16.04.2025

Что определяет электрический ток: Электрический ток — это… Что такое Электрический ток?

Содержание

| Fluke

Talk to a Fluke sales expert

Связаться с Fluke по вопросам обслуживания, технической поддержки и другим вопросам»

What is your favorite color?

Имя *

Фамилия *

Электронная почта *

FörКомпанияetag *

Номер телефона *

Страна * — Пожалуйста, выберите значение -United States (Estados Unidos)CanadaAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAzerbaijanBahamasBahrainBangladeshBarbadosБеларусь (Belarus)Belgien/Belgique (Belgium)BelizeBeninBermudaBhutanBoliviaBonaireBosnia and HerzegovinaBouvet IslandBotswanaBrasil (Brazil)British Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCape VerdeCayman IslandsCentral African RepublicČeská republika (Czech Republic)ChadChile中国 (China)Christmas IslandCittà Di VaticanCocos (Keeling) IslandsCook IslandsColombiaComorosCongoThe Democratic Republic of CongoCosta RicaCroatiaCyprusCôte D’IvoireDanmark (Denmark)Deutschland (Germany)DjiboutiDominicaEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEspaña (Spain)EstoniaEthiopiaFaroese FøroyarFijiFranceFrench Southern TerritoriesFrench GuianaGabonGambiaGeorgiaGhanaGilbralterGreeceGreenlandGrenadaGuatemalaGuadeloupeGuam (USA)GuineaGuinea-BissauGuyanaHaitiHeard Island and McDonald IslandsHondurasHong KongHungaryIcelandIndiaIndonesiaIraqIrelandIsraelIslas MalvinasItalia (Italy)Jamaica日本 (Japan)JordanKazakhstanKenyaKiribati대한민국 (Korea Republic of)KuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMéxico (Mexico)MicronesiaMoldovaMonacoMongoliaMontenegroMonserratMoroccoMozambiqueMyanmarNamibiaNauruNederland (Netherlands)Netherlands AntillesNepalNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorge (Norway)Norfolk IslandNorthern Mariana IslandsOmanÖsterreich (Austria)PakistanPalauPalestinePanamaPapua New GuineaParaguayPerú (Peru)PhilippinesPitcairn IslandPuerto RicoРоссия (Russia)Polska (Poland)Polynesia (French)PortugalQatarRepública Dominicana (Dominican Republic)RéunionRomânia (Romania)RwandaSaint HelenaSaint Pierre and MiquelonSaint Kitts and NevisSaint LuciaSaint Vincent and The GrenadinesSan MarinoSao Tome and PrincipeSaudi ArabiaSchweiz (Switzerland)SenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and The South Sandwich IslandsSouth SudanSri LankaSudanSuomi (Finland)SurinameSvalbard and Jan MayenSverige (Sweden)SwazilandTaiwanTajikistanTanzaniaThailandTimor-LesteTokelauTogoTongaTrinidad and TobagoTunisiaTürkiye (Turkey)TurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited States Minor Outlying IslandsUruguayUzbekistanVanuatuVirgin Islands (British)Virgin Islands (USA)VenezuelaVietnamWallis and FutunaWestern SaharaWestern SamoaYemenZambiaZimbabwe

Почтовый индекс *

Интересующие приборы

iGLastMSCRMCampaignID

?Отмечая галочкой этот пункт, я даю свое согласие на получение маркетинговых материалов и специальных предложений по электронной почте от Fluke Electronics Corporation, действующей от лица компании Fluke Industrial или ее партнеров в соответствии с политикой конфиденциальности.

consentLanguage

Политика конфиденциальности

Действие электрического тока




Наличие тока в электроцепи всегда проявляется каким-либо действием. Например, работа при конкретной нагрузке или какое-то сопутствующее явление. Следовательно, именно действие электротока говорит о его присутствии как таковом в той или иной электроцепи. То есть, если работает нагрузка, то ток имеет место быть. 


Известно, что электрический ток вызывает различного рода действия. Например, к таковым относятся тепловые, химические, магнитные, механические или световые. При этом различные действия электрического тока способны проявлять себя одновременно. Более подробно о всех проявлениях мы расскажем Вам в данном материале.


Тепловое явление

Известно, что температура проводника повышается при прохождении через него тока. В качестве таких проводников выступают различные металлы или их расплавы, полуметаллы или полупроводники, а также электролиты и плазма. Например, при пропускании через проволоку из нихрома электрического тока происходит ее сильное нагревание. Данное явление используют в приборах нагрева, а именно: в электрических чайниках, кипятильниках, обогревателях и т.п. Электродуговая сварка отличается самой большой температурой, а именно нагрев электродуги может достигать до 7 000 градусов по Цельсию. При такой температуре достигается легкое расплавление металла. 


Количество выделяемой теплоты напрямую зависит от того, какое напряжение было приложено к данному участку, а также от электротока и времени его прохождения по цепи. 


Для расчета объемов выделяемой теплоты используется или напряжение, или сила тока. При этом необходимо знание показателя сопротивления в электроцепи, поскольку именно оно провоцирует нагрев из-за ограничения тока. Также количество тепла можно определить при помощи тока и напряжения.


Химическое явление

Химическое действие электротока заключается в электролизе ионов в электролите. Анод при электролизе присоединяет к себе анионы, катод – катионы. 


Иными словами, во время электролиза на электродах источника тока происходит выделение определенных веществ.


Приведем пример: в кислотный, щелочной или же солевой раствор опускаются два электрода. После пропускается по электроцепи ток, что провоцирует создание положительного заряда на одном из электродов, на другом – отрицательного. Ионы, которые находятся в растворе, откладываются на электроде с иным зарядом. 


Химическое действие электротока применяется в промышленности. Так, используя данное явление, осуществляют разложение воды на кислород и водород. Кроме того, при помощи электролиза получают металлы в их чистом виде, а также осуществляют гальваническое покрытие поверхности. 


Магнитное явление


Электрический ток в проводнике любого агрегатного состояния создает магнитное поле. Иными словами, проводник при электрическом токе наделяется магнитными свойствами.


Таким образом, если к проводнику, в котором протекает электроток, приблизить магнитную стрелку компаса, то та начнет поворачиваться и займет к проводнику перпендикулярное положение. Если же на сердечник из железа намотать данный проводник и пропустить сквозь него постоянный ток, то данный сердечник примет свойства электромагнита. 


Природа магнитного поля всегда заключается в наличии электрического тока. Объясним: движущиеся заряды (заряженные частицы) образуют магнитное поле. При этом токи противоположного направления отталкиваются, а одинакового направления – притягиваются. Данное взаимодействие обосновано магнитным и механическим взаимодействием магнитных полей электротоков. Выходит, что магнитное взаимодействие токов первостепенно. 


Магнитное действие применяется в трансформаторах и электромагнитах. 


Световое явление


Самый простой пример светового действия – лампа накаливания. В данном источнике света спираль достигает нужной температурной величины посредством проходящего сквозь нее тока до состояния белого каления. Тем самым и излучается свет. В традиционной лампочке накаливания всего лишь пять процентов всей электроэнергии расходуется на свет, остальная же львиная доля преобразуется в тепло. 


Более современные аналоги, например, люминесцентные лампы наиболее эффективно преобразуют электроэнергию в свет. То есть, около двадцати процентов всей энергии лежит в основе света. Люминофор принимает УФ-излучение, идущее от разряда, что возникает в ртутных парах или в инертных газах. 


Самая эффективная реализация светового действия тока происходит в светодиодных источниках света. Электрический ток, проходя через pn-переход, провоцирует рекомбинацию носителей заряда с излучением фотонов. Лучшими led излучателями света являются прямозонные полупроводники. Изменяя состав данных полупроводников, возможно создание светодиодов для различных световых волн (разной длины и диапазона). Коэффициент полезного действия светодиода достигает 50 процентов. 


Механическое явление


Напомним, что вокруг проводника с электрическим током возникает магнитное поле. Все магнитные действия преобразуются в движение. Примером служат электрические двигатели, магнитные подъемные установки, реле и др.


В 1820 году Андре Мари Ампер вывел известный всем «Закон Ампера», который как раз описывает механическое действие одного электротока на другой. 


Данный закон гласит, что параллельные проводники с электрическим током одинакового направления испытывают притяжение друг другу, а противоположного направления, наоборот, отталкивание. 


Также закон ампера определяет величину силы, с которой магнитное поле воздействует на небольшой отрезок проводника с электротоком. Именно данная сила лежит в основе функционирования электрического двигателя.


Статьи по теме: 

Электрический ток — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Электрический ток.

Сила тока. Сопротивление

К оглавлению…

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

 

Закон Ома. Последовательное и параллельное соединение проводников

К оглавлению…

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

 

ЭДС. Закон Ома для полной цепи

К оглавлению…

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

 

Работа и мощность тока. Закон Джоуля-Ленца

К оглавлению. ..

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

 

Энергобаланс замкнутой цепи

К оглавлению…

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

 

Электролиз

К оглавлению…

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

 

Электрический ток в газах и в вакууме

К оглавлению…

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы. Этот процесс называется ионизацией газов.

Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

Электроника как искусство: электрический ток / Хабр

Не влезай. Убьет! (с)

Среднестатистическая грамотность населения в области электроники и электротехники оставляет желать лучшего. Максимум, спаять схемку, а как она работает — темный лес. К сожалению, все русскоязычные учебники пестрят формулами и интегралами, от них любого человека потянет в сон. В англоязычной литературе дела обстоят несколько лучше. Попадаются довольно интересные издания, но камнем преткновения здесь уже выступает английский язык. Постараюсь изложить основные понятия по электротехнике максимально доступно, в вольном стиле, не от инженера инженеру, а от человека человеку. Сведущий читатель, возможно, тоже найдет для себя несколько интересных моментов.

Электрический ток

Пути электрического тока неисповедимы. (с) мысли из интернета

На самом деле, нет. Все так или иначе можно описать с помощью математической модели, моделирования, да даже прикинув по-быстренькому на бумажке, а некоторые уникумы делают это в голове. Кому как удобнее. На самом деле, эпиграф этой главы родился от незнания, что же такое электрический ток.

Электрический ток характеризуется несколькими параметрами. Напряжением U и током I. Конечно, все мы помним определения по физике, но мало кто понимает их значения. Начну с напряжения. Разность потенциалов или работа по перемещению заряда, как сухо и неинтересно пишут в учебниках. На самом деле, напряжение всегда измеряется между двумя точками. Оно характеризует способность создавать электрический ток между этими двумя точками. Назовем эти точки источником напряжения. Чем больше напряжение, тем больше ток. Меньше напряжения – меньше ток. Но об этом чуть позже.

Что же такое ток? Представьте аналогию русло реки – это провода, электрический ток – это скорость потока воды в реке. Тогда напряжение здесь – перепад высоты между начальной точкой реки и конечной точкой. Или напряжение – это насос гоняющий воду, если река течет в одной плоскости. Такие аналогии на начальных этапах очень помогают понять, что же происходит в электрической схеме. Но, в конечном итоге, лучше от них отказаться. Лучше представить ток как некий поток электронов. Количество заряда, перемещаемое в единицу времени. Конечно, в учебниках говорится, что де электроны движутся со скоростью несколько сантиметров в минуту и значение имеет лишь электромагнитное поле, но пока забудем про это. Итак, под током можно понимать движение электрического тока, т.е. заряда. Носители заряда, электроны, отрицательно заряжены и двигаются от отрицательного потенциала к положительному, электрический ток же имеет направление от положительного потенциала к отрицательному, от плюса к минусу, так принято для удобства и так мы будем пользоваться в дальнейшем, забыв про заряд электрона.

