Природный газ. Химический состав. Месторождения. Что такое природный газ определение


ГАЗ ПРИРОДНЫЙ - это... Что такое ГАЗ ПРИРОДНЫЙ?

 ГАЗ ПРИРОДНЫЙ NATURAL GAS

См. ГАЗ

Энциклопедия банковского дела и финансов. — М.: Федоров. Ч. Дж. Вулфел. 2000.

  • БЮРО ЭКСПОРТНОЙ АДМИНИСТРАЦИИ
  • ГАММА

Смотреть что такое "ГАЗ ПРИРОДНЫЙ" в других словарях:

  • ГАЗ ПРИРОДНЫЙ — ГАЗ ПРИРОДНЫЙ, см. ПРИРОДНЫЙ ГАЗ …   Научно-технический энциклопедический словарь

  • Газ природный — см. Природные газы …   Российская энциклопедия по охране труда

  • ГАЗ природный — одно из важнейших горючих ископаемых. Приблизительно на 90% состоит из углеводородов, главным образом метана, а также его ближайших гомологов: этана, пропана, бутана. Часто в месторождениях сопутствует нефти. Широко применяется как топливо на… …   Большая актуальная политическая энциклопедия

  • газ природный топливный сжатый для двигателей внутреннего сгорания — Горючая газообразная смесь углеводородов, с преобладающим содержанием метана, предназначенная в качестве альтернативного топлива для двигателей внутреннего сгорания транспортных средств (автомобилей, железнодорожного транспорта, речных судов и… …   Справочник технического переводчика

  • ГОСТ 31370-2008: Газ природный. Руководство по отбору проб — Терминология ГОСТ 31370 2008: Газ природный. Руководство по отбору проб оригинал документа: 3.2 баллон с подвижным поршнем (floating piston cylinder): Контейнер, в котором имеется движущийся поршень, отделяющий пробу от буферного газа. По обе… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 31371.1-2008: Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Часть 1. Руководство по проведению анализа — Терминология ГОСТ 31371.1 2008: Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Часть 1. Руководство по проведению анализа оригинал документа: 3.8 аттестованные эталонные газовые смеси (ЭС)… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 31369-2008: Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава — Терминология ГОСТ 31369 2008: Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава оригинал документа: 2.1 высшая теплота сгорания (superior calorific value): Количество… …   Словарь-справочник терминов нормативно-технической документации

  • РД 153-34.1-11.320-00: Газ природный. Методики выполнения измерений показателей качества газообразного топлива, поставляемого на тепловые электростанции — Терминология РД 153 34.1 11.320 00: Газ природный. Методики выполнения измерений показателей качества газообразного топлива, поставляемого на тепловые электростанции: 12 Абсолютная влажность природного газа Отношение массы влаги (водяного пара в… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 31371.2-2008: Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Часть 2. Характеристики измерительной системы и статистические оценки данных — Терминология ГОСТ 31371.2 2008: Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Часть 2. Характеристики измерительной системы и статистические оценки данных оригинал документа: 3.3 аттестованная… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 8.662-2009: Государственная система обеспечения единства измерений. Газ природный. Термодинамические свойства газовой фазы. Методы расчетного определения для целей транспортирования и распределения газа на основе фундаментального уравнения состояния AGA8 — Терминология ГОСТ Р 8.662 2009: Государственная система обеспечения единства измерений. Газ природный. Термодинамические свойства газовой фазы. Методы расчетного определения для целей транспортирования и распределения газа на основе… …   Словарь-справочник терминов нормативно-технической документации

banking_finance.academic.ru

Газ - это... Что такое Газ?

Газ (газообразное состояние) (от нидерл. gas, восходит к др.-греч. χάος) — агрегатное состояние вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения.

Газообразное состояние вещества в условиях, когда возможно существование устойчивой жидкой или твёрдой фазы этого же вещества, обычно называется паром.

Подобно жидкостям, газы обладают текучестью и сопротивляются деформации. В отличие от жидкостей, газы не имеют фиксированного объёма[1] и не образуют свободной поверхности, а стремятся заполнить весь доступный объём (например, сосуда).

