуляторных батарей. Схема соединения самой системы АВР может быть реализована с помощью пускателя.

Пускатель включается в основную цепь, а при проблемах в сети его подвижная часть отпадает, тем самым его размыкающий блок-контакт, введённый в цепь аккумулятора, запускает систему автоматического электроснабжения. Этот способ менее затратный, нежели генераторный, но не способен выдавать длительное время ток для мощных бытовых приборов.

Применение логического контроллера

Для двух сетей электроснабжения трехфазным питанием применяются уже готовые блоки АВР с применением логического цифрового контролера, который может учитывать множество параметров, требуемых для создания идеальной системы. На нём имеется вся нужная маркировка и инструкция по управлению и подключению.

Правда, перед тем как подключить модуль и приобрести его, нужно задуматься, имеется ли резервный источник питания с более надёжным электроснабжением. Так как нет смысла подключать его к одной и той же системе трёхфазной сети, то есть питающейся от одного трансформатора 6/0,4 кВ.

Организация АВР в высоковольтных цепях

Для того чтобы выполнить организацию автоматического резервирования в цепях с напряжением больше 1000 Вольт, в качестве элемента, измеряющего и контролирующего сетевую энергию, служит специальный трансформатор напряжения, на вторичной обмотке которого в нормальном режиме работы 100 Вольт. Для связи его с системой АВР используется реле минимального напряжения или же реле контроля фаз. Оно реагирует не только на понижение величины сетевого напряжения, но и на исчезновение хотя бы одной фазы, например, при обрыве воздушной линии ВЛ. Здесь уже обязательно выполнение всех требований, касающихся правильному вводу АВР, а иногда даже при системе с восстановлением устанавливается выдержка времени на возврат в исходную первоначальную конфигурацию.

Также важно отметить, что в высоковольтных сетях схема автоматики АВР реализуется на электромеханических реле старого образца или современных многофункциональных микропроцессорных терминалах защиты, которые выполняют несколько функций, в том числе и АВР.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, что такое автоматический ввод резерва, какие бывают схемы АВР и какой принцип работы у данной системы электроснабжения. Надеемся, предоставленная информация и видео уроки были для вас полезными!

Наверняка вы не знаете:

samelectrik.ru

Автоматический ввод резерва (АВР)

В наше время перебои с электроснабжением не редкость. И хотя в нашей стране достаточно электроэнергии, но проблема бесперебойного электроснабжения остается. Решить ее поможет установка дополнительных источников электроэнергии, таких как генератор, аккумулятор, а так же иные альтернативные источники электропитания.

Согласно ПУЭ все потребители электрической энергии делятся на три категории:

I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, опасность для безопасности государства, нарушение сложных технологических процессов и пр.

II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта.

III категория — все остальные потребители электроэнергии.

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьезным последствиям.Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токи короткого замыкания при такой схеме гораздо выше, чем при раздельном питании потребителей.
  • В питающих трансформаторах выше потери электроэнергии.
  • Релейная защита сложнее, чем при раздельном питании.
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определенного режима работы системы.
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторная батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании систем гарантированного электроснабжения, предназначенных для обеспечения работы электроприемников I категории и особой группы первой категории надежности, возникает задача выбора типа устройства автоматического ввода резерва (АВР).

Автоматический ввод резерва (АВР) — метод защиты, предназначенный для бесперебойной работы сети электроснабжения. Реализован с помощью автоматического подключения к сети других источников электропитания в случае аварии основного источника электроснабжения.

Рассмотрим основные требования, предъявляемые к этим устройствам при построении системы гарантированного электроснабжения.

1. Как известно (гл.1.2 ПУЭ), электроприемники первой категории надежности должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, а для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого источника.

2. В обоих случаях в качестве одного из резервирующих источников питания может использоваться автоматизированная дизель-электрическая электростанция, что требуется учитывать при выборе конкретной схемы АВР.

3. При использовании АВР должны быть приняты меры, исключающие возможность замыкания между собой двух независимых источников питания друг на друга, причем в дополнение к требованиям ПУЭ службы энергонадзора, как правило, требуют наличия не только электрической, но и механической блокировки коммутирующих элементов.

4. Максимальное время переключения резерва зависит от характеристик потребителей электроэнергии, но при наличии в системе источников бесперебойного питания (ИБП) не имеет определяющего значения. Для исключения ложных срабатываний при переключениях АВР на стороне высокого напряжения должна быть предусмотрена возможность регулировки задержки переключения при неисправностях одной из сетей.

5. Важное значение имеет наличие регулировки порогов срабатывания АВР в диапазоне контролируемого напряжения для каждого ввода. Так, например, в случае подключения к выходу АВР ИБП согласование между собой диапазонов входных напряжений обоих устройств позволяет обеспечить своевременное переключение на резервную сеть при отклонении напряжений основной питающей сети за заданные значения и тем самым исключить длительную работу ИБП на батареях при исправной резервной сети.

6. Желательно наличие индикации состояния и возможности ручного управления АВР.

Преимущества и недостатки различных типов АВР с позиций перечисленных требований.

Тиристорные (электронные) АВР

Статический переключатель нагрузки - (англ.: LTM - Load Transfer module (модуль переключения нагрузки)). В этом типе АВР в качестве силового коммутирующего элемента используются мощные тиристоры, обеспечивающие практически нулевое время переключения между двумя независимыми вводами.

Преимущества: Основное и очень значимое преимущество: практически нулевое время переключения между вводами (возможно применения для переключения между ИБП (источник бесперебойного питания) разной мощности, разных производителей). Переключение между вводами никак не сказывается на электроснабжении ответственных потребителей электроэнергии (серверы, компьютерное оборудование, устройства автоматики, телекоммуникационное оборудование и т.д.). При использовании LTM в схемах электроснабжения критически важных объектов или ответственных потребителей можно существенно сэкономить на применении ИБП, ДГА и других устройств независимого электроснабжения.

Недостатки: Основной недостаток это очень высокая стоимость по сравнению с механическими АВР (на контакторах и рубильниках).