Конечно, сам по себе ток не появится, нужно создать напряжение между двумя точками и нужна какая-либо нагрузка для протекания тока через нее, подключенная к этим двум точками. Очень полезно знать свойство, что для протекания тока нужно два проводника: прямой, до нагрузки, и обратный, от нагрузки до источника. Например, если не замкнуты проводники источника напряжения, то тока не будет.

Что же такое источник напряжения? Представим его в виде черного ящика, имеющего как минимум два вывода для подключения. Самые простые примеры из реальной жизни: электрическая розетка, батарейка, аккумулятор и т.п.

Идеальный источник напряжения обладает неизменным напряжением при протекании через него любого значения тока. Что же будет, если замкнуть зажимы идеального источника напряжения? Потечет бесконечно большой ток. В реальности источники напряжения не могут отдать бесконечно большой ток, потому что обладают некоторым сопротивлением. Например, провода в сетевой розетке 220в от самой розетки до подстанции имеют сопротивление, пусть и малое, но довольно ощутимое. Провода от подстанций до электростанций тоже имеют сопротивление. Нельзя забывать про полное сопротивление трансформаторов и генераторов. Батарейки имеют внутреннее сопротивление, обусловленное внутренней химической реакцией, которая имеет конечную скорость протекания.

Что же такое сопротивление? Вообще, это тема довольно обширная. Возможно, опишу в одной из следующих глав. Если кратко – это параметр, связывающий ток и напряжение. Оно характеризует, какой ток потечет при приложенном напряжении к этому сопротивлению. Если говорить «водной» аналогией, то сопротивление – это дамба на пути реки. Чем меньше отверстие в дамбе – тем больше сопротивление. Эту связь описывает закон Ома: . Как говорится: «Не знаешь закон Ома, сиди дома!».

Зная закон Ома, не сидя дома, имея какой-либо источник тока с заданным напряжением и сопротивление в виде нагрузки, мы очень точно можем предсказать какой потечет ток.

Реальные источники напряжения имеют какое-то свое внутреннее напряжение и отдают некий конечный ток, называемый током короткого замыкания. При этом батареи и аккумуляторы еще и разряжаются со временем и имеют нелинейное внутреннее сопротивление. Но пока тоже забудем об этом, и вот почему. В реальных схемах удобнее проводить анализ с использованием сиюминутных мгновенных значений напряжения и тока, поэтому будем считать источники напряжения идеальными. За исключением того факта, когда потребуется посчитать максимальны ток, который способен отдать источник.

Насчет «водной» аналогии электрического тока. Как я уже писал, она не очень правдива, поскольку скорость движения реки до дамбы и после дамбы будет разным, также разным будет кол-во воды до и после дамбы. В реальных схемах электрический ток втекающий в резистор и вытекающий из него будет равен между собой. Ток по прямому проводу, к нагрузке, и по обратному проводу, от нагрузки до источника, тоже равен между собой. Ток ни откуда не берется и никуда не девается, сколько «втекло» в узел схемы, столько и «вытечет», даже если путей несколько. Например, если есть два пути протекания тока от источника, то он потечет по этим путям, при этом полный ток источника будет равен сумме двух токов. И так далее. Это и есть иллюстрация закона Кирхгофа. Это очень просто.

Также есть еще два важных правила. При параллельном соединении элементов, напряжение в каждом из элементов одинаково. Например, напряжение на резисторе R2 и R3, на рисунке выше, одинаковы, но токи могут быть разными, если резисторы имеют разные сопротивления, по закону Ома. Ток через батарейку равен току на резисторе R1 и равен сумме токов на резисторах R2 и R3. При последовательном соединении напряжения элементов складываются. Например, напряжение которое выдает батарея, т.е. ее ЭДС, равно напряжению на резисторе R1 + напряжение на резисторе R2 или R3.

Как я уже писал, напряжение измеряется всегда между двумя точками. Иногда, в литературе можно встретить: «Напряжение в точке такой-то». Это означает напряжение между этой точкой и точкой нулевого потенциала. Создать точку нулевого потенциала можно, например, заземлив схему. Обычно «землят» схему в месте самого отрицательно потенциала около источника питания, например, как на рисунке выше. Правда это бывает не всегда, да и применение нуля довольно условно, например, если нам нужно двухполярное питание +15 и -15 вольт, то «землить» надо уже не -15в, а потенциал посредине. Если же заземлить -15в, то мы получим 0, +15, +30в. См. рисунки ниже.

Заземление также применяется в качестве защитного или рабочего. Защитное заземление называют зануление. Если нарушится изоляция схемы в каком-нибудь другом участке, отличном от земли, то по нулевому проводу потечет большой ток и сработает защита, которая отключит часть схемы. Защиту мы должны предусмотреть заранее, поставив автоматический выключатель или иное устройство на пути протекания тока.

Иногда «землить» схему нельзя или невозможно. Вместо земли применяют термин общая точка или ноль. Напряжения в таких схемах указываются относительно общей точки. При этом вся схема относительно земли, т.е. нулевого потенциала может располагаться где угодно. См. рисунок.

Обычно, Xv близко к 0 вольт. Такие незаземленные схемы с одной стороны более безопасны, поскольку если человек прикоснется одновременно к схеме и земле ток не потечет, т. к. нет обратного пути протекания тока. Т.е. схема станет «заземлена» через человека. Но с другой стороны такие схемы каверзны. Если вдруг нарушится изоляция схемы от земли в какой-либо ее точке, то мы этого не узнаем. Что может быть опасно, при больших напряжениях Xv.

Вообще земля — это термин довольно обширный и расплывчатый. Есть очень много терминов и названий земли, смотря где «землить» схему. Под землей может пониматься как защитная земля, так и рабочая земля (по протеканию тока через нее при нормальной работе), как сигнальная земля, так и силовая земля (по роду тока), как аналоговая земля, так и цифровая земля (по роду сигнала). Под землей может пониматься общая точка или наоборот, под общей точкой пониматься земля или и быть ей. Также в схеме могут присутствовать все земли одновременно. Так что надо смотреть по контексту. Есть даже такая забавная картиночка в иностранной литературе, см. ниже. Но обычно земля – это схемные 0 вольт и это точка от которой измеряют потенциал схемы.

До сих пор, упоминая источник напряжения, я не касался рода этого самого напряжения. Напряжение есть меняющееся со временем и есть не меняющееся. Т.е. переменное и постоянное. Например, напряжение, меняющееся по синусоидальному закону всем хорошо знакомо, это напряжение сети 220в в бытовых розетках. С постоянным напряжением работать очень просто, мы это уже делали выше, когда рассматривали закон Кирхгофа. А что же делать с переменным напряжением и как его рассматривать?

На рисунке приведены несколько периодов переменного напряжения 220в 50Гц (синяя линия). Красная линия – постоянное напряжение 220в, для сравнения.

Определимся, сначала что такое напряжение 220в, кстати, по новому стандарту положено считать 230в. Это действующее значение напряжения. Амплитудное значение будет в корень из 2х раз выше и составит примерно 308в. Действующее значение – это такое значение напряжения, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при постоянном токе такого же напряжения. Выражаясь математическим языком – это среднеквадратичное значение напряжения. В английской литературе используется термин RMS, а приборы, которые измеряют истинное действующее значение имеют знак «true RMS».

На первый взгляд это может показаться неудобным, какое-то действующее значение, но это удобно для расчетов мощности без необходимости конвертации напряжения.

Переменное напряжение еще удобно рассматривать как постоянное напряжение, взятое в какой-либо точке времени. После чего проводить анализ схемы несколько раз, изменяя знак постоянного напряжение на обратный. Сначала рассмотреть работу схемы с постоянным положительным напряжением, потом, изменить знак, с положительного на отрицательный.

Для переменного напряжения также необходимо два провода. Они называются фаза и ноль. Иногда ноль заземляют. Такая система называется однофазной. Напряжение фазы измеряется относительно нуля и меняется со временем, как показано на рисунке выше. При положительной полуволне напряжения ток протекает от фазы к активной нагрузке и от нагрузки возвращается обратно по нулевому проводу. При отрицательной полуволне ток течет по нулевому проводу и возвращается по фазному.

В промышленности широко применяют трехфазную сеть. Это частный случай многофазных систем. По сути все тоже самое, что и однофазная система, только умноженная на 3, т.е. применение одновременно трех фаз и трех земель. Впервые изобретено Н. Тесла, впоследствии усовершенствовано М. О. Доливо-Добровольским. Усовершенствование состояло в том, что для передачи трехфазного электрического тока можно было выкинуть лишние провода, достаточно четырех: три фазы ABC и нулевой провод или же вовсе три фазы, отказавшись от нуля. Нулевой провод очень часто заземляют. На рисунке ниже ноль общий.

Почему же 3 фазы, и не больше, не меньше? С одной стороны, 3 фазы гарантированно создают вращающееся магнитное поле, так необходимое электрическим двигателям для вращения или получаемое от генераторов электростанций, с другой стороны это экономически выгодно с материальной точки зрения. Меньше нельзя, а больше и не нужно.

Чтобы гарантировано создавать вращающееся поле в трехфазной сети нужно чтобы фазы напряжения были сдвинуты друг относительно друга. Если принять полный период напряжения за 360 градусов, то 360/3 = 120 градусов. Т.е. напряжение каждой фазы сдвинуто относительно друг друга на 120 градусов. См. рисунок ниже.

Здесь показан график напряжения 3-х фазной сети 380в по времени. Как видно из рисунка, все тоже самое, что и с однофазной сетью, только напряжений стало больше. 380в – это так называемое линейное напряжение сети Uл, т.е. напряжение, измеряемое между двумя фазами. На рисунке показан пример нахождения мгновенного значения Uл. Оно также изменяется по синусоидальному закону. Также наряду с линейным напряжением различают фазное Uф. Оно измеряется между фазой и нулем. Фазное напряжение в данной трехфазной сети равно 220в. Под фазным и линейным напряжение, конечно же подразумевается действующее напряжение. Соотносятся линейное к фазному напряжению, как корень из трех.

Нагрузку к трехфазной сети можно подключать как угодно – к фазному напряжению: между какой-либо фазой и нулем, либо к линейному напряжению: между двумя фазами. Если нагрузка подключена к фазному напряжению, то такая схема соединения называется звездой. Она и показана выше. Если к линейному напряжения – то соединение треугольником. Если одинаковая нагрузка подключается к линейным напряжениям между всеми тремя фазами, то такие сети симметричные. Ток через нулевой провод в симметричных сетях не течет. См рис. ниже. Промышленные сети также считаются условно симметричными. Как правило ноль в таких сетях присутствует, но лишь в защитных целях. Иногда может и отсутствовать вообще. Веселая картиночка из вики наглядно иллюстрирует как протекает ток в таких сетях.

