Урок 8. переменный электрический ток — Физика — 11 класс
Физика, 11 класс
Урок 8. Переменный электрический ток
Перечень вопросов, рассматриваемых на уроке:
1) Свойства переменного тока;
2) Понятия активного сопротивления, индуктивного и ёмкостного сопротивления;
3) Особенности переменного электрического тока на участке цепи с резистором;
4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.
Глоссарий по теме
Переменный электрический ток — это ток, периодически изменяющийся со временем.
Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.
Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.
Величину ХC, обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.
Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.
Основная и дополнительная литература по теме урока:
Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.
Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.
Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.
Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004
Основное содержание урока
Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.
Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.
В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.
Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.
Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.
Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.
Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.
Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.
При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.
𝒾 — мгновенное значение силы тока;
ℐm— амплитудное значение силы тока.
– колебания напряжения на концах цепи.
Колебания ЭДС индукции определяются формулами:
При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.
Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.
Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.
Um — амплитудное значение напряжения.
Действующие значения силы тока и напряжения:
Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.
Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.
Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.
Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.
Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.
Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.
XL= ωL
Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.
При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.
Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно
Закон Ома для электрической цепи переменного тока записывается имеет вид:
Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.
В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение. В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.
Мощность цепи переменного тока
P=IU cosφ
Величина cosφ – называется коэффициентом мощности
Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.
Разбор типовых тренировочных заданий
1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.
Дано: e=80 sin 25πt.
Найти: T.
Решение:
Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону
Согласно данным нашей задачи:
Время одного оборота, т.е. период связан с циклической частотой формулой:
Подставляем числовые данные:
Ответ: T = 0,08 c.
2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?
Дано:
ν=50 Гц,
R=1 кОм=1000 Ом,
C=1 мкФ=10-6 Ф,
U=220 В.
Найти: Im
Решение:
Напишем закон Ома для переменного тока:
I=U/Z
Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?
Полное сопротивление цепи равно:
Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:
то после вычислений получаем Im ≈0,09 Ом.
Ответ: Im ≈0,09 Ом.
2. Установите соответствие между физической величиной и прибором для измерения.
Физические величины | Физические приборы |
Сила тока | Омметр |
Напряжение | Вольтметр |
Сопротивление | Амперметр |
Мощность | Ваттметр |
Правильный ответ:
Физические величины | Физические приборы |
Сила тока | Амперметр |
Напряжение | Вольтметр |
Сопротивление | Омметр |
Мощность | Ваттметр |
Лекция по теме: » Переменный ток»
Учебная дисциплина ОП.03 Электротехника и электроника
«ОБЩАЯ ХАРАКТЕРИСТИКА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА. НЕРАЗВЕТВЛЁННАЯ ЦЕПЬ ПЕРЕМЕННОГО ТОКА С АКТИВНО-ИНДУКТИВНЫМ, ЕМКОСТНЫМ СОПРОТИВЛЕНИЕМ. ВЕКТОРНЫЕ ДИАГРАММЫ. МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА. КОЭФФИЦИЕНТ МОЩНОСТИ».
План лекции:
1.Переменный ток и его значение.
2. Характеристики переменного тока.
3.Максимакльное (амплитудное) и действующее (мгновенное) значение напряжения и силы тока.
4. Преобразование переменного тока в постоянный.
5.Основные элементы цепи переменного тока.
6. Резистор в цепи переменного тока.
7.Конденсатор в цепи переменного тока.
8.Катушка индуктивности в цепи переменного тока.
9. Мощность переменного тока. Коэффициент мощности.
10. Полное сопротивление в цепи переменного тока, содержащей резистор, конденсатор и катушку.
Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.
Электрический ток, питающий розетки в наших домах, является переменным.
А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного?
В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.
Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.
Переменный ток— электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя свое направление в электрической цепи неизменным.
Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.
Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный?
Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов.
Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.
Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.
На рисунке обратное направление – это область графика ниже нуля.
Характеристики переменного тока:
Период — это время одного полного колебания.
Т – период, с
Амплитуда – это наибольшее положительное или отрицательное значение силы тока или напряжения.
Частота — это времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц).
В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. В США частота промышленного тока 60 Гц.
Эта величина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.
Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока.
Амплитуда – характеризует состояние переменного тока с течением времени.
Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами (e, i, u, p).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Еm, напряжения — Um, тока — Im.
Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.
Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в раз.
Преобразование переменного тока в постоянный.
Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель”.
Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.
Колебания силы тока в цепи резистора совпадают по фазе с колебаниями напряжения.
Видео по теме:«Переменный электрический ток. Получение переменного тока» см. по ссылке:
Вопросы для самоконтроля:
1.Что такое переменный электрический ток?
2. Почему переменный ток получил такое широкое распространение?
3. Поясните, почему передача электроэнергии осуществляется с использованием переменного тока?
4.Что такое период, частота и фаза переменного тока?
5.Что называется действующим значением переменного тока? Какова связь действующих значений ЭДС, напряжения и тока с их амплитудными значениями?
6.По какой формуле определяется индуктивное сопротивление цепи переменному току?
7.По какой формуле определяется емкостное сопротивление цепи переменному току?
8.По какой формуле определяется сдвиг фаз между током и напряжением в цепях переменного тока?
9.По какой формуле вычисляется мощность переменного тока? Что называется коэффициентом мощности?
10.Как используется диод для выпрямления переменного тока?
Рассмотрим примеры решения задач:
Примеры решения расчетных задач
Задача 1. Определите сдвиг фаз колебаний напряжения и силы тока для электрической цепи, состоящей из последовательно включенных проводников с активным сопротивлением R = 1000 Ом, катушки индуктивностью L = 0,5 Гн и конденсатора емкостью С = 1 мкФ. Определите мощность, которая выделяется в цепи, если амплитуда напряжения U0 = 100 В, а частота = 50 Гц.
Решение:
Сдвиг фаз между током и напряжением в цепях переменного тока определяется соотношением
(1)
здесь = 2 — циклическая частота. Следовательно,
Мощность, которая выделяется в цепи, определится по формуле
Для цепи переменного тока справедливо соотношение
где Z — полное сопротивление (импеданс) цепи:
Следовательно, мощность, которая выделяется в цепи
(2)
Подставив численные значения в (1), получим (минус означает, что напряжение отстает по фазе). Тогда . Подставив численные значения в (2), получим P = 0,5 Вт.
Ответ:
Задача 2. Конденсатор неизвестной емкости, катушка с индуктивностью L и сопротивлением R подключены к источнику переменного напряжения (рис. 1). Сила тока в цепи равна . Определите амплитуду напряжения между обкладками конденсатора.
Решение:
Из условия задачи видно, что сила тока и напряжение в цепи меняются синфазно. Это означает, что совпадают индуктивное и емкостное сопротивления.
(3)
Напряжение на конденсаторе будет равно
(4)
Поскольку , то
(5)
Подставляя (5) в (4), получим:
(6)
С учетом (3) соотношение (6) примет вид:
Поэтому амплитудное значение напряжения между обкладками конденсатора будет равно
Ответ:
Задача 3. В электрической цепи из двух одинаковых конденсаторов емкости С и катушки с индуктивностью L, соединенных последовательно, в начальный момент времени один конденсатор имеет заряд q0, а второй не заряжен (рис. 2). Как будут изменяться со временем заряды конденсаторов и сила тока в контуре после замыкания ключа К?
Решение:
Цепь, приведенная на рис. 2, представляет собой колебательный контур. Сила тока в нем будет меняться по закону
(7)
Чтобы ответить на вопрос задачи, нужно найти максимальное значение силы тока I0 и частоту колебаний . Частоту колебаний можно определить по формуле
(8)
где Сэкв — емкость системы из двух последовательно соединенных конденсаторов емкостью С:
Подставляя значение Сэкв в (8), получим, что частота колебаний в контуре будет равна
(9)
Подставим значение частоты (9) в выражение для силы тока (7), тогда получим, что сила тока в цепи будет меняться по закону
(10)
Для определения I0 можно воспользоваться законом сохранения энергии. Пусть в некоторый момент времени заряд одного из конденсаторов равен q1 , тогда заряд второго конденсатора будет q2 = q0 — q1 . В начальный момент времени энергия контура сосредоточена в электрическом поле заряженного конденсатора, в произвольный момент времени она перераспределяется между энергией электрического поля двух заряженных конденсаторов и энергией магнитного поля, сосредоточенного в катушке индуктивности. Следовательно, согласно закону сохранения энергии,
Отсюда можно найти зависимость силы тока от заряда q1.
Чтобы найти максимальное значение силы тока, нужно взять производную от I по q1 и приравнять ее к нулю.
Из последнего выражения видно, что максимальное значение силы тока достигается при . Следовательно,
Подставляя полученное значение для максимального значения силы тока в (10), получим, что сила тока в цепи будет меняться по закону
Чтобы найти закон изменения зарядов на пластинах конденсатора, воспользуемся выражением . Преобразовав его, получим квадратное уравнение для q1:
Решая уравнение, получим:
Разные знаки означают, что в начальный момент времени любой конденсатор может либо иметь заряд q0, либо быть незаряженным. Пусть
Тогда
Ответ:
Задача 4. Имеются два колебательных контура с одинаковыми катушками и конденсаторами. В катушку одного из контуров вставили железный сердечник, увеличивший ее индуктивность в n = 4 раза. Найдите отношение резонансных частот контуров и их энергий, если максимальные заряды на конденсаторах одинаковы.
Решение:
Резонансные частоты контуров могут быть определены по формуле Томсона:
Отсюда
Ответ:
Задача 5. Два сопротивления R1 и R2 и два диода подключены к источнику переменного тока с напряжением U так, как показано на рис. 3. Найдите среднюю мощность, выделяющуюся в цепи.
Решение:
Ток половину периода идет через один диод (например, 1). За это время на сопротивлении R1 выделяется средняя мощность
В течение второго полупериода ток идет через диод 2, выделяя на нем среднюю мощность
Таким образом, за полный период выделяется средняя мощность
Ответ:
Задачи для самостоятельного решения:
№ 1. В ц.п.т. с напряжением 220 В включена активная нагрузка сопротивлением 40 Ом. Определите ток цепи.
