28.09.2024

Значение сопротивление заземления: Норма сопротивления контура заземления | Элкомэлектро

Содержание

Норма сопротивления контура заземления | Элкомэлектро

Электролаборатория » Услуги электролаборатории » Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?

Норма сопротивления контура заземленияНачну с того, что поясню, какие бывают испытания.  Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.

И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?

Норма сопротивления контура заземления1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:

Норма сопротивления контура заземленияПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 — 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Подведём итог

Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

Сопротивление заземления

Сопротивление заземления (сопротивление растеканию электрического тока) определяется как величина «противодействия» растеканию электрического тока в земле, поступающего в неё через заземлитель.

Измеряется в Ом и должно иметь минимально низкое значение. Идеальный случай — нулевая величина, что означает отсутствие какого-либо сопротивления при пропускании «вредных» электротоков, что гарантирует их ПОЛНОЕ поглощение землей.

Так как идеала достигнуть невозможно, все электрооборудование и электроника создаются исходя из некоторых нормированных величин сопротивления заземления = 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом

    При подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора) должно быть не более 4 Ом (ПУЭ 1.7.101). Данное условие выполняется без каких-либо дополнительных мероприятий при правильном заземлении источника тока (трансформатора либо генератора)

Подробнее об этом на странице «Заземление дома».

  • при подключении газопровода к дому должно выполняться стандартное требование для заземления дома. Однако из-за использования опасного оборудования необходимо выполнять локальное заземление с сопротивлением не более 10 Ом

    (ПУЭ 1.7.103; для всех повторных заземлений)

    Подробнее об этом на странице «Заземление газового котла / газопровода».


  • для заземления, использующегося для подключения молниеприёмников, сопротивление заземления должно быть не более 10 Ом (РД 34.21.122-87, п. 8)

    Подробнее об этом на странице «Молниезащита и заземление».


  • для источника тока (генератора или трансформатора) сопротивление заземления должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока (ПУЭ 1.7.101)

  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.

  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление

    не более 2 или 4 Ом

  • для подстанции 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)

Приведённые выше нормы сопротивления заземления справедливы для нормальных грунтов с удельным электрическим сопротивлением
не более 100 Ом*м (например, глина / суглинки).

Если грунт имеет более высокое удельное электрическое сопротивление — то часто (но не всегда) минимальные значения сопротивление заземления повышаются на величину 0,01 от удельного сопротивления грунта.

Например, при песчаных грунтах с удельным сопротивлением

500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S повышается в 5 раз — до 150 Ом (вместо 30 Ом).

Нормы сопротивления заземляющих устройств, сопротивление заземления

фото высоковольтных линий (ВЛ)

Электричество, хотим мы того или нет, есть везде. В космическом пространстве, пронизывая все на своем пути, несутся бесчисленные космические лучи – электрически заряженные элементарные частицы. За пределами нашей планеты на высоте около 17 000 км над ее поверхностью находятся радиационные пояса, наполненные электрическими зарядами. На высоте 1000 км расположилась ионосфера – ионизированный космическими лучами слой воздушной оболочки Земли.

Атмосфера пронизана радиоволнами. Поверхность Земли покрыта линиями электропередачи. Например, в Беларуси по состоянию на 01.01.2017 суммарная длина воздушных линий 0.4 кВ – 750 кВ составила более 275 000 км. И, конечно же, электричество есть в каждом доме, на каждом заводе, в каждом предприятии. Сегодня все люди так или иначе взаимодействуют с электричеством, которое, однако, может быть не только другом.

Для уменьшения вероятности электротравматизма применяют защитное заземление – преднамеренное электрическое соединение с землей нетоковедущих частей, которые могут оказаться под опасным напряжением. Цель – защитить человека от действия тока в случае прикосновения к токопроводящим частям, находящимся под напряжением. Допустимое сопротивление заземляющего устройства закреплено в ПУЭ и ТКП 181-2009. Человек может по неосторожности прикоснуться непосредственно к токоведущим элементам или неосмысленно к корпусу электроустановки, на котором появилось напряжение из-за повреждения изоляции, замыкания фазы на корпус, обрыва нулевого провода в случае заземления нейтрали трансформатора и т.п. В обоих случаях через человека начнет протекать ток. Наиболее важное значение в такой экстремальной ситуации имеет величина этого тока, которая зависит от значений сопротивления земли и сопротивления заземления. В зависимости от силы ток, протекающий через пострадавшего, может вызвать три варианта развития событий:

1) Зуд, покалывание или ощущение тепла — при токе (0,5…1,5) мА;

2) Сильное непроизвольное сокращение мышц, которое может привести к тому, например, что рука, держащая проводник или рукоять, не сможет разжаться – при токе (10…25) мА;

3) Хаотическое судорожное сокращение сердца или его остановка – при токе более 50 мА.

фото измерения сопротивления

Однако заземление используется и для целей эффективного и экономичного функционирования электрических сетей. Такое заземление называется рабочим. Поэтому при эксплуатации сетей 110 кВ и выше производят регулярное измерение сопротивления заземления, которое согласно методике расчета пропорционально зависит от удельного электрического сопротивления грунта. Этими измерениями занимаются лаборатории электрофизических измерений, у которых можно заказать испытание заземляющих устройств. После проведения измерения заказчику выдается акт проверки контура заземления.

фото высоковольтных линий электропередач

Приведем таблицу ориентировочных величин расчетного удельного сопротивления грунта для разных пород по механическому составу и воды (все значения в Ом∙м). На территории Беларуси преобладают суглинистые и супесчаные почвы.










Глина, меловой песок

10…60

Суглинок

40…150

Супесок

150…400

Песок

От 400 до нескольких тысяч

Крупнозернистый песок, гравий, щебень

1000…10 000 или выше

Гранит, гнейс, сланец, базальт

от 1000 до нескольких десятков тысяч

Речная вода

5…100

Морская вода

0,2…1,0 или выше

Удельное сопротивление земли целесообразно измерять без нарушения целостности ее строения, поэтому наилучшим методом измерения является т.н. «метод четырех точек», при котором для измерений в землю вбиваются штыри диаметром около 1 см. Заказать измерение удельного сопротивления грунта в лаборатории электрофизических измерений «ТМРсила-М», имеющей большой опыт работы в области электроизмерений. 

Также согласно источникам приведем таблицу с нормируемыми сопротивлениями заземлений в зависимости от удельного сопротивления грунта (ПУЭ, ТКП 181-2009):







 Вид электроустановки Характеристика заземляемого объекта Характеристика заземляющего устройства Сопротивление, Ом
 1. Электроустановки напряжением выше 1000 В, кроме ВЛ* Электроустановка сети с эффективно заземленной нейтралью Искусственный заземлитель с подсоединенными естественными заземлителями  0,5
 2. Электроустановки напряжением до 1000 В с гпухозаземлененой нейтралью, кроме ВЛ*** Электроустановка с глухозаземленными нейтрапями генераторов ипит рансформаторов или выводами источников однофазного тока

 Искусственный заземпигель с подключенными естественными заземлителями и учетом испопьзования заземпитепей повторных заземлений нулевого провода ВЛ до 1000 В при количестве отходящих линий не менее двух при напряжении источника, В:

 трехфазный               однофазный

     660                             380

     380                             220

     220                             127

 Искусственный заземпитель, расположенный
в непосредственной близости от нейтрали
генератора или трансформатора или вывода
источника однофазного тока при напряжении
источника, В:

 трехфазный               однофазный

     660                             380

     380                             220

     220                             127

 

 

 

 

 

2

4

8

 

 

 

 