На этом кратенький обзор по электросетям и электричеству завершен. Возможно в будущем объясню на пальцах как работает диод и транзистор, что такое стабилитрон, тиристор и другие элементы. Пишите, про что вам интересно почитать.

Библиографический список

  1. Искусство схемотехники, П. Хоровиц. 2003.
  2. GROUNDS FOR GROUNDING. A Circuit-to-System Handbook, Elya B. Joffe, Kai-Sang Lock.
  3. Wiki и интернет ресурсы.

Сила тока. Амперметр — урок. Физика, 8 класс.

В процессе своего движения вдоль проводника заряженные частицы (в металлах это электроны) переносят некоторый заряд. Чем больше заряженных частиц, чем быстрее они движутся, тем больший заряд будет ими перенесён за одно и то же время. Электрический заряд, проходящий через поперечное сечение проводника за 1 секунду, определяет силу тока в цепи.

Сила тока \(I\) — скалярная величина, равная отношению заряда \(q\), прошедшего через поперечное сечение проводника, к промежутку времени \(t\), в течение которого шёл ток.
I=qt, где \(I\) — сила тока, \(q\) — заряд, \(t\) — время.
Единица измерения силы тока в системе СИ — \([I]~=~1~A\) (ампер).

В 1948 г. было предложено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током:

при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях — отталкиваются.

За единицу силы тока \(1~A\) принимают силу тока, при которой два параллельных проводника длиной \(1\) м, расположенные на расстоянии \(1\) м друг от друга в вакууме, взаимодействуют с силой \(0,0000002\)H (рис. 1.).

  

Рис. 1. Определение единицы силы тока

  

Единица силы тока называется ампером (\(A\)) в честь французского учёного А.-М. Ампера (рис. 2).

 

Андре-Мари Ампер

(1775 — 1836)

Рис. 2. Ампер Андре-Мари

 

А.-М. Ампер ввёл термины: электростатика, электродинамика, соленоид, ЭДС, напряжение, гальванометр, электрический ток.

Ампер — довольно большая сила тока. Например, в электрической сети квартиры через включённую \(100\) Вт лампочку накаливания проходит ток с силой, приблизительно равной \(0,5A\). Ток в электрическом обогревателе может достигать \(10A\), а для работы карманного микрокалькулятора достаточно \(0,001A\).

Помимо ампера на практике часто применяются и другие (кратные и дольные) единицы силы тока, например, миллиампер (мА) и микроампер (мкА):
\(1 мA = 0,001 A\), \(1 мкA = 0,000001 A\), \(1 кA =1000 A\).
То есть \(1 A = 1000 мA\), \(1 A = 1000000 мкA\), \(1 A = 0,001 кA\).

Если электроны перемещаются в одном направлении, т.е. — от одного полюса источника тока к другому, то такой ток называют постоянным.

Переменным называется ток, сила и направление которого периодически изменяются.

В бытовых электросетях используют переменный ток напряжением \(220\) В и частотой \(50\) Гц. Это означает, что ток за \(1\) секунду \(50\) раз движется в одном направлении и \(50\) раз — в другом. У многих приборов имеется блок питания, который преобразует переменный ток в постоянный (у телевизора, компьютера и т.д.).

 

Силу тока измеряют амперметром. В электрической цепи он обозначается так:

Рис. 3. Схематичное изображение единицы силы тока

 

Амперметр включают в цепь последовательно с тем прибором, силу тока в котором нужно измерить.

Обрати внимание!

Амперметр нельзя подсоединять к источнику тока, если в цепь не подключён потребитель!

Измеряемая сила тока не должна превышать максимально допустимую силу тока для измерения амперметром. Поэтому существуют различные амперметры (рис. 4), где измерительная шкала представлена с использованием кратных и дольных единиц 1 А (миллиампер — мА, микроампер — мкА, килоампер — кА).

 

Рис. 4. Изображение миллиамперметра

 

Различают амперметры для измерения силы постоянного тока и силы переменного тока (рис. 5).

Обозначения диапазона измерения амперметров:

  • «\(~\)» означает, что амперметр предназначен для измерения силы переменного тока; 
  • «\(—\)» означает, что амперметр предназначен для измерения силы постоянного тока.

Можно обратить внимание на клеммы прибора. Если указана полярность («\(+\)» и «\(-\)»), то это прибор для измерения постоянного тока.

Иногда используют буквы \(AC/DC\). В переводе с английского \(AC\) (alternating current) — переменный ток, а \(DC\) (direct current) — постоянный ток.

Для измерения силы постоянного тока

Для измерения силы переменного тока

Рис. 5. Амперметры для измерения силы постоянного и переменного токов

 

Для измерения силы тока можно использовать и мультиметр (рис. 6). Перед измерением необходимо прочитать инструкцию, чтобы правильно подключить прибор.

 

Рис. 6. Изображение мультиметра

 

Включая амперметр в цепь постоянного тока, необходимо соблюдать полярность (рис. 7):

  • провод, который идёт от положительного полюса источника тока, нужно соединять с клеммой амперметра со знаком «\(+\)»;

  • провод, который идёт от отрицательного полюса источника тока, нужно соединять с клеммой амперметра со знаком «\(-\)».

Если полярность на источнике тока не указана, следует помнить, что длинная линия соответствует плюсу, а короткая — минусу.

Рис. 7. Изображение электрической схемы (постоянный ток)

 

В цепь переменного тока включается амперметр для измерения переменного тока. Он полярности не имеет.

 

Амперметр подключается последовательно к тому прибору, на котором измеряется сила тока (рис. 7).

 

Безопасным для организма человека можно считать переменный ток силой не выше \(0,05~A\), ток силой более \(0,05\)-\(0,1~A\) опасен и может вызвать смертельный исход.

Источники:

Рис. 1. By Patrick Nordmann — http://schulphysikwiki.de/index.php/Datei:Definition_Ampere.png, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=91011035.

Рис. 2. By Ambrose Tardieu — The Dibner collection ::::::::::,,,;at the Smithsonian Institution (USA),, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6366734.

Рис. 3. Указание авторства не требуется, лицензия Pixabay, 2021-06-14, может использоваться в коммерческих целях, https://clck. ru/VVqyJ.

Рис. 4. Изображение миллиамперметра. © ЯКласс.

Рис. 5. Амперметры для измерения силы постоянного и переменного токов. © ЯКласс.

Рис. 6. Multimeter with probes on white, CC BY 2.0, 2021-06-14, https://www.flickr.com/photos/30478819@N08/50838190626/in/photostream/.

Рис. 7. Изображение электрической схемы (постоянный ток). © ЯКласс.

Открытая Физика. Электрический ток. Закон Ома

Если изолированный проводник поместить в электрическое поле E→, то на свободные заряды q в проводнике будет действовать сила F→=qE→. В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю (см. § 1.5).

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока Iскалярная физическая величина, равная отношению заряда Δq, переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени Δt, к этому интервалу времени:
I=ΔqΔt.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

Упорядоченное движение электронов в металлическом проводнике и ток I. S – площадь поперечного сечения проводника, E→ – электрическое поле

В Международной системе единиц СИ сила тока измеряется в амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током (см.  § 1.16).

Постоянный электрический ток может быть создан только в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю (см. § 1.4). Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают
работу.

Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):
ЭДС=ℰ=Aстq.

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными. Участки, включающие источники тока, называются неоднородными.

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов Δφ12 = φ1 – φ2 между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе ℰ12, действующей на данном участке. Поэтому полная работа равна

U12 = φ1 – φ2 + ℰ12.

Величину U12 принято называть напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:
U12 = φ1 – φ2.

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:
I=1RU    или    RI=U,

где R = const.

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:

IR = U12 = φ1 – φ2 +  = Δφ12 + ℰ.

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи.

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи (cd) является однородным.

Цепь постоянного тока

По закону Ома
IR = Δφcd.

Участок (ab) содержит источник тока с ЭДС, равной ℰ.

По закону Ома для неоднородного участка,
Ir = Δφab + ℰ.

Сложив оба равенства, получим:
I (R + r) = Δφcd + Δφab + ℰ.

Но Δφcd = Δφba = – Δφab. Поэтому
I=ℰR+r.

Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Сопротивление r неоднородного участка на рис. 1.8.2 можно рассматривать как внутреннее сопротивление источника тока. В этом случае участок (ab) на рис. 1.8.2 является внутренним участком источника. Если точки a и b замкнуть проводником, сопротивление которого мало по сравнению с внутренним сопротивлением источника (R << r), тогда в цепи потечет ток короткого замыкания
Iкз=ℰr.

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ℰ и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

В ряде случаев для предотвращения опасных значений силы тока короткого замыкания к источнику последовательно подсоединяется некоторое внешнее сопротивление. Тогда сопротивление r равно сумме внутреннего сопротивления источника и внешнего сопротивления, и при коротком замыкании сила тока не окажется чрезмерно большой.

Если внешняя цепь разомкнута, то Δφba = – Δφab = ℰ, т. е. разность потенциалов на полюсах разомкнутой батареи равна ее ЭДС.

Если внешнее нагрузочное сопротивление R включено и через батарею протекает ток I, разность потенциалов на ее полюсах становится равной

Δφba =  – Ir.

На рис. 1.8.3 дано схематическое изображение источника постоянного тока с ЭДС равной ℰ и внутренним сопротивлением r в трех режимах: «холостой ход», работа на нагрузку и режим короткого замыкания (к. з.). Указаны напряженность E→ электрического поля внутри батареи и силы, действующие на положительные заряды: F→э – электрическая сила и F→ст – сторонняя сила. В режиме короткого замыкания электрическое поле внутри батареи исчезает.

Схематическое изображение источника постоянного тока: 1 – батарея разомкнута; 2 – батарея замкнута на внешнее сопротивление R; 3 – режим короткого замыкания

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Для цепи, изображенной на рис. 1.8.4, это условие записывается в виде:
RB >> R1.

Это условие означает, что ток IB = Δφcd / RB, протекающий через вольтметр, много меньше тока I = Δφcd / R1, который протекает по тестируемому участку цепи.

Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи. Для цепи на рис. 1.8.4 сопротивление амперметра должно удовлетворять условию
RA << (r + R1 + R2),

чтобы при включении амперметра ток в цепи не изменялся.

Измерительные приборы – вольтметры и амперметры – бывают двух видов: стрелочные (аналоговые) и цифровые. Цифровые электроизмерительные приборы представляют собой сложные электронные устройства. Обычно цифровые приборы обеспечивают более высокую точность измерений.

Включение амперметра (А) и вольтметра (В) в электрическую цепь

Направление и величина электрического тока.

Количество электричества

  

Мы неоднократно подчеркивали, что электроны в электрическом поле перемещаются от точек с более низким потенциалом к точкам с более высоким потенциалом. Следовательно, и в электрической цепи, показанной на рис. 1, электроны движутся от отрицательного полюса источника электрической энергии к положительному: поэтому следовало бы считать, что электрический ток идет от минуса (—) к плюсу ( + ).

Рисунок 1. Простейшая электрическая цепь

 

Однако до объяснения электрических явлений с точки зрения электронной теории, т. е. когда природа электрического тока не была достаточно изучена, полагали, что ток идет от положительного полюса источника к отрицательному.