Электромеханические АВР на контакторах

АВР на контакторах получили наиболее широкое применение, в основном, благодаря низкой стоимости комплектующих. В основе щита АВР на контакторах обычно применяются два контактора с взаимной электрической или электромеханической блокировкой и реле контроля фаз. В самых дешевых вариантах АВР на контакторах используется обычное реле, контролирующее наличие напряжения только на одной фазе, без контроля качества электроэнергии (частота, напряжение). При пропадании напряжения на одной фазе, АВР на контакторах переключает нагрузку на другой (резервный) ввод электроэнергии. При использовании качественных полнофункциональных реле контроля фаз (контроль 3-х фаз: напряжение, частота, временные задержки на перевод нагрузки, возможность программирования диапазонов и задержек) и применении механической блокировки (предотвращает одновременную подачу электропитания с двух вводов) АВР на контакторах становится довольно качественным и законченным изделием.

Преимущества: дешевая стоимость, выполняет защитные функции (высокий ток, короткое замыкание).

Недостатки: отсутствие возможности ручного переключения при неисправности АВР, низкая ремонтопригодность (при отказе одного из элементов АВР, требуется демонтаж и ремонт всего изделия), длительное время переключения (от 16 до 120 мс). Небольшое количество циклов срабатывания. Вероятность залипания контактов контактора.

Электромеханические АВР на автоматических выключателях с электроприводом

Такие АВР несколько уступают предыдущим по быстродействию и также позволяют осуществить механическую и электрическую блокировки при двухвходовой схеме.

Недостатки: более сложная схема и более высокую стоимость этих устройств.

Электромеханические АВР на управляемых переключателях с электроприводом

В основе лежит рубильник (переключатель с нулевым средним положением, приводимый в действие моторным приводом. Привод управляется контроллером, который является частью автоматического рубильника или может устанавливаться отдельно).

Преимущества: Высокая ремонтопригодность: автоматический рубильник состоит из трех основных элементов: рубильник (переключатель), моторный привод, контроллер. Выход из строя рубильника практически невозможен. При выходе из строя моторного привода или контроллера (реле контроля фаз), возможна их замена без демонтажа щита АВР и без демонтажа самого рубильника. При снятом моторном приводе и контроллере возможно переключение нагрузки в ручном режиме. Легкая сборка щита АВР. Для сборки щита требуется установить рубильник на монтажную плату, никакие дополнительные силовые или контрольные соединения не используются. Высокая надежность: за счет применения малого количества элементов и за счет использования в качестве силового коммутирующего устройства 13 рубильника.

Недостатки: относительно высокая стоимость (на токи до 125 А). Отсутствие защитных функций

У всех рассмотренных типов АВР при необходимости могут быть реализованы функции контроля верхнего и нижнего уровня напряжений, введены элементы регулировки задержек и схемы управления работой ДЭС.

На основании выше сказанного, можно сделать следующие выводы:

Для системы гарантированного электроснабжения, имеющей два независимых ввода электроснабжения:

  • Целесообразно использовать АВР электромеханического типа, которые могут быть выполнены на контакторах, управляемых автоматических выключателях или управляемых переключателях с электроприводом.
  • Схема АВР должна предусматривать регулировки задержек переключения, порогов срабатывания во всем диапазоне входных напряжений.
  • Желательно наличие механической блокировки, исключающей возможность замыкания двух входов друг на друга.
  • При использовании в качестве резервного источника дизель-электрической станции схема АВР должна содержать необходимые элементы для управления ее работой (автоматический пуск и останов ДЭС, возможность регулировки различных временных параметров, в том числе задержки обратного переключения на сеть, времени работы ДЭС на холостом ходу для охлаждения и т.п.).

Для системы гарантированного электроснабжения, имеющей три независимых ввода электроснабжения:

  • Трехвходовая схема может быть реализована путем последовательного соединения двух двухвходовых АВР, при этом каждый из этих аппаратов должен быть выполнен с учетом требований, указанных выше.
  • АВР на контакторах и управляемых автоматических выключателях могут быть реализованы как трехвходовые (что уменьшит суммарную стоимость оборудования на 20-30% за счет меньшего числа коммутирующих элементов), однако при этом невозможно обеспечить полноценную механическую блокировку между тремя входами.

Остановимся на некоторых практических рекомендациях, которые подтверждены в различных проектах, реализованных специалистами холдинга "Электросистемы".

1. Система гарантированного электроснабжения мощностью до 100кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

В этом случае могут быть предложены автоматические коммутаторы серии АК фирмы "ППФ БИП-сервис", представляющие собой АВР контакторного типа. Эти аппараты имеют:

  • механическую и электронную блокировку контакторов;
  • автоматические выключатели на каждом входе, обеспечивающие защиту сетей от перегрузок и коротких замыканий нагрузки;
  • регулировку диапазона контролируемых напряжений;
  • контроль правильности чередования фаз; возможность установки приоритета любого из входов;
  • индикацию режима работы и состояния входов;
  • регулировку задержки времени переключения.

Такой перечень функциональных возможностей позволяет успешно применять коммутаторы серии АК в системах, содержащих ИБП.

2. Система гарантированного электроснабжения мощностью более 100кВА, имеющая в своем составе ИБП и работающая от двух сетевых входов.

Для таких систем более целесообразно использовать автоматические коммутаторы серии АКП фирмы "ППФ БИП-сервис", которые представляют собой АВР на управляемых переключателях с электроприводом.

Эти аппараты имеют все перечисленные выше особенности, но кроме того, как указывалось выше, позволяют управлять переключением входов вручную при любом напряжении или его отсутствии. Переключатели оснащены механическими замками, позволяющими заблокировать их в любом из возможных состояний, что может быть в некоторых случаях важно для потребителя.

3. Система гарантированного электроснабжения, работающая от одного сетевого ввода и имеющая в качестве резервного питания ДЭС.

Для такой конфигурации может быть применена панель переключения нагрузки типа TI, также представляющая собой АВР контакторного типа, но имеющая в своем составе все необходимые элементы для управления автоматизированной ДЭС. Изделия этого типа, как правило, рекомендуются фирмами - изготовителями дизель-генераторов, в частности, фирмой F.G.Wilson.