15

30

 60 

 3. ВЛ напряжением выше 1000 В****

 Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, железобетонные и металлические опоры ВЛ 35 кВ и такие же опоры ВЛ 320 кВ в населенной местности, на подходах к трансформаторным подстанциям с высшим напряжением 3-20 кВ, а также заземлители электрооборудования, установленного на опорах ВЛ 110 кВ и выше

 

 Электрооборудование, установленное на опорах ВЛ 3-35 кВ

 

 Железобетонные и металлические опоры ВЛ 3-20 кВ в ненаселенной местности

 3аземпитепь опоры при удельном сопротивлении грунта р, Ом-м:

 до 100;

 более 100 до 500

 более 500 до 1000

 более 1000 до 5000

 более 5000

 

 Заземлитель опоры

 

 Заземлитель опоры при удельном сопротивлении грунта р, Ом/м:

 до 100

 более 100

 

 

10*****

15*****

20*****

30*****

6-103 р*****

 

250/l**, но не более 10

 

 

30*****

0,3р*****

 4. ВЛ напряжением до 1000 В***

 

 

 

 

 

ВЛ напряжением до 1000 В****

 

 

 

 

 Опора ВЛ с устройством грозозащиты

 Опоры с повторными заземлителями нулевого провода

 

 

 

 

 Опоры с повторными заземлителями нулевого провода

 

 

 

 

 

 Заземлитель опоры для грозозащиты

 Общее сопротивление заземления всех повторных заземлений при напряжении источника, В:

 трехфазный                  однофазный

      660                               380

      380                               220

      220                               127

 Заземлитель каждого из повторных заземлений при напряжении источника, В:

 

 трехфазный                  однофазный

      660                               380

      380                               220

      220                               127

 

 

 30

 

 

5

10

20

 

 

 

 

15

30

60

 

 

 * Для злектроустановок напряжением выше 1000 В и до 1000 В с изолированной нейтралью при удельном сопротивлении грунта р более 500 Ом-м допускается увеличение сопротивления в 0,002 р раз, но не более десятикратного.

 ** I — расчетный ток замыкания на землю, А.

 В качестве расчетного тока принимается:

 — в сетях без компенсации емкостного тока — ток замыкания на землю;

 — в сетях с компенсацией емкостного тока;

 — для заземляющих устройств, к которым присоединены дугогасящие реакторы, — ток, равный 125 % номинального тока зтих реакторов;

 — для заземляющих устройств, к которым не присоединены дугогасящие реакторы, — ток замыкания на землю, проходящий в сети при отключении наиболее мощного из дугогасящих реакторов ипи наиболее разветвленного участка сети.

 *** Для установок и ВЛ напряжением до 1000 В с глухозаземленной нейтралью при удельном сопротивлении грунта р более 100 Ом-м допускается увеличение указанных выше норм в 0,01 р раз, но не более десятикратного.

 **** Сопротивление заземлителей опор ВЛ на подходах к подстанциям должно соответствовать требованиям ТКП 339.

 ***** Для опор высотой более 40 м на участках ВЛ, защищенных тросами, сопротивление заземлитепей должно быть в 2 раза меньше приведенных в таблице.

 

Сопротивление заземления молниезщиты — нормативы, периодичность замеров

Сопротивление заземления молниезщиты

Принцип действия громоотвода — перехват молнии и перенаправление разряда в землю для нейтрализации. Но эффективность всей системы зависит от величины сопротивления заземления молниезащиты, то есть от способности грунта поглощать электрический ток. Параметр измеряется в Ом, должен стремиться к нулю, однако, структура почв не позволяет достичь идеального значения.

Нормы для сопротивления заземления молниезащиты

В Инструкции по устройству молниезащиты РД 34.21.122-87 регламентированы максимальные значения противодействия растеканию тока для различных категорий зданий и сооружений, с учетом удельного сопротивления грунта:

  • I и II категория — 10 Ом;
  • III категория — 20 Ом;
  • Если электропроводность превышает 500 Ом*м — 40 Ом;
  • Наружные установки — 50 Ом.

Сопротивление падает в 2-5 раз при увеличении силы тока молнии.

Качество заземления молниезащиты

Ключевой параметр — сопротивление заземления — зависит от конфигурации заземлителя и удельного сопротивления почвы. Для вычисления значения существует специальная формула. Но для готовых заземлителей задача значительно упрощается: производитель предоставляет заранее подсчитанный коэффициент, который достаточно умножить на удельное сопротивление грунта, чтобы получить искомое значение.

Удельное сопротивление для различных грунтов

Значение прежде всего зависит от влажности и состава почвы, плотности прилегания пластов, наличия кислот, солей и щелочей. Вычисляется путем проведения геологических изысканий. Это комплекс сложных мероприятий, поэтому при расчетах принято использовать справочные величины:

  • Песчаный грунт, увлажненный поземными водами — 10-60 Ом*м;
  • Песок сухой — 1500-4200 Ом*м;
  • Бетон — 40-1000 Ом*м;
  • Чернозем — 60 Ом*м;
  • Глина — 20-60 Ом*м;
  • Илистая почва — 30 Ом*м;
  • Садовая земля — 40 Ом*м;
  • Супесь — 150 Ом*м;
  • Суглинок полутвердый — 100 Ом*м;
  • Солончак — 20 Ом*м.

На практике сопротивление молниезащиты всегда будет ниже расчетного значения: при погружении электрода в землю значительно снижается удельное сопротивление из-за уплотнения и увлажнения почвы грунтовыми водами.

Требования к заземлителю

Согласно РД 34.21.122-87 для заземления необходимо не менее трех электродов вертикального типа. Расстояние между ними — как минимум в два раза больше, чем глубина погружения. Кроме того, СО 153-34.21.122-2003 требует, чтобы расстояние от стен здания до электродов было не менее 1 метра.

Уменьшение сопротивления заземления

Поскольку удельное сопротивление почвы — величина относительно постоянная, для увеличения электропроводности необходимо изменять конфигурацию заземлителя: увеличивать площадь соприкосновения электродов с грунтом. Можно удлинить проводник или создать контур заземления: несколько отдельно стоящих электродов соединяются в единую сеть. В расчет берется сумма площадей.

Современные заземлители — эффективны и просты в установке. Электроды заглубляются до 30 метров. Благодаря этому удается значительно уменьшить общую площадь, компактно разместить заземлитель молниезащиты в условиях ограниченного пространства. Для монтажа не нужны специальные инструменты, штыри стыкуются между собой муфтой с резьбовым соединением. Медное покрытие электродов обеспечивает защиту от коррозии, увеличивая срок службы до 100 лет!

Измерение сопротивления заземления и периодичность проверок

Производятся с помощью специальных приборов (измерительных комплексов) по заданной схеме измерений в нескольким точках смонтированного контура молниезащиты. Данные показаний заносятся в специальную форму — протокол проверки сопротивлений заземлителей и  заземляющих устройств.

Замеры производят всегда по окончании монтажа системы молниезащиты и заземления, а также после выполнения ремонтных работ как на устройствах молниезащиты, так и на самих защищаемых объектах и вблизи них. Полученные данные заносят в акты (протоколы проверок), паспорта заземляющих устройств и журналы учета.

Примеры протоколов и паспортов можно посмотреть по этой ссылке.

Кроме внеочередных мероприятий существует регламент проведения измерения значений сопротивления, которые осуществляют для разных категорий зданий и сооружений с следующей периодичностью: для категории I II — 1 раз в год перед сезоном гроз, для III категории — не реже 1 раза в 3 года, для взрывоопасных объектов и производств — не реже 1 раза в год.