Газообразное состояние — самое распространённое состояние вещества Вселенной (межзвёздное вещество, туманности, звёзды, атмосферы планет и т. д.). По химическим свойствам газы и их смеси весьма разнообразны — от малоактивных инертных газов до взрывчатых газовых смесей. К газам иногда[уточнить] относят не только системы из атомов и молекул, но и системы из других частиц — фотонов, электронов, броуновских частиц, а также плазму .

Некоторые частные случаи

  • Идеальный газ — газ, в котором взаимодействие между молекулами сводится к парным столкновениям, причём время межмолекулярного столкновения много меньше среднего времени между столкновениями. Идеальный газ является простейшим модельным объектом молекулярной физики.

Уравнение состояния идеального газа

  • Реальный газ — газ, в котором учитывается взаимодействие между молекулами. Уравнение состояния реального газа часто строится методами теории возмущений, при этом отличие от уравнения состояния идеального газа описывается набором вириальных коэффициентов.
  • Газ ван-дер-Ваальса — частный случай реального газа с достаточно простым модельным уравнением состояния. Важнейшим свойством газа ван-дер-Ваальса является существование в такой простой модели фазового перехода газ-жидкость.
  • Частично или полностью ионизованный газ называется плазмой.

Также газом часто кратко называют природный газ.

Этимология

Слово «газ» (нидерл. gas) было придумано в начале XVII века фламандским естествоиспытателем Я. Б. ван Гельмонтом для обозначения полученного им «мёртвого воздуха» (углекислого газа). Согласно Я. И. Перельману[2] , Гельмонт писал: «Такой пар я назвал газ, потому что он почти не отличается от хаоса древних».

Согласно В. Вундту[где?], звуковой строй этого слова целиком определяется смысловыми отголосками тех терминов и выражений, которые для учёного сознания того времени обозначали родственные идеи и образы. По мнению Вундта, прежде всего Гельмонт думал, что открытый им газ напоминает первобытный хаос. Кроме того, на Гельмонта действовало представление слова blas (ср. нем. blasen), которое он употреблял для обозначения холодного воздуха, исходящего из звёзд. Наконец, сюда же примешивалась мысль о слове geest — «дух», соответствующем латинскому spiritus, так как газ, под которым Гельмонт подразумевал, главным образом, углекислоту, по латыни передавался через spiritus silvestris («лесной дух»). Некоторые подозревают воздействие немецкого gasen — «кипеть».

В России для обозначения газов М. В. Ломоносов употреблял термин «упругие жидкости», но он не прижился.

Физические свойства

Индивидуальная газовая постоянная

Сжимаемость

Сжимаемость z — это отношение удельного объёма газа к удельному объёму идеального газа с такой же молярной массой. Как правило, это число чуть меньше единицы, при этом наиболее значительно отклоняется от неё в близи линии насыщения и для достаточно сложных органических газов, например, для метана при стандартных условиях [3].

Рассчитать коэффициент сжимаемости можно несколькими способами:

  • модифицированным методом NX19 мод;
  • модифицированным уравнением состояния GERG-91 мод;
  • уравнением состояния AGA8-92DC;
  • уравнением состояния ВНИЦ СМВ.

Теплоёмкость

Теплоёмкость газа сильно зависит от характера процесса, который с ним протекает. Наиболее часто используются изохорная теплоёмкость и изобарная ; для идеального газа .

Теплопроводность

Теплопроводность газов — явление направленного переноса тепловой энергии за счет столкновения частиц газа без переноса вещества.

Вязкость

В отличие от жидкостей, кинематическая вязкость газов с ростом температуры растёт, хотя для динамической вязкости зависимость менее выражена. Также вязкость обратно пропорциональна давлению.

Число Прандтля

Число Прандтля (отношение кинематической вязкости к температуропроводности) для газов обычно немного меньше единицы.

Проводимость

Газы — очень плохие проводники, но в ионизированном состоянии газ способен проводить электрический ток[4]. Проводимость газа зависит от напряжения нелинейно, поскольку степень ионизации изменяется по сложному закону. Основных способов ионизации газа два: термическая ионизация и ионизация электрическим ударом. Кроме того, существует так называемый самостоятельный электрический разряд (пример — молния).