Чтобы не менять этого установившегося и прочно вошедшего в практику положения, решили сохранить такую условность и считать, что ток идет от плюса к минусу, как показано на рис. 2. В действительности же в металлических проводниках ток проходит в обратном направлении.

Рисунок 2. Направление движения электронов в проводнике и направление тока 

 

С ростом напряженности внешнего электрического поля увеличивается сила, действующая на электроны в проводнике. Электроны начинают перемещаться по проводнйку быстрее, а значит, увеличивается количество электричества, проходящее через поперечное сечение проводника в единицу времени.

Для характеристики интенсивности движения электрических зарядов в проводниках вводится понятие о силе тока или токе.

Определение: Силой тока называется количество электричества, проходящее через поперечное сечение проводника в единицу времени.

Сила тока (ток) обозначается буквой I или i.

Если за время t через поперечное сечение проводника прошло количество электричества q, то ток в проводнике можно определить по формуле:

За единицу тока принимается ампер (сокращенно обозначается буквой  А). В ГОСТ  приведено следующее определение этой основной электрической единицы: «ампер — сила неизменяющегося тока, который, проходя по двум параллельным прямоугольным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2*10-7 единицы силы  на каждый метр длины».

Следует подчеркнуть, что ампер — единственная основная электрическая единица. Все остальные единицы, используемые при электрических и магнитных измерениях, определяются через четыре основные единицы Международной системы единиц (метр — килограмм — секунда — ампер).

Единица измерения тока названа по имени французского физика и математика Андре Мари Ампера (1775—1836), открывшего закон взаимодействия электрических токов и предложившего новую гипотезу для объяснения магнитных свойств вещества.

В радиотехнике часто приходится иметь дело с токами, величина которых в тысячи и даже миллионы раз меньше одного ампера. Такие токи измеряются в миллиамперах (сокращенно обозначается мА или mА) или в микроамперах (сокращенно обозначается мкА или μА). Миллиампер одна тысячная доля ампера, т. е.

1 мА = 0,001 А, или 1 А = 1000 мА.

Микроампер — это одна миллионная доля ампера или одна тысячная доля миллиампера, т. е.

1 мкА = 0,001 мА = 0,000001 А.

Полезно запомнить также следующие соотношения:

1 мА= 1000 мкА = 0,001 А; 1 А = 1000 мА = 1 000 000 мкА.

При рассмотрении вопросов взаимодействия зарядов мы сказали, что количество электричества измеряется в кулонах. При этом количество электричества в 1 кулоне соответствует приблизительно общему заряду 6 • 1018 электронов. Сейчас можно дать более строгое определение кулона:

Определение: кулон — это количество электричества, проходящее через поперечное сечение проводника в течение 1 секунды при неизменяющемся токе в 1 ампер.

Эта единица количества электричества часто называется ампер-секундой (сокращенное обозначение А-с). На практике количество электричества измеряется в ампер-часах (А-ч).

Если известен ток I в проводнике, то количество электричества q, прошедшее через поперечное сечение проводника за время t, можно определить по формуле:

где q — в кулонах; I— в амперах; t — в секундах.

Для измерения тока в цепи применяются приборы, называемые амперметрами. Амперметр включается в цепь так, чтобы через него проходил весь измеряемый им ток (рис. 3). 

Рисунок 3. Схема включения амперметра в электрическую цепь. Б — источник напряжения; PA — амерметр; EL — нагрузка (лампа).

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Общие сведения об электричестве — Узнайте об электричестве, токе, напряжении и сопротивлении

Дом
> Поддержка>
Электроэнергетика
Электроэнергетика

Что
такое электричество?

Любая техника, которую мы используем
в нашей повседневной жизни, например, бытовая техника, оргтехника
и промышленное оборудование, почти все это требует электричества. Следовательно, мы должны понимать электричество.

Первый вопрос, который мы
узнаем ответ « где электричество
родом из?
«

Все дела состоят из
атомы. Затем задайте следующий вопрос: « Что такое атомы? ».

Атомы — это самая маленькая часть элемента.Они состоят
ядра и электронов, электроны окружают ядро. Элементы
идентифицируются по количеству электронов на орбите вокруг ядра
атомов и числом протонов в ядре.

Ядро состоит из протонов и нейтронов, а количество
протоны и нейтроны уравновешены. У нейтронов нет электрического заряда,
протоны имеют положительный заряд (+), а электроны отрицательные
заряды (-). Положительный заряд протона равен отрицательному заряду
электрона.

Электроны связаны по своей орбите за счет притяжения протонов, но
электроны во внешней зоне могут покинуть свою орбиту за счет
некоторые внешние силы. Их называют свободными электронами,
которые перемещаются от одного атома к другому, образуются потоки электронов.
Это основа электричества. Материалы, позволяющие
свободно перемещающиеся электроны называются проводниками
а материалы, которые позволяют перемещаться небольшому количеству свободных электронов, называются
изоляторы .

Все вещества состоят из атомов, имеющих электрические заряды. Следовательно,
у них есть электрические заряды. Что касается сбалансированного
количество протонов и электронов, сила положительного заряда и
сила отрицательного заряда уравновешена. Это называется нейтральным состоянием.
атома. (Число протонов и электронов остается равным.)

« Статическое электричество »
представляет собой ситуацию, когда все вещи состоят из электрических
обвинения.Например, трение материала о другой
может вызвать статическое электричество. Свободные электроны одного материала
двигаться с силой, пока они не освободятся от своих орбит вокруг ядра
и перейти к другому. Электроны одного материала уменьшаются, он
представляет собой положительный заряд. В то же время электроны другого
увеличиваются, он имеет отрицательные заряды.

В общем заряд
производство материи означает, что материя имеет электрические заряды.Он имеет положительный и отрицательный заряды, что выражается в
кулон.


Ток,
Напряжение и сопротивление


Что сейчас?

Электрическое явление вызвано потоком
свободные электроны от одного атома к другому.Характеристики
текущее электричество противоположны тем
статического электричества.

Провода состоят из проводников, таких как медь.
или алюминий. Атомы металла состоят из свободных электронов, которые
свободно переходить от одного атома к другому. Если добавлен электрон
в проводе свободный электрон притягивается к протону, чтобы оставаться нейтральным.
Вытеснение электронов с их орбит может вызвать недостаток электронов. Электроны, которые непрерывно движутся по проволоке, называются Electric.
Текущий
.


Для одножильных проводов
электрический ток относится к направленным
отрицательно-положительные электроны от одного атома к другому. Жидкость
проводники и газопроводы, электрический ток относится к электронам
а протоны текут в обратном направлении.

Ток — это поток электронов, но ток и электроны текут в
противоположное направление. Ток течет от положительного к отрицательному
и электроны перетекают с отрицательного на положительный.

Ток определяется количеством электронов, проходящих через
поперечное сечение проводника за одну секунду. Ток измеряется
в ампер , что сокращенно « ампер ».Обозначение усилителя — это буква « A ».

А ток в один ампер означает
что ток проходит через поперечное сечение двух проводников,
которые расположены параллельно на расстоянии 1 метра друг от друга с 2×10 -7 Ньютон
сила на метр возникает в каждом проводнике. Это также может означать сборы
одного кулона (или 6,24х10 18 электронов), проходящего через поперечное сечение
проводника за одну секунду.


Что такое напряжение?

Электрический ток — это поток электронов в проводнике. Сила
необходим для протекания тока через проводник, называется
напряжение и потенциал
другой срок напряжения. Например, у первого элемента больше
положительные заряды, поэтому он имеет более высокий потенциал. С другой стороны,
второй элемент имеет более отрицательные заряды, поэтому он
имеет более низкий потенциал.Разница между двумя точками называется
разность потенциалов .

Электродвижущая сила
означает силу, которая заставляет ток непрерывно течь через
дирижер. Эта сила может создаваться генератором энергии,
аккумулятор, аккумулятор фонарика и топливный элемент и т. д.

Вольт, сокращенно « В », это единица измерения
измерения взаимозаменяемо для напряжения, потенциала,
и электродвижущая сила.Один вольт означает силу, которая заставляет
ток в один ампер проходят через сопротивление в один ом.

Что такое сопротивление?
Электроны движутся через
проводник при протекании электрического тока. Все материалы мешают
протекание электрического тока до некоторой степени. Эта характеристика
называется сопротивлением .Сопротивление увеличивается
с увеличением длины или уменьшением поперечного сечения
материал.

Единица измерения сопротивления Ом
и его символ — греческая буква омега ( Ω ).
Сопротивление в один Ом означает, что проводник пропускает ток.
одного ампера на поток с напряжением один вольт.

Все материалы различаются по пропусканию электронов.Материалы
которые позволяют свободно перемещаться большому количеству электронов, называются проводниками
такие как медь, серебро, алюминий, раствор хлористоводородной, серной
кислота и соленая вода. Напротив, материалы, пропускающие мало электронов
для протекания называются изоляторы , такие как пластмассовые,
резина, стекло и сухая бумага. Другой тип материалов, полупроводники
имеют характеристики как проводников, так и изоляторов.Они
позволяют электронам двигаться, имея возможность контролировать поток
электронами и примерами являются углерод, кремний, германий и т. д.

Сопротивление проводника
зависит от следующих двух основных факторов:

1. Виды материала
2. Температура материала

Как измерить ток
Прибор для измерения силы тока
называется Амперметр Амперметр или Амперметр .

Шаги для измерения тока

Подключите небольшую лампочку к сухой батарее.Измерьте ток
который проходит через лампочку при подключении положительной клеммы
(+) амперметра к отрицательной клемме (-) сухого элемента (см.
рисунок)

Указания по технике безопасности при измерении силы тока;
1. Оценить ток, требующий измерения
затем выберите подходящий амперметр, так как каждый амперметр имеет разные
предел измерения тока.
2. Убедитесь, что соединение с плюсовой клеммой
(+) и отрицательная клемма (-) амперметра правильные.
3. Не подключайте напрямую клеммы амперметра
сушить клеммы ячеек. Так как это может повредить счетчик.


Как измерить напряжение

Прибор для измерения напряжения, разницы
Потенциальная или электродвижущая сила называется вольтметром .

Шаги для измерения напряжения
Подключите небольшую лампочку к сухому элементу. Вольтметр есть
подключен параллельно лампочке для измерения напряжения
через лампочку. Подключите положительную клемму (+)
вольтметр к плюсовой клемме (+) сухого элемента и подключите
отрицательная клемма (-) вольтметра к отрицательной клемме
(-) сухой ячейки (см. рисунок).
Указания по технике безопасности при измерении
Напряжение;
1. Оценить напряжение, требующее измерения
затем выберите подходящий вольтметр
, поскольку каждый вольтметр рассчитан на
предел измерения напряжения.
2. Убедитесь, что подключение положительной клеммы
(+) и отрицательная клемма (-) вольтметра правильные.


Как измерить сопротивление

Инструмент, используемый для измерения
Сопротивление называется тестером или мультиметром .Мультиметр или тестовый метр используется для изготовления различных электрических
измерения, такие как ток, напряжение и сопротивление. Он сочетает в себе
функции амперметра, вольтметра и омметра.

Шаги для измерения сопротивления
Поверните лицевую шкалу в положение для требуемого измерения,
сопротивления, затем коснитесь обоих выводов мультиметра (см.
рисунок 1) и отрегулируйте диапазон измерителя на 0 Ом.Трогать
оба вывода измерителя к сопротивлению и возьмите
чтение (см. рисунок 2).