Важно использовать при этом приборы, поверенные должным образом, а также правильно выбрать точки измерений. Вот почему необходимо обращаться при этом в специализированные организации, которые имеют в своем распоряжении квалифицированный персонал и необходимые приборы, а также могут гарантировать вам качество работ на определенное время.

Компания «МЗК-Электро» предлагает квалифицированный монтаж заземления. Опытные специалисты проведут необходимые расчеты, подберут оптимальное по стоимости и эффективности решение для конкретного объекта. В работе используем сертифицированное оборудование от ведущих производителей. Доверьте проектирование громоотвода профессионалам — вы гарантированно получите надежную молниезащиту!

Сопротивление грунта и заземление

Сопротивление грунта и заземление

 

Удельное сопротивление грунта — это главный параметр, который влияет на конструкцию заземляющего устройства: количество и длину заземляющих электродов. Физически оно равняется электрическому сопротивлению, которое грунт оказывает току при прохождении им расстояния между противоположными гранями условного куба объёмом 1 куб. м.; размерность Ом*м. Удельное сопротивление зависит от многих факторов: состава и структуры грунта, его плотности, влажности, температуры, наличия примесей – солей, кислот, щелочей. Все эти параметры изменяются в течение года, поэтому соответствующим образом меняется и сопротивление грунта. Данный факт нужно учитывать при проведении замеров, расчётов, а также при измерении сопротивления растеканию смонтированного заземляющего устройства.

Сопротивление грунта и сопротивление заземления

Чем ниже значение удельного сопротивления грунта, тем лучше электрический ток растекается в среде, и тем меньше получится сопротивление заземляющего устройства. Низкое сопротивление заземления обеспечивает поглощение грунтом токов повреждений, токов утечки и молниевых токов, что предотвращает их нежелательное протекание по проводящим частям электроустановок и защищает контактирующих с ними людей от поражения электрическим током, а оборудование — от помех и нарушений работы. Заземляющее устройство обязательно должно быть дополнено правильно организованной системой уравнивания потенциалов.

Такие объекты, как жилой дом и линия электропередачи не требуют столь низкого сопротивления заземления, как, например, подстанции и сооружения с большим объёмом информационного и коммуникационного оборудования: ЦОД, медицинские центры и объекты связи. Более низкое сопротивление заземляющего устройства можно обеспечить растеканием тока с большего количества электродов, при том что высокое сопротивления грунта приводит к ещё большему увеличению габаритов заземлителя.

Норма сопротивления заземляющего устройства определяется ПУЭ 7 изд. раздел 1.7. — для электроустановок разных классов напряжения, пункты 2.5.116-2.5.134 — для линий электропередачи, а также другими отраслевыми стандартами и документацией к аппаратам и приборам.

Удельное сопротивление преимущественно зависит от типа грунта. Так, «хорошие» грунты, обладающие низким сопротивлением — это глина, чернозём (80 Ом*м), суглинок (100 Ом*м). Сопротивление песка сильно зависит от содержания влаги и колеблется от 10 до 4000 Ом*м. У каменистых грунтов оно легко может достигать нескольких тысяч Ом*м: у щебенистых — 3000-5000 Ом*м, а у гранита и других горных пород — 20000 Ом*м.

Удельное сопротивление грунтов в России

Среднее удельное сопротивление часто встречающихся на территории России грунтов приведено в таблице на странице, посвященной удельному сопротивлению грунта

Принять тип грунта можно по карте почв на территории России (для просмотра карты в полном размере, щёлкните на ней).

Карта почв России

Значения, приведённые в таблицах справочные и подходят только для ориентировочного расчёта в том случае, когда другая информация отсутствует. Для того чтобы получить точное значение удельного сопротивления, необходимо проводить изыскательные работы. Замеры грунта проводятся в полевых условиях методом амперметра-вольтметра, а также путем измерения инженерно-геологических элементов (ИГЭ), проведенных на разной глубине методом вертикально электрического зондирования (ВЭЗ). Значения, полученные этими двумя способами, могут значительно отличаться, также, как отличаются характеристики грунта незначительно удаленных точек на местности. Поэтому, чтобы исключить ошибку в расчетах необходимо брать максимальный из результатов этих двух методов при приведении к однослойной расчётной модели. Если для расчётов необходимо привести грунт к двухслойной модели, то использовать можно только метод ВЭЗ.

Сезонное изменение сопротивления грунта и его учёт

Для учёта сезонных изменений и влияния природных явлений «Руководство по проектированию, строительству и эксплуатации заземлений в установках проводной связи и радиотрансляционных узлов» оперирует коэффициентом промерзания, который предписывается определенной климатической зоне России и коэффициентом влажности, учитывающим накопленную грунтом влагу и количество осадков, выпавших перед измерением. РД 153-34.0-20.525-00 при определении сопротивления заземляющего устройства подстанций использует сезонный коэффициент.

При пропитывании почвы водой, удельное сопротивление может снижаться в десятки раз, а при промерзании в разы увеличиваться. Поэтому, в зависимости от того, в какое время года были выполнены измерения, необходимо учитывать данные коэффициенты.

Это позволит предотвратить превышения нормы заземляющего устройства в результате изменений удельного сопротивления; нормируемое значение в соответствии с ПУЭ 7 изд. должно обеспечиваться при самых неблагоприятных условиях в любое время года.

При увеличении габаритов заземляющего устройства влияние сезонных изменений значительно снижается. Если заземлитель имеет горизонтальные размеры порядка 10 метров, то его сопротивление в течение года может изменяться в десятки и сотни раз, тогда как сопротивление заземлителя габаритами 100-200 метров изменяется всего лишь в 2 раза. Это связано с тем, что глубина растекания тока соизмерима с габаритами горизонтального заземлителя.Таким образом, распространенная в горизонтальном направлении конструкция действует на глубинные слои почвы, часто обладающие низким удельным сопротивлением в любое время года.

«Сложные грунты» с высоким удельным сопротивлением


Сухой песок Известняк

Некоторые типы грунта имеют крайне высокое удельное сопротивление. Его значение для каменистых грунтов достигает нескольких тысяч Ом*м при том, что организация заземляющего устройства в такой среде связана с множеством трудностей – значительными затратами материалов и объёмами земляных работ. Из-за твердых включений практически невозможно использовать вертикальные электроды без применения бурения. Пример заземления в условиях каменистого грунта приведён на странице.

Возможно, ещё более сложный случай – это вечномерзлый грунт. При понижении температуры удельное сопротивление резко возрастает. Для суглинка при +10 С° оно составляет около 100 Ом*м, но уже при -10 С° может достигать 500 — 1000 Ом*м. Глубина промерзания вечномерзлого грунта бывает от нескольких сот метров до нескольких километров, при том что в летнее время оттаивает лишь верхний слой незначительной толщины: 1-3 м. В результате круглый год вся зона эффективного растекания тока будет иметь значительное удельное сопротивление – порядка 20000 Ом*м в вечномерзлом суглинке и 50000 Ом*м в вечномерзлом песке. Это чревато организацией заземляющего устройства на огромной площади, либо применением специальных решений, например, таких как электролитическое заземление. Для наглядного сравнения, пройдя по ссылке, можно посмотреть расчёт в вечномерзлом грунте.

Решения по достижению необходимого сопротивления

Традиционные способы

В хороших грунтах, как правило, устанавливается традиционное заземляющее устройство, состоящее из горизонтальных и вертикальных электродов.

Использование вертикальных электродов несет важное преимущество. С увеличением глубины удельное сопротивление грунта «стабилизируется». В глубинных слоях оно в меньшей степени зависит от сезонных изменений, а также, благодаря повышенному содержанию влаги, имеет более низкое сопротивление. Такая особенность очень часто позволяет значительно снизить сопротивление заземляющего устройства.