Термическая ионизация

Термическая ионизация — придание атомам достаточной кинетической энергии для отрыва электрона от ядра и последующей ионизации вследствие повышения температуры газа и тепловое движение атомов газа, приводящее к столкновениям и превращением их в кинетическую энергию. Температуры, необходимые для ионизации газов, очень высоки (например, для водорода этот показатель составляет 6 000 К). Этот тип ионизации газов распространен преимущественно в природе.

Ионизация электрическим ударом

При низкой температуре газ также может проводить ток, если мощность его внутреннего электрического поля превышает некоторое пороговое значение. Пороговое значение в данном случае — достижение электроном под действием электрического поля достаточной кинетической энергии, необходимо для ионизации атома. Далее электроны снова разгоняются электрическим полем для ионизации и ионизируют два атома и т. д. — процесс становится цепным. В конечном итоге все свободные электроны достигнут позитивного электрода, позитивные ионы — негативного электрода. Данный тип ионизации распространен преимущественно в промышленности.

Интересные факты

  • Любое вещество на высоких температурах и в инертной среде является газом.

См. также

Примечания

  1. ↑ В планетарном масштабе газ в атмосфере удерживается гравитацией
  2. ↑ Перельман Я. И. Занимательная физика. — Москва: Наука, 1979. — Т. 2.
  3. ↑ ГОСТ 30319.1-96. Газ природный. Методы расчета физических свойств. Определение физических свойств природного газа, его компонентов и продуктов его переработки.
  4. ↑ Элементарный учебник физики / Под ред. Ландсберг Г. С.. — Изд. 8-е. — М.: Наука, 1972. — Т. 2. — С. 230—268.

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 13 мая 2011.

dic.academic.ru

Природный газ физические свойства. Что такое природный газ. Физические свойства природного газа

ОПРЕДЕЛЕНИЕ

Природный газ – это смесь газов (органической и неорганической природы), образовавшихся в недрах Земли при анаэробном разложении органических веществ. Полезное ископаемое.

Значительная составляющая природного газа – метан (70 — 98%), затем идут этан, пропан и бутан; среди газов неорганической природы в состав природного газа могут входить моно- и диоксид углерода, азот, инертные газы, водород, сероводород. Химический состав природного газа (объемное содержание каждого из газов) может меняться в зависимости от месторождения.

По мере того, как отложения угля снижались в нижние зоны, так называемая «пост-карбонизация» имела место при более высоком давлении и более высоких температурах. Природный газ был выпущен. На сегодняшних месторождениях природный газ рос через миграцию в непрозрачную, покрывая слои горных пород. Характерная структура и разнообразный состав молекул, в основном углерода, водорода, а также азота, указывают на образование природного газа из органического материала.

Природный газ встречается во всем мире в крупных осадочных бассейнах. В настоящее время известно, что безопасно извлекаемые запасы природного газа составляют более 60 лет, а дополнительные ресурсы природного газа приводят к статическому диапазону более 200 лет. В последние годы этот диапазон неуклонно возрастает по мере того, как было обнаружено больше природного газа, чем поощряется. Большая часть запасов хранится в регионах, которые имеют право на доставку в Европу.

Химические свойства природного газа

Поскольку природный газ представляет собой смесь газов, то невозможно указать, какие химические свойства для него характерны, т.к. для каждого вещества, входящего в его состав характерны свои, особые химические свойства. Однако, можно сказать, что для природного газа характерно горение, причем из всех веществ, входящих в состав природного газа на воздухе сгорают только углеводороды (метан, этан и т.д.) и монооксид углерода. Продукты реакции горения природного газа:

Добыча и добыча природного газа

Природный газ осаждается в пористых породах под непрозрачным наружным слоем. Чтобы найти земные хранилища, геофизические исследования, Такие, как сейсмические измерения, гравиметрические, геомагнитные и геоэлектрические методы. Это позволяет определить положение и тип слоев скалистых пород. Для изучения и разработки потенциальных месторождений природного газа глубокое бурение должно проводиться на суше или на шельфе.

Для компенсации непрерывного производства природного газа и колебаний спроса на природный газ природный газ «временно хранится» в хранилищах или пещерах. Газ является популярным источником энергии, особенно в наши дни, когда сырье становится все более дефицитным. Это делает все более важным познакомиться с двумя важными типами газа.

CH 4 + 2O 2 = CO 2 +2H 2 O;

2C 2 H 6 + 7O 2 = 4CO 2 + 6H 2 O;

2C 3 Н 8 + 10O 2 = 6CO 2 + 8H 2 O;

2CO + O 2 = 2CO 2 .

Физические свойства природного газа

Природный газ при нахождении в недра Земли может находится в газообразном состоянии (газовые залежи), в виде газовой «шапки» нефтегазовых месторождений, в растворенном виде в нефти или в воде. Чистый природный газ не обладает запахом и цветом. Температура возгорания природного газа 650С. Природный газ в 1,8 газ легче воздуха.

Как следует из названия, это горючий природный газ, который можно найти в глубоких земных слоях. Основным компонентом этого газа является метан. В зависимости от местоположения содержание метана может варьироваться. Плотность природного газа низкая и легче воздуха. Природный газ производится способами, подобными нефти. Терминал, повышенное давление и мертвые микроорганизмы являются тремя важными факторами для образования природного газа.

Сегодня природный газ в основном используется как производитель электроэнергии и тепла, а также поставщик топлива для автомобилей. В основном за рубежом эти три письма были замечены на заправочных станциях. Этот тип газа был сжижен путем охлаждения и сжатия, то есть под высоким давлением. Основными компонентами СНГ являются пропан и бутан. Сжиженный газ в основном используется для целей отопления и приготовления пищи, а также для источника топлива для оттомоторов в секторе автомобилей.

Получение природного газа

Природный газ добывают из недр Земли с помощью скважин. Газ выходит из недр вследствие того, что в пласте находится под давлением, многократно превышающем атмосферное. Таким образом, движущей силой является разность давлений в пласте и системе сбора.

Применение природного газа

Основное направление использования природного газа — в качестве горючего для отопления жилых домов, подогрева воды и приготовления пищи; в качестве топливо для машин, котельных, ТЭЦ и др. Также, природный газ используют в химической промышленности (сырьё для получения различных органических веществ).

То есть, он транс

thesaker.ru

Природный газ

 

В осадочной оболочке земной коры сосредоточены огромные залежи природного газа. Согласно теории биогенного (органического) происхождения нефти, они образуются в результате разложения останков живых организмов. Считается, что природный газ образуется в осадочной оболочке при больших температурах и давлениях, чем нефть. С этим согласуется тот факт, что месторождения газа часто расположены глубже, чем месторождения нефти.

Огромными запасами природного газа обладают Россия (Уренгойское месторождение), Иран, большинство стран Персидского залива, США, Канада. Из европейских стран стоит отметить Нидерланды, и иногда упоминают Норвегию, но её запасы невелики. Среди бывших республик Советского Союза большими запасами газа владеет Туркмения, а также Казахстан (Карачаганакское месторождение).

Во второй половине XX века в университете им. И. М. Губкина были открыты природные газогидраты (или гидраты метана). Позже выяснилось, что запасы природного газа в данном состоянии огромны. Они располагаются как под землёй, так и на незначительном углублении под морским дном.

Метан и некоторые другие углеводороды широко распространены в космосе. Метан — третий по распространённости газ вселенной, после водорода и гелия. В виде метанового льда он участвует в строении многих удалённых от солнца планет и астероидов, однако такие скопления, как правило, не относят к залежам природного газа, и они до сих пор не нашли практического применения. Значительное количество углеводородов присутствует в мантии Земли, однако они тоже не представляют интереса.

Существуют множество способов получения природного газа из других органических веществ, например отходов сельскохозяйственной деятельности, деревообрабатывающей и пищевой промышленности и т. д.

Природный газ находится в земле на глубине от 1000 метров до нескольких километров. Сверхглубокой скважиной недалеко от города Новый Уренгой получен приток газа с глубины более 6000 метров. В недрах газ находится в микроскопических пустотах (порах). Поры соединены между собой микроскопическими каналами — трещинами, по этим каналам газ поступает из пор с высоким давлением в поры с более низким давлением до тех пор, пока не окажется в скважине. Движение газа в пласте подчиняется определённым законам.

Газ добывают из недр земли с помощью скважин. Скважины стараются разместить равномерно по всей территории месторождения. Это делается для равномерного падения пластового давления в залежи. Иначе возможны перетоки газа между областями месторождения, а также преждевременное обводнение залежи.

Газ выходит из недр вследствие того, что в пласте находится под давлением, многократно превышающем атмосферное. Таким образом, движущей силой является разность давлений в пласте и системе сбора.

В 2005 году в России объём добычи природного газа составил 548 млрд м³. Внутренним потребителям было поставлено 307 млрд м³ через 220 региональных газораспределительных организаций. На территории России расположено 24 хранилища природного газа. Протяжённость магистральных газопроводов России составляет 155 тыс. км.

В 2009 году США впервые обогнали Россию не только по объему добытого газа (624 млрд м³ против 582,3 млрд м³), но и по объему добычи товарного газа, т.е. идущего на продажу контрагентам. Это объясняется ростом добычи сланцевого газа.

Химический состав природных газов

Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородных компонентов (СН4 – С22Н46), а также неуглеводородных компонентов (h3S, N2, CO, CO2, Ar, h3, He).

Природные газы газовых месторождений состоят в основном из метана с примесью более тяжёлых его гомологов: этана (С2Н6), пропана (С3Н8) и бутана (С4Н10). Иногда, в небольших количествах в газовых залежах, присутствуют пары пентана (С5Н12) и гексана (С6Н14). Все углеводороды (УВ), содержащиеся в залежах, начиная с этана, принято считать тяжёлыми. Они образуются только в процессе образования нефти при преобразовании рассеянного органического вещества (ОВ) на стадии диагенеза и, особенно, на стадии катагенеза, поэтому считаются специфическими «нефтяными» газами. Нефтяные газы могут проникать из залежей в вышележащие отложения в виде ретроградного раствора. Это явление используется в гидрогеохимии в качестве поискового признака на нефть. Доля тяжёлых углеводородных газов в газовых залежах колеблется от единиц до частей процента. Здесь их содержание зависит от состава исходного ОВ, степени его катагенетической превращенности, а также от длины пути миграции газов. Метан, в отличие от своих гомологов обладает наибольшей подвижностью и одновременно наименьшей растворимостью в воде и способностью к адсорбции, поэтому он опережает другие УВ газы при миграции. Метан обладает также значительной химической и термической устойчивостью, может иметь биохимическое, глубинное и радиохимическое происхождение. Поэтому он не является надёжным геохимическим индикатором или поисковым признаком наличия скоплений УВ.

Кроме углеводородных компонентов в природных газах содержатся, как правило, в виде примесей и другие газы: диоксид углерода, азот, сероводород, водород, гелий и аргон. Содержание азота и кислых газов (СО2 и Н2S), которые дают при растворении в воде слабые кислоты – угольную (Н2СО3) и сероводородную (Н2S), может составлять десятки процентов и более, а иногда и превышать содержание углеводородных газов.

В свободных газах газонефтяных месторождений, то есть в газовых шапках, могут присутствовать пары жидких УВ, более тяжелые, чем гексан, однако их примесь бывает незначительной. Газы газонефтяных месторождений называются попутными.

Газы, растворённые в нефти, называются нефтяными. Обычно они содержат от 30 до 80 % гомологов метана, а также азот, диоксид углерода, сероводород, гелий, аргон и другие компоненты. Поэтому содержание метана может составлять в нефтяных газах всего 20-30 % от состава газовой смеси. Состав углеводородной части газов тесно связан с составом нефти. Легкие метановые нефти содержат газы, состоящие на 20-30 % из тяжелых углеводородов. Тяжелые нефти наоборот, со-17 держат преимущественно метан. Соотношение метана и его гомологов меняется в нефтяных газах и с увеличением возраста пород. Газы древних отложений в среднем более обогащены тяжелыми УВ и азотом, чем молодые.

Различные нефти имеют газовый фактор (ГФ) до 550-600 м3/т. Установленные максимальные величины ГФ в нефтяных залежах в экстремальных термобарических условиях глубоких горизонтов достигают 700-750 м3/т. У большинства залежей он составляет от 30 до 100 м3/т. Обычно ГФ выше у залежей, содержащих сильно превращенную метановую нефть, по сравнению с залежами, содержащими мало превращённую нафтеновую нефть. Залежи нефти, не содержащие растворённых газов, встречаются редко на небольших глубинах. Газовый фактор используется в качестве показателя типа залежи. К нефтяным залежам относятся залежи с ГФ ниже 600 м3/т, к нефтегазоконденсатным – 600-900 м3/т и к газоконденсатным – свыше 900 м3/т.

Качество газа, как энергоносителя зависит от содержания метана. При содержании в газовой смеси этана и других углеводородных и неуглеводородных газов от нескольких процентов и более они становятся ценным химическим сырьём.

Углеводородные газы, состоящие в основном из метана, называются сухими. При незначительном содержании тяжёлых углеводородов они называются тощими, и газы со значительным содержанием тяжелых УВ называются жирными. Для характеристики УВ состава газов применяется понятие «коэффициент сухости», это - отношение процентного содержания метана к сумме его гомологов: СН4 /С2Н6 + высшие. Для этих целей используется и такой критерий как газовый фактор или его обратная величина – содержание стабильного конденсата в граммах или кубических сантиметрах в 1 м3 газа. Сухие газы содержат конденсата менее 10 г/м3, тощие – от 10 до 30 г/м3 и жирные газы – от 30 до 90 г/м3. Изменение коэффициента сухости газов является показателем направления их миграции.

Состав газов в залежах постоянно меняется за счёт действия многих факторов. Одним из них является растворимость индивидуальных газовых компонентов в воде и нефти. Например, растворимость метана в нефти в пять раз меньше, чем растворимость этана и в 21 раз меньше, чем пропана. Азот обладает растворимостью в 15 раз меньшей, чем метан. Поэтому газы в газовых шапках обогащены метаном и азотом. В то же время растворимость газообразных гомологов метана растет с увеличением в нефти легких фракций УВ. Содержание диоксида углерода в газах изменяется от долей процента до 10 и более процентов. Предполагается, что основным источником СО2 в природных газах является окисление углеводородов и отчасти ОВ. В ряде случаев СО2 имеет явно термокаталитическое, поствулканическое или метаморфическое происхождение. Примером может служить Межовское газовое месторождение, открытое в Западной Сибири. Оно находится в породах фундамента и состоит на 95 % из диоксида углерода. Результатом метаморфического разложения карбонатов объясняется большое содержание диоксида углерода в газах Астраханского газоконденсатного месторождения и его большое содержание в попутных газах газонефтяных залежей, залегающих в палеозойских отложениях на юге Западной Сибири. Газовые месторождения Сицилии, расположенные вблизи вулкана Этна, также обогащены диоксидом углерода. Азот, содержащийся в газовых и газоконденсатных залежах, также может иметь различное происхождение: атмосферное, биогенное и небольшое его количество – глубинное. В целом, содержание азота увеличивается с возрастом отложений. Оно колеблется от десятых долей процента до 50-70 %. Иногда высокие концентрации азота могут быть связаны с его хорошими миграционными свойствами. Например, доля азота в попутных газах возрастает в месторождениях, находящихся вдали от зон генерации УВ.

Аргон в залежах углеводородных газов может иметь атмосферное или радиогенное происхождение. Атмосферный или воздушный аргон попадает в газовые залежи посредством инфильтрационных вод. Доля аргона различного генезиса определяется по отношению разных изотопов. Аргон представлен тремя изотопами 40Ar, 38Ar и 36Ar. Изотоп 40Ar резко преобладает и имеет радиогенное происхождение. Он образуется из изотопа 40К. Высокие концентрации радиогенного аргона отмечаются для месторождений, расположенных в приразломных зонах. Происхождение аргона тесно связано с генезисом азота. Поэтому для определения в газах относительной доли азота разного происхождения пользуются отношением количества воздушного аргона к общему содержанию азота в исследуемом газе.

Сероводород чаще всего образуется в результате биологического восстановления сульфатов, растворенных в водах. Это подтверждается изучением изотопного состава серы. Однако, начиная с глубины 2-3 км, бактериальная генерация сероводорода невозможна. Здесь он образуется в результате термокаталитического преобразования сернистых компонентов нефтей и химического восстановления сульфатов. Часть сероводорода, возможно, имеет глубинное происхождение. Нередко сероводородом обогащены газы, находящиеся в толщах карбонатных пород, которые контактируют или чередуются с сульфатными породами. Концентрация сероводорода в природных газах составляет от 0,01 до 25 %, но иногда она достигает 100 %. В России большое количество сероводорода (20-24 %) содержится в газах Астраханского газоконденсатного месторождения. Сероводород является ценным компонентом природного газа и служит сырьем для производства серы.

Водород считался раньше редким компонентом в составе природных горючих газов. В последние десятилетия ХХ века появилось большое количество данных об обнаружении его различных концентраций в газовых залежах. Во многих месторождениях углеводородов Западного Предкавказья в составе газов присутствует до 3,5 % водорода.

Гелий, содержащийся в свободных и нефтяных газах, имеет радиогенное происхождение. Это легкий и миграционноспособный газ, поэтому его наибольшие концентрации отмечены в древних палеозойских отложениях. Таким образом, основными компонентами природных горючих газов являются: метан и его гомологи, диоксид углерода, азот и сероводород. Формирование газового состава залежей обусловлено диагенетическими и катагенетическими преобразованиями ОВ осадочных пород, которые идут параллельно с образованием залежей. Часть газов поступает в скопления из глубинных подкорковых зон Земли (N2, CO2, He, Аr, Ch5). Часть газов образуется при метаморфических процессах и окислительно-восстановительных процессах непосредственно в залежах.

Газы, добываемые из чисто газовых месторождений, содержат более 95% метана (таблица 1). Содержание метана на газоконденсатных месторождениях – 75-95% (таблица 2).

Таблица 1 – Химический состав газа газовых месторождений, об. %

Месторождение СН4 С2Н6 С3Н8 С4Н10 С5Н12 N2 СО2 Относит. плотность
Северо-Ставропольское 98,9 0,29 0,16 0,05 0,4 0,2 0,56
Уренгойское 98,84 0,1 0,03 0,02 0,01 1,7 0,3 0,56
Шатлыкское 95,58 1,99 0,35 0,1 0,05 0,78 1,15 0,58
Медвежье 98,78 0,1 0,02 1,0 0,1 0,56

Таблица 2 – Химический состав газа газоконденсатных месторождений, об. %

Месторождение СН4 С2Н6 С3Н8 С4Н10 С5Н12 N2 СО2 Относит. плотность
Вуктыльское 74,80 7,70 3,90 1,80 6,40 4,30 0,10 0,882
Оренбургское 84,00 5,00 1,60 0,70 1,80 3,5 0,5 0,680
Ямбургское 89,67 4,39 1,64 0,74 2,36 0,26 0,94 0,713
Уренгойское 88,28 5,29 2,42 1,00 2,52 0,48 0,01 0,707

Газы, добываемые вместе с нефтью (попутный газ) представляют собой смесь метана, этана, пропанобутановой фракции (сжиженного газа) и газового бензина. Содержание метана – около 35-85%. Содержание тяжёлых углеводородов в попутном газе 20-40%, реже – до 60% (таблица 3).

Таблица 3 – Химический состав газа нефтяных месторождений (попутного газа), об. %

Месторождение СН4 С2Н6 С3Н8 С4Н10 С5Н12 N2 СО2 Относит. плотность
Бавлинское 35,0 20,7 19,9 9,8 5,8 8,4 0,4 1,181
Ромашкинское 3838 19,1 17,8 8,0 6,8 8,0 1,5 1,125
Самотлорское 53,4 7,2 15,1 8,3 6,3 9,6 0,1 1,010
Узеньское 50,2 20,2 16,8 7,7 3,0 2,3 1,010

Тяжёлым нефтям свойственны сухие нефтяные газы (с преобладанием метана).



biofile.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.