Как работает электричество?

Электрический ток — это способность
делать работу.Электрический ток можно преобразовать в тепло, мощность
и магнетизм, чтобы назвать несколько.

Электрический ток классифицирован
по функциям и трем основным типам:

1.

Теплоэнергетика

2.

Электрохимия

3.

Магнетизм

1. Тепло и энергия используется для производства тепла и электроэнергии.

Например, нихромовая токоведущая проволока.
проволока имеет высокое сопротивление и выделяет тепло.Это применяется
быть составной частью электрических духовок, тостеров, электрических утюгов
и лампочки и др.

Эксперимент проводится путем измерения
нагреть количество воды калориметром. Увеличьте напряжение на
провод вариаком и подключите амперметр и вольтметр для измерения
ток и напряжение.
Установите шкалу переменного тока для регулировки значения напряжения и тока
нихромовая проволока и ток периодически пропускается и
измерить количество тепла от нихромовой проволоки.Есть какие-то указания
напряжения и тока. Если напряжение, ток и время увеличиваются,
количество тепла также увеличится. Они выражаются
отношение, как показано ниже.

Это называется Джоуля.
Закон
. Количество тепла зависит от напряжения время тока
и интервал времени.По закону Ома V (напряжение) = I (ток)
x R (Сопротивление), следовательно,

Количество тепла зависит от
текущий квадрат, умноженный на сопротивление и интервал времени.

При пропускании тока через нихромовую проволоку в воде ток
превращается в тепло, и температура повышается. Работу выполняет
тепло, выделяемое в электрической цепи, которая называется Electric
мощность
.

Электроэнергия измеряется
в ватт-часах (Втч), а количество тепла измеряется в калориях.
(Cal).

Работа выполняется за счет выделяемого тепла
в электрической цепи написано мощность, что означает
что номинальная работа выполняется в цепи, когда течет 1 ампер с
Применяется 1 вольт, а его единица измерения — ватт.

2. Электрохимия

Например, когда ток проходит через хлорид натрия
(NaCl), химическая реакция, называемая электролизом.
имеет место. Применяется для производства электролиза, цинкования.
и аккумулятор и т. д.

Эксперимент проводится путем пропитывания двух платиновых (Pt) пластин.
в расплаве соли. Подключите батареи к двум платиновым пластинам,
ток проходит через расплав соли и производит хлор
пузыри вокруг положительной пластины (+) и пузырьки водорода
вокруг отрицательной пластины (-), поскольку хлорид натрия составляет
натрия (Na) и хлорида (Cl). Когда хлорид натрия
тает в воде, элементы разделяются. Натрий имеет
положительные заряды (+), а у хлора отрицательные заряды
(-) и эти заряды называются ионами .
Расплав соли имеет оба положительных заряда, которые называются анодами и ,
а отрицательные заряды называются катодами .
Состояние разделенных элементов называется ионизация .Если соль растапливается водой, в растворе имеются ионы,
называется раствор электролита . И если текущий
проходит через раствор электролита, химическая реакция
происходит электролиз.

3. Магнетизм

Пример данной электромонтажной работы — токоведущий
проволока, возникают магнитные линии потока. Это применяется для производства
электродвигатели, электрические трансформаторы и магнитофоны,
пр.

Понимание смысла
магнетизма:
Что такое магнетизм?

Составная формула магнита: Fe 3 O 4 .
Все магниты обладают двумя характеристиками. Во-первых, они привлекают
и держи железо.Вторичный, если свободно двигаться, как компас
игла, они займут положение север-юг. Любые материалы
Имеют такие характеристики, они называются магнит .
Характеристики магнита
Каждый магнит имеет два полюса, один северный полюс и
один южный полюс.
Противоположные полюса притягиваются друг к другу, в то время как
полюса отталкивают друг друга.

Электричество и магнитное поле

Когда магнитная стрелка находится рядом с электрическим проводом, который
ток проходит, магнитная стрелка включает
направление протекания тока (см. рисунок 1 и 2).Следовательно,
электрический ток также создает связанный магнитный
силу или говорят, что электричество способно производить
магнитное поле.
Когда магнитная игла помещена в катушку с проволокой с одной петлей
(см. рисунок) и ток проходит через проволочную катушку, магнитную
игла поворачивается в направлении, показанном на рисунке выше.А направления магнитных линий потока показаны
стрелки.
Когда магнитная игла помещена в проволочную катушку с множеством петель
как показано на правом рисунке, ток проходит через
катушка. Направление магнитных линий магнитных параллелей
катушка проволоки. Характеристики магнитных линий потока
как характеристики магнита, но без магнитного полюса.
Когда катушка с токоведущим проводом помещается рядом с железным стержнем,
железный стержень немного сдвинется (см. рисунок 1). Если сердечник размещен
в катушке из проволоки железный стержень сильно притягивается (см.
фигура 2). Поскольку сердечник — это мягкое железо, которое проводит магнитные
силовые линии, когда ток проходит через проволочную катушку
вокруг сердечника сердечник намагничивается с высокой мощностью
что называется электромагнитов .Эта функция
широко применяется в промышленности.

Ток — От чего зависит сила тока в электрической цепи? — OCR 21C — Редакция GCSE Physics (Single Science) — OCR 21st Century

Ток — это скорость потока заряда.В металлических проводах электроны движутся и вызывают ток. Для электрического тока необходимы следующие условия:

1yzyyzmxsga.0.0.0.1:0.1.0.$0.$1.$2″> Первоначально ток определялся как поток заряда от положительного к отрицательному. Позже ученые обнаружили, что ток на самом деле представляет собой поток электронов от отрицательного к положительному. Первоначальное определение теперь упоминается как «традиционный ток», чтобы избежать путаницы с новым определением тока.

Расчет тока

Для расчета тока используйте уравнение:

поток заряда = ток × время

Это когда:

  • поток заряда измеряется в кулонах (C)
  • ток измеряется в амперах (амперах) (A)
  • 1.0.$0.$2.$4.$2″> время измеряется в секундах (с)

Каждый электрон в цепи несет очень небольшой заряд, но присутствует много миллиардов электронов.Многие повседневные токи для небольших бытовых приборов будут измеряться в миллиамперах, мА: 1000 мА = 1 А.

Пример расчета

Ток 60 мА проходит через лампу в течение получаса. Рассчитайте переданную плату.

60 мА = 60 ÷ 1000 = 0,060 A

0,5 часа = 30 минут

= 30 × 60 = 1800 с

расход заряда = ток × время

= 0,060 × 1,800

$3.$7″> = 108 C

Вопрос

Заряд 5.0 C передается по проводу за 20 с. Рассчитайте ток в проводе.

Показать ответ

Сначала измените уравнение, чтобы найти ток:

расход заряда = ток × время

\ [current = \ frac {charge ~ flow} {время} \]

\ [current = \ frac {5.0} {20} \]

\ [= 0,25 ~ A \]

Учебное пособие по физике: электрический ток

Если два требования электрической цепи выполнены, заряд будет проходить через внешнюю цепь. Говорят, что есть ток — поток заряда. Использование слова ток в этом контексте означает просто использовать его, чтобы сказать, что что-то происходит в проводах — заряд движется. Однако ток — это физическая величина, которую можно измерить и выразить численно. Как физическая величина, , ток, — это скорость, с которой заряд проходит через точку в цепи. Как показано на диаграмме ниже, ток в цепи можно определить, если можно измерить количество заряда Q , проходящего через поперечное сечение провода за время t .Ток — это просто соотношение количества заряда и времени.

Current — это величина ставки. В физике есть несколько скоростных величин. Например, скорость — это величина скорости — скорость, с которой объект меняет свое положение. Математически скорость — это отношение изменения положения к времени. Ускорение — это величина скорости — скорость, с которой объект меняет свою скорость. Математически ускорение — это отношение изменения скорости к времени. А мощность — это величина скорости — скорость, с которой работа выполняется на объекте.Математически мощность — это отношение работы к времени. В каждом случае величины скорости математическое уравнение включает некоторую величину во времени. Таким образом, ток как величина скорости будет математически выражен как

Обратите внимание, что в приведенном выше уравнении используется символ I для обозначения величины тока.

Как обычно, когда количество вводится в Классе физики, также вводится стандартная метрическая единица, используемая для выражения этой величины.Стандартная метрическая единица измерения тока — ампер . Ампер часто сокращается до А, и обозначается символом A . Ток в 1 ампер означает, что 1 кулон заряда проходит через поперечное сечение провода каждую 1 секунду.

1 ампер = 1 кулон / 1 секунда

Чтобы проверить свое понимание, определите ток для следующих двух ситуаций. Обратите внимание, что в каждой ситуации дается некоторая посторонняя информация.Нажмите кнопку Проверить ответ , чтобы убедиться, что вы правы.

Провод изолируют поперечным сечением 2 мм и определяют, что заряд 20 C может пройти через него за 40 с.

Сечение провода длиной 1 мм изолируется, и определяется, что заряд 2 Кл проходит через него за 0,5 с.

I = _____ Ампер

I = _____ Ампер

Обычное направление тока

Частицы, которые переносят заряд по проводам в цепи, являются подвижными электронами.Направление электрического поля в цепи по определению является направлением, в котором проталкиваются положительные испытательные заряды. Таким образом, эти отрицательно заряженные электроны движутся в направлении, противоположном электрическому полю. Но в то время как электроны являются носителями заряда в металлических проводах, носителями заряда в других цепях могут быть положительные заряды, отрицательные заряды или и то, и другое. Фактически, носители заряда в полупроводниках, уличных фонарях и люминесцентных лампах одновременно являются как положительными, так и отрицательными зарядами, движущимися в противоположных направлениях.

Бен Франклин, проводивший обширные научные исследования статического и токового электричества, считал положительные заряды носителями заряда. Таким образом, раннее соглашение о направлении электрического тока было установлено в том направлении, в котором будут двигаться положительные заряды. Это соглашение прижилось и используется до сих пор. Направление электрического тока условно является направлением движения положительного заряда. Таким образом, ток во внешней цепи направлен от положительной клеммы к отрицательной клемме батареи.Электроны действительно будут двигаться по проводам в противоположном направлении. Зная, что настоящими носителями заряда в проводах являются отрицательно заряженные электроны, это соглашение может показаться немного странным и устаревшим. Тем не менее, это соглашение, которое используется во всем мире, и к которому студент-физик может легко привыкнуть.

Зависимость тока от скорости дрейфа

Ток связан с количеством кулонов заряда, которые проходят точку в цепи за единицу времени.Из-за своего определения его часто путают со скоростью дрейфа количества. Скорость дрейфа означает среднее расстояние, пройденное носителем заряда за единицу времени. Как и скорость любого объекта, скорость дрейфа электрона, движущегося по проводу, — это отношение расстояния ко времени. Путь типичного электрона через проволоку можно описать как довольно хаотический зигзагообразный путь, характеризующийся столкновениями с неподвижными атомами. Каждое столкновение приводит к изменению направления электрона. Однако из-за столкновений с атомами в твердой сети металлического проводника на каждые три шага вперед приходится два шага назад. С электрическим потенциалом, установленным на двух концах цепи, электрон продолжает движение на , двигаясь вперед на . Прогресс всегда идет к положительной клемме. Однако общий эффект бесчисленных столкновений и высоких скоростей между столкновениями состоит в том, что общая скорость дрейфа электрона в цепи ненормально мала. Типичная скорость дрейфа может составлять 1 метр в час.Это медленно!