Горизонтальные электроды применяются для соединения вертикальных, также они способствуют ещё большему снижению сопротивления. Но могут использоваться и в качестве самостоятельного решения, когда монтаж вертикальных штырей сопряжен с трудностями, либо когда необходимо организовать заземляющее устройство определенного типа, например, сетку.

Нестандартные способы

В тяжелых каменистых и вечномерзлых грунтах монтаж традиционного заземления сопряжен с рядом проблем, начиная сложностью монтажа из-за специфики местности, заканчивая огромными размерами заземляющего устройства (соответственно — большими объемами строительных работ), необходимыми для соответствия его сопротивления нормам.

В условиях вечномерзлого грунта также имеет место такое явление как выталкивание, в результате которого горизонтальные электроды оказываются над поверхностью уже через год.

Чтобы решить эти проблемы, специалисты часто прибегают к следующим мерам:

  • Замена необходимых объёмов на грунт с низким удельным сопротивлением (несет ограниченную пользу в случае вечномерзлого грунта, т.к. грунт замены также промерзает). Объемы такого грунта часто очень велики, и не всегда приводят к ожидаемым результатам, т.к. зона действия заземлителя вглубь практически равна его горизонтальным размерам, поэтому влияние верхнего слоя может быть незначительным.
  • Организация выносного заземлителя в очагах с низким удельным сопротивлением, что позволяет установить заземлитель на удалении до 2 км.
  • Применение специальных химических веществ – солей и электролитов, которые снижают удельное сопротивление мерзлого грунта. Данное мероприятие необходимо проводить раз в несколько лет из-за процесса вымывания.

Одним из наиболее предпочтительных решений в тяжелых условиях является электролитическое заземление, оно сочетает химическое воздействие на грунт (снижение его удельного сопротивления) и замену грунта (уменьшение влияния промерзания). Электролитический электрод наполнен смесью минеральных солей, которые равномерно распределяются в рабочей области и снижают её удельное сопротивление. Данный процесс стабилизируется с помощью околоэлектродного заполнителя, который делает процесс выщелачивания солей равномерным. Применение электролитического заземления позволяет избежать проблем организации традиционного заземляющего устройства, значительно уменьшает количество оборудования, габариты заземлителя и объёмы земляных работ.

Заключение

При проектировании заземляющего устройства необходимо иметь достоверные данные об удельном сопротивлении грунта на месте строительства. Точную информацию можно получить только с помощью изысканий и измерений на местности, но по разным причинам бывает, что возможности их провести нет. В таком случае можно воспользоваться справочными таблицами, но стоит принять во внимание, что расчёт будет носить ориентировочный характер.

Независимо от того, каким образом получены значения удельного сопротивления, нужно внимательно рассматривать все влияющие факторы. Важно учесть пределы, в которых удельное сопротивление может меняться, чтобы сопротивление заземляющего устройства никогда не превышало норму.


Смотрите также:

Смотрите также:

СОПРОТИВЛЕНИЯ ЗАЗЕМЛЕНИЯ — Студопедия

ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОГО

Методические указания к практической работе по курсу

«Безопасность жизнедеятельности»

для студентов всех специальностей

  Составители В.А. Портола
Л.Н. Денисова
 
Утверждены на заседании кафедры
Протокол № 6 от 25.03.2004
Рекомендованы к печати учебно-методической комиссией
специальности 330500
Протокол № 6 от 25.03.2004
Электронная копия находится
в библиотеке главного корпуса
ГУ КузГТУ
 

Кемерово 2004

ЦЕЛЬ РАБОТЫ: освоить методику определения электрического сопротивления заземляющих устройств.

СОДЕРЖАНИЕ РАБОТЫ

В процессе выполнения работы студенты должны:

– изучить воздействие электрического тока на организм человека;

– ознакомиться с принципом действия заземляющих устройств;

– изучить типы и конструкции существующих устройств для заземления электрооборудования;

– оценить зависимость сопротивления растекания заземляющего устройства от некоторых параметров;

– рассчитать параметры заземляющих устройств, обеспечивающих безопасность эксплуатации электроустановок.

1. ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Среди всех видов производственных травм электротравмы составляют около 11 %, но поражение электрическим током приводит к тяжелым последствиям. Так, среди случаев со смертельным исходом доля электротравм достигает 20–40 %. Большая часть пострадавших переходит на инвалидность. Причем последствия электротравм могут проявляться через много лет после происшествия. В 30 % случаев тяжелые последствия от поражения электрическим током развиваются в первые десять дней, в 15 % – через два месяца, в 35 % – через год и в 20 % проявляются через два года.



Проходя через организм, электроток производит термическое, электролитическое, механическое и биологическое действие. Термическое действие проявляется в интенсивном нагреве тканей, расположенных на пути движения тока. Электролитическое действие тока проявляется в разложении органических жидкостей, изменении движения ионов солей. Механическое действие тока обусловлено электродинамическим эффектом и взрывоподобным образованием пара, приводящим к расслоению и разрыву тканей. Биологическое действие тока проявляется в раздражении и возбуждении живых тканей.

Электротравмы могут вызвать и различные заболевания. Зачастую после поражения электрическим током фиксируются развитие диабета, заболевания щитовидной железы, половых органов, сердечно-сосудистой системы, провоцируются болезни аллергической природы. Последствием электротравм могут быть неожиданные кровотечения, вегетативные расстройства, поражение центральной нервной системы.


Исход поражения человека электротоком зависит от силы тока и длительности его прохождения через организм, характеристики тока (переменный или постоянный, частота), пути прохождения тока в теле человека. Величина тока, проходящего через организм, зависит от напряжения и площади прикосновения, состояния кожного покрова, физического и психического состояния человека. Переменный ток опаснее постоянного до напряжения 500 В. При более высоком напряжении более опасным становится постоянный ток.

Сопротивление тела человека уменьшается при увеличении воздействующего напряжения. При напряжении 40–45 В наступает пробой кожных покровов, представляющих основное электрическое сопротивление в организме, после чего сопротивление тела человека практически равно сопротивлению внутренних тканей (порядка 1 кОм).

По степени воздействия на человека можно выделить следующие пороговые значения тока: ощутимый, неотпускающий и фибрилляционный. Ощутимый ток, вызывающий ощутимые раздражения, при переменном токе с частотой 50 Гц находится в диапазоне 0,6–1,5 мА. Болевые ощущения фиксируются при величине тока 2,0–2,5 мА. Начало судорог в руках происходит при токе 5,0–7,0 мА. Неотпускающий ток, вызывающий сильные боли и затрудненное дыхание, судорожные сокращения мышц, при которых человек не способен самостоятельно освободиться от токоведущих частей, возникает в диапазоне 20,0–25,0 мА. Паралич дыхания происходит при токе 50,0–80,0 мА. Фибрилляционный ток, значение которого находится на уровне 90–100 мА, приводит к нарушению ритмичных сокращений мышц сердца и возникновению хаотичных сокращений отдельных мышечных волокон с частотой до 700 за минуту, что может вызвать прекращение перекачки крови и гибель организма.

Допустимым считается ток, при котором человек может самостоятельно освободиться от электрической цепи. При длительности воздействия более 10 с – это 2 мА, при контакте от 1 до 10 с – это 6 мА.

2. СВЕДЕНИЯ О ЗАЩИТНОМ ЗАЗЕМЛЕНИИ

2.1. ПРИНЦИП ДЕЙСТВИЯ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ

Любое электрооборудование может оказаться под напряжением при неисправности изоляции токоведущих частей. Причинами нарушения изоляции могут быть механические повреждения, действие химически агрессивной среды, повышение температуры, неправильная эксплуатация электроустановок. Неожиданность неисправности и неподготовленность к ней людей приводит, как правило, к несчастным случаям.