4. Система гарантированного электроснабжения, имеющая в своем составе ИБП и работающая от двух сетевых входов и резервной ДЭС.

Здесь могут быть предложены следующие варианты построения АВР:

  1. каскадное соединение АВР серии АК или АКП и панели переключения TI;
  2. трехвходовой коммутатор серии АК с функцией управления ДЭС;
  3. трехвходовой коммутатор серии АКП с функцией управления ДЭС.

Система гарантированного электроснабжения, реализованная по первому варианту (рис.1), по существу, является комбинацией двух рассмотренных выше схем для двух сетевых вводов и для сетевого ввода и ДЭС.

Очевидно, однако, что эта схема обладает некоторой избыточностью (например, для коммутаторов типа АК необходимо четыре контактора), поэтому схемы трехвходовых АВР могут быть экономически более привлекательны.

В то же время следует повторно отметить то обстоятельство, что для трехвходовой контакторной схемы невозможна полноценная механическая блокировка всех входов между собой, что определяется конструктивными особенностями контакторов. В связи с этим в трехвходовых контакторных АВР целесообразно установить электрическую и механическую блокировку между ДГ и каждым из сетевых вводов, а между сетевыми вводами предусмотреть только электрическую блокировку. Именно по такому принципу выполнены трехвходовые коммутаторы серии АК (см. рис.2).

Схема трехвходового коммутатора серии АКП (рис.3), как отмечалось ранее, исключает возможность замыкания входов между собой за счет конструкции переключателей и одновременно дешевле, чем два отдельных каскадно соединенных АВР.

 

malahit-irk.ru

Автоматическое включение резерва-полное описание

АВР (автоматическое включение резерва) релейная защита, призванная предотвратить перебои в питании электроэнергией объектов электроснабжения.

Автоматическое включение резерва необходимо во всех случаях, когда в наличии имеется резервный или дополнительный источник питания. Это может быть второй трансформатор или дополнительная резервная линия, вторая секция шин. При аварийном отключении основного источника питания вся нагрузка подстанции, секции шин и т. д. переходит на дополнительный источник напряжения.

АВР используют в обязательном порядке для предотвращения ущерба от кратковременных перебоев электроснабжения и для обеспечения безаварийной подачи электроэнергии, а также для создания надежной схемы электроснабжения и достаточной производительности ТСН (трансформаторов собственных нужд) разработаны схемы АВР (автоматическое включение резерва)

АВР обязательны к установке на выключателях резервных ТСН, в стойках управления резервными маслонасосами и водяными насосами питающими парогенераторы. АВР необходимо в щитах управления 0,4 кВ питающих важные объекты и оборудование, обеспечивающее безаварийную работу потребителей и электрических станций. АВР обязательно устанавливается в ячейках секционных выключателя 2-х трансформаторных подстанций.

Основные требования, предъявляемые к АВР на оперативном постоянном токе в электроустановках высокого напряжения

  1. Быстродействие, обязательное условие при подключении к секциям шин синхронных электродвигателей. При несоблюдении этого требования произойдет выпадение агрегата из режима синхронизма после потери питания в бестоковую паузу, что недопустимо по технологии.
  2. Однократность действия, включение в работу только после отключения выключателя.
  3. Включение АВР недопустимо после отключения нагрузки при КЗ (коротком замыкании).
  4. АВР должна быть завязана и с основной МТЗ (максимальной токовой защитой), которая присутствует на действующем источнике питания, и с защитой от минимального напряжения, это действие предназначено для того чтобы АВР сработала при исчезновении напряжения питающей сети.
  5. В случае присутствия на действующем источнике питания устройства АПВ, то в случае если параллельная работа действующего и дополнительного источника питания не разрешена, из-за отсутствия синхронизма существует вариант неправильной срабатывании защиты при работе в параллель, необходимо установить блокировку от параллельной работы. Для этого нужно отделить рабочий источник от нагрузки независимо от работы устройства АПВ (все последующие переключения при успешном АПВ выполняют в ручном режиме) или необходимо выдержку времени устройства АВР выбрать больше времени полного цикла АВР.

Схема устройства автоматического включения резервной линии

Использование на промышленных объектах I, II категорий. Основные требования к схеме.

  1. Обязательно должно быть в наличии два комплекта реле, они должны предупредить ложное срабатывание, по причине неисправности сети или обрыва проводника в питающей сети, неисправности фазы на трансформаторе и прочие неполадки.
  2. Для АВР объектов категории III и прочих не ответственных групп, допускается использовать однорелейные АВР на каждом вводе .
  3. Трансформаторы напряжения устанавливают для конкретного резервного ввода, на основном вводе производится установка шинных трансформаторов.

Рис. №1. АВР резервной линии.

Назначение цепей схемы АВР (автоматического включения резерва) линии электропередач

  1. 1 – 2 – запуск АВР при срабатывании защиты минимального напряжения.
  2. 1 – 4 – блокировка АВР при потере напряжения на резервном вводе, ограничение времени импульса включения выключателя 2В
  3. 3 – 6 – питание реле отключения действующего ввода от защиты по минимальному напряжению (минималка).
  4. 5 – 6 – аналогичное питание, но при МТЗ.
  5. 6 – 7 – самоподхват реле 1П.
  6. 8 – 9 – ручное отключение выключателя 1В.
  7. 8 – 11 – отключение выключателя 1В при помощи минималки или от релейной защиты.
  8. 10 – 13 – включение контактора 2К.
  9. 12 – 15 – отключение выключателя 2В релейной защитой.
  10. 14 – 17 – включение контактора 1К.
  11. 16 – 19 – включение выключателя 1В.
  12. 18 – 21 – включение выключателя 2В.

Недостатком схемы считается возможность параллельной работы двух вводов, то есть включение основного ввода при работающем резервном вводе. Для того чтобы предотвратить параллельную работу в цепь 14 – 17 включают размыкающий контакт не допускающий включение выключателя 2В.