Тогда можно спросить: как может быть ток порядка 1 или 2 ампер в цепи, если скорость дрейфа составляет всего около 1 метра в час? Ответ таков: существует много-много носителей заряда, движущихся одновременно по всей длине цепи. Ток — это скорость, с которой заряд пересекает точку в цепи. Сильный ток является результатом нескольких кулонов заряда, пересекающих поперечное сечение провода в цепи. Если носители заряда плотно упакованы в провод, тогда не обязательно должна быть высокая скорость, чтобы иметь большой ток. То есть носители заряда не должны преодолевать большое расстояние за секунду, их просто должно быть много, проходящих через поперечное сечение. Ток не имеет отношения к тому, насколько далеко за секунду перемещаются заряды, а скорее к тому, сколько зарядов проходит через поперечное сечение провода в цепи.

Чтобы проиллюстрировать, насколько плотно упакованы носители заряда, мы рассмотрим типичный провод, встречающийся в цепях домашнего освещения — медный провод 14-го калибра. В срезе этой проволоки длиной 0,01 см (очень тонком) их будет целых 3.51 x 10 20 атомов меди. Каждый атом меди имеет 29 электронов; маловероятно, что даже 11 валентных электронов одновременно будут двигаться как носители заряда. Если мы предположим, что каждый атом меди вносит только один электрон, то на тонком 0,01-сантиметровом проводе будет целых 56 кулонов заряда. При таком большом количестве подвижного заряда в таком маленьком пространстве малая скорость дрейфа может привести к очень большому току.

Чтобы еще больше проиллюстрировать это различие между скоростью заноса и течением, рассмотрим аналогию с гонками.Предположим, что была очень большая гонка черепах с миллионами и миллионами черепах на очень широкой гоночной трассе. Черепахи не очень быстро двигаются — у них очень низкая скорость дрейф . Предположим, что гонка была довольно короткой — скажем, длиной 1 метр — и что значительный процент черепах достиг финишной черты в одно и то же время — через 30 минут после начала гонки. В таком случае течение будет очень большим — миллионы черепах пересекают точку за короткий промежуток времени.В этой аналогии скорость связана с тем, насколько далеко черепахи перемещаются за определенный промежуток времени; а ток зависит от того, сколько черепах пересекли финишную черту за определенный промежуток времени.

Природа потока заряда

Как только было установлено, что средняя скорость дрейфа электрона очень и очень мала, вскоре возникает вопрос: почему свет в комнате или в фонарике загорается сразу после включения переключателя? Разве не будет заметной задержки по времени перед тем, как носитель заряда перейдет от переключателя к нити накала лампочки? Ответ — нет! и объяснение того, почему раскрывает значительную информацию о природе потока заряда в цепи.

Как упоминалось выше, носителями заряда в проводах электрических цепей являются электроны. Эти электроны просто поставляются атомами меди (или любого другого материала, из которого сделана проволока) внутри металлической проволоки. Как только переключатель на поворачивается в положение , цепь замыкается, и на двух концах внешней цепи устанавливается разность электрических потенциалов. Сигнал электрического поля распространяется почти со скоростью света ко всем подвижным электронам в цепи, приказывая им начать марш и марш .По получении сигнала электроны начинают двигаться зигзагообразно в своем обычном направлении. Таким образом, щелчок переключателя вызывает немедленную реакцию во всех частях схемы, заставляя носители заряда повсюду двигаться в одном и том же направлении. В то время как фактическое движение носителей заряда происходит с медленной скоростью, сигнал, который информирует о начале движения, движется со скоростью, составляющей долю от скорости света.

Электроны, которые зажигают лампочку в фонарике, не должны сначала пройти от переключателя через 10 см провода к нити накала.Скорее электроны, которые зажигают лампочку сразу после того, как переключатель повернут на на , являются электронами, которые присутствуют в самой нити. Когда переключатель повернут, все подвижные электроны повсюду начинают движение; и именно подвижные электроны, присутствующие в нити накала, непосредственно ответственны за зажигание ее колбы. Когда эти электроны покидают нить накала, в нее входят новые электроны, которые ответственны за зажигание лампы. Электроны движутся вместе, как вода в трубах дома.Когда кран поворачивается с на , вода в кране выходит из крана. Не нужно долго ждать, пока вода из точки входа в ваш дом переместится по трубам к крану. Трубы уже заполнены водой, и вода везде в водном контуре одновременно приводится в движение.

Развиваемая здесь картина потока заряда представляет собой картину, в которой носители заряда похожи на солдат, идущих вместе, повсюду с одинаковой скоростью. Их марш начинается немедленно в ответ на установление электрического потенциала на двух концах цепи. В электрической цепи нет места, где носители заряда расходуются или расходуются. Хотя энергия, которой обладает заряд, может быть израсходована (или лучше сказать, что электрическая энергия преобразуется в другие формы энергии), сами носители заряда не распадаются, не исчезают или иным образом не удаляются из схема. И нет места в цепи, где бы начали скапливаться или накапливаться носители заряда.Скорость, с которой заряд входит во внешнюю цепь на одном конце, такая же, как скорость, с которой заряд выходит из внешней цепи на другом конце. Ток — скорость потока заряда — везде одинакова. Поток заряда подобен движению солдат, идущих вместе, повсюду с одинаковой скоростью.

Проверьте свое понимание

1.Говорят, что ток существует всякий раз, когда _____.

а. провод заряжен

г. батарея присутствует

г. электрические заряды несбалансированные

г. электрические заряды движутся по петле

2. У тока есть направление. По соглашению, ток идет в направлении ___.

а. + заряды перемещаются

г.- электроны движутся

г. + движение электронов

3. Скорость дрейфа подвижных носителей заряда в электрических цепях ____.

а. очень быстро; меньше, но очень близко к скорости света

г. быстрый; быстрее, чем самая быстрая машина, но далеко не скорость света

г. медленный; медленнее Майкла Джексона пробегает 220-метровую

г.очень медленно; медленнее улитки

4. Если бы электрическую цепь можно было сравнить с водяной цепью в аквапарке, то ток был бы аналогичен ____.

Выбор:

A. давление воды

Б. галлонов воды, стекающей по горке в минуту

С.вода

D. нижняя часть суппорта

E. водяной насос

F. верх горки

5. На схеме справа изображен токопроводящий провод. Две площади поперечного сечения расположены на расстоянии 50 см друг от друга. Каждые 2,0 секунды через каждую из этих областей проходит заряд 10 ° C.Сила тока в этом проводе ____ А.

а. 0,10

г. 0,25

г. 0,50

г. 1.0

e. 5,0

ф. 20

г. 10

ч.40

я. ни один из этих

6. Используйте диаграмму справа, чтобы заполнить следующие утверждения:

а. Ток в один ампер — это поток заряда со скоростью _______ кулонов в секунду.

г. Когда заряд 8 C проходит через любую точку цепи за 2 секунды, ток составляет ________ A.

г. Если через точку A (диаграмма справа) за 10 секунд расход заряда составляет 5 ° C, то ток равен _________ A.

г. Если ток в точке D равен 2,0 А, то _______ C заряда проходит через точку D за 10 секунд.

e. Если 12 ° C заряда пройдет мимо точки A за 3 секунды, то 8 C заряда пройдут мимо точки E за ________ секунд.

ф. Верно или неверно:

Ток в точке E значительно меньше тока в точке A, поскольку в лампочках расходуется заряд.

Электрический ток — Энергетическое образование

Рис. 1. Крупные высоковольтные линии электропередач являются важнейшим компонентом сети. Они переносят электрический ток с небольшими потерями энергии. [1]

Электрический ток , также называемый амперами, — это количество электрического заряда, протекающего в секунду в проводнике.Это то, что передает электроэнергию от электростанций через систему передачи и распределительную сеть для промышленного и домашнего использования. Это иначе известно как электричество. Сила тока определяется количеством заряда, протекающего в секунду, и измеряется в амперах, сокращенно A или ампер. Когда электрический заряд течет в одном направлении, это называется постоянным током, а когда электрический заряд колеблется взад и вперед в чередующихся направлениях, это называется переменным током.

Величину постоянного тока можно рассчитать по следующей формуле:

[math] I = \ frac {\ Delta Q} {\ Delta t} [/ math]
[math] I [/ math] = ток в амперах,
[math] \ Delta Q [/ math] = заряд в кулонах, проходящий мимо данного места, и
[math] \ Delta t [/ math] = прошедшее время в секундах.

Однако кулоны заряда нельзя измерить напрямую, поэтому для измерения тока обычно используется устройство, известное как мультиметр.Переменный ток использует аналогичное уравнение для определения силы тока, но математика становится немного сложнее, поскольку направление движущегося заряда быстро меняется.

По соглашению, термин «ток» (также называемый обычным током) определяется как заряды, перемещающиеся от положительного вывода к отрицательному. Также существует термин «поток электронов», который используется для определения зарядов, движущихся от отрицательного вывода к положительному. Обратите внимание, что это противоположности.Обычный ток более популярен, хотя можно использовать любой термин, если это делается последовательно, чтобы избежать путаницы. Популярный веб-комикс о том, как определяются положительные и отрицательные заряды, можно найти на сайте XKCD.

Всякий раз, когда ток проходит через компонент или цепь, часть энергии теряется на тепло. Некоторые специальные устройства, например тостеры, используют это тепло. Часто это тепло является неэффективностью системы, например, при передаче электроэнергии. Избыточное тепло может быть настоящей неприятностью в некоторых приложениях, таких как настольные компьютеры, которые имеют тенденцию к перегреву и которым требуются вентиляторы, которые циркулируют воздух, чтобы поддерживать их охлаждение.

Переключатели используются для почти мгновенного отключения (или включения) тока. Как только заряду некуда податься (помните, ток перемещается только тогда, когда есть полная цепь), ток прекращается. Если начинает течь слишком большой ток, специальный переключатель действует как мера безопасности для автоматического отключения тока. Эти меры аварийной безопасности включают предохранители и автоматические выключатели.

Ток и магнитные поля

Электрический ток вызывает магнитные поля, как обнаружил Ганс Эрстед в 1819 году.Вскоре эта идея была развита в работах Андре-Мари Ампера, [2] Жан-Батиста Био и Феликса Савара, чтобы сформировать первые законы электромагнетизма. [3] Электродвигатели — обычное применение этого явления — использование токов и их магнитных полей для преобразования электрической энергии в механическую.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Чтобы узнать о физике электрического тока, обратитесь к гиперфизике.

Список литературы

Как соотносятся напряжение, ток и сопротивление: Закон Ома

Том I — Округ Колумбия »ЗАКОН ОМА»

Электрическая цепь образуется, когда создается токопроводящий путь для
позволяют свободным электронам непрерывно двигаться. Это непрерывное движение
Свободные электроны, проходящие через проводники цепи, называют током , и его часто называют «потоком», как поток жидкости через полую трубу.