№ 2. Определите сопротивление конденсатора емкостью 5 мкФ при частоте 50 Гц.
№3. Определите сопротивление катушки индуктивностью 0,01 Гн при частоте 50 Гц.
№ 4. Определите ток, проходящий через катушку, индуктивное сопротивление которой 5 Ом, а активное сопротивление 1 Ом, если напряжение сети переменного тока 12 В.
№ 5. В ц.п.т. с напряжением 220 В включена эл.лампа, по спирали которой течет ток 5 А. Вычислите активную мощность этой лампы.
№ 6. В электрическую цепь напряжением 220 В последовательно включены реостат сопротивлением 5 Ом, катушка с активным сопротивлением 6 Ом и индуктивным сопротивлением 4 Ом, конденсатор с емкостным сопротивлением 3 Ом. Определите ток в цепи. Постройте векторную диаграмму токов и напряжений.
№ 7. В ц.п.т. с напряжением 220 В включены конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите реактивную мощность цепи.
Постройте векторную диаграмму токов и напряжений.
№ 8. В ц.п.т. с напряжением 380 В включены активное сопротивление 50 Ом и конденсатор емкостью 1000 мкФ. Определите полную мощность цепи.
Постройте векторную диаграмму токов, напряжений и мощностей.
№ 9. В ц.п.т. напряжением 110 В последовательно включены активное сопротивление 30 Ом, емкостное – 45 Ом и индуктивное — 50 Ом. Определите полное сопротивление этой цепи.
№ 10. В ц.п.т. с напряжением 220 В включены активное сопротивление 20 Ом, конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите полную мощность цепи. Постройте векторную диаграмму токов, напряжений, мощностей.
Домашнее задание:
1.Выучить и законспектировать лекцию.
2. Разобрать и записать в тетрадь примеры решения задач, которые приведены в конце лекции.
3. Ответить на вопросы для самоконтроля.
4. Выполнить на оценку задания в тестовой форме:
Ответы (указав фамилию, имя, название теста и группу) прислать по следующему адресу в контакте: http://vk.com/id216653613
Переменный ток. Его характеристики — Студопедия
Электрическим током называют направленное движение заряженных частиц. Количественными характеристиками тока являются его сила тока (отношение заряда переносимого через поперечное сечение проводника в единицу времени) и его плотность, определяемая соотношением. Единицей измерения силы тока является ампер (1А — характерное значение тока, потребляемого бытовыми электронагревательными приборами). Необходимыми условиями существования тока являются наличие свободных носителей зарядов, замкнутой цепи и источника ЭДС (батареи), поддерживающего направленное движение.
Электрический ток может существовать в различных средах: в металлах, вакууме, газах, в растворах и расплавах электролитов, в плазме, в полупроводниках, в тканях живых организмов. При протекании тока практически всегда происходит взаимодействие носителей зарядов с окружающей средой, сопровождающееся передачей энергии последней в виде тепла. Роль источника ЭДС как раз и состоит в компенсации тепловых потерь в цепях. Электрический ток в металлах обусловлен движением относительно свободных электронов через кристаллическую решетку. Причины существования свободных электронов в проводящих кристаллах может быть объяснена только на языке квантовой механики.
Опыт показывает, что сила электрического тока, протекающего по проводнику, пропорциональна приложенной к его концам разности потенциалов (закон Ома). Постоянный для выбранного проводника коэффициент пропорциональности между током и напряжением называют электрическим сопротивлением. Сопротивление измеряют в омах (сопротивление человеческого тела составляет около 1000 Ом). Величина электрического сопротивления проводников слабо возрастает при увеличении их температуры. Это связано с тем, что при нагревании узлы кристаллической решетки усиливают хаотические тепловые колебания, что препятствует направленному движению электронов.
Во многих задачах непосредственный учет колебаний решетки оказывается весьма трудоемким. Для упрощения взаимодействия электронов с колеблющимися узлами оказывается удобным заменить их столкновениями с частицами газа гипотетических частиц — фононов, свойства которых подбираются так, чтобы получить максимально приближенное к реальности описание и могут оказываться весьма экзотическими. Объекты такого типа весьма популярны в физике и называются квазичастицами. Помимо взаимодействий с колебаниями кристаллической решетки движению электронов в кристалле могут препятствовать дислокации — нарушения регулярности решетки. Взаимодействия с дислокациями играют определяющую роль при низких температурах, когда тепловые колебания практически отсутствуют.
Некоторые материалы при низких температурах полностью утрачивают электрическое сопротивление, переходя в сверх проводящее состояние. Ток в таких средах может существовать без каких-либо ЭДС, поскольку потери энергии при столкновениях электронов с фононами и дислокациями отсутствуют. Создание материалов, сохраняющих сверхповодящее состояние при относительно высоких (комнатных) температурах и небольших токах является весьма важной задачей, решение которой произвело бы настоящий переворот в современной энергетике, т.к. позволило бы передавать электроэнергию на большие расстояния без тепловых потерь.
В настоящее время электрический ток в металлах используется главным образом для превращения электрической энергии в тепловую (нагреватели, источники света) или в механическую (электродвигатели). В последнем случае электрический ток используется в качестве источника магнитных полей, взаимодействие с которыми других токов вызывает появление сил.
1. Переменный ток
Как известно, сила тока в любой момент времени пропорциональна ЭДС источника тока (закон Ома для полной цепи). Если ЭДС источника не изменяется со временем и остаются неизменными параметры цепи, то через некоторое время после замыкания цепи изменения силы тока прекращаются, в цепи течет постоянный ток.
Однако в современной технике широко применяются не только источники постоянного тока, но и различные генераторы электрического тока, в которых ЭДС периодически изменяется. При подключении в электрическую цепь генератора переменной ЭДС в цепи возникают вынужденные электромагнитные колебания или переменный ток.
Переменный ток – это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника.
Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.
Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой щ по синусоидальному или косинусоидальному закону:
где u – мгновенное значение напряжения, Um – амплитуда напряжения, щ – циклическая частота колебаний. Если напряжение меняется с частотой щ, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения.
Поэтому в общем случае:
где – разность (сдвиг) фаз между колебаниями силы тока и напряжения.
Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.
2. Резистор в цепи переменного тока
Пусть цепь состоит из проводников с малой индуктивностью и большим сопротивлением R (из резисторов). Например, такой цепью может быть нить накаливания электрической лампы и подводящие провода. Величину R, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением. В цепи переменного тока могут быть и другие сопротивления, зависящие от индуктивности цепи и ее емкости. Сопротивление R называется активным потому, что, только на нем выделяется энергия, т.е.
Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением.
Итак, в цепи имеется резистор, активное сопротивление которого R, а катушка индуктивности и конденсатор отсутствуют (рис. 1).
Пусть напряжение на концах цепи меняется по гармоническому закону:
Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому можно считать, что мгновенное значение силы тока определяется законом Ома:
Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения (рис. 2), а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление:
При небольших значениях частоты переменного тока активное сопротивление проводника не зависит от частоты и практически совпадает с его электрическим сопротивлением в цепи постоянного тока.
1.1 Катушка в цепи переменного тока
Индуктивность влияет на силу переменного тока в цепи. Это можно обнаружить с помощью простого опыта. Составим цепь из катушки большой индуктивности и лампы накаливания (рис. 3). С помощью переключателя можно присоединять эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть одинаковы. Опыт показывает, что лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы тока в рассматриваемой цепи меньше силы постоянного тока.
Объясняется это самоиндукцией. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь по прошествии некоторого времени сила тока достигает наибольшего (установившегося) значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех установившихся значений, которые она приобрела бы с течением времени при постоянном напряжении, равном максимальному значению переменного напряжения. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью L цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.
Докажем это математически. Пусть в цепь переменного тока включена идеальная катушка с электрическим сопротивлением провода, равным нулю (рис. 4).
При изменениях силы тока по гармоническому закону:
в катушке возникает ЭДС самоиндукции:
где L – индуктивность катушки, щ – циклическая частота переменного тока.
Так как электрическое сопротивление катушки равно нулю, то ЭДС самоиндукции в ней в любой момент времени равна по модулю и противоположна по знаку напряжению на концах катушки, созданному внешним генератором:
Следовательно, колебания напряжения на катушке индуктивности опережают колебания силы тока на р/2, или, что то же самое, колебания силы тока отстают по фазе от колебаний напряжения на р/2.
В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (рис. 5). В момент, когда напряжение становится равным нулю, сила тока максимальна по модулю.
Произведение Im ⋅ L ⋅ щ является амплитудой колебаний напряжения на катушке:
Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний силы тока в ней называется индуктивным сопротивлением (обозначается XL):
Связь амплитуды колебаний напряжения на концах катушки с амплитудой колебаний силы тока в ней совпадает по форме с выражением закона Ома для участка цепи постоянного тока:
В отличие от электрического сопротивления проводника в цепи постоянного тока, индуктивное сопротивление не является постоянной величиной, характеризующей данную катушку. Оно прямо пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в катушке при постоянном значении амплитуды колебаний напряжения должна убывать обратно пропорционально частоте. Постоянный ток вообще «не замечает» индуктивности катушки. При щ = 0 индуктивное сопротивление равно нулю (XL = 0).
Зависимость амплитуды колебаний силы тока в катушке от частоты приложенного напряжения можно наблюдать в опыте с генератором переменного напряжения, частоту которого можно изменять. Опыт показывает, что увеличение в два раза частоты переменного напряжения приводит к уменьшению в два раза амплитуды колебаний силы тока через катушку.
1.2 Конденсатор в цепи переменного тока
Рассмотрим процессы, протекающие в электрической цепи переменного тока с конденсатором. Если подключить конденсатор к источнику постоянного тока, то в цепи возникнет кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Если заряженный конденсатор отключить от источника постоянного тока и соединить его обкладки с выводами лампы накаливания, то конденсатор будет разряжаться, при этом наблюдается кратковременная вспышка лампы.
При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор вновь заряжается, но полярность напряжения на его обкладках изменяется на противоположную и т.д. Процессы зарядки и разрядки конденсатора чередуются с периодом, равным периоду колебаний приложенного переменного напряжения.
Как и в цепи постоянного тока, через диэлектрик, разделяющий обкладки конденсатора, электрические заряды не проходят. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора по проводам, соединенным с его выводами, течет переменный ток. Лампа накаливания, включенная последовательно с конденсатором в цепь переменного тока (рис. 6), кажется горящей непрерывно, так как человеческий глаз при высокой частоте колебаний силы тока не замечает периодического ослабления свечения нити лампы.
Установим связь между амплитудой колебаний напряжения на обкладках конденсатора и амплитудой колебаний силы тока.
При изменениях напряжения на обкладках конденсатора по гармоническому закону:
заряд на его обкладках изменяется по закону:
Электрический ток в цепи возникает в результате изменения заряда конденсатора: i = q’. Поэтому колебания силы тока в цепи происходят по закону:
Следовательно, колебания напряжения на обкладках конденсатора в цепи переменного тока отстают по фазе от колебаний силы тока на р/2 или колебания силы тока опережают по фазе колебания напряжения на р/2 (рис. 7). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того как напряжение достигает максимума, сила тока становится равной нулю и т.д.
Произведение Um ⋅ щ ⋅ C является амплитудой колебаний силы тока:
Отношение амплитуды колебаний напряжения на конденсаторе к амплитуде колебаний силы тока называют емкостным сопротивлением конденсатора (обозначается ХC):
Связь между амплитудным значением силы тока и амплитудным значением напряжения по форме совпадает с выражением закона Ома для участка цепи постоянного тока, в котором вместо электрического сопротивления фигурирует емкостное сопротивление конденсатора:
Емкостное сопротивление конденсатора, как и индуктивное сопротивление катушки, не является постоянной величиной. Оно обратно пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в цепи конденсатора при постоянной амплитуде колебаний напряжения на конденсаторе возрастает прямо пропорционально частоте.
1.3 Закон Ома для электрической цепи переменного тока
Рассмотрим электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки (рис. 8). Если к выводам этой электрической цепи приложить электрическое напряжение, изменяющееся по гармоническому закону с частотой щ и амплитудой Um, то в цепи возникнут вынужденные колебания силы тока с той же частотой и некоторой амплитудой Im. Установим связь между амплитудами колебаний силы тока и напряжения
В любой момент времени сумма мгновенных значений напряжений на последовательно включенных элементах цепи равна мгновенному значению приложенного напряжения:
Во всех последовательно включенных элементах цепи изменения силы тока происходят практически одновременно, так как электромагнитные взаимодействия распространяются со скоростью света. Поэтому можно считать, что колебания силы тока во всех элементах последовательной цепи происходят по закону:
Колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, колебания напряжения на конденсаторе отстают по фазе на р/2 от колебаний силы тока, а колебания напряжения на катушке опережают по фазе колебания силы тока на р/2.
Поэтому уравнение (1) можно записать так:
где URm, UCm и ULm – амплитуды колебаний напряжения на резисторе, конденсаторе и катушке.
Амплитуду колебаний напряжения в цепи переменного тока можно выразить через амплитудные значения напряжения на отдельных ее элементах, воспользовавшись методом векторных диаграмм.
При построении векторной диаграммы необходимо учитывать, что колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, поэтому вектор, изображающий амплитуду напряжения URm, совпадает по направлению с вектором, изображающим амплитуду силы тока Im Колебания напряжения на конденсаторе отстают по фазе на р/2 от колебаний силы тока, поэтому вектор
UCm отстает от вектора Im на угол 90°. Колебания напряжения на катушке опережают колебания силы тока по фазе на р/2, поэтому вектор ULm опережает вектор Im на угол 90° (рис. 9).
На векторной диаграмме мгновенные значения напряжения на резисторе, конденсаторе и катушке определяются проекциями на горизонтальную ось векторов Rm, Cm, Lm вращающихся с одинаковой угловой скоростью щ против часовой стрелки. Мгновенное значение напряжения во всей цепи равно сумме мгновенных напряжений uR, uC, и uL на отдельных элементах цепи, т.е. сумме проекций векторов URm, UCm и ULm на горизонтальную ось. Так как сумма проекций векторов на произвольную ось равна проекции суммы этих векторов на ту же ось, то амплитуду полного напряжения можно найти как модуль суммы векторов:
Из рисунка 9 видно, что амплитуда напряжений на всей цепи равна:
Или
Отсюда
Введя обозначение для полного сопротивления цепи переменного тока:
выразим связь между амплитудными значениями силы тока и напряжения в цепи переменного тока следующим образом:
Это выражение называют законом Ома для цепи переменного тока.
Из векторной диаграммы, приведенной на рисунке 9, видно, что фаза колебаний полного напряжения равна щt + ц. Поэтому мгновенное значение полного напряжения определяется формулой:
Начальную фазу ц можно найти из векторной диаграммы:
Величина cos ц играет важную роль при вычислении мощности в электрической цепи переменного тока.
1.4 Мощность в цепи переменного тока
Мощность в цепи постоянного тока определяется произведением напряжения на силу тока:
Физический смысл этой формулы прост: так как напряжение U численно равно работе электрического поля по перемещению единичного заряда, то произведение U?I характеризует работу по перемещению заряда за единицу времени, протекающего через поперечное сечение проводника, т.е. является мощностью. Мощность электрического тока на данном участке цепи положительна, если энергия поступает к этому участку из остальной сети, и отрицательна, если энергия с этого участка возвращается в сеть. На протяжении очень малого интервала времени переменный ток можно считать неизменным.
Поэтому мгновенная мощность в цепи переменного тока определяется такой же формулой:
Пусть напряжение на концах цепи меняется по гармоническому закону:
При этом мощность меняется со временем как по модулю, так и по знаку. В течение одной части периода энергия поступает к данному участку цепи (р > 0), но в течение другой части периода некоторая доля энергии вновь возвращается в сеть (р < 0). Как правило, во всех случаях нам надо знать среднюю мощность на участке цепи за достаточно большой промежуток времени, включающий много периодов. Для этого достаточно определить среднюю мощность за один период.
Чтобы найти среднюю мощность за период, преобразуем полученную формулу таким образом, чтобы выделить в ней член, не зависящий от времени. С этой целью воспользуемся известной формулой для произведения двух косинусов:
Выражение для мгновенное мощности состоит из двух слагаемых. Первое не зависит от времени, а второе дважды за каждый период изменения напряжения изменяет знак: в течение какой-то части периода энергия поступает в цепь от источника переменного напряжения, а в течении другой части возвращается обратно. Поэтому среднее значение второго слагаемого за период равно нулю.
Следовательно, средняя мощность Р за период равна первому члену, не зависящему от времени:
При совпадении фазы колебаний силы тока и напряжения (для активного сопротивления R) среднее значение мощности равно:
Для того чтобы формула для расчета мощности переменного тока совпадала по форме с аналогичной формулой для постоянного тока (Р = IU = I2R), вводятся понятия действующих значений силы тока и напряжения. Из равенства мощностей получим:
Действующим значением силы тока называют величину, в √2 раз меньшую ее амплитудного значения:
Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.
Аналогично можно доказать, что действующее значение переменного напряжения в √2 раз меньше его амплитудного значения:
Заметим, что обычно электрическая аппаратура в цепях переменного тока показывает действующие значения измеряемых величин. Переходя к действующим значениям силы тока и напряжения, уравнение (10) можно переписать:
Таким образом, мощность переменного тока на участке цепи определяется именно действующими значениями силы тока и напряжения. Она зависит также от сдвига фаз цc между напряжением и током. Множитель cos цc в формуле называется коэффициентом мощности.
В случае, когда цc = ± р/2, энергия, поступающая к участку цепи за период, равна нулю, хотя в цепи и существует ток. Так будет, в частности, если цепь содержит только катушку индуктивности или только конденсатор. Как же средняя мощность может оказаться равной нулю при наличии тока в цепи? Это поясняют приведенные на рисунке 10 графики изменения со временем мгновенных значений напряжения, силы тока и мощности при цc = – р/2 (чисто индуктивное сопротивление участка цепи).
График зависимости мгновенной мощности от времени можно получить, перемножая значения силы тока и напряжения в каждый момент времени. Из этого графика видно, что в течение одной четверти периода мощность положительна и энергия поступает к данному участку цепи; но в течение следующей четверти периода мощность отрицательна, и данный участок отдает без потерь обратно в сеть полученную ранее энергию. Поступающая в течение четверти периода энергия запасается в магнитном поле тока, а затем без потерь возвращается в сеть.
Лишь при наличии проводника с активным сопротивлением в цепи, не содержащей движущихся проводников, электромагнитная энергия превращается во внутреннюю энергию проводника, который нагревается. Обратного превращения внутренней энергии в электромагнитную на участке с активным сопротивлением уже не происходит.
При проектировании цепей переменного тока нужно добиваться, чтобы cos цc не был мал. Иначе значительная часть энергии будет циркулировать по проводам от генератора к потребителям и обратно. Так как провода обладают активным сопротивлением, то при этом энергия расходуется на нагревание проводов.
Неблагоприятные условия для потребления энергии возникают при включении в сеть электродвигателей, так как их обмотка имеет малое активное сопротивление и большую индуктивность. Для увеличения cos цc в сетях питания предприятий с большим числом электродвигателей включают специальные компенсирующие конденсаторы. Нужно также следить, чтобы электродвигатели не работали вхолостую или с недогрузкой.
Это уменьшает коэффициент мощности всей цепи. Повышение cos цc является важной народнохозяйственной задачей, так как позволяет с максимальной отдачей использовать генераторы электростанций и снизить потери энергии. Это достигается правильным проектированием электрических цепей. Запрещается использовать устройства с cos цc < 0,85.
определение, чем он лучше постоянного, зачем его используют в электрических сетях
Большинство современных бытовых и промышленных устройств работают от сети переменного тока. К ним можно отнести также все приборы на основе постоянного тока или питающиеся от аккумуляторов, поскольку они используют ту или иную форму DC, полученную из AC как с помощью преобразования сетевого напряжения, так и путём зарядки батарей. Но так было не всегда. Потребовалось немало времени, чтобы подобная система энергоснабжения зарекомендовала себя с лучшей стороны.
Эдисон и Тесла
Ипполит Пикси сумел создать первый генератор переменного тока в 1835 году. Это было устройство на постоянных магнитах, работающее при вращении рукоятки. Предприниматели того времени были заинтересованы в генерации DC и не совсем понимали, где может применяться изобретение и зачем нужно получать AC.
Настоящая конкуренция за стандарты электричества в линиях передач развернулась к концу 1880-х. годов, когда началась борьба между основными энергетическими компаниями за доминирование на рынке собственных запатентованных энергетических систем. Это было соперничество концепций электрификации двух великих изобретателей: Николы Теслы и Томаса Эдисона.
Эдисон изобрёл и усовершенствовал немало устройств, необходимых для первых систем генерации и транспортировки постоянного тока. В течение короткого времени его компания смогла открыть более 200 станций в Северной Америке. Предприятие росло, и изобретатель для выполнения работ по усовершенствованию оборудования нанял Николу Теслу — молодого инженера из Европы. Новый сотрудник предложил вниманию Эдисона революционные для того времени работы, основанные на технологиях переменного значения. Идеи Тесла были отвергнуты и пути изобретателей разошлись.
Джордж Вестингауз, наоборот, отнёсся к открытиям сербского инженера с большим интересом и выкупил все патенты Тесла. После предприятия Вестингауза пережило немало потрясений, в том числе и связанных с мощными пропагандистскими компаниями Эдисона. Финалом борьбы стал момент, когда система Теслы была выбрана для освещения выставки в Чикаго. Это событие познакомило мир с преимуществами многофазной генерации AC и его транспортировки. С тех пор большинство электрических устройств и сетей заказывались уже под новый стандарт. Основными датами войны токов были:
- 1870 г. — создание Эдисоном первого генератора DC;
- 1878 г. — основание Edison Electric Light Co в Нью-Йорке;
- 1882 г. — открытие Эдисоном генерирующей станции Pearl Street на 5 тыс. огней;
- 1883 г. — изобретение Теслой трансформатора;
- 1884 г. — изобретение Теслой генератора AC;
- 1888 г. — демонстрация Теслой многофазной электрической системы, Вестингауз выкупает его патенты;
- 1888 г. — казнь с помощью электрического стула, изобретённого Эдисоном как средство для пропагандистской компании, демонстрирующей опасность технологий Теслы.
- 1893 г. — триумф Westinghouse Electric Company на Чикагской ярмарке.
Определение и свойства
Гальваническая батарея выдаёт стабильную разницу потенциалов на полюсах в течение длительного времени до момента завершения в ней химической реакции. Ток от подобного источника называют постоянным. Простое определение переменного тока, понятное для чайников и приемлемое для специалистов, можно построить от обратного: AC есть поток зарядов в проводнике, периодически меняющий свою величину и направление. В сетях энергоснабжения он регулярно изменяет амплитуду и полярность.
Эти изменения представляют собой бесконечные повторения последовательности идентичных циклов, формирующих на экране осциллографа синусоиду, в отличие от DC, который визуализируется как прямая.
Графическая иллюстрация важна для понимания того, какой ток называют переменным синусоидальным.
Поскольку из определения переменного тока следует, что изменения параметров являются регулярными, переменное электричество обладает рядом свойств, связанных с качеством и формой его отражения на графике. Эти основные свойства можно представить следующим списком:
- Частота. Одно из наиболее важных свойств любого регулярного сигнала. Определяет количество полных циклов за конкретный период. Измеряется в герцах (циклах в секунду). В Европе для сетей электроснабжения составляет 50 Гц, в США и Канаде — 60 Гц.
- Период. Иногда важно знать количество времени, необходимое для завершения одного цикла электрического сигнала, а не числа циклов в секунду времени. Период — понятие логически обратное частоте, означающее длительность одного цикла в секунду.
- Длина волны. Характеристика, похожая на период, но может быть измерена из любой части одного цикла к эквивалентной точке в следующем.
- Амплитуда. В контексте электрического тока — это наибольшее значения АС относительно нейтрального. Математически амплитуда синусоиды есть значение этой синусоиды на пике. Однако если речь идёт о системах питания, то лучше обращаться к понятию эффективного тока. В качестве эквивалента используется количество работы, которую способен сделать постоянный ток при напряжении, равном амплитуде исследуемого переменного тока. Для синусоидальной волны эффективное напряжение составляет 0,707 от амплитуды.
В случае с АС наиболее важные свойства — частота и амплитуда, так как все виды оборудования разрабатываются с учётом соответствия этим параметрам в линии электропередачи. Период требует внимания при проектировании электронных источников питания.
А длина волны, как параметр, становится важен, когда речь идёт о токах со значительно более высокой частотой, чем в сетях энергоснабжения.
Сравнение AC и DC
Направление потока электрической энергии определяет постоянный и переменный ток. Разница в том, что в первом случае заряды перемещаются в одном направлении и непрерывно, а во втором — направление потока меняется через равные интервалы. Последнее сопровождается чередованием уровня напряжения и сменой полюсов на источнике с положительного на отрицательный и наоборот, что делает процессы в нагрузках более сложными, чем в случае с постоянным напряжением.
Ключевым преимуществом DC состоят в том, что его можно легко аккумулировать или создавать в портативных химических источниках. Но использование AC позволяет осуществлять передачу электрической энергии на большие расстояния намного экономичнее. Дело в том, что мощность W=I*V, передаваемая от станции, не в полном объёме доставляется до точки назначения. Часть её расходуется на нагрев линий электропередачи в размере W= I2*R.
Очевидный способ сокращения потерь — уменьшение сопротивления за счёт наращивания толщины проводов. Но для его реализации существует экономический предел: толстые проводники стоят дороже. Кроме того, массивные провода требуют дорогих несущих конструкций.
Задача имеет блестящее решение, если изменить напряжение и силу тока при сохранении мощности. Например, при увеличении V в тысячу раз и соответствующем уменьшении I, значение мощности сохраняется прежним, но потери уменьшаются в миллионы раз, поскольку они находятся в квадратичной зависимости от силы тока. Остаётся проблема преобразования напряжения до безопасных значений при распределении его к потребителям.
Это невозможно в случае с DC, но переменный ток позволяет изменять значения I и V при сохранении мощности с помощью трансформаторов. Энергетические компании используют это свойство для транспортировки электричества. Способность к трансформации и определяет главное, практически применимое отличие переменного тока от постоянного.
Другим важным преимуществом является необычайная простота его производства и возможность реализации в несложных конструкциях электродвигателей. Электрические приводы — наиболее значимый способом применения AC.
Генерация и трансформация
Принцип генерации электричества прост. Если магнитное поле вращается вдоль стационарного набора катушек из витков проводника или, наоборот, катушка вращается вокруг стационарного магнитного поля, то благодаря явлению электромагнитной индукции на концах обмоток возникает разность потенциалов. С каждым изменением угла поворота в результате описанного кругового движения выходное напряжение также будет меняться как по величине, так и по направлению.
Описанный условный генератор при постоянной угловой скорости вращения вала производит синусоидальный AC с формой волны, ничем не отличающейся от поставляемого в бытовой сети. Реальные генераторы устроены значительно сложнее, но работают на том же принципах электромагнитной индукции.
Эти же законы помогают не только в производстве AC, но и в его передаче и распределении. Преобразования напряжения энергетическим компаниями невозможно осуществить без электрических машин, называемых трансформаторами. Вот почему это изобретение Теслы было так важно для революции в транспортировке электричества.
Любой трансформатор состоит из следующих элементов:
- первичной и вторичных обмоток;
- сердечника.
Слово «первичная» применяется для обмотки, на которую подаётся электрическое напряжение, нуждающееся в трансформации. Индуцированное напряжение на вторичной катушке всегда равно приложенному на первичной, умноженному на соотношение витков вторичной к первичной. Трансформатор позволяет пошагово изменять напряжение.
Разность потенциалов, которая получается на выходе, есть расчётная величина, зависящая от соотношения витков обмоток.
Используемые виды
В большинстве случаев под тем, какой ток называется переменным, подразумевают электричество из бытовой сети. Для многих далёких от электрики и электроники людей было бы неожиданностью узнать, что под АС подразумевается значительно более широкое понятие, чем электричество из розетки.
Краткий перечень переменных токов, используемых в сетях питания:
- Однофазный. Простой вид, переменный по направлению. Коммерческий его тип имеет синусоидальный вид на графике и передаётся по двум проводникам.
- Трёхфазный. Электричество для промышленных нужд обычно поставляется в виде трёх отдельных синусоид с пиками амплитуды в трети цикла друг от друга. Для передачи энергии таким способом требуется три (иногда четыре) проводника.
- Двухполупериодный выпрямленный однофазный. Полученный из переменного с помощью выпрямителя таким образом, чтобы обратная половина цикла сменила полярность. Его можно рассматривать как пульсирующий постоянный ток без интервала между импульсами.
- Полностью выпрямленное трёхфазное напряжение. Однополярный ток с небольшой пульсацией. Это свойство выгодно отличает его от DC.
- Полуволновой выпрямленный. Получается после выпрямления AC простейшим образом с обрезанием части с обратной полярностью. В результате получается пульсирующее напряжение с интервалами без разности потенциалов на клеммах.
- Импульсное напряжение. Широко применяется в современной цифровой технике и электронике. Во многих случаях волна не синусоидальной, а прямоугольной формы.
В современных приборах используются самые разнообразные формы тока и нередко одновременно. Даже освещение в XXI веке изменилось неузнаваемо со времён Эдисона. Традиционная лампа накаливания работала непосредственно от сети AC, а её светодиодный аналог предварительно выпрямляет синусоидальное напряжение, преобразуя затем его до нужных параметров без помощи дополнительных устройств.
Однако война токов может иметь своё продолжение в совсем недалёком будущем. Растущее количество источников DC, таких как солнечные батареи и ветряки, стало стимулом для разработки технологий транспортировки постоянного тока на большие расстояния при потерях, сопоставимыми с передачей AC. В мире уже построено несколько таких действующих объектов и, вполне возможно, через некоторое время они продемонстрируют на практике свои преимущества перед классическими энергосистемами.