Характеристика аналогичных схем АВР

Схема устройства автоматического включения резервного трансформатора работает аналогично схеме включения резервной линии. Нюанс ее в том, что в ней нет блокировки АВР от отсутствия  напряжения на вводе включения резерва. АВР действует без выдержки времени, это из-за того, что при наличии второго трансформатора, для рабочего трансформатора не предусмотрено АПВ. Рабочий трансформатор может работать в параллель с резервным тр-ром. Оба трансформатора подбираются согласно условиям, действующим для двух параллельно работающих трансформаторов.

Назначение цепей
  1. 1 – 2 подача питания на реле отключения действующего тр-ра от защиты.
  2. 3 – 4 и 5 – 6 – отключение обоих выключателей от защиты.
  3. 7 – 8 – цепь, питающая реле времени, обеспечивающая выдержку времени при включении выключателей 3В и 4В.
  4. 9 – 10 – питание включающего реле трансформатора резерва.
  5. 11 – 12 и 13 – 14 – включение контакторов, включающих катушки, привода выключателей трансформатора резерва.
  6. 17 – 18 и 19 – 20 – отключение выключателей 3В и 4В от релейной защиты.
  7. 21 – 22 и 23 – 24 – включение выключателей резервного трансформатора 3В и 4В.

Работа схемы осуществляется при низком напряжении вторичных цепей до 1кВ. Для этого на стороне НН установлен автоматический выключатель с отключающей катушкой.

Рис. №2. АВР включения резервного трансформатора.

Схема устройства автоматического включения секционного выключателя. В этом случае питание секции шин осуществляется от двух действующих силовых трансформаторов. Нормальная схема, секционный выключатель отключен, ключ устройства АВР стоит в положении «вкл». При аварийном отключении одного трансформатора, должен сработать АВР, секционный выключатель включится в работу. При этом необходимо учитывать, что общая нагрузка обоих секций не должна превышать максимально допустимую нагрузку, разрешенную на одном трансформаторе.

Рис. №3. АВР секционного выключателя.

Пояснение схемы.

Выключатели 1В и 3В включены в обмотки промежуточных реле 1ПВ и 2ПВ и обтекаются током, при этом замыкающие контуры замкнуты. После отключения одного тр-ра, при срабатывании защиты или в случае неисправности, соответствующий выключатель отключается, происходит размыкание контакта в цепи электромагнита отключения 1ЭО и происходит замыкание размыкающего контакта в цепи 1ЭВ, этих цепей на схеме нет.

Реле 1ПВ обесточивается, но контакты остаются замкнутыми в течение выдержки времени. По плюсовой цепи размыкающий контакт 1В – замыкающий контакт, 1ПВ – У –контакт, работающий на размыкание. 5В – 5КВ – минус осуществляет включение выключателя 5В. В случае если КЗ не устранилось, предусмотрено ускорение защиты на СМВ. Оно выполняется контактной группой реле 1ПВ и 2ПВ, с их помощью осуществляется подача плюса на мгновенный контакт реле времени В, осуществляющий защиту секционного выключателя. Промежуточное реле П отключает выключатель 5В. Оба тр-ра подключены от одного питающего источника напряжения, то при выходе его из строя, действие АПВ нецелесообразно. Как следствие отсутствие этой схеме пускового органа защиты от минимального напряжения.

Современные устройства АВР

С развитием инновационных технологий и совершенствованием электрооборудования элекстроустановок, постепенно производство уходит от применения простых и надежных, полностью оправдавших себя релейных схем защиты. Новейшие системы АВР отличаются сверх быстродействием , называются БАВР. Устройства объединяют в себе ряд пусковых органов, которые взаимодействуют между собой благодаря специфическим алгоритмам, они могут идентифицировать аварийные режимы.

Пусковые устройства БАВР дают возможность выполнить все задачи  за минимальное время, без задания времени с устройствами РЗиА, сопутствующих  элементов сети.

Рис. №4. Блок БАВР.

Главные преимущества БАВР
  1. Минимальное время срабатывания при аварийном режиме от 5 до 12 сек.
  2. Переключение с основного на резервный ввод осуществляется с сохранением синфазности питающих источников.
  3. Блок действует при несимметричных КЗ в энергосистеме с напряжением 110 (220) кВ, они составляют 80% от общего числа неисправностей, осуществляется контроль направления мощности и специальное реле, следящее и осуществляющее направление тока.
  4. БАВР надежно функционирует как при наличии синхронных и асинхронных двигателей 6 (10) кВ так и при отсутствии. Функции блока как реле направления мощности позволяет за время не более 10мс определить потери питания со стороны основного источника.
  5. Работает без привязки к определенным системам РЗиА. В блоке БАВР можно осуществить защиту МТЗ, ТО, ЗМН.
  6. С его помощью определяется величина активной и реактивной мощности, производится подсчет полной мощности, осуществляется контроль напряжения в сети и током нагрузок. Производит контроль состояния дискретных сигналов.
  7. Осуществляет восстановление режима ВПР в нормальное состояние без участия обслуживающего персонала.
  8. Сохраняет происходящие события до 1000 срабатываний БАВР.
Внедрение комплекса БАВР позволяет получить определенные преимущества:
  • Обеспечения надежности и беспрерывного электроснабжения, обеспечив суточные графики за счёт достигнутого полного времени перехода на резервный за время 0,034 с.
  • Значительное повышение ресурса электродвигателей и насосов ввиду ненужности производства повторных пусков электрических машин и агрегатов.
  • Снижение электропотребления за счёт снижения потерь при повторном пуске и восстановлении нормальной скорости прокачки.
  • Снижение потерь на разогрев печей после продувки.
  • Предотвратить перерывы работы технологического оборудования, которые очень дорого обходятся предприятию.
  • Снижение рисков экологических загрязнений впоследствии аварий электроснабжения.
  • Повышение степени автоматизации производства.
  • Повышение производительности труда работников и предприятия.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

Испытания АВР

1. Общие положения

Испытания АВР проводятся с целью проверки его функционирования как устройства, автоматически при­соединяющего резервный источник питания к потреби­телям I категории при исчезновении напряжения на ши­нах основного, вызванного любой причиной, в том числе короткими замыканиями (КЗ) на этих шинах.