Основным защитным мероприятием от поражения электротоком на электроустановках является установка защитного заземления. Защитным заземлением называется преднамеренное соединение с землей металлических частей электрооборудования, не находящихся под напряжением в обычных условиях, но которые могут оказаться под напряжением в результате нарушения изоляции токоведущих частей.

Защитное действие достигается путем снижения напряжения на корпусе электрооборудования за счет стекания тока на землю через заземляющее устройство малого электрического сопротивления. Чем меньше будет сопротивление заземляющего устройства, тем меньше будет напряжение на заземленном корпусе оборудования, что уменьшит величину тока, проходящего через человека. Второй защитный эффект заземляющего устройства может быть обусловлен выравниванием напряжения между оборудованием и землей, на которой находится человек, за счет увеличения потенциала земли в месте стекания тока. Поэтому для предотвращения несчастных случаев от поражения электрическим током перед монтажом заземляющего устройства рассчитывают его параметры из условия снижения величины тока, протекающего через человека, до допустимых уровней.

Защитное заземление применяется во всех электроустановках переменного тока напряжением 380 В и выше и постоянного тока напряжением 440 В и более. В помещениях с повышенной опасностью заземляют электроустановки с напряжением переменного тока 42 В и более, а постоянного тока начиная со 110 В. Во взрывоопасных помещениях заземление применяют независимо от величины напряжения.

Контрольные измерения заземляющих устройств должны проводиться не реже одного раза в год в период наименьшей проводимости. Один раз летом при наибольшем просыхании почвы, а на следующий год – зимой при наибольшем промерзании грунта.

2.2. КОНСТРУКЦИЯ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ

Конструктивно заземление состоит из заземлителей (электродов) и заземляющих проводников (рис. 1). Заземлители могут быть естественными или искусственными. В качестве естественных заземлителей используют проложенные в земле металлические трубопроводы (за исключением трубопроводов с горючими жидкостями и газами), металлические элементы и арматура железобетонных конструкций зданий и сооружений и т.п. В качестве искусственных заземлителей используются стальные трубы диаметром 25–60 мм с толщиной стенок не менее 3,5 мм, уголковая или полосовая сталь сечением не менее 48 мм2, а также прутковая сталь диаметром не менее 10 мм. Длину вертикальных заземлителей (электродов) рекомендуется принимать равной 2,0–5,0 м. Расстояние от поверхности грунта до начала одиночного вертикального заземлителя (заглубление электрода) составляет 0,5–0,8 м.

Электрическая связь между вертикальными заземлителями осуществляется заземляющими магистральными проводниками, изготавливаемыми обычно из полосовой стали сечением не менее 48 мм2 или стали круглого сечения диаметром не менее 6 мм. Заземляющие проводники соединяют заземляемые объекты с заземлителями и изготавливаются обычно из стали прямоугольного или круглого сечения. Заземляющие магистральные проводники соединяются с вертикальными заземлителями посредством сварки. Заземляемые объекты соединяются с заземляющим устройством через болтовые соединения или путем сварки.

Заземляющие устройства могут быть выносного или контурного типа. При контурном заземлении (рис. 1) заземлители располагаются равномерно по периметру площадки, на которой находится электрооборудование. Выносное очаговое заземляющее устройство (рис. 2) располагается за пределами площадки, где установлено подлежащее заземлению оборудование. Схема выносного заземляющего устройства при расположении электродов в ряд приведена на рис. 3.

2.3. РАСЧЕТ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ

Для обеспечения безопасности эксплуатации электрооборудования производят расчет заземляющих устройств уже на стадии проектирования. Электроустановки напряжением до 1000 В при изолированной нейтрали и мощности трансформатора более 100 кВА должны иметь сопротивление защитного заземления не более 4 Ом. При мощности

Рис. 1. Схема контурного заземления электрооборудования:

1 – электрооборудование; 2 – здание; 3 – внутренний заземляющий контур; 4, 5 – заземляющие проводники; 6 – заземляющий магистральный проводник; 7 – заземлитель

Рис. 2. Схема выносного очагового заземления

электрооборудования:

1 – электрооборудование; 2 – здание; 3 – внутренний заземляющий контур; 4, 5 – заземляющие проводники; 6 – заземлитель

Рис. 3. Схема выносного заземления электрооборудования при расположении электродов в ряд:

1 – электрооборудование; 2 – здание; 3 – внутренний заземляющий контур; 4, 5 – заземляющие проводники; 6 – заземлитель

трансформатора менее 100 кВА сопротивление заземления не должно превышать 10 Ом.

Сопротивление заземлителей растеканию тока зависит от их числа, размеров, удельного сопротивления грунта. Сопротивление одиночного стержневого заземлителя (электрода) определяется по формуле, Ом

(1)

где ρ – удельное сопротивление грунта, Ом·м; d – диаметр стержневого заземлителя, м; l – длина стержневого заземлителя, м; h – глубина размещения заземлителя, м

h = 0,5l + h0, (2)

где h0 – расстояние от поверхности грунта до начала одиночного заземлителя, от 0,5 до 0,8 м.

Для заземлителей из угловой стали предварительно определяют эквивалентный диаметр по формуле

d = 0,96C, (3)

где С – ширина полок уголка, м.

Необходимые для расчета значения удельных сопротивлений грунтов приведены в табл. 1.

Таблица 1

Вид грунта Пределы колебаний
величины удельных
сопротивлений грунтов, Ом·м
Рекомендуемые для
расчетов удельные
сопротивления грунтов, Ом·м
Песок 400 – 700 500
Супесь 150 – 400 300
Суглинок 40 – 150 100
Глина 8 – 70 40
Садовая земля 40 – 60 50
Чернозем 9 – 530
Торф 20 – 60
Руда 2 – 20
Речная вода 10 – 80
Морская 0,2 – 1 0,6
Уголь 40000 – 45000
Скала 4·108 4·108

Количество стержневых заземлителей, необходимых для достижения нормативного сопротивления заземляющего устройства, определяется по формуле

(4)

где RD – допустимое (нормативное) сопротивление заземления, Ом; ηC – коэффициент сезонности; ηI – коэффициент использования (экранирования) в вертикальных заземлителях.

Забитые электроды соединяются металлической полосой сечением не менее 48 мм2. Длина полосы для контура равна

Ln = 1,05a(N – 1), (5)

а при расположении электродов в ряд

Lp = aN, (6)

где a – расстояние между электродами, м; N – число электродов, шт.

Численные значения коэффициента сезонности в основном определяются колебанием влажности почвы в течение года и заданы в табл. 2.

Таблица 2

Месяц Глубина размещения (заложения), м Месяц Глубина размещения (заложения), м
менее 0,8 более 0,8 менее 0,8 более 0,8
Январь 1,05 1,2 Июль 2,2 1,75
Февраль 1,05 1,1 Август 1,55 1,55
Март 1,0 1,1 Сентябрь 1,6 1,7
Апрель 1,6 1,2 Октябрь 1,55 1,5
Май 1,95 1,3 Ноябрь 1,65 1,35
Июнь 2,0 1,55 Декабрь 1,65 1,35

Численные значения коэффициента использования (экранирования) для вертикальных заземлителей (электродов) при их размещении по контуру и в ряд (выносная схема) приведены в табл. 3.