Переменный электрический ток
В данной статье расскажем что такое переменный электрический ток и трехфазный переменный переменный ток.
Понятие переменного электрического тока даётся в учебнике физики общеобразовательного учебного заведения — школы. Переменный электрический ток — ток имеющий форму гармонического синусоидального сигнала, основными характеристиками которого являются действующее напряжение и частота, с течением времени изменяется по направлению и величине.
Частота – это количество полных изменений полярности переменного электрического тока за одну секунду. Это означает, что ток, в обычной бытовой розетке частотой 50 Герц за одну секунду меняет своё направление с положительного значения на отрицательное и обратно ровно пятьдесят раз. Одно полное изменение направления (полярности) электрического тока с положительного значения на отрицательное и снова на положительное называют — периодом колебания электрического тока. В течение периода Т переменный электрический ток меняет своё направление дважды.
Для визуального наблюдения синусоидальной формы переменного тока обычно используют осциллограф. Для исключения поражения электрическим током и защиты осциллографа от сетевого напряжения по входу, используют разделительные трансформаторы. Для измерения периода нет разницы, по каким равнозначным (равноамплитудным) точкам его измерять. Можно по максимальным положительным, или отрицательным вершинам, а можно и по нулевому значению. Это поясняется на рисунке.
Синусоидальная форма переменного тока
Из учебника физики мы знаем, что переменный электрический ток вырабатывается с помощью электрической машины – генератора. Простейшая модель генератора это магнитная рамка, вращающаяся в магнитном поле постоянного магнита.
Представим себе прямоугольную проволочную рамку с несколькими витками, равномерно вращающуюся в однородном магнитном поле. Возникающая в этой рамке э.д.с. индукции меняется по синусоидальному закону. Период колебания Т переменного электрического тока – это один полный оборот магнитной рамки вокруг своей оси.
магнитная рамка
Одними из важных характеристик электрического тока являются две величины переменного электрического тока – максимальное значение и среднее значение.
Максимальное значение напряжения электрического тока Umax — это величина напряжения, соответствующая максимальному значению синусоиды.
Среднее значение напряжения электрического тока Uср — это величина напряжения, равная значению 0,636 от максимального. Математически это выглядит так:
Uср = 2 * Umax / π = 0,636 Umax
Синусоиду максимального напряжения можно проконтролировать на экране осциллографа. Понять, что такое среднее значение переменного электрического напряжения можно проведя эксперимент по рисунку и описанию ниже.
Осциллограмма полуволны
Используя осциллограф, подключите к его входу синусоидальное напряжение. Ручкой вертикального смещения развёртки переместите «ноль» развёртки на самую нижнюю линию шкалы экрана осциллографа. Растяните и сместите горизонтальную развёртку так, чтобы одна полуволна синусоидального напряжения поместилась в десять (пять) клеток экрана осциллографа. Ручкой вертикальной развёртки (усилением) растяните развёртку так, чтобы максимальная амплитуда полуволны поместилась ровно в десять (пять) клеток экрана осциллографа. Определите амплитуду синусоиды на десяти участках. Суммируйте все десять значений и поделите на десять – найдите его «средний балл». В результате Вы получите значение напряжения, приблизительно равное 6,36 от его максимального значения — 10.
Измерительные приборы – вольтметры, цешки, мультиметры для измерения переменного напряжения имеют в своей схеме выпрямитель и сглаживающий конденсатор. Эта цепочка «округляет» множитель разницы максимального и измеряемого напряжения до числа 0,7. Поэтому, если Вы будете наблюдать на экране осциллографа синусоиду напряжения амплитудой 10 вольт, то вольтметр (цешка, мультиметр) покажет не 10, а около 7 вольт. Вы думаете что в Вашей домашней розетке – 220 вольт? Так и есть, но не совсем так! 220 вольт – это среднее значение напряжения бытовой розетки, усреднённое измерительным прибором — вольтметром. Максимальное же напряжение следует из формулы:
Umax = Uизм / 0,7 = 220 / 0,7 = 314,3 вольт
Именно поэтому, когда Вас «бъёт» током от электрической розетки 220 вольт, знайте, что это Ваша иллюзия. На самом деле, Вас трясёт напряжение около 315 вольт.
Трехфазный ток
Наряду с простым синусоидальным переменным током в технике широко используется так называемый трехфазный переменный ток. Мало того, трёхфазный электрический ток — это основной вид энергии используемый во всём мире. Трёхфазный ток приобрёл популярность по причине менее затратной передачи энергии на большие расстояния. Если для обычного (однофазного) электрического тока требуется два провода, то для трёхфазного тока, у которого энергия в три раза больше, требуется всего три провода. Физический смысл Вы узнаете в этой статье позже.
Представьте, если вокруг общей оси вращается не одна, а три одинаковые рамки, плоскости которых повернуты друг относительно друга на 120 градусов. Тогда возникающие в них синусоидальные э.д.с. также будут сдвинуты по фазе на 120 градусов (см. на рис).
Трехфазный электрический ток
Такие три согласованных переменных тока называют трехфазным током. Упрощённое расположение проволочных обмоток в генераторе трёхфазного тока иллюстрируется на рисунке.
Генератор трехфазного электрического тока
Подключение обмоток генератора по трём независимым линиям показано на рисунке ниже.
схема питания по независимым линиям
Такое подключение шестью проводами довольно громоздко. Так как для явлений в электрических цепях важны только разности потенциалов, то один проводник может использоваться сразу для двух фаз, без снижения нагрузочной способности по каждой из фаз. Другими словами, в случае подключения обмоток генератора по схеме «звезда» с использованием «нуля», передача энергии от трёх источников производится по четырём проводам (см. рис.), в которых один является общим – нулевым проводом.
схема питания по общим линиям
По трём проводам может передаваться энергия сразу от трёх (фактически независимых) источников электрического тока соединённых «треугольником».
схема питания по треугольнику
В промышленных генераторах и преобразующих трансформаторах «треугольником» обычно подключается межфазное напряжение 220 вольт. При этом «нулевой» провод отсутствует.
«Звезда» применяется для передачи напряжения сети с использованием «нуля». При этом на фазе относительно «нуля» действует напряжение 220 вольт. Межфазное напряжение при этом равно 380 вольт.
Частым явлением во времена «нагло ворующей демократии» было сгорание бытовой аппаратуры в квартирах добропорядочных граждан, когда из-за слабой проводки сгорал общий «ноль», тогда в зависимости от того, какое количество бытовых приборов включено в квартирах, горели телевизоры и холодильники у того, кто их меньше всего включал. Вызвано это явлением «перекоса фаз», которое возникало при обрыве нуля. В розетку добропорядочных граждан вместо 220 вольт устремлялось межфазное напряжение 380 вольт. До настоящего времени во многих коммуналках и сооружениях напоминающих жильё наших российских городов и весей это явление до конца не искоренилось.
Как получают переменный электрический ток
Узнайте, как получают переменный ток в быту и на производстве. Из чего состоит генератор переменного тока и как он работает.
Переменный ток – единственный на сегодняшний день способ дешевой передачи электроэнергии на расстояния. Он превосходит постоянный ток по ряду параметров, в том числе и по простоте трансформации. В этой статье мы расскажем, как получают переменный электрический ток в быту и на производстве. Содержание:
Электромагнитная индукция и закон Фарадея
Майкл Фарадей в 1831 году открыл закономерность, в последствии названной его именем – закон Фарадея. В своих опытах он использовал 2 установки. Первая состояла из металлического сердечника с двумя намотанными и не связанными между собой проводниками. Когда он подключал один из них к источнику питания, то стрелка гальванометра, подключенного ко второму проводнику, дёргалась. Так было доказано влияние магнитного поля на движение заряженных частиц в проводнике.
Второй установкой является диск Фарадея. Это металлический диск, к которому подключено два скользящих проводника, а они в свою очередь соединены с гальванометром. Диск вращают вблизи магнита, а при вращении на гальванометре также отклоняется стрелка.
Итак, выводом этих опытов была формула, которая связывает прохождение проводника через силовые линии магнитного поля.
Здесь: E – ЭДС индукции, N – число витков проводника, который перемещают в магнитном поле, dФ/dt – скорость изменения магнитного потока относительно проводника.
На практике также используют формулу, с помощью которой можно определить ЭДС через величину магнитной индукции.
e = B*l*v*sinα
Если вспомнить формулу связывающую магнитный поток и магнитную индукцию, то можно предположить, как происходил вывод формулы выше.
Ф=B*S*cosα
Так зарождалась генерация тока. Но давайте поговорим, как получают переменный ток ближе к практике.
Способы получения переменного тока
Допустим у нас есть рамка из проводящего материала. Поместим её в магнитное поле. Согласно упомянутым выше формула, если рамку начать вращать, через неё потечет электрический ток. При равномерном вращении на концах этой рамки получится переменный синусоидальный ток.
Это связано с тем, что в зависимости от положения по оси вращения рамку пронизывает разное число силовых линий. Соответственно и величина ЭДС наводится не равномерно, а согласно положению рамки, как и знак этой величины. Что вы видите наг графике выше. При вращении рамки в магнитном поле от скорости вращения зависит как частота переменного тока, так и величина ЭДС на выводах рамки. Чтобы достичь определенной величины ЭДС при фиксированной частоте – делают больше витков. Таким образом получается не рамка, а катушка.
Получить переменный ток в промышленных масштабах можно таким же образом, как описано выше. На практике нашли широкое применение электростанции с генераторами переменного тока. При этом используются синхронные генераторы. Поскольку таким образом легче контролировать как частоту, так и величину ЭДС переменного тока, и они могут выдерживать кратковременные токовые перегрузки во много раз.
По числу фаз на электростанциях используются трёхфазные генераторы. Это компромиссное решение, связанное с экономической целесообразностью и техническим требованием создания вращающегося магнитного поля для работы электродвигателей, которые составляют львиную долю от всего электрооборудования в промышленности.
В зависимости от рода силы, которая приводит в движение ротор, число полюсов может быть различным. Если ротор вращается со скоростью 3000 об/мин, то для получения переменного тока с промышленной частотой в 50 Гц нужен генератор с 2 полюсами, для 1500 об/мин – с 4 полюсами и так далее. На рисунки ниже вы видите устройство генератора синхронного типа.
На роторе находятся катушки или обмотка возбуждения, ток к ней поступает от генератора-возбудителя (Генератор Постоянного Тока — ГПТ) или от полупроводникового возбудителя через щеточный аппарат. Щетки располагаются на кольцах, в отличие от коллекторных машин, в результате чего магнитное поле обмоток возбуждение не меняется по направлению и знаку, но меняется по величине – при регулировании тока возбудителя. Таким образом автоматически подбираются оптимальные условия для поддержки рабочего режима генератора переменного тока.
Итак, получить переменный ток в промышленных масштабах удалось способом, основанном на явлениях электромагнитной индукции, а именно с помощью трёхфазных генераторов. В быту используют и однофазные и трёхфазные генераторы. Последние рекомендуется приобретать для строительных работ. Дело в том, что большое число электрического инструмента и станков могут работать от трёх фаз. Это электродвигатели разнообразных бетономешалок, циркулярных пил, да и мощные сварочные аппараты также питаются от трёхфазной сети. Причем для таких задач подходят именно синхронные генераторы, асинхронные не подходят – из-за их плохой работы с устройствами, у которых большие пусковые токи. Асинхронные бытовые электростанции больше подходят для резервного электроснабжения частных домов и дач.
Электронные преобразователи
Однако не всегда рационально или удобно использовать бензиновые или дизельные бытовые электростанции. Есть выход – получить однофазный или трёхфазный переменный электрический ток из постоянного. Для этого используют преобразователи или, как их еще называют инверторы.
Инвертор – это устройство, которое преобразует величину и род электрического тока. В магазинах можно найти инверторы 12-220 или 24-220 Вольт. Соответственно эти приборы постоянные 12 или 24 Вольта превращают в 220В переменного тока с частотой в 50Гц. Схема простейшего подобного преобразователя на базе драйвера для полумостового преобразователя IR2153 изображена ниже.
Такая схема выдаёт модифицированную синусоиду на выходе. Она не совсем подходит для питания индуктивной нагрузки, типа двигателей и дрелей. Но если не на постоянной основе – то вполне можно использовать и такой простой инвертор.
Преобразователи постоянного тока в переменный с чистой синусоидой на выходе стоят значительно дороже, а их схемы значительно сложнее.
Важно! Приобретая дешевые платы-модули с «алиэкспресс» не рассчитывайте ни на чистый синус, ни на 50Гц частоту. Большинство таких устройств выдают высокочастотный ток с напряжением 220В. Его можно использовать для питания различных нагревателей и ламп накаливания.
Мы кратко рассмотрели принципы получения переменного тока в домашних условиях и в промышленных масштабах. Физика этого процесса известна уже почти 200 лет, тем не менее основным популяризатором этого способа получить электрическую энергию был Никола Тесла в конце XIX — первой половине XX века. Большинство современного бытового и промышленного оборудования ориентированы на использования именного переменного тока для электропитания.
Напоследок рекомендуем просмотреть видео, на котором наглядно показывается как работает генератор переменного тока:
Наверняка вы не знаете:
- Чем отличается переменный ток от постоянного
- Способы понижения напряжения
- Как получить электричество из земли
Нравится0)Не нравится0)
Получение переменного тока: теория, основные способы
Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.
Теория
С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.
Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.
Далее вам необходимо:
- взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
- подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала;
- поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
- сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
- обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.
Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.
Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.
Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.
Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.
Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:
где n – это количество витков обмоток
а соотношение dФB/dt – это скорость изменения электромагнитной индукции во времени.
Способы получения
Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.
Рамка с магнитами
Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.
Рис. 1. Рамкой и магнитами
Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.
При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.
Асинхронный и синхронный генератор
Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.
По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.
Рис. 2. Устройство асинхронного генератора
Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.
Рис. 3. Напряжение в трехфазной сети
Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:
- большие пусковые токи;
- отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
- меньшая степень контроля за системой.
Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.
Рис. 4. Схема синхронного генератора
Инвертор
За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.
Рис. 5. Схема инвертора
На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.
Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.
Основы электроники: что такое переменный ток?
- Программирование
- Электроника
- Компоненты
- Основы электроники: что такое переменный ток?
Дуг Лоу
Переменный ток жизненно важен в электронике по одной простой причине: электрический ток, к которому вы можете получить доступ, подключив цепь к розетке, оказывается переменным током.
Электрический ток, который непрерывно течет в одном направлении, называется постоянным током или DC .В цепи постоянного тока ток создается электронами, которые выстраиваются в одну линию и движутся в одном направлении.
В проводе постоянного тока электроны прыгают от атома к атому, двигаясь в одном направлении. Таким образом, данный электрон, который начинает свой путь на одном конце провода, в конечном итоге оказывается на другом конце провода.
В переменном токе электроны движутся не только в одном направлении. Вместо этого они какое-то время прыгают от атома к атому в одном направлении, а затем разворачиваются и прыгают от атома к атому в противоположном направлении.Время от времени электроны меняют направление. В переменном токе электроны не движутся равномерно вперед. Вместо этого они просто двигаются вперед и назад.
Когда электроны в переменном токе переключают направление, направление тока и напряжение в цепи меняются на противоположные. В государственных системах распределения электроэнергии в Соединенных Штатах (включая бытовой ток) напряжение меняется на противоположное 60 раз в секунду. В некоторых странах напряжение меняется 50 раз в секунду.
Скорость, с которой переменный ток меняет направление на противоположное, называется его частотой , выраженной в герцах. Таким образом, стандартный бытовой ток в США составляет 60 Гц.
В цепи переменного тока напряжение и, следовательно, ток всегда изменяются. Однако напряжение не меняет полярность мгновенно. Вместо этого напряжение постоянно увеличивается от нуля до тех пор, пока не достигнет максимального напряжения, которое называется пиковым напряжением .
Затем напряжение снова начинает уменьшаться до нуля.Затем напряжение меняет полярность и падает ниже нуля, снова достигая пикового напряжения, но с отрицательной полярностью. Когда он достигает пикового отрицательного напряжения, он снова начинает расти, пока не достигнет нуля. Затем цикл повторяется.
Колебательное изменение напряжения важно из-за основной взаимосвязи между магнитными полями и электрическими токами. Когда проводник (например, провод) движется через магнитное поле, магнитное поле индуцирует ток в проводе. Но если проводник неподвижен относительно магнитного поля, ток не индуцируется.
Для создания этого эффекта не требуется физическое движение. Если проводник остается в фиксированном положении, но затем напряженность магнитного поля увеличивается или уменьшается (то есть, если магнитное поле расширяется или сжимается), в проводнике индуцируется ток, как если бы магнитное поле было фиксированным, а проводник физически перемещался по полю.
Поскольку напряжение переменного тока всегда либо увеличивается, либо уменьшается при изменении полярности с положительной на отрицательную и обратно, магнитное поле, окружающее ток, всегда либо сжимается, либо расширяется.Итак, если вы поместите проводник в это расширяющееся и схлопывающееся магнитное поле, в проводнике будет индуцироваться переменный ток.
Это похоже на волшебство! При переменном токе ток в одном проводе может индуцировать ток в соседнем проводе, даже если между проводами нет физического контакта.
Суть в следующем: переменный ток можно использовать для создания изменяющегося магнитного поля, а изменяющиеся магнитные поля можно использовать для создания переменного тока.Эта взаимосвязь между переменным током и магнитными полями делает возможными три важных устройства:
Генератор: Устройство, вырабатывающее переменный ток от источника вращательного движения, такого как турбина, приводимая в действие проточной водой или паром, или ветряная мельница. Генераторы переменного тока работают, используя вращательное движение, чтобы вращать магнит, помещенный в катушку с проволокой. Когда магнит вращается, его магнитное поле движется, что индуцирует переменный ток в спиральном проводе.
Мотор: Противоположность генератора переменного тока. Он преобразует переменный ток во вращательное движение. В своей простейшей форме двигатель — это просто генератор переменного тока, подключенный назад. Магнит установлен на валу, который может вращаться; магнит помещен в витки катушки с проволокой.
Когда на катушку подается переменный ток, возникающее и падающее магнитное поле, создаваемое током, заставляет магнит вращаться, что поворачивает вал.
Трансформатор: Состоит из двух катушек провода, расположенных в непосредственной близости.Если на одну из катушек подается переменный ток, сжимающееся и расширяющееся магнитное поле вызовет переменный ток в другой катушке.
Об авторе книги
У Дуга Лоу до сих пор есть набор экспериментатора электроники, который дал ему отец, когда ему было 10 лет. Хотя он стал программистом и написал книги по различным языкам программирования, Microsoft Office, веб-программированию и ПК (включая 30+ книг для чайников), Дуг никогда не забывал свою первую любовь: электронику.
.
электричества | Определение, факты и типы
Электростатика — это изучение электромагнитных явлений, возникающих при отсутствии движущихся зарядов, то есть после установления статического равновесия. Заряды быстро достигают положения равновесия, потому что электрическая сила чрезвычайно велика. Математические методы электростатики позволяют рассчитывать распределения электрического поля и электрического потенциала по известной конфигурации зарядов, проводников и изоляторов.И наоборот, имея набор проводников с известными потенциалами, можно рассчитать электрические поля в областях между проводниками и определить распределение заряда на поверхности проводников. Электрическую энергию набора зарядов в состоянии покоя можно рассматривать с точки зрения работы, необходимой для сборки зарядов; в качестве альтернативы, можно также считать, что энергия находится в электрическом поле, создаваемом этой сборкой зарядов. Наконец, энергия может храниться в конденсаторе; энергия, необходимая для зарядки такого устройства, сохраняется в нем как электростатическая энергия электрического поля.