Сила, побуждающая электроны «течь» в цепи, называется напряжением .
Напряжение — это особая мера потенциальной энергии, которая всегда
относительный между двумя точками. Когда мы говорим об определенном количестве
напряжение, присутствующее в цепи, мы имеем в виду измерение
о том, сколько потенциальной энергии существует для перемещения электронов из одной конкретной точки в этой цепи в другую конкретную точку. Без ссылки на двух конкретных точек термин «напряжение» не имеет значения.

Свободные электроны имеют тенденцию перемещаться по проводникам с некоторой степенью
трение или противодействие движению. Это противодействие движению больше
правильно называется сопротивление . Количество тока
в цепи зависит от количества доступного напряжения, чтобы мотивировать
электронов, а также количество сопротивления в цепи, чтобы противостоять
электронный поток. Как и напряжение, сопротивление — величина относительная.
между двумя точками. По этой причине величины напряжения и
сопротивление часто указывается как «между» или «поперек» двух точек.
в цепи.

Чтобы иметь возможность делать значимые заявления об этих количествах в
цепей, мы должны иметь возможность описывать их количество в одном и том же
способ, которым мы могли бы количественно определить массу, температуру, объем, длину или любой другой
другой вид физической величины. Для массы мы могли бы использовать единицы
«фунт» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или
градусов Цельсия. Вот стандартные единицы измерения для
электрический ток, напряжение и сопротивление:

«Символ», указанный для каждого количества, является стандартным буквенным обозначением.
буква, используемая для обозначения этой величины в алгебраическом уравнении.Подобные стандартизированные буквы распространены в дисциплинах
физика и техника, и признаны во всем мире. Единица
аббревиатура «для каждого количества представляет собой используемый алфавитный символ.
как сокращенное обозначение конкретной единицы измерения. И,
да, этот странный на вид символ «подкова» — заглавная греческая
буква Ω, просто символ иностранного алфавита (приношу извинения всем греческим читателям).

Каждая единица измерения названа в честь известного экспериментатора в области электричества: amp в честь француза Андре М. Ампер, Вольт после итальянского Алессандро Вольта и Ом после немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение. В
«R» для сопротивления и «V» для напряжения говорят сами за себя,
тогда как «I» для тока
кажется немного странным. Считается, что «я» должно было представлять
«Интенсивность» (потока электронов) и другой символ напряжения, «E».
расшифровывается как «Электродвижущая сила.»Из каких исследований мне удалось
Да, похоже, есть некоторые споры о значении «я». Символы
«E» и «V» по большей части взаимозаменяемы, хотя некоторые тексты
зарезервируйте «E» для обозначения напряжения на источнике (таком как батарея или
генератор) и «V» для обозначения напряжения на любом другом элементе.

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток)
описывается в терминах короткого периода времени (называемого
«мгновенное» значение).Например, напряжение батареи, которое
стабильный в течение длительного периода времени, будет обозначаться заглавной буквой
буква «Е», а пик напряжения удара молнии в самом
момент, когда он попадет в линию электропередачи, скорее всего, будет обозначен
строчная буква «е» (или строчная буква «v») для обозначения этого значения как
находясь в один момент времени. Это же соглашение о нижнем регистре выполняется
верно и для тока, строчная буква «i» обозначает ток в некоторый момент времени.Однако большинство измерений постоянного тока (DC), которые стабильны во времени, будут обозначены заглавными буквами.

Одна основополагающая единица электрического измерения, которой часто учат в
зародился в курсах электроники, но впоследствии использовался нечасто,
блок кулон ,
который является мерой электрического заряда, пропорциональной количеству
электроны в несбалансированном состоянии. Один кулон заряда равен
6 250 000 000 000 000 000 электронов.Символ электрического заряда
количество — это заглавная буква «Q» с единицей измерения — кулон.
сокращенно заглавной буквой «C». Так получилось, что агрегат для
поток электронов, amp, равен 1 кулону электронов, проходящих через
данный момент в цепи за 1 секунду времени. В этих терминах ток — это скорость движения электрического заряда через проводник.

Как указывалось ранее, напряжение — это мера из потенциальной энергии на единицу заряда , доступной для перемещения электронов из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт»
то есть, мы должны понять, как измерить эту величину, которую мы называем «потенциал
энергия ». Общей единицей измерения энергии любого вида является джоулей ,
равно количеству работы, выполненной приложенной силой в 1 ньютон
через движение на 1 метр (в том же направлении). В британских частях
это чуть меньше 3/4 фунта силы, приложенной на расстоянии
1 фут. Проще говоря, требуется около 1 джоуля энергии для
поднимите гирю 3/4 фунта на 1 фут от земли или перетащите что-нибудь
расстояние в 1 фут с использованием параллельного тягового усилия 3/4 фунта.Определенный
в этих научных терминах 1 вольт равен 1 джоуля электрической потенциальной энергии на (деленный на) 1 кулон заряда. Таким образом, батарея на 9 вольт выделяет 9 джоулей энергии на каждый кулон электронов, перемещаемых по цепи.

Эти единицы и символы электрических величин станут очень
важно знать, когда мы начинаем исследовать отношения между ними
в схемах. Первые и, пожалуй, самые важные отношения
между током, напряжением и сопротивлением называется законом Ома, открытым Георгом Саймоном Омом и опубликованным в его статье 1827 года « Гальваническая цепь, исследованная математически, ».Главное открытие Ома заключалось в том, что величина электрического тока
через металлический проводник в цепи прямо пропорционально
приложенное к нему напряжение для любой заданной температуры. Ом выражен
его открытие в виде простого уравнения, описывающего, как напряжение,
ток и сопротивление взаимосвязаны:

В этом алгебраическом выражении напряжение (E) равно току
(I) умноженное на сопротивление (R). Используя методы алгебры, мы можем
преобразовать это уравнение в две вариации, решая для I и R,
соответственно:

Давайте посмотрим, как эти уравнения могут работать, чтобы помочь нам проанализировать простые схемы:

В приведенной выше схеме есть только один источник напряжения (аккумулятор слева) и только один источник сопротивления току.
(лампа справа).Это позволяет очень легко применять закон Ома.
Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

В этом первом примере мы рассчитаем величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):

Какая сила тока (I) в этой цепи?

В этом втором примере мы рассчитаем величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):

Какое сопротивление (R) предлагает лампа?

В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):

Какое напряжение обеспечивает аккумулятор?

Закон Ома — очень простой и полезный инструмент для анализа электрических
схемы.Он так часто используется при изучении электричества и
электроники, которую нужно сохранить в памяти серьезными
ученик. Для тех, кто еще не знаком с алгеброй, есть
трюк с запоминанием того, как решить для любого одного количества, учитывая другое
два. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

В конце концов, вам придется познакомиться с алгеброй, чтобы серьезно
изучать электричество и электронику, но этот совет может сделать ваш первый
расчеты немного легче запомнить.Если тебе комфортно с
алгебры, все, что вам нужно сделать, это зафиксировать E = IR в памяти и получить
другие две формулы из того, когда они вам понадобятся!

  • ОБЗОР:
  • Напряжение измеряется в вольт , обозначается буквами «E» или «V».
  • Ток измеряется в ампер , обозначается буквой «I».
  • Сопротивление, измеренное в Ом. , обозначается буквой «R».
  • Закон Ома: E = IR; I = E / R; R = E / I

Электрический ток | Энциклопедия.com

Под электрическим током обычно понимают поток электронов. Когда два конца батареи соединяются друг с другом с помощью металлического провода, электроны выходят из одного конца (электрода или полюса) батареи через провод к противоположному концу батареи.

Электрический ток можно также рассматривать как поток положительных «дырок». «Дыра» в этом смысле — это область пространства, где обычно можно найти электрон, но не существует. Отсутствие отрицательного заряда электрона можно рассматривать как создание положительно заряженной дыры.

В некоторых случаях электрический ток может также состоять из потока положительно заряженных частиц, известных как катионы. Катион — это просто атом или группа атомов, несущих положительный заряд.

Измерение тока

Ампер (ампер) используется для измерения величины протекающего тока. Отделение было названо в честь французского математика и физика Андре Мари Ампера (1775–1836), основавшего современные исследования электрических токов. Ампер определяется как количество электронов, которые проходят через любую заданную точку за определенную единицу времени.Поскольку электрический заряд измеряется в кулонах, точное определение ампера — это количество кулонов, которые проходят через заданную точку каждую секунду.

Характеристики электрического тока

Разность потенциалов. Для протекания электрического тока необходимо выполнение ряда условий. Во-первых, между двумя точками должна существовать разность потенциалов. Термин разность потенциалов (или напряжение) означает, что сила, создаваемая группой электронов в одном месте, больше, чем сила электронов в другом месте.Большая сила отталкивает электроны от первого места ко второму.

Потенциальные различия обычно не встречаются в природе. В большинстве случаев распределение электронов в окружающем нас мире довольно равномерное. Однако ученые изобрели определенные виды устройств, в которых электроны могут накапливаться, создавая разность потенциалов. Например, батарея — это не что иное, как устройство для производства больших масс электронов на одном электроде (точка, из которой отправляется или принимается электрический ток) и недостатка электронов на другом электроде.Эта разница объясняет способность батареи генерировать разность потенциалов или напряжение.

Электрическое сопротивление. Второе условие, необходимое для протекания тока, — это путь, по которому могут перемещаться электроны. Некоторые материалы могут обеспечить такой путь, а другие — нет. Материалы, которые пропускают электрический ток, называются проводниками. Те, которые блокируют прохождение электрического тока, называются непроводниками или изоляторами. Металлический провод, соединяющий два полюса батареи в приведенном ранее примере, обеспечивает путь для движения электронов от одного полюса батареи к другому.

Электропроводность материалов — это внутреннее (или естественное) свойство, основанное на их сопротивлении движению электронов. Электроны в некоторых материалах связаны химическими связями и не могут проводить электрический ток. В других материалах большое количество электронов свободно перемещается, и они легко передают поток электронов.

Электрическое сопротивление (или удельное сопротивление) измеряется в единицах, известных как ом (Ом). Устройство было названо в честь немецкого физика Георга Симона Ома (1789–1854), первого человека, выразившего законы электропроводности.Противоположностью сопротивлению является проводимость, свойство, которое измеряется единицей, называемой mho (ом, записанный наоборот).

Сопротивление куска провода, используемого в электрической цепи, зависит от трех факторов: длины провода, его площади поперечного сечения и удельного сопротивления материала, из которого он сделан. Чтобы понять влияние электрического сопротивления, представьте себе воду, текущую по шлангу.

Количество воды, протекающей по шлангу, аналогично току в проводе.Подобно тому, как через толстый пожарный шланг может пройти больше воды, чем через тонкий садовый шланг, толстая металлическая проволока может пропускать больше тока, чем тонкая металлическая проволока. У провода чем больше площадь поперечного сечения, тем меньше его сопротивление; чем меньше площадь поперечного сечения, тем больше его сопротивление.

Аналогичное сравнение можно провести и по длине. Воду сложнее течь по длинному шлангу просто потому, что она должна течь дальше. Точно так же току труднее пройти по длинному проводу, чем по короткому.

Удельное сопротивление — это свойство материала, из которого изготовлен сам провод, которое различается от материала к материалу. Представьте, что вы наполняете пожарный шланг патокой, а не водой. Меласса будет течь медленнее просто из-за ее вязкости (липкости или сопротивления течению). Точно так же электрический ток проходит через некоторые металлы (например, свинец) с большим трудом, чем через другие металлы (например, серебро).

Электрические цепи

В большинстве случаев путь, по которому проходит электрический ток, известен как электрическая цепь.Как минимум, схема состоит из (1) источника электронов (например, батареи), который будет обеспечивать разность потенциалов, и (2) пути, по которому могут перемещаться электроны (например, металлической проволоки). Вспомните, что разность потенциалов (или напряжение) означает большую силу электронов в одном месте, чем в другом; эта большая сила толкает электроны к месту с меньшей силой.

Для любого практического (или полезного) применения ток также требует (3) прибора, работа которого зависит от протекания электрического тока.К таким приборам относятся электрические часы, тостеры, радио, телевизоры и различные типы электродвигателей. Во многих случаях электрические цепи также содержат (4) какой-то измеритель, который показывает величину электрического тока или разность потенциалов в цепи. Наконец, схема, вероятно, будет включать (5) различные устройства для управления потоком электрического тока, такие как выпрямители, трансформаторы, конденсаторы и автоматические выключатели.

Приборы можно включать в электрическую цепь одним из двух способов.В последовательной цепи ток течет через приборы один за другим. В параллельной цепи входящий ток разделяется и передается через каждую отдельную цепь независимо.

Важным преимуществом параллельных цепей является их устойчивость к повреждениям. Предположим, что какой-либо из приборов в последовательной цепи поврежден, и ток не может течь через него. Этот пробой предотвращает протекание тока в любом из приборов. При параллельной схеме такой проблемы не возникает.Если одно из устройств в параллельной цепи выходит из строя, ток все равно продолжает течь через другие устройства в цепи.

Принципиальная математическая зависимость, управляющая протеканием электрического тока в цепи, была открыта Омом в 1827 году. Закон Ома гласит, что величина тока (i) в цепи напрямую связана с разностью потенциалов (V) и обратно пропорциональна сопротивление (r) в цепи. Другими словами, i = V / r. Закон Ома гласит, что увеличение разности потенциалов

или уменьшение сопротивления приводит к увеличению тока. И наоборот, уменьшение разности потенциалов или увеличение сопротивления приводит к уменьшению тока. Чем сложнее становится электрическая цепь, тем труднее становится применить закон Ома.

Поток тока и поток электронов

Область электротехники обременена странной проблемой, которая возникла более 200 лет назад. Когда ученые впервые изучили поток электрического тока из одного места в другое, они считали, что этот поток создается движением крошечных частиц.Поскольку электрон еще не был обнаружен, они предположили, что эти частицы несут положительный заряд.

Сегодня мы знаем иначе. Электрический ток — это поток отрицательно заряженных частиц: электронов. Но обычай отображать электрический ток как положительный существует уже давно и до сих пор широко используется. По этой причине нередко можно увидеть электрический ток в виде потока положительных зарядов, хотя мы уже давно знаем это лучше.

Типом электрического тока, описанного до сих пор, является постоянный ток (DC current). Постоянный ток всегда предполагает движение электронов из области с высоким отрицательным зарядом в область с более низким отрицательным зарядом. Электрический ток, вырабатываемый батареями, — это постоянный ток.

Интересно, что подавляющее большинство электрического тока, используемого в практических целях, — это переменный ток (AC). Переменный ток — это ток, который очень быстро меняет направление своего протекания. В Северной Америке, например, коммерческие линии электропередач работают с частотой 60 герц.(Герцы — это единица измерения частоты.) В линии с частотой 60 Гц ток меняет свое направление 60 раз каждую секунду.

Другие виды переменного тока также широко используются. За пределами Северной Америки чаще встречается линия электропередачи на 50 герц. А в самолетах переменный ток обычно составляет 400 герц.

[ См. Также Электричество; Электродвигатель ]

Какая скорость у электричества?

Категория: Физика Опубликовано: 19 февраля 2014 г.

Электромагнитная энергия и информация перемещаются по проводу со скоростью, близкой к скорости света.Настоящие электроны движутся намного медленнее. Public Domain Image, источник: Кристофер С. Бэрд.

Скорость электричества действительно зависит от того, что вы подразумеваете под словом «электричество». Это слово очень общее и в основном означает «все, что связано с электрическим зарядом». Я предполагаю, что мы имеем в виду ток электрического заряда, проходящий через металлический провод, например, через шнур питания лампы. В случае электрических токов, проходящих по металлическим проводам, присутствуют три различных скорости, каждая из которых имеет физическое значение:

  1. Скорость отдельного электрона
  2. Скорость дрейфа электронов
  3. Скорость сигнала

Чтобы понять каждую из этих скоростей и почему все они разные, но при этом имеют физический смысл, нам необходимо понять основы электрических токов.Электрические токи в металлических проводах образуются движущимися свободными электронами. В контексте типичных электрических токов в металлических проводах свободные электроны можно представить себе как маленькие шарики, прыгающие в сетке неподвижных тяжелых атомов, составляющих металлический провод. Электроны на самом деле являются квантовыми объектами, но для этого объяснения нет необходимости в более точной квантовой картине. (Когда вы добавляете квантовые эффекты, скорость отдельного электрона становится «скоростью Ферми».) Несвободные электроны или валентные электроны слишком тесно связаны с атомами, чтобы вносить вклад в электрический ток, и поэтому на этом рисунке их можно не учитывать. .Каждый свободный электрон в металлической проволоке постоянно летит по прямой линии под собственным импульсом, сталкивается с атомом, меняет направление из-за столкновения и продолжает двигаться по прямой линии до следующего столкновения. Если оставить металлическую проволоку самой себе, свободные электроны внутри постоянно летают и случайным образом сталкиваются с атомами. Макроскопически мы называем случайное движение мелких частиц «теплом». Фактическая скорость отдельного электрона — это количество нанометров в секунду, которое электрон перемещает по прямой между столкновениями.Проволока, предоставленная самой себе, не несет электрического сигнала, поэтому скорость отдельных электронов для беспорядочно движущихся электронов — это просто описание тепла в проводе, а не электрического тока.

Теперь, если вы подключите провод к батарее, вы приложите к проводу внешнее электрическое поле. Электрическое поле направлено в одном направлении по длине провода. Свободные электроны в проводе ощущают силу этого электрического поля и ускоряются в направлении поля (фактически, в противоположном направлении, потому что электроны заряжены отрицательно).Электроны продолжают сталкиваться с атомами, что по-прежнему заставляет их отскакивать в разные стороны. Но помимо этого случайного теплового движения у них теперь есть чистое упорядоченное движение в направлении, противоположном электрическому полю. Электрический ток в проводе состоит из упорядоченной части движения электронов, в то время как случайная часть движения по-прежнему представляет собой тепло в проводе. Таким образом, приложенное электрическое поле (например, при подключении батареи) заставляет электрический ток течь по проводу.Средняя скорость, с которой электроны движутся по проводу, — это то, что мы называем «дрейфовой скоростью».

Даже при том, что электроны, в среднем, дрейфуют по проводу со скоростью дрейфа, это не означает, что эффекты движения электронов движутся с этой скоростью. Электроны на самом деле не являются твердыми шарами. Они не взаимодействуют друг с другом, буквально ударяясь друг о друга по поверхности. Скорее электроны взаимодействуют через электромагнитное поле. Чем ближе два электрона подходят друг к другу, тем сильнее они отталкиваются друг от друга через свои электромагнитные поля.Интересно то, что когда электрон движется, его поле движется вместе с ним, так что электрон может подтолкнуть другой электрон дальше по проводу через свое поле задолго до того, как физически достигнет того же места в пространстве, что и этот электрон. В результате электромагнитные эффекты могут распространяться по металлическому проводу намного быстрее, чем любой отдельный электрон. Эти «эффекты» представляют собой колебания электромагнитного поля, когда оно соединяется с электронами и распространяется по проводу. Поскольку энергия и информация переносятся колебаниями электромагнитного поля, энергия и информация также перемещаются по электрическому проводу намного быстрее, чем любой отдельный электрон.

Скорость, с которой электромагнитные эффекты распространяются по проводу, называется «скоростью сигнала», «скоростью волны» или «групповой скоростью». Обратите внимание, что в некоторых книгах говорится, что скорость сигнала описывает чисто электромагнитный волновой эффект. Эта инсинуация может ввести в заблуждение. Если бы сигнал, распространяющийся по электрическому кабелю, был изолированной электромагнитной волной, тогда сигнал распространялся бы со скоростью света в вакууме c. Но это не так. Скорее, сигнал, проходящий по электрическому кабелю, включает взаимодействие как флуктуаций электромагнитного поля (волны), так и электронов.По этой причине скорость сигнала намного выше скорости дрейфа электронов, но меньше скорости света в вакууме. Как правило, скорость сигнала несколько близка к скорости света в вакууме. Обратите внимание, что обсуждаемая здесь «скорость сигнала» описывает физическую скорость электромагнитных эффектов, распространяющихся по проводу. Напротив, инженеры часто используют фразу «скорость сигнала» ненаучно, когда они на самом деле имеют в виду «скорость передачи в битах». Хотя скорость цифрового сигнала, проходящего через сеть, действительно зависит от физической скорости сигнала в проводах, она также зависит от того, насколько хорошо компьютеры в сети могут маршрутизировать сигналы через сеть.

Рассмотрим эту аналогию. Длинная очередь людей ждет входа в ресторан. Каждый нервно ерзает на своем месте в очереди. Человек в конце очереди теряет терпение и толкает человека перед собой. В свою очередь, когда каждый человек в очереди получает толчок от человека позади него, он толкает человека перед собой. Таким образом, толчок будет передаваться от человека к человеку вперед по линии. Толкание достигнет дверей ресторана задолго до того, как последний человек в очереди лично доберется до дверей. В этой аналогии люди представляют электроны, их руки представляют электромагнитное поле, а толчок представляет собой колебание или волну в электромагнитном поле. Скорость, с которой каждый человек ерзает, соответствует скорости отдельного электрона , скорость, с которой каждый человек индивидуально движется по линии, представляет собой скорость дрейфа электрона , а скорость, с которой толчок перемещается по линии, представляет скорость сигнала .Основываясь на этой простой аналогии, мы можем ожидать, что скорость сигнала будет очень высокой, индивидуальная скорость будет несколько высокой, а скорость дрейфа будет низкой. (Обратите внимание, что в физике есть еще одна важная скорость в этом контексте, называемая «фазовой скоростью». Фазовая скорость — это больше математический инструмент, чем физическая реальность, поэтому я не думаю, что здесь стоит обсуждать).

Скорость отдельного электрона в металлической проволоке обычно составляет миллионы километров в час. Напротив, скорость дрейфа обычно составляет всего несколько метров в час, в то время как скорость сигнала составляет от ста миллионов до триллиона километров в час. В общем, скорость сигнала в некоторой степени близка к скорости света в вакууме, скорость отдельного электрона примерно в 100 раз меньше скорости сигнала, а скорость дрейфа электронов медленная, как улитка.

Темы:
скорость дрейфа, электричество, электромагнетизм, электрон, групповая скорость, скорость, волна, волны

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *