26.11.2024

Что такое транзистор мосфет: MOSFET транзисторы. Устройство, принцип работы и разновидности.

Содержание

MOSFET транзисторы. Устройство, принцип работы и разновидности.

Полевой транзистор с изолированным затвором

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n — переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).

Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел — полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).

Еще одно, довольно распространенное название – МДП (металл – диэлектрик — полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Внешний вид одного из широко распространённых мосфетов — IRFZ44N.

MOSFET-транзистор IRFZ44N. Внешний вид.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Упрощённая модель полевого транзистора с изолированным затвором.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.

Упрощённая модель полевого транзистора с изолированным затвором
Упрощённая модель полевого транзистора с изолированным затвором

Основу МДП-транзистора составляет:

  • Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

  • Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому «+»), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

  • Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом (+) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.

Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звукаУпрощённая модель полевого транзистора с изолированным затвором.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому — напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

что это такое? Применение и проверка транзисторов

В статье вы узнаете про транзисторы MOSFET, что это, какие схемы включения бывают. Есть тип полевого транзистора, у которого вход электрически изолирован от основного тока несущего канала. И поэтому называется он полевой транзистор с изолированным затвором. Наиболее распространенным типом такого полевого транзистора, который используется во многих типах электронных схем, называется полевой транзистор металл-оксид-полупроводник на основе перехода или же МОП-транзистор (сокращенная аббревиатура этого элемента).

Что такое MOSFET транзисторы?

mosfet что это

МОП-транзистор представляет собой управляемый напряжением полевой транзистор, который отличается от полевого тем, что он имеет «металл-оксид» электрод затвора, который электрически изолирован от основного полупроводника п-каналом или каналом р-типа с очень тонким слоем изолирующего материала. Как правило, это диоксид кремния (а если проще, то стекло).

Этот ультратонкий изолированный металлический электрод затвора можно рассматривать как одну пластину конденсатора. Изоляция управляющего входа делает сопротивление МОП-транзистора чрезвычайно высоким, практически бесконечным.

Как и полевые, МОП-транзисторы имеют очень высокое входное сопротивление. Может легко накапливать большое количество статического заряда, который приводит к повреждению, если тщательно не защищены цепи.

Отличия МОСФЕТ от полевых транзисторов

mosfet транзисторы

Основное отличие от полевых в том, что МОП-транзисторы выпускаются в двух основных формах:

  1. Истощение – транзистор требует напряжения затвор-исток для переключения устройства в положение «Откл». Режим истощения МОП-транзистора эквивалентно «нормально закрытому» переключателю.
  2. Насыщение – транзистор требует напряжения затвор-исток, чтобы включить устройство. Режим усиления МОП-транзистора эквивалентно коммутатору с «нормально замкнутыми» контактами.

Графические обозначения транзисторов на схемах

Линия между соединениями стока и истока представляет собой полупроводниковый канал. Если на схеме, на которой изображены MOSFET транзисторы, она представлена жирной сплошной линией, то элемент работает в режиме истощения. Так как ток из стока может протекать с нулевым потенциалом затвора. Если линия канала показана пунктиром или ломанной, то транзистор работает в режиме насыщения, так как течет ток с нулевым потенциалом затвора. Направление стрелки указывает на проводящий канал, р-типа или полупроводниковый прибор п-типа. Причем отечественные транзисторы обозначаются точно так же, как и зарубежные аналоги.

Базовая структура MOSFET транзистора

тестер цифровой

Конструкция MOSFET (что это, рассказано в статье подробно) очень отличается от полевых. Оба типа транзисторов используют электрическое поле, создаваемое напряжением на затворе. Чтобы изменить поток носителей заряда, электронов для п-канала или отверстия для р-канала, через полупроводящий канал сток-исток. Электрод затвора помещен на вершине очень тонким изолирующим слоем, и есть пара небольших областей п-типа только под сток и исток электродов.

При помощи изолированного устройства затвора для МОП-транзистора никаких ограничений не применяется. Поэтому можно соединять с затвором полевого МОП-транзистора источник сигнала в любой полярности (положительный или отрицательной). Стоит отметить, что чаще встречаются импортные транзисторы, нежели их отечественные аналоги.

Это делает MOSFET устройства особенно ценными в качестве электронных переключателей или логических приборов, потому что без воздействия извне они, как правило, не проводят ток. И причина этому высокое входное сопротивление затвора. Следовательно, очень маленький или несущественный контроль необходим для МОП-транзисторов. Ведь они представляют собой устройства, управляемые извне напряжением.

Режим истощения МОП-транзистора

тестер транзисторов

Режим истощения встречается значительно реже, нежели режимы усиления без приложения напряжения смещения к затвору. То есть, канал проводит при нулевом напряжении на затворе, следовательно, прибор «нормально закрыт». На схемах используется сплошная линия для обозначения нормально замкнутого проводящего канала.

Для п-канального МОП-транзистора истощения, отрицательное напряжение затвор-исток отрицательное, будет истощать (отсюда название) проводящий канал своих свободных электронов транзистора. Аналогично для р-канального МОП-транзистора обеднение положительного напряжения затвор-исток, будет истощать канал своих свободных дырок, переведя устройство в непроводящее состояние. А вот прозвонка транзистора не зависит от того, какой режим работы.

Другими словами, для режима истощения п-канального МОП-транзистора:

  1. Положительное напряжение на стоке означает большее количество электронов и тока.
  2. Отрицательное напряжение означает меньше электронов и ток.

Обратные утверждения также верны и для транзисторов р-канала. Тогда режим истощения МОП-транзистора эквивалентно «нормально разомкнутому» переключателю.

N-канальный МОП-транзистор в режиме истощения

Режим истощения МОП-транзистора построен таким же образом, как и у полевых транзисторов. Причем канал сток-исток – это проводящий слой с электронами и дырками, который присутствует в п-типа или р-типа каналах. Такое легирование канала создает проводящий путь низкого сопротивления между стоком и источника с нулевым напряжением. Используя тестер транзисторов, можно провести замеры токов и напряжений на его выходе и входе.

Режим усиления МОП-транзистора

прозвонка транзистора

Более распространенным у транзисторов MOSFET является режим усиления, он обратный для режима истощения. Здесь проводящий канал слаболегированный или даже нелегированный, что делает его непроводящим. Это приводит к тому, что устройство в режиме покоя не проводит ток (когда напряжение смещения затвора равно нулю). На схемах для обозначения МОП-транзисторов такого типа используют ломаную линию, чтобы обозначить нормально открытый токоизолирующий канал.

Для повышения N-канального МОП-транзистора ток стока будет течь только тогда, когда напряжение на затворе прикладывается к затвору больше, чем пороговое напряжение. При подаче положительного напряжения на затвор к п-типа MOSFET (что это, режимы работы, схемы включения, описаны в статье) привлекает большее количество электронов в направлении оксидного слоя вокруг затвора, тем самым увеличивая усиление (отсюда название) толщины канала, позволяя свободнее протекать току.

Особенности режима усиления

отечественные транзисторы

Увеличение положительного напряжения затвора вызовет появление сопротивления в канале. Это не покажет тестер транзисторов, он может только проверить целостность переходов. Чтобы уменьшить дальнейший рост, нужно увеличить тока стока. Другими словами, для режима усиления п-канального МОП-транзистора:

  1. Положительный сигнал транзистор переводит в проводящий режим.
  2. Отсутствие сигнала или же его отрицательное значение переводит в непроводящий режим транзистор. Следовательно, в режиме усиления МОП-транзистор эквивалентен «нормально разомкнутому» переключателю.

Обратные утверждения справедливы для режимов усиления р-канальных МОП-транзисторов. При нулевом напряжении устройство в режиме «Выкл» и канал открыт. Применение напряжения отрицательного значения к затвору р-типа у MOSFET увеличивает проводимость каналов, переводя его режим «Вкл». Проверить можно, используя тестер (цифровой или стрелочный). Тогда для режима усиления р-канального МОП-транзистора:

  1. Положительный сигнал переводит транзистор «Выкл».
  2. Отрицательный включает транзистор в режим «Вкл».

Режим усиления N-канального МОП-транзистора

импортные транзисторы

В режиме усиления МОП-транзисторы имеют низкое входное сопротивление в проводящем режиме и чрезвычайно высокое в непроводящем. Также их бесконечно высокое входное сопротивление из-за их изолированного затвора. Режима усиления транзисторов используется в интегральных схемах для получения типа КМОП логических вентилей и коммутации силовых цепей в форме, как PMOS (P-канал) и NMOS (N-канал) входов. CMOS – это комплементарный МОП в том смысле, что это логическое устройство имеет как PMOS, так и NMOS в своей конструкции.

Усилитель на MOSFET

Так же, как и полевые, транзисторы MOSFET могут быть использованы для изготовления усилителей класса «А». Схемы усилителей с N-канальным МОП-транзистором общего исходного режима усиления, является наиболее популярной. На МОП-транзисторах усилители в режиме обеднения очень похожи на схемы с использованием полевых приборов, за исключением того, что MOSFET (что это, и какие типы бывают, рассмотрено выше) имеет более высокий входной импеданс.

полевые транзисторы mosfet

Этот импеданс управляется по входу смещающей резистивной цепью, образованной резисторами R1 и R2. Кроме того, выходной сигнал для общего источника усилителя на транзисторах MOSFET в режиме усиления инвертируется, потому что, когда входное напряжение низкое, то переход транзистора разомкнут. Это можно проверить, имея в арсенале только лишь тестер (цифровой или даже стрелочный). При высоком входном напряжении транзистор во включенном режиме, на выходе напряжение крайне низкое.

MOSFET ТРАНЗИСТОРЫ ПРОТИВ IGBT

Когда дело доходит до импульсных преобразователей, оба типа транзисторов имеют свои преимущества и недостатки. Но какой из них лучше для данного устройства? В этой статье сравним MOSFET с модулями IGBT чтобы понять, что и где лучше ставить. 

Предполагается что в схемах с низким напряжением, низким током, но высокой частотой переключения, предпочтительно использовать полевые транзисторы (MOSFET), а в схемах с высоким напряжением, высоким током, но с низкой частотой — лучше IGBT. Но достаточно ли такой общей классификации? У каждого есть свои дополнительные предпочтения в этом отношении и правда в том, что не существует общего, жесткого стандарта, который позволял бы оценивать параметры данного элемента с точки зрения его использования в импульсных преобразователях. Все зависит от конкретного применения и широкого спектра факторов, таких как частота переключения, размер, стоимость и т. д. Поэтому, вместо того чтобы пытаться решить какой элемент лучше, нужно внимательно изучить различия между этими деталями. 

Кратко о MOSFET

MOSFET — это управляемый переключатель с тремя контактами (затвор, сток и исток). Сигнал затвора (управления) подается между затвором и истоком, а контактами переключения являются сток и исток. Сам затвор выполнен из металла и отделен от истока оксидом металла в качестве диэлектрика. Это позволяет снизить энергопотребление и делает этот транзистор отличным выбором для использования в качестве электронного переключателя или усилителя в схеме с общим истоком. 

Для правильной работы МОП-транзисторы должны поддерживать положительный температурный коэффициент. Потери во включенном состоянии малы и теоретически сопротивление транзистора в этом состоянии не ограничено — может быть близко к нулю. Кроме того, поскольку МОП-транзисторы могут работать на высоких частотах, они могут работать в устройствах с быстрым переключением и с низкими потерями на переключение.

Существует много различных типов МОП-транзисторов, но наиболее сопоставимыми с IGBT являются мощные MOSFET. Они специально разработаны для работы со значительными уровнями мощности и используются чаще всего только во включенном или выключенном состояниях, что делает их наиболее используемым ключом для низковольтных схем. По сравнению с IGBT, мощные полевые МОП-транзисторы имеют преимущества — более высокую скорость коммутации и более высокую эффективность при работе при низких напряжениях. Более того, такая схема может выдерживать высокое напряжение блокировки и поддерживать высокий ток. Это связано с тем что большинство мощных МОП-структур являются вертикальными (а не плоскими). Номинальное напряжение является прямой функцией легирования и толщины эпитаксиального слоя с примесью N-типа, а ток зависит от ширины канала (чем шире канал, тем выше ток).

Кратко о IGBT

Модуль IGBT также является полностью управляемым коммутатором с тремя контактами (затвор, коллектор и эмиттер). Его управляющий сигнал подается между затвором и эмиттером и нагрузкой между коллектором и эмиттером. 

IGBT сочетает в себе простые характеристики управления затвором, как в транзисторе MOSFET, с сильноточным характером биполярного транзистора с низким напряжением насыщения. Это достигается с помощью изолированного полевого транзистора для управляющего входа и биполярного силового транзистора в качестве сильноточного ключа. 

Модуль IGBT специально разработан для быстрого включения и выключения. Фактически частота повторения импульсов достигает УЗ диапазона. Эта уникальная способность делает IGBT часто используемыми в усилителях класса D для синтеза сложных сигналов с широтно-импульсной модуляцией и фильтрами нижних частот. Они также используются для генерации импульсов большой мощности в таких областях, как физика элементарных частиц и плазма, а также играют важную роль в современных устройствах — электромобили, электровелосипеды, поезда, холодильники с регулируемой скоростью вращения компрессора, кондиционеры и многое другое. 

Сравнение IGBT с MOSFET

Структуры обоих транзисторов очень похожи друг на друга. Что касается протекания тока, важным отличием является добавление слоя подложки P-типа под слой подложки N-типа в структуре модуля IGBT. В этом дополнительном слое дырки вводятся в слой с высоким сопротивлением N-типа, создавая избыток носителей. Это увеличение проводимости в N-слое помогает уменьшить общее напряжение во включенном состоянии в IGBT-модуле. К сожалению, это также блокирует поток электроэнергии в обратном направлении. Поэтому в схему добавлен специальный диод, который расположен параллельно с IGBT чтобы проводить ток в противоположном направлении. 

MOSFET может переключаться на более высоких частотах, однако есть два ограничения: время переноса электронов в области дрейфа и время, необходимое для зарядки / разрядки входного затвора и его емкости. Тем не менее эти транзисторы, как правило, достигают более высокой частоты переключения, чем модули IGBT.

Подведем итог

Многие из вышеупомянутых фактов касаются исторической основы обоих устройств. Достижения и технологические прорывы в разработке нового оборудования, а также использование новых материалов, таких как карбид кремния (SiC), привели к значительному улучшению производительности этих радиодеталей за последние годы. 

 

МОП-транзистор: 

  • Высокая частота переключения.
  • Лучшие динамические параметры и более низкое энергопотребление драйвера. 
  • Более низкая емкость затвора.
  • Более низкое термосопротивление, которое приводит к лучшему рассеиванию мощности.
  • Более короткое время нарастания и спада, что означает способность работать на более высоких частотах.

IGBT модуль: 

  • Улучшенная технология производства, которая приводит к снижению затрат.
  • Лучшая устойчивость к перегрузкам.
  • Улучшенная способность распараллеливания схемы.
  • Более быстрое и плавное включение и выключение.
  • Снижение потерь при включении и при переключении.
  • Снижение входной мощности.

В любом случае модули MOSFET