Таблица 3

Число
заземлителей
Отношение расстояния между электродами к их длине
размещение в ряд размещение по контуру
0,85 0,91 0,94
0,73 0,83 0,89 0,69 0,78 0,85
0,65 0,77 0,85 0,61 0,73 0,80
0,59 0,74 0,56 0,68 0,76
0,48 0,57 0,76 0,47 0,63 0,71
0,41 0,58 0,66
0,39 0,55 0,64

Сопротивление растеканию электрического тока соединяющей полосы, уложенной в земле, определяется по формуле, Ом

(7)

где L – длина полосы, м; b – ширина полосы, м; h – глубина заложения полосы от поверхности земли, м.

Результирующее сопротивление растеканию электрического тока всего заземляющего устройства определяется по формуле

(8)

где ηp – коэффициент использования (экранирования) горизонтальной соединительной полосы.

Численные значения коэффициента использования горизонтального полосового электрода в зависимости от числа вертикальных электродов, соединяемых им, приведены в табл. 4.

Таблица 4

Отношение расстояния между вертикальными электродами к их длине Число вертикальных электродов
  размещение в ряд
0,85 0,77 0,72 0,62 0,42
0,94 0,89 0,84 0,75 0,56
0,96 0,92 0,88 0,82 0,68
  размещение по контуру
0,45 0,40 0,34 0,27 0,22 0,20
0,55 0,48 0,40 0,32 0,29 0,27
0,70 0,64 0,56 0,45 0,39 0,36

3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Для определения параметров заземляющего устройства, необходимых для получения допустимого электрического сопротивления заземления, обеспечивающего безопасность работающего персонала в случае нарушения изоляции токоведущих частей электроустановки, задается один из вариантов (табл. 5). В табл. 5 приведены вид грунта, порядок расположения вертикальных заземлителей, размеры электродов и расстояние между ними.

2. В соответствии с заданным вариантом выбирается значение удельного сопротивления грунта из табл. 1 и рассчитывается сопротивление одиночного электрода (R0) по формуле (1). Расстояние от поверхности грунта до начала заземлителя (h0) принимается равным 0,7 м. Результат заносится в табл. 6.

3. Для расчета необходимого количества вертикальных заземлителей (электродов) применяем метод последовательных приближений. На первом шаге определяют количество электродов по формуле

(9)

где RD – допустимое сопротивление заземления, принимается равным 4 Ом.

Коэффициент сезонности (ηC) определяется из табл. 2 для месяца, имеющего наименьшее численное значение этого параметра.

На втором шаге, исходя из предварительного числа необходимых электродов (полученных по формуле (9)), по табл. 3 определяют коэффициент использования в вертикальных заземлителях (ηI). Полученный коэффициент подставляют в формулу (4) и рассчитывают необходимое число электродов.

Таблица 5

Вари-
ант
Грунт Расположение
заземлителей
Длина
электрода, м
Диаметр труб или размер уголка, мм Расстояние
между
электродами, м
Песок по контуру 3,0 4,5
Супесь по контуру 2,9 50×50 2,9
Суглинок в ряд 2,8 4,2
Глина в ряд 2,7 40×40 2,7
Садовая земля по контуру 2,6 3,9
Чернозем в ряд 2,5 45×45 2,5
Торф в ряд 2,4 4,8
Песок по контуру 2,3 3,6
Супесь по контуру 2,2 50×50 4,4
Суглинок в ряд 2,1 4,2
Глина по контуру 3,0 40×40 4,5
Садовая земля в ряд 2,9 2,9
Чернозем по контуру 2,8 45×45 4,2
Торф в ряд 2,7 2,7
Песок по контуру 2,6 3,9
Супесь по контуру 2,5 50×50 2,5
Суглинок по контуру 2,4 4,6
Глина в ряд 2,3 40×40 3,6
Садовая земля по контуру 2,2 4,4
Чернозем в ряд 2,1 45×45 4,2
Торф в ряд 3,0 4,5

На третьем шаге, по полученному на втором шаге расчета числу вертикальных заземлителей, определяют по табл. 3 уточненный коэффициент использования и вновь рассчитывают требуемое число вертикальных заземлителей по формуле (4). Полученное количество вертикальных заземлителей округляется до целого числа. Коэффициенты сезонности, использования (экранирования) и рассчитанное количество электродов заносятся в табл. 6.

4. По формулам (5) или (6) рассчитывают длину горизонтальной металлической полосы, соединяющей вертикальные электроды. Затем вычисляют сопротивление растеканию тока соединяющей полосы, уложенной в земле, по формуле (7). Значение удельного сопротивления грунта определяют по табл. 1. Ширина стальной полосы равна 12 мм, толщина 4 мм. Глубина заложения полосы от поверхности земли равна 0,7 м. Полученные численные значения также заносят в табл. 6.

5. Результирующее сопротивление растеканию электрического тока всего заземляющего устройства вычисляют по формуле (8). Коэффициент использования горизонтальной соединительной полосы определяют по табл. 4. Полученные значения заносятся в табл. 6.

6. Расчетное сопротивление заземляющего устройства сравнивают с допустимым. Если соблюдается условие R ≤ RD, то заземляющее устройство считается обеспечивающим безопасность эксплуатации электроустановок.

Таблица 6

Вариант ρ, Ом·м R0, Ом ηC ηI N L, м RP, Oм ηP R, Oм
                   

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какое действие на организм человека оказывает прохождение электрического тока?

2. Назовите основные причины электротравматизма?

3. Что называется защитным заземлением?

4. За счет чего достигается защитное действие заземления?

5. Когда применяют защитное заземление?

6. Что применяется в качестве естественных заземлителей?

7. Какие требования предъявляются к устройству заземляющих проводников?

8. От каких параметров зависит сопротивление заземляющих устройств?

ЛИТЕРАТУРА

1. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок. – М.: Изд-во НЦ ЭНАС, 2001. – 216 с.

2. Правила устройства электроустановок. – 6-е изд. – СПб.: ДЕАН, 2001. – 928 с.

3. Правила эксплуатации электроустановок потребителей. – СПб.: ДЕАН, 2000. – 320 с.

4. Долина П.А. Справочник по технике безопасности. – М.: Энергоатомиздат, 1985. – 825 с.

5. Белов С.В. Безопасность жизнедеятельности: Учеб. для вузов / С.В. Белов, А.В. Ильницкая, А.Ф. Козьков и др.; Под общ. ред. С.В. Белова. – 2-е изд., испр. и доп. – М.: Высш. шк., 1999. – 448 с.

Составители

Вячеслав Алексеевич Портола

Людмила Николаевна Денисова

ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОГО

СОПРОТИВЛЕНИЯ ЗАЗЕМЛЕНИЯ

Методические указания к практической работе по курсу

«Безопасность жизнедеятельности» для студентов всех специальностей

Допустимые значения сопротивления заземления, его замер

При пользовании электросетями необходимо строго соблюдать правила эксплуатации, выполнять периодический осмотр системы проводов и замеров показаний тока на защитных деталях системы. Сопротивление заземления нейтрали – одна из основных работ по контролю устройств защиты здания и человека.

Перед началом замеров, необходимо знать основные неисправности и способы их обнаружения.

Причины неисправностей на заземляющем контуре

При нормальной работе системы защиты, ток короткого замыкания фазы на корпус или утечки по глухозаземленной проводке, подходит на контур и через систему заземлителей снимается на землю.

Но при длительном использовании, заземлители окисляются под действием воды, на них происходит образование ржавчины. При продолжении действия вредной среды, очаг поражения расширяется и еще больше поражает металл, ржавчина изъедает сталь, местами коррозия металла разъедает стойки контура насквозь.