2. Технические мероприятия

Перечень необходимых технических мероприятий оп­ределяет допускающий совместно с производителем работ в соответствии с ПОТЭУ, обязательными из которых являются:

  • отключение всех отходящих от АВР линий, питаю­щих потребителей I-й категории;
  • отключение от обоих вводов всех отходящих ли­ний, питающих потребителей II-й категории;

3. Нормируемые величины

Испытания АВР проводятся перед приемкой электро­оборудования в эксплуатацию, после капитальных и те­кущих ремонтов, а также в сроки, установленные графи­ком межремонтных профилактических испытаний

Проверке подлежат напряжение срабатывания и вы­держка времени отключения основного ввода АВР. Вы­держка времени устанавливается такой, чтобы исключить ложные срабатывания АВР при кратковременных сниже­ниях напряжения на вводах РУ.

Напряжение срабатывания и время срабатывания дол­жны соответствовать данным завода-изготовителя.

Проверка функционирования реле и контакторов про­водится по методике проверки правильности функцио­нирования полностью собранных схем при различных зна­чениях напряжения оперативного тока.

5. Проведение испытаний 5.1. Принцип действия АВР

Принципиальная схема одного из распространенных типов АВР представлена на рис. 1.

Исходное положение контактов реле и контакторов на схеме соответствует отсутствию напряжения на обоих вводах питающей сети. При подаче напряжения на резер­вный ввод через нормально замкнутые контакты К4, К1, К2, КЗ запитывается обмотка контактора К5, который сво­ими силовыми нормально разомкнутыми контактами фор­мирует цепь питания сборных шин потребителей I кате­гории. Одновременно через контакт К5 включается инди­каторная лампа Е2, свидетельствующая о питании потре­бителей I категории от резервного ввода.

При подаче напряжения на основной ввод (рабочий) реле контроля фаз К1, К2, КЗ своими нормально замкну­тыми контактами К1, К2 и КЗ разрывает цепь питания силового контактора К4, после чего теми же нормально разомкнутыми контактами К2 и КЗ (нормально разомк­нутая контактная группа К1 не задействована) формиру­ется цепь питания обмотки контактора К4.

При этом силовые контакты К5 приходят в свое нор­мально разомкнутое положение, разрывая цепь питания сборных шин потребителей первой категории от резерв­ного ввода, после чего силовые контакты К4 формируют цепь питания сборных шин потребителей первой катего­рии от рабочего ввода.

Контакт К4 формирует цепь питания индикаторной лампы Е1.

При пропадании напряжения на одной, двух или трех фазах рабочего ввода или снижения его ниже допустимых пределов контактами К2 и (или) КЗ реле контроля фаз, разрывается цепь питания обмотки контактора К4.

Рис. 1. Схема электрическая принципиальная панелей ЗАВР-100, ЗАВР-160, ЗАВР-250, ЗАВР-400, (линии питания потребителей II категории от обоих вводов не показаны, пунктирными линиями показаны цепи подключения электрического секундомера ПВ53-Л при испытаниях АВР по п.п. 5.5.1; 5.5.2).

 

При «пропадании» фазы L1, обмотка контактора К4 обе­сточивается, т. к. она непосредственно подключена к этой фазе через выпрямительное устройство.

При этом нормально замкнутые контакты К1, К2, КЗ реле контроля фаз (достаточно одного из них при пропа­дании напряжения на одной из фаз основного ввода) на­чинают формирование цепи питания обмотки контакто­ра К5.

Окончательное формирование цепи питания этой об­мотки осуществляется нормально замкнутыми контакта­ми К4 после обесточивания обмотки контактора К4, что исключает в данной ситуации замыкание силовых кон­тактов К5, до размыкания силовых контактов К4.

После замыкания силовых контактов К5 питание сбор­ных шин потребителей первой категории осуществляется от резервного ввода.

Нормально разомкнутый контакт К4 разрывает цепь питания индикаторной лампы Е,, а контакт К5 формиру­ет цепи питания индикаторной лампы Е2.

5.2. Порядок проведения испытаний

Исходное состояние схемы: вводные рубильники Q1 и Q2 отключены, автоматический выключатель PQ вклю­чен.

На обоих вводах номинальное напряжение питающей сети.

5.3. Проверка работоспособности

Проверить отсутствие напряжения на шинах потреби­телей I категории (шинах АВР).

Включить рубильник Q2. Загорание индикаторной лам­пы Е2 свидетельствует о подключении шин АВР к резерв­ному вводу.

Проверить наличие напряжения на шинах АВР.

Проверить фазировку резервного ввода и шин АВР. Правильность фазировки определяется по отсутствию на­пряжения между одноименными фазами резервного вво­да и шин АВР.

Включить рубильник Q1. Погасание индикаторной лам­пы Е2 и загорание индикаторной лампы Е2 свидетель­ствует о переводе питания шин АВР с резервного ввода на основной.

В случае несрабатывания контактора К4 проверить на­пряжение питания его обмотки и установить его 110 В реостатом R1.

Проверить наличие напряжения на шинах АВР.

Проверить фазировку основного ввода и шин АВР.

5.4. Проверка напряжения срабатывания

Отключить вводные рубильники Q1 и Q2 в указанной последовательности.

Вынуть плавкую вставку F1, и подключить реле конт­роля этой фазы через ЛАТР (РНО), как показано на фраг­менте схемы АВР (рис. 2).

Рис. 2. Фрагмент схемы АВР для включения реле контроля одной фазы через ЛАТР (РНО)

Регулятор напряжения ЛАТР установить в положение, соответствующее выходному напряжению 220 В.

Включить автоматический выключатель QF и рубиль­ники Q1 и (Q2 в указанной последовательности).

Плавно уменьшая напряжение питания К1 зафикси­ровать показания вольтметра, при которых произойдет его срабатывание.

Погасание лампы Е1 и загорание лампы Е2 свидетель­ствует о правильной последовательности функциониро­вания элементов схемы.

В случае, если контактор К4 сработает раньше чем реле контроля фаз К1, то до его срабатывания (К1) переклю­чение шин АВР на резервный ввод не произойдет, т. к. К1 не сформирует цепь питания контактора К5 своими нормально замкнутыми контактами К1.

Тогда потребители I категории будут обесточены то тех пор, пока напряжение фазы L1, не снизится до напряже­ния срабатывания К1.

В этом случае необходимо увеличить напряжение пи­тания обмотки К4 реостатом К,, но не выше номинально­го (110 В).

Отключить рубильники Q2 и Q1 в указанной последо­вательности.

Вставить плавкую вставку F1.

Последовательно подключая аналогичным образом реле контроля оставшихся фаз через ЛАТР (РНО) повторить вышеописанные операции.

Напряжение срабатывания АВР на каждой фазе долж­но находиться в пределах паспортных данных.

5.5. Проверка времени срабатывания

5.5.1 Проверка времени переключения шин с основного ввода на резервный

Отключить рубильники Q2 и Q1.

Вынуть плавкие вставки F2 и F5 (в фазах L2 основного и резервного вводов).

Собрать схему включения электрического секундоме­ра (цепи, изображенные пунктирными линиями на рис. 1).

Клемму «220 В» секундомера подключить к фазе L1, резервного ввода по схеме (1) клеммы «К» и «*» подсое­динить к контактам фазы L2 автоматического выключа­теля QF.

Зашунтировать нормально разомкнутые контакты К2 реле контроля фаз перемычкой.

Это делается для обеспечения работы АВР при отсут­ствии напряжения фазы L2.

Включить автоматический выключатель QF, рубиль­ники Q2 и Q1. Запуска электрического секундомера не про­исходит, т. к. его измерительный блок зашунтирован кон­тактами автоматического выключателя QF.

Отключить автоматический выключатель QF, что имитирует пропадание напряжения на основном вводе. Про­исходит запуск секундомера.

После замыкания силовых контактов К5 происходит останов секундомера вследствие шунтирования его изме­рительного блока этими контактами в цепи фазы L2. Время с момента исчезновения напряжения основного ввода до переключения шин АВР на резервный ввод должно соответствовать данным завода-изготовителя.

Следует отметить, что шунтирование секундомера надо осуществлять только обесточенными контактами автома­тического выключателя QF и  контактора К5 .

5.5.2 Проверка времени отключения основного ввода

Время переключения шин АВР с основного на резер­вный ввод характеризует продолжительность отсутствия напряжения на шинах АВР.

Однако часто необходимо знать время отключения ос­новного ввода с момента исчезновения напряжения сети, чтобы при пуско-наладочных работах установить выдер­жку времени срабатывания реле для исключения ложных срабатываний АВР при кратковременных «провалах» на­пряжения.

Для измерения этого времени необходимо при отклю­ченных рубильниках Q2 и Q1, и вынутых плавких вставках F2 и F5 подать питание на электрический секундомер по схеме (2). (Клемму «220 В» подключить к выходу силово­го контакта К4 фазы L1). Остальная часть схемы остается неизменной (можно отсоединить проводники с силового контакта К5 в фазе L2).

Для исключения повторного запуска секундомера ре­остат R2 отсоединить от N (РЕN) проводника.

Включить автоматический выключатель QF, рубильни­ки Q1 и Q2.

Выключить автоматический выключатель QF. Проис­ходит запуск секундомера.

После размыкания силовых контактов К4 происходит останов секундомера вследствие разрыва его цепи пита­ния.

Суммарное время срабатывания реле контроля фаз и К4 должно соответствовать заводским данным или со­гласованному с энергоснабжающей организацией.

Примечание:

В рассматриваемой принципиальной схеме панелей ЗАВР-100; 160; 250; 400 используются реле напряжения (К1, К2, КЗ) типа РЭП15-220БУЗ, которые совместно с контакторами КТП601/ЗБУЗ регулировку выдержки времени срабатывания не обеспечивают.

Проверка АВР по п. 5.5.2 в этих случаях не производится.

 

6. Безопасные приёмы работ.

 

Работы по проверке устройств автоматического включения резервного питания выполняется по наряду-допуску или по распоряжению. Вид оформле­ния работ определяет работник, имеющий право выдачи нарядов и распоряжений. К работе допускаются лица из электротехнического персонала не моложе 18 лет, обученные и аттестованные на знание ПТБ, ПЭЭБ и данной методики, обеспеченные инструментом, индивидуальными защитными средствами, спецодеждой.

Состав бригады должен быть не менее двух человек:

— производитель работ с группой по электробезопас­ности не ниже III;

— член бригады с группой по электробезопасности не ниже III.

Запрещается выполнять работы при высокой влажности, а также в огне-, пожаро- и во взрывоопасных средах и помещениях.

Перед началом измерений необходимо изучить схему включения резервного питания электроустановки и принять меры препятствующие допуску на испытуемый объект лиц, не участвующих в испытаниях, при необходимости выставить наблюдающего.

По результатам измерений составляется протокол установленной формы. Лица, допустившие нарушения ПТБ или ПТЭЭП, а также допустившие искажения достоверности и точности измерений, несут ответственность в соответствии с законодательством и положением о передвижной электролаборатории.

ellabst.ru

АВР на трансформаторах подстанции. Расчёт параметров срабатывания пусковых органов АВР. Расчет установок релейной защиты и автоматики

Похожие главы из других работ:

Определение состава системы передачи информации

1.2 Состав и технические требования к системе передачи информации с подстанции

Для понизительных подстанций напряжением ПОкВ распределительной сети предусматривается один телефонный канал диспетчерской связи с оперативным персоналом ДП без резервирования собственными независимыми каналами связи...

Проектирование двенадцатипульсного составного управляемого выпрямителя с параллельным включением вентилей

2.1 Расчет параметров пусковых импульсов

Определяем требуемую длительность импульса управления , исходя из знания угла коммутации...

Проектирование систем электроснабжения промышленных предприятий на примере маслохозяйственного отделения ПП "Ефремовская ТЭЦ"

2.3 Выбор числа и мощности трансформаторной подстанции

(2.62) Sном .т=0,7*471,9=330,3 Sном.т =400?330,3 - условие выполняется Нагрузка в нормальном режиме: Кз.норм=Sм/2*Sном.т? Кз.доп (2.63) Кз.норм =330,3/2*400 ? 0,41 ? 0,7 В аварийном режиме Кз АВ=Sm/Sном.т (2.64) Кз АВ=471,9/400=1,17 ? 1...

Проектирование фильтра симметричных составляющих прямой последовательности тока

1. ОСНОВНЫЕ СВЕДЕНИЯ О ТРАНСФОРМАТОРАХ НАПРЯЖЕНИЯ

Трансформаторы напряжения служат для преобразования высокого напряжения в низкое стандартное напряжение, удобное для измерения. Обычно за номинальное вторичное напряжение принимается напряжение 100 В или 100/ В...

Расчет управляемого выпрямителя и СИФУ

2.1 Расчет параметров пусковых импульсов

Определяем требуемую длительность импульса управления , исходя из знания угла коммутации , определенного при расчете силовых схем: Принималось во внимание, что 1 электрический градус примерно равен 56мкс...

Расчет установок релейной защиты и автоматики

Выбор устройств автоматики, устанавливаемых на оборудовании подстанции

Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты...

Расчет установок релейной защиты и автоматики

Выбор типа АПВ. Расчёт параметров срабатывания пусковых и контрольных органов АПВ

Время срабатывания однократного АПВ определяется по следующим условиям: , (26) где tг. п. - время готовности привода, которое в зависимости от привода находится в пределах от 0,1 до 0,2 с; , (27) где tг. в. - время готовности выключателя...

Расчет элементов управляемого выпрямителя, системы импульсно-фазового управления на операционных усилителях

2.1 Расчет параметров пусковых импульсов

Определяем требуемую длительность импульса управления , исходя из знания угла коммутации...

Расчёт и выбор микропроцессорных блоков защитной автоматики

5. Объём и места снятия информации в автоматизированную систему управления подстанции

Автоматизированная система управления (АСУ-ТП) является универсальной системой, позволяющей производить автоматический контроль режимов работы всего оборудования подстанции, как основного силового...

Расчёт оборудования областного узла связи сети ДЭС

13. Определение возможности подключения подстанции

Число точек подключения к данному ЦКС составляет 205, а максимально можно подключить 250 каналов, тогда: 250 - 205 = 45 свободных точек подключения. А производительность данного ЦКС составляет сообщ/сек, а максимально возможная 2 сообщения/секунду...

Расчёт однофазного мостового управляемого выпрямителя и системы импульсно фазового управления

2.1 Расчет параметров пусковых импульсов

Определяем требуемую длительность импульса управления , исходя из знания угла коммутации , определенного при расчете силовых схем: Принималось во внимание, что 1 электрический градус примерно равен 56мкс...

Средства постановки помех и помехозащиты РЛС

5). Расчет параметров средств помехозащиты (алгоритма помехозащиты, структуры и параметров)

...

Средства постановки помех и помехозащиты. Помеха от земной поверхности, уводящая по дальности

4. Расчет параметров средств помехозащиты (алгоритма помехозащиты, структуры и параметров)

5. Анализ эффективности применения комплекса помех и средств помехозащиты 6. Оценка требований к аппаратно-программным ресурсам средств конфликтующих сторон 7...

Средства постановки помех и помехозащиты. Помеха от земной поверхности, уводящая по дальности

5. Расчёт параметров средств помехозащиты (алгоритма помехозащиты, структуры и параметров)

Отношение ш/п на входе РЛС: Подавление в режекторном фильтре должно осуществляться до уровня шума, следовательно, коэффициент подавления должен составлять около 49 дБ...

Эргономическо-дизайнерский анализ изделия радиоэлектронной аппаратуры

3. Анализ конструкции органов индикации и управления их компоновка на лицевой панели изделия РЭА

Индикаторы и органы управления должны размещаться с учетом возможности их оптимального использования, т. е. в зависимости от их функционального назначения, важности прибора, цены делений, порядка отсчета...

radio.bobrodobro.ru

Напряжение срабатывания АВР (Страница 1) — Автоматическое включение резерва (АВР) — Советы бывалого релейщика

Добрый день.Согласно технической литературе (Библиотека монтёра «Автоматическое включение резерва», 1971г., М.А. Шабад «Расчеты релейной защиты и автоматики распределительных сетей», 2003г.) для запуска АВР необходимо использовать реле минимального напряжения с уставкой (0,25-0,4) Uном.Изучив литературу, я сделал вывод, что это связано со следующими обстоятельствами:1. Не нужно, чтобы АВР срабатывал в сети 6кВ-10кВ при перегорании предохранителя в цепях напряжения. В этом случае междуфазное напряжение на измерительном устройстве уменьшится в 1,73 раза, т.е. до 0,578Uном. Такая авария должна закончится сигнализацией, а никак не срабатываем АВР.2. Не нужно, чтобы АВР постоянно запускался при любых просадках в сети, связанных с КЗ. Несмотря на то, что исключить срабатывание можно введя уставку по времени, хотелось бы исключить постоянное срабатывание реле напряжения3. Если мы выставляем на 6-10кВ уставку (0,25-0,4)Uном, тогда внизу, в сети 0,4кВ, мы не должны брать уставки выше. В противном случае при исчезновении напряжения от источника питания - реле напряжения на 0,4кВ будет запускаться раньше, чем на 6кВ. Казалось есть ответ - сделай выдержку времени.  Но кто знает насколько быстро будет уменьшаться напряжение? Можем на СН сидит настолько инертная нагрузка, которая не позволит быстро напряжению исчезнуть, тем самым внизу уже выдержка времени во всю идёт, а на СН ещё не запустилась. Это всё моя теория.

Дело в том, что проанализировав электротехнический рынок я пришёл к выводу, что все производители применяют реле минимального напряжения с уставкой не ниже 0,7-0,8 U ном. Нашёл только одного производителя, который может выполнить данное требование.

Я задумался, почему от этого ушли? Литература времен СССР, значит тогда были и использовались эти реле. А сейчас их нигде нет. Может та информация устарела и по каким-то причинам нельзя применять реле с данными уставками? Как по мне, то реле с уставками (0,25-0,4) точно не хуже, чем реле с уставками (0,7-0,8) и позволят меньше "дрынгать" АВР при внешних КЗ.

www.rzia.ru

Автоматический ввод резерва. Проверка работоспособности системы АВР

Электротехническая лаборатория ГК Эколайф производит проверку работы системы автоматического ввода резервного питания (АВР). По результатам измерений составляется протокол в технический отчет ЭТЛ.

Содержание:1. Подготовка оборудования перед проверкой системы АВР2. Ход проведения испытаний системы АВР и используемое оборудование

При работе большинства предприятий важна непрерывность производства и работоспособность всего оборудования в целом на протяжении рабочего дня. Транспортная инфраструктура и системы жизнеобеспечения социальных объектов также критически зависят от гарантированной работы электрооборудования. Для владельцев частных домов отключение электричества может обернуться остановкой системы отопления, водоснабжения, канализации, охранной сигнализации и пр.

Короткое замыкание, перегрузка или иное нарушение работоспособности электросети может грозить выходом из строя оборудования, остановкой или задержкой производства, сбоями графика движения транспорта, потерей управления, авариями. В самом неблагоприятном варианте событий помимо материального ущерба такая чрезвычайная ситуация может создавать угрозу для человеческих жизней.

Для того чтобы избежать чрезвычайных ситуаций, в здании обязательно должен быть установлен источник резервного питания и система автоматического ввода резерва (АВР). В случае потери основного источника электропитания система АВР автоматически активирует резервное электроснабжение механизмов и систем жизнеобеспечения.Однако недостаточно просто установить качественную систему АВР, необходимо также своевременно проверять её исправность и настройки.Проверку необходимо проводить в первую очередь с целью обезопасить участников производственного процесса и оградить оборудование от выхода из строя в результате перегрузки сети.Кроме того, целью проверки АВР является также предотвращение возможности ложной активации системы в случаях падения напряжения на линии (например, в момент включения мощного электродвигателя или другого потребителя).Необходимо проверять такие настройки АВР как момент задействования ввода и скорость его включения.

Подготовка оборудования перед проверкой системы АВР

В ходе проверки систем АВР соблюдается порядок действий, определённый перечнем технических мероприятий, ПУЭ п.1.8.34 (4, 5, 6) и ГОСТ Р 50571.16-99 п. 612.9. Предварительно отключаются от системы автоматического ввода резерва все линии, ведущие к питанию потребителей I-й категории, (то есть те, которые могут представлять опасность для жизни человека). Затем отключаются все линии, обеспечивающих питание потребителям II-й категории (то есть те, нарушение в работе которых может повлечь остановку производства на предприятии).

Что измеряется при проверке АВР:

• Время срабатывания системы АВР • Насколько исключена возможность ложного срабатывания системы при кратковременном понижении напряжения в сети• Непосредственно напряжение срабатывания ввода АВР• Проверка функционирования реле и контакторов (в соответствии с методикой проверки правильности функционирования полностью собранных схем).

Перечисленные величины являются ключевыми и проверяются в соответствии с ГОСТ Р 50571.16-99.

Сроки проверки системы АВР устанавливаются в зависимости от сроков работы оборудования, а также в трех конкретных случаях:

1. при приёмке нового оборудования и вводе его в эксплуатацию; 2. проверка автоматического ввода резерва после капитальных или текущих ремонтов; 3. проверки, установленные графиком межремонтных профилактических испытаний.

Своевременная проверка установленного оборудования позволяет оградить производство и само предприятие от несчастных случаев и обеспечить бесперебойность производства.

Ход проведения испытаний системы АВР и используемое оборудование

Для проверки работоспособности систем автоматического ввода резерва может быть использовано следующее оборудование:

• комбинированные электроизмерительные приборы и аналогичные им;• автотрансформаторы;• регуляторы напряжения;• электрические секундомеры.

Всё перечисленное оборудование необходимо для точного испытания оборудования и установления того, что напряжение срабатывания и время срабатывания соответствуют данным завода-изготовителя, а все проверяемые показатели не имеют отклонения от нормы.Сама проверка АВР производится в несколько этапов после того, как оборудование было предварительно отключено. Все требования, предъявляемые к ходу проверки, определены ГОСТ Р 8.563-96 «Методика выполнения измерений».

Можно выделить несколько главных этапов в проведении проверки системы АВР:

• общая проверка работоспособности системы может проводиться как в самом начале, так и для регистрации итоговых результатов, она включает в себя проверку фазировки резервного ввода и шин АВР, а также подтверждение перехода питания от одной шины к другой;

• проверка напряжения срабатывания производится с целью предотвращения ложного срабатывания системы автоматического ввода резерва в тех случаях, когда напряжение в сети временно понижается, однако остаётся достаточным для бесперебойной работы оборудования;

• проверка времени переключения шин с основного ввода на резервный осуществляется с помощью электрического секундомера и её результатом будет подтверждение соответствия времени срабатывания системы АВР в соответствии с данными, указанными заводом-изготовителем;

• проверка времени отключения основного ввода проводится с целью определить скорость срабатывания переключения шин с основного на резервный ввод при потере напряжения в сети, а также исключение возможности задействования АВР при кратковременных падениях напряжения.

Указанный ход работы одинаков для всех систем автоматического ввода резерва и данная проверка подразумевает подтверждение соответствия характеристик оборудования тем, которые были указаны заводом-изготовителем.

Данный комплекс мероприятий позволяет избавить производство от ряда негативных последствий и прежде всего, обезопасить жизнедеятельность рабочих, присутствующих на производстве в соответствии с ГОСТ Р 50571.3-94. Проведение проверки систем автоматического ввода резерва необходимо проводить своевременно в соответствии с графиком, а специфика проведения работ, несомненно, требует привлечения к ним квалифицированных специалистов, способных документально (в соответствии с ГОСТ Р ИСО/МЭК 17025-2009) подтвердить исправность оборудования и дать точный результат.

К НАЧАЛУ СТРАНИЦЫ

vnt24.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.