Изучите, что происходит с электронами двух нейтральных объектов, тренных друг о друга в сухой среде. Объяснение статического электричества и его проявлений в повседневной жизни. Encyclopædia Britannica, Inc. Посмотреть все видео к этой статье
Статическое электричество — это знакомое электрическое явление, при котором заряженные частицы передаются от одного тела к другому. Например, если два предмета трутся друг о друга, особенно если они являются изоляторами, а окружающий воздух сухой, предметы приобретают одинаковые и противоположные заряды, и между ними возникает сила притяжения.Объект, теряющий электроны, становится заряженным положительно, а другой — отрицательно. Сила — это просто притяжение между зарядами противоположного знака. Свойства этой силы были описаны выше; они включены в математическое соотношение, известное как закон Кулона. Электрическая сила, действующая на заряд Q 1 в этих условиях, вызванная зарядом Q 2 на расстоянии r , определяется законом Кулона
Жирным шрифтом в уравнении обозначается вектор характер силы, а единичный вектор r̂ — это вектор, размер которого равен единице, и который указывает от заряда Q 2 до заряда Q 1 .Константа пропорциональности k равна 10 −7 c 2 , где c — скорость света в вакууме; k имеет числовое значение 8,99 × 10 9 ньютонов на квадратный метр на квадратный кулон (Нм 2 / C 2 ). На рисунке 1 показано усилие на Q 1 , вызванное Q 2 . Числовой пример поможет проиллюстрировать эту силу. И Q 1 , и Q 2 выбраны произвольно в качестве положительных зарядов, каждый с величиной 10 −6 кулонов.Заряд Q 1 расположен в координатах x , y , z со значениями 0,03, 0, 0 соответственно, а Q 2 имеет координаты 0, 0,04, 0. Все координаты указаны в метрах. Таким образом, расстояние между Q 1 и Q 2 составляет 0,05 метра.
электрическая сила между двумя зарядами Рисунок 1: Электрическая сила между двумя зарядами. Предоставлено факультетом физики и астрономии Мичиганского государственного университета
Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской.Подпишитесь сегодня
Величина силы F на заряде Q 1 , рассчитанная по уравнению (1), составляет 3,6 ньютона; его направление показано на рисунке 1. Сила, действующая на Q 2 из-за Q 1 , составляет — F , что также имеет величину 3,6 ньютона; его направление, однако, противоположно направлению F . Сила F может быть выражена в терминах ее компонентов по осям x и y , поскольку вектор силы лежит в плоскости x y .Это делается с помощью элементарной тригонометрии из геометрии рисунка 1, и результаты показаны на рисунке 2. Таким образом, в ньютонах. Закон Кулона математически описывает свойства электрической силы между зарядами в состоянии покоя. Если заряды имеют противоположные знаки, сила будет притягивающей; притяжение будет обозначено в уравнении (1) отрицательным коэффициентом единичного вектора r̂. Таким образом, электрическая сила на Q 1 будет иметь направление, противоположное единичному вектору r̂ , и будет указывать от Q 1 к Q 2 .В декартовых координатах это привело бы к изменению знаков компонентов силы x и y в уравнении (2).
компоненты кулоновской силы Рисунок 2: Компоненты x и y силы F на рисунке 4 (см. Текст). Предоставлено факультетом физики и астрономии Мичиганского государственного университета
Как можно понять эту электрическую силу на Q 1 ? По сути, сила возникает из-за наличия электрического поля в позиции Q 1 .Поле создается вторым зарядом Q 2 и имеет величину, пропорциональную размеру Q 2 . При взаимодействии с этим полем первый заряд на некотором расстоянии либо притягивается, либо отталкивается от второго заряда, в зависимости от знака первого заряда.
.
Переменный ток — Простая английская Википедия, бесплатная энциклопедия
Огни большого города в размытой экспозиции при движении. При мигании переменного тока линии становятся точечными, а не непрерывными.
Переменный ток ( AC ) — это электрический ток, величина и направление которого меняются, в отличие от постоянного тока, направление которого остается постоянным. Это означает, что направление тока, протекающего в цепи, постоянно меняется взад и вперед. Это делается с любым источником переменного напряжения.
Обычная форма сигнала в цепи питания переменного тока представляет собой синусоидальную волну, потому что это приводит к наиболее эффективной передаче энергии. Однако в некоторых приложениях используются разные формы сигналов, например треугольные или прямоугольные. Недорогие силовые инверторы выдают прямоугольную волну с паузой между сменой направления.
Когда говорят об переменном токе, в основном подразумевают форму, в которой электричество доставляется на предприятия и жилые дома. AC приходит от электростанции.Направление электричества меняется 60 раз в секунду (или 50 раз в некоторых частях мира). Это происходит так быстро, что лампочка не перестает светиться. [1]
Но аудио и радиосигналы, передаваемые по электрическому проводу, также являются примерами переменного тока. В этих приложениях важной целью часто является восстановление информации, закодированной (или модулированной) в сигнале переменного тока.
Никола Тесла экспериментировал с электрическим резонансом и изучал различные системы освещения.Он изобрел асинхронный двигатель, новые типы генераторов и трансформаторов, а также систему передачи энергии переменного тока. [2]
Уильям Стэнли-младший разработал одно из первых практических устройств для эффективной передачи мощности переменного тока между изолированными цепями. Используя пары катушек, намотанных на общий железный сердечник, его конструкция, названная индукционной катушкой, была ранним предшественником современного трансформатора. Система, используемая сегодня, была разработана в конце девятнадцатого века, в основном Николя Тесла.Взносы также сделали Джордж Вестингауз, Люсьен Голар, Джон Диксон Гиббс, Вильгельм Сименс и Оливер Шалленджер. Системы переменного тока преодолели ограничения системы постоянного тока, которую использовал Томас Эдисон для эффективного распределения электроэнергии на большие расстояния.
Гидроэлектростанция Милл-Крик была построена недалеко от Редлендса, Калифорния, в 1893 году. Спроектированная Альмирианом Декером, она использовала трехфазную электроэнергию напряжением 10 000 вольт, которая в конечном итоге стала стандартным методом для электростанций во всем мире.
Электропитание
переменного тока дешевле и проще в изготовлении электронных устройств. Выключатели питания переменного тока также дешевле в производстве. Это дешевле, чем постоянный ток, потому что вы можете очень легко увеличивать и уменьшать ток. Переменный ток может использовать высокое напряжение с меньшим током, чтобы уменьшить потери при подаче энергии. AC снижает нагрев проводов. Электроэнергия постоянного тока может быть отправлена, но при этом будет потеряно много энергии, и вам придется приложить больше усилий, чтобы отправить ее на большие расстояния. Поэтому трансформаторные подстанции у нас не везде.Переменный ток работает, постоянно переключая ток вперед и назад, пока он возвращается к источнику, из которого он пришел. [3]
- Уильям А. Мейерс, История и размышления о том, как все было: Электростанция Милл-Крик — Создание истории с AC , IEEE Power Engineering Review, февраль 1997 г., стр. 22–24
- Что такое переменный ток (AC)? — на All About Circuits
- « AC / DC: в чем разница? «.Чудо света Эдисона, американский опыт. (PBS)
- « AC / DC: внутри генератора переменного тока «. Чудо света Эдисона, американский опыт. (PBS)
- Купхальдт, Тони Р., « Уроки электрических цепей: Том II — AC ». 8 марта 2003 г. (Лицензия на научный дизайн)
- Нейв, К. Р., « Концепции цепей переменного тока ». Гиперфизика.
- « Переменный ток (AC) «. Магнитопорошковый контроль, Энциклопедия неразрушающего контроля.
- « Переменный ток «. Аналоговые службы управления процессами.
- Хайоб, Эрик, « Применение тригонометрии и векторов к переменному току ». Технологический институт Британской Колумбии, 2004 г.
- « Введение в переменный ток и трансформаторы ». Комплексное издательское дело.
- « Справочное руководство по энергии ветра, часть 4: Электричество «. Датская ассоциация ветроэнергетики, 2003 г.
- Чан. Килин, « Инструменты переменного тока «.JC Physics, 2002.
- « Измерение -> ac «. Аналоговые службы управления процессами.
- Уильямс, Trip «Kingpin», « Общие сведения о переменном токе, еще несколько концепций мощности «.
- « Таблица напряжений, частот, системы телевещания, радиовещания, по странам «.
- Экскурсия профессора Марка Челе по электростанции Ренкина 25 Гц
- 50/60 Гц, информация
- Цепи переменного тока Анимации и пояснения векторного (векторного) представления цепей RLC
- Блэлок, Томас Дж., « Эра частотных преобразователей: соединяющие системы различных циклов «. История различных частот и схем взаимного преобразования в США в начале 20 века
- «Национальная лаборатория высокого магнитного поля — Учебное пособие по переменному току». 1995–2012 гг. Проверено 24 мая 2012 г. CS1 maint: формат даты (ссылка)
.
.
Пиковое и среднеквадратичное значение переменного тока — действующее значение переменного тока
- БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
- КОНКУРСНЫЕ ЭКЗАМЕНА
- BNAT
- Классы
- Класс 1-3
- Класс 4-5
- Класс 6-10
- Класс 110003 CBSE
- Книги NCERT
- Книги NCERT для класса 5
- Книги NCERT, класс 6
- Книги NCERT для класса 7
- Книги NCERT для класса 8
- Книги NCERT для класса 9
- Книги NCERT для класса 10
- NCERT Книги для класса 11
- NCERT Книги для класса 12
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
9plar
- RS Aggarwal
- RS Aggarwal Решения класса 12
- RS Aggarwal Class 11 Solutions
- RS Aggarwal Решения класса 10
- Решения RS Aggarwal класса 9
- Решения RS Aggarwal класса 8
- Решения RS Aggarwal класса 7
- Решения RS Aggarwal класса 6
- RD Sharma
- RD Sharma Class 6 Решения
- RD Sharma Class 7 Решения
- Решения RD Sharma Class 8
- Решения RD Sharma Class 9
- Решения RD Sharma Class 10
- Решения RD Sharma Class 11
- Решения RD Sharma Class 12
- PHYSICS
- Механика
- Оптика
- Термодинамика
- Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- MATHS
- Статистика
- 9000 Pro Числа
- Числа
- Числа
- Число чисел Тр Игонометрические функции
- Взаимосвязи и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убытки
- Полиномиальные уравнения
- Деление фракций
- Microology
0003000
- Книги NCERT
- FORMULAS
- Математические формулы
- Алгебраные формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- 000 CALCULATORS
- 000
- 000 Калькуляторы по химии 900 Образцы документов для класса 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 1 1
- Образцы документов CBSE для класса 12
0003000
- Вопросники предыдущего года CBSE
- Вопросники предыдущего года CBSE, класс 10
- Вопросники предыдущего года CBSE, класс 12
- HC Verma Solutions
- HC Verma Solutions Класс 11 Физика
- HC Verma Solutions Класс 12 Физика
- Решения Лакмира Сингха
- Решения Лахмира Сингха класса 9
- Решения Лахмира Сингха класса 10
- Решения Лакмира Сингха класса 8
9000 Класс
9000BSE 9000 Примечания3 2 6 Примечания CBSE
Примечания
- Дополнительные вопросы по математике класса 8 CBSE
- Дополнительные вопросы по науке 8 класса CBSE
- Дополнительные вопросы по математике класса 9 CBSE
- Дополнительные вопросы по науке
- CBSE Class 9 Вопросы
- CBSE Class 10 Дополнительные вопросы по математике
- CBSE Class 10 Science Extra questions
- Class 3
- Class 4
- Class 5
- Class 6
- Class 7
- Class 8 Класс 9
- Класс 10
- Класс 11
- Класс 12
- Решения NCERT для класса 11
- Решения NCERT для класса 11 по физике
- Решения NCERT для класса 11 Химия
- Решения NCERT для биологии класса 11
- Решение NCERT s Для класса 11 по математике
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Business Studies
- NCERT Solutions Class 11 Economics
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Commerce
- NCERT Solutions for Class 12
- Решения NCERT для физики класса 12
- Решения NCERT для химии класса 12
- Решения NCERT для биологии класса 12
- Решения NCERT для математики класса 12
- Решения NCERT, класс 12, бухгалтерия
- Решения NCERT, класс 12, бизнес-исследования
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 Accountancy Part 1
- NCERT Solutions Class 12 Accountancy Part 2
- NCERT Solutions Class 12 Micro-Economics
- NCERT Solutions Class 12 Commerce
- NCERT Solutions Class 12 Macro-Economics
- NCERT Solut Ионы Для класса 4
- Решения NCERT для математики класса 4
- Решения NCERT для класса 4 EVS
- Решения NCERT для класса 5
- Решения NCERT для математики класса 5
- Решения NCERT для класса 5 EVS
- Решения NCERT для класса 6
- Решения NCERT для математики класса 6
- Решения NCERT для науки класса 6
- Решения NCERT для класса 6 по социальным наукам
- Решения NCERT для класса 6 Английский язык
- Решения NCERT для класса 7
- Решения NCERT для математики класса 7
- Решения NCERT для науки класса 7
- Решения NCERT для социальных наук класса 7
- Решения NCERT для класса 7 Английский язык
- Решения NCERT для класса 8
- Решения NCERT для математики класса 8
- Решения NCERT для науки 8 класса
- Решения NCERT для социальных наук 8 класса ce
- Решения NCERT для класса 8 Английский
- Решения NCERT для класса 9
- Решения NCERT для класса 9 по социальным наукам
- Решения NCERT для математики класса 9
- Решения NCERT для математики класса 9 Глава 1
- Решения NCERT для математики класса 9, глава 2
- для математики класса 9, глава 3
- Решения NCERT для математики класса 9, глава 4
- Решения NCERT для математики класса 9, глава 5
- для математики класса 9, глава 6
- Решения NCERT для математики класса 9, глава 7
- для математики класса 9, глава 8
- Решения NCERT для математики класса 9, глава 9
- Решения NCERT для математики класса 9, глава 10
- для математики класса 9, глава 11
- NCERT для математики класса 9 Глава 12
- для математики класса 9 Глава 13
- NCER Решения T для математики класса 9 Глава 14
- Решения NCERT для математики класса 9 Глава 15
Решения NCERT
Решения NCERT
Решения NCERT
Решения NCERT
Решения
Решения NCERT
- Решения NCERT для науки класса 9
- Решения NCERT для науки класса 9 Глава 1
- Решения NCERT для науки класса 9 Глава 2
- Решения NCERT для науки класса 9 Глава 3
- Решения NCERT для науки класса 9 Глава 4
- Решения NCERT для науки класса 9 Глава 5
- Решения NCERT для науки класса 9 Глава 6
- Решения NCERT для науки класса 9 Глава 7
- Решения NCERT для науки класса 9 Глава 8
- Решения NCERT для науки класса 9 Глава 9
- Решения NCERT для науки класса 9 Глава 10
- Решения NCERT для науки класса 9 Глава 12
- Решения NCERT для науки класса 9 Глава 11
- Решения NCERT для науки класса 9 Глава 13
- для науки класса 9 Глава 14
- Решения NCERT для класса 9 по науке Глава 15
Решения NCERT
- Решения NCERT для класса 10
- Решения NCERT для класса 10 по социальным наукам
- Решения NCERT для математики класса 10
- Решения NCERT для математики класса 10 Глава 1
- Решения NCERT для математики класса 10, глава 2
- Решения NCERT для математики класса 10, глава 3
- Решения NCERT для математики класса 10, глава 4
- Решения NCERT для математики класса 10, глава 5
- Решения NCERT для математики класса 10, глава 6
- Решения NCERT для математики класса 10 Глава 7
- Решения NCERT для математики класса 10 Глава 8
- Решения NCERT для математики класса 10 Глава 9
- Решения NCERT для математики класса 10 Глава 10
- Решения NCERT для математики класса 10 Глава 11
- Решения NCERT для математики класса 10 Глава 12
- Решения NCERT для математики класса 10 Глава ter 13
- Решения NCERT для математики класса 10 Глава 14
- Решения NCERT для математики класса 10 Глава 15
- Решения NCERT для науки класса 10
- Решения NCERT для класса 10 науки Глава 1
- Решения NCERT для класса 10 Наука, глава 2
- Решения NCERT для класса 10, глава 3
- Решения NCERT для класса 10, глава 4
- Решения NCERT для класса 10, глава 5
- Решения NCERT для класса 10, глава 6
- Решения NCERT для класса 10 Наука, глава 7
- Решения NCERT для класса 10, глава 8,
- Решения NCERT для класса 10, глава 9
- Решения NCERT для класса 10, глава 10
- Решения NCERT для класса 10, глава 11
- Решения NCERT для класса 10 Наука Глава 12
- Решения NCERT для класса 10 Наука Глава 13
- NCERT S Решения для класса 10 по науке Глава 14
- Решения NCERT для класса 10 по науке Глава 15
- Решения NCERT для класса 10 по науке Глава 16
- Программа NCERT
- NCERT
- Class 11 Commerce Syllabus
- Учебный план класса 11
- Учебный план бизнес-класса 11 класса
- Учебный план экономического факультета 11
- Учебный план по коммерции 12 класса
- Учебный план класса 12
- Учебный план бизнес-класса 12
- Класс 12 Образцы документов для коммерции
- Образцы документов для коммерции класса 11
- Образцы документов для коммерции класса 12
- TS Grewal Solutions
- TS Grewal Solutions Class 12 Accountancy
- TS Grewal Solutions Class 11 Accountancy
- Отчет о движении денежных средств 9 0004
- Что такое предпринимательство
- Защита потребителей
- Что такое основные средства
- Что такое баланс
- Что такое фискальный дефицит
- Что такое акции
- Разница между продажами и маркетингом
Учебный план
03
- ML Aggarwal Solutions Class 10 Maths
- ML Aggarwal Solutions Class 9 Maths
- ML Aggarwal Solutions Class 8 Maths
- ML Aggarwal Solutions Class 7 Maths Решения Математика класса 6
- Решения Селины для класса 8
- Решения Селины для класса 10
- Решение Селины для класса 9
- Решения Фрэнка для математики класса 10
- Франк Решения для математики 9 класса
9000 4
- ICSE Class 6
- ICSE Class 7
- ICSE Class 8
- ICSE Class 9
- ICSE Class 10
- ISC Class 11
- ISC Class 12
- 900 Экзамен по IAS
- Мок-тест IAS 2019 1
- Мок-тест IAS4
2
- Экзамен KPSC KAS
- Экзамен UPPSC PCS
- Экзамен MPSC
- Экзамен RPSC RAS
- TNPSC Group 1
- APPSC Group 1
- Экзамен BPSC
- Экзамен WPSC
- Экзамен JPSC
- Экзамен GPSC
- Ответный ключ UPSC 2019
- Коучинг IAS Бангалор
- Коучинг IAS Дели
- Коучинг IAS Ченнаи
- Коучинг IAS Хайдарабад
- Коучинг IAS Мумбаи
9000 JEE 9000 JEE 9000 Advanced
- Программа BYJU NEET
- NEET 2020
- NEET Eligibility
- NEET Eligibility
- NEET Eligibility 2020 Подготовка
- NEET Syllabus
- Support
- Разрешение жалоб
- Служба поддержки
- Центр поддержки
- GSEB
- GSEB Syllabus
GSEB
Образец статьи
003 GSEB Books
- MSBSHSE Syllabus
- MSBSHSE Учебники
- MSBSHSE Образцы статей
- MSBSHSE Вопросники
- 9000
- AP 2 Year Syllabus
- MP Board Syllabus
- MP Board Образцы документов
- MP Board Учебники
- Assam Board Syllabus
- Assam Board
- Assam Board
- Assam Board Документы
- Bihar Board Syllabus
- Bihar Board Учебники
- Bihar Board Question Papers
- Bihar Board Model Papers
- Odisha Board
- Odisha Board
- Odisha Board 9000
- ПСЕБ 9 0002
- PSEB Syllabus
- PSEB Учебники
- PSEB Вопросы и ответы
- RBSE
- Rajasthan Board Syllabus
- RBSE Учебники
- RBSE
- 000 RBSE
- 000 HPOSE
- 000
- 000 HPOSE
- 000
000 HPOSE
000 HPOSE
000
- 000 HPOSE
000 HPOSE
000
000 Контрольные документы
- JKBOSE Syllabus
- JKBOSE Образцы документов
- Экзаменационные образцы JKBOSE
- TN Board Syllabus
9000 Papers 9000 TN Board Syllabus
9000 Книги
- Программа обучения JAC
- Учебники JAC
.