При этом меняется значение величины сопротивления электрического тока. При этом колья заземлителей могут разрушаться неравномерно. Это обусловлено неравномерным распределением в грунте химических веществ и щелочных, соляных растворов и некоторых кислот.

Затем происходит отслаивание металла поврежденного ржавчиной и глубинной коррозией, при этом происходит ухудшение или полное размыкание контакта контура и отдельного заземлителя.

Этот процесс идет с нарастанием и в конечном итоге заземление перестает выполнять свои функции из-за изменения уровня сопротивления на контуре и его проводимости потенциала токов КЗ в землю.

Выполняя замеры, периодичность измерения сопротивления должна соответствовать правилам, мы избегаем возникновения аварийных ситуаций и поражение, электротоком человека, вовремя определяя момент выхода из строя защитного контура заземления.

Приборы для замеров

Для измерения сопротивления контура применяются электронные мультиметры, сменившие аналоговые устройства. При этом увеличилась точность уровня измерения при упрощении выполнения операции.

По правилам ПУЭ, сопротивление заземлителя не менее одного раза в шестилетний период. Поэтому не затратно будет вызвать для проведения замеров профессионалов, которые имеют более точные и новейшие разработки промышленности.

Но если вы решили провести эту операцию самостоятельно, потребуется запастись следующими измерительными приборами:

  • измеритель сопротивления типа «МС- 08»;
  • измеритель заземляющего контура типа «М-416»;
  • тестер или мощный мультиметр.

Для более низкого уровня измерения и определения неисправности защиты, можно использовать мультиметр, дополнительно оснащенный токовыми клещами.

Способы выполнения замеров

Способов измерения сопротивления заземляющих устройств много и каждый достаточно точный, поэтому разберем их подробно, а какой из них применить решать вам:

Замеряем значения напряжения и силы тока

Для этого, на удаленности от контура больше 20 метров, забиваем в грунт заземлитель и дополнительный электрод. Затем по проводам, подаем на них нагрузку.

Выставляем мультиметр в сектор замены силы тока, определяем ее значение. Затем переключаем прибор в сектор замера напряжения, измеряем данную величину.

По формуле Закона Ома определяем величину сопротивления на данном участке с глухозаземленной нейтралью.

Теперь проводим замер сопротивления на защитном контуре и определяем износ деталей защиты и возможную замену заземлителей. При этом необходимо учитывать значение сопротивления кабеля земли и проводящих особенностей земли на участке.

К плюсам этого способа относят его простоту выполнения замеров. Недостаток – это малый уровень точности замера, и дополнительное устройство заземлителей для определения номинального значения.

Если не требуется определения точного значения сопротивления на контуре, то процедуру измерений можно завершить. Для более точного замера выполняем следующую работу.

Четырехпроводный метод замера

Работу следует выполнять в следующей последовательности:

Выбираем, с помощью кнопки «Режим», нужный метод выполнения замеров.

Рулеткой, замеряем длину диагонали защитного контура. Затем от контура проводим провода и подключаем их в гнезда на приборе.

Выносной заземлитель, забиваем в грунт. Расстояние до контура больше 20 метров, но не менее, полуторной диагонали устройства.

Второй стержень забиваем в землю на удалении больше 3-х размеров диагонали. Расстояние до контура не меньше 40 метров. Подключаем идущий от него провод на клемму прибора.

Проверяем правильность подключение и выполняем замер. Затем, перемещая заземлитель, с изменением длины на 10% ближе ко 2 стержню, проводим серию измерений.

При установке стержней, располагать их необходимо на одной линии с заземляемым контуром. При помехе напряжения на штырях, измеритель сопротивления покажет это на шкале. В этом случае необходимо перебить стержни и повторить измерение.

Исходя из значений измерения, в зависимости от удаленности от защитного устройства, составляем график. При возрастании величины измерения в средней части графика – в этом случае истинным значением сопротивления будет величина не более 5% превышающая минимальную разницу между двумя точками графика.

Трехпроводной метод замера

Проводится по схеме предыдущей схеме, но перед началом работы следует выбрать режим трехпроводного замера сопротивления.

Способ замера на пробном заземлителе

Перед установкой защитного устройства проводится измерение по этому методу, для расчета контура заземления и замера удельного сопротивления.

Работы выполняются в следующем порядке:

Перед выполнением проверки, забиваем в грунт пробный заземлитель и оставляем небольшую часть над уровнем земли. Длина штыря должна быть такой же, как и предполагаемый заземлитель контура.

При помощи мультиметра, определяем сопротивление заземлителя.

Выполнив расчет, определяемся с размерами стержней и размера треугольника защиты.

Такой метод в основном используется в небольших устройствах в частном доме.

Компенсационная схема измерения.

При этом способе, производится обследование промышленных высокоточных приборов. На одной линии с контуром, забиваем штыри в грунт. Основа для проведения замера – это зонд, подключенный к стержням.

Через первичную обмотку трансформатора, провода, грунт и стержни подается напряжение. На вторичной обмотке наводится электроток. Уравниваем величину напряжений, двигая ручку реохорда. При нулевом значении напряжении, мы получаем величину сопротивления защиты.

Измерение с использованием резистора

В этом способе используется калиброванный резистор, через который на устройство защиты подается напряжение прямо от фазного проводника, подключенного в электрощитовой.

Мультиметр проверяем, выставив на шкале, замер сопротивления и касаемся шупами друг друга. На экране нулевое значение – это устройство готово к работе.

Выставляем максимальную величину сопротивления и измеряем его. Напряжение сети нам известно, сопротивление тоже.

Производим расчет силы тока, который прошел через заземление. Следует помнить, что такое измерение следует проводить при выключенном проводе зануления от контура. На него подается фаза, через калиброванный резистор 46 Ом.

К преимуществам этого вида замеров относят:

  • Отсутствие необходимости забивания длинных стержней в грунт с последующим доставанием после измерения;
  • Не приходится растягивать и собирать многометровые электрические провода;
  • Для выполнения замеров не требуется занимать большую площадь дворовой территории.

Измерение с применением специальных токовых клещей

Выполняя работу по замеру сопротивления, нет необходимости отключения заземляющего проводника.

В электрическую сеть подается нагрузка и по проводам проходит электричество. «Обняв» губками клещей проводник, мы не нарушая изоляции и не прекращая работу цепи, получаем необходимое значение сопротивления заземляющего контура, после расчета по закону Ома используя напряжение и силу тока.

В заключение

Не забудьте, что производить измерения приходится на улице, поэтому нельзя работать в сырую и мокрую погоду.

Наиболее целесообразно проводить проверку контура в летом или зимой, но не при очень жаркой и морозной погоде. Специалисты считают – в это время грунт наиболее уплотняется, при этом его удельное сопротивление становится больше.

Замерить сопротивление заземления в домашних условиях не сложно. Главное помнить закон Ома для участка цепи и проводить расчеты и замеры не реже раза в год.

Измерение сопротивления заземлителей на производстве и многоквартирных домах проводится исходя из графика проверок, по результатам составляется акт приемки, в котором указывается допустимое сопротивление заземляющего устройства и данные замеров заносят в технологический журнал.

В акте ставят росписи члены комиссии, и ставится печать организации проводящей проверку.

Выполнив все эти работы, вы можете спокойно и уверенно пользоваться электричеством в вашем доме.

Что такое сопротивление земли? Определение и объяснение

Определение: Сопротивление, оказываемое заземляющим электродом току в землю, известно как сопротивление заземления или сопротивление заземлению. Под сопротивлением заземления в основном подразумевается сопротивление между электродом и точкой нулевого потенциала. Численно он равен отношению потенциала заземляющего электрода к рассеиваемому им току. Сопротивление между пластиной заземления и землей измеряется методом падения потенциала.

Сопротивление заземляющего электрода не сосредоточено в одной точке, а распределено по почве вокруг электрода. Математически сопротивление заземления определяется как отношение напряжения и тока, показанное ниже.

earth-resistance-equation-1 Где V — измеренное напряжение между скачком напряжения, а I — ток, подаваемый во время измерения сопротивления заземления через электрод.

Значение сопротивления заземления для разных электростанций показано ниже

Большая электростанция — 0.5 Ом
Основная электростанция — 1,0 Ом
Малая подстанция — 2,0 Ом
Во всех остальных случаях — 8,0 Ом

Область вокруг земли, в которой приводится в действие электрод, известна как область сопротивления или потенциальная область земли. Ток короткого замыкания, который вводится от заземляющего электрода, проходит от электрода во всех направлениях, показанных на рисунке ниже. Прохождение тока в землю зависит от удельного сопротивления почвы, в которой размещен заземляющий электрод.Удельное сопротивление почвы может варьироваться от 1 до 1000 Ом-м в зависимости от характера почвы.

soil-resitivity-image

Удельное сопротивление земли зависит от ее температуры. Когда температура выше 0ºC, то ее влияние на удельное сопротивление грунта незначительно. Но при 0ºC вода в почве начинает замерзать, что увеличивает их удельное сопротивление. На удельное сопротивление земли также влияет состав некоторых растворимых солей, как показано на рисунке ниже.

graph-of-soil-resistivity

Сопротивление земли варьируется от слоя к слою.Нижний слой почвы имеет больше влаги и более низкое сопротивление. Если нижний слой содержит твердый и каменистый грунт, то их удельное сопротивление увеличивается с глубиной.

.

Измерение сопротивления земли методом потенциального падения — значение и объяснение

Измерение сопротивления заземления производится методом падения потенциала. Площадь сопротивления заземляющего электрода — это площадь почвы, вокруг которой измеряется градиент напряжения с помощью коммерческого прибора. На рисунке ниже E — заземляющий электрод в покое, а A — вспомогательный заземляющий электрод, расположенный так, чтобы две области сопротивления не перекрывались. B — второй вспомогательный электрод, который находится между E и A.

measurement-of-earth-resistance

Переменный ток установившегося значения проходит по пути заземления от E к A, и измеряется падение напряжения между E и B.

measurement-of-earth-resistance-equation-1

Электрод B перемещается из положения B 1 и B 2 соответственно, так что области сопротивления не перекрываются. Если определенные значения сопротивления примерно одинаковы во всех трех случаях, среднее из трех показаний можно принять как сопротивление заземления заземляющего электрода.

Вспомогательный заземляющий электрод A необходимо вбить в точку, расположенную дальше от E, и вышеупомянутое испытание повторять до тех пор, пока группа из трех полученных показаний не будет хорошо согласовываться. Для устранения электролитического эффекта используется источник переменного тока.

Испытание может быть выполнено с током промышленной частоты от трансформатора с двойной обмоткой, используя вольтметр и амперметр, как показано на рисунке выше, с помощью тестера заземления.

Тестер заземления — это особый тип мегомметра, который передает переменный ток через землю и постоянный ток через измерительный прибор.У него четыре терминала. Две клеммы закорочены, образуя общую точку, которая подключается к проверяемому заземляющему электроду. Два других вывода подключены к вспомогательному электроду A и B соответственно. Величина сопротивления заземления отображается прибором непосредственно при вращении его ручки с постоянной скоростью.

.

KYORITSU 4102A H Тестер сопротивления заземления Значение сопротивления заземления можно считывать непосредственно со шкалы | |

KYORITSU 4102A-H Тестер сопротивления заземления Значение сопротивления заземления может быть считано непосредственно со шкалы

4102A-H Модель

в жестком футляре позволяет использовать новейшие схемы • эксплуатируйте

с минимальным влиянием напряжения заземления

и сопротивления заземления вспомогательных штырей заземления.

• Защита от пыли и капель. (разработан в соответствии с IEC 529 IP54)

• Значение сопротивления заземления можно считывать прямо со шкалы.

• Разработан в соответствии со стандартом безопасности IEC 61010-1.

• Возможность измерения напряжения заземления.

• Маленький и легкий. Новый ударопрочный материал корпуса.

• Измерительный ток 2 мА позволяет проводить испытания сопротивления заземления

без срабатывания выключателей тока утечки на землю

в проверяемой цепи.

• Подключение выводных проводов к клеммам C и P и надлежащее сопротивление вспомогательного заземления

можно проверить с помощью лампы «ОК».

Подсоединение провода к клеммам C и E в порядке

, когда горит лампа «ОК»

Диапазоны измерений Сопротивление заземления: 0 — 12 Ом / 0 — 120 Ом / 0 — 1200 Ом

Напряжение заземления [50,60 Гц ]: 0–30 В переменного тока

Точность Сопротивление заземления: ± 3% от полной шкалы

Напряжение заземления: ± 3% от полной шкалы

Защита от перегрузки Сопротивление заземления: 276 В переменного тока в течение 10 секунд

на 2 из 3 клемм

Напряжение заземления: 276 В переменного тока в течение 1 минуты

Применимые стандарты IEC 61010-1 CAT III 300 В, степень загрязнения 2, IEC 61557

IEC 60529 IP54

Источник питания R6 (AA) (1.5V) × 6

Размеры 105 (L) × 158 (W) × 70 (D) мм

Вес около 600 г

Принадлежности, входящие в комплект 7095A (измерительные провода сопротивления заземления) × 1 комплект

(красный — 20 м, желтый — 10 м, зеленый — 5 м)

8032 (Вспомогательные штыри заземления) × 1 комплект

7127A (Упрощенный измерительный датчик) × 1 комплект

R6 (AA) × 6

9121 (Плечевой ремень)

Инструкция по эксплуатации

.

LW2678 Тестер сопротивления заземления измеритель сопротивления заземления, тестер заземления Тестовое значение аварийного сигнала может быть произвольно настроено | измеритель сопротивления заземления | сопротивление заземления

Характеристики

Высокая точность измерения, высокая скорость, простота использования, особенно подходит для использование в лабораторных и автоматических испытательных линиях;

Испытательный ток AC / 5 ~ 30 (a), сопротивление Ω (0 ~ 600 м), время (1 ~ 99 с) отображается одновременно;
Время проверки может быть установлено произвольно;
Значение тестового сигнала тревоги может быть установлено произвольно;
Годен / не годен звуковой и световой сигнал тревоги;

Ø Технические характеристики

0 Модель

06 Точность тока

09 ± 5% ± 5счетов

4 10V MAX 3

4

9003 3

Входное напряжение

Параметр

Имя

0

LW2678

Выходной ток

AC: 5 ~ 30 (A)

Диапазон измерения сопротивления

0 ~ 200 мОм (25 А) / 600 мОм (10 А)

Значение аварийного сопротивления

0 ~ 200 мОм / 600 (мОм) Непрерывная настройка

Погрешность измерения

≤ ± 5% ± 5 отсчетов

Испытательное напряжение

10V MAX

300 ВА

Контроль времени

1с ~ 99с / Непрерывная установка и ручная

Режим отображения

Цифровой дисплей

Различия теста

Пройден / не пройден, не прошел визуальный сигнал тревоги

Условия работы

Относительная влажность ≤ 75% Температура окружающей среды: 0 ~ 40

900

Вес

около 12кг

Размеры (Ш × В × Г)

350 мм × 130 мм × 28033 мм

350 мм × 130 мм × 280 мм

220 В переменного тока ± 10% 50 Гц ± 5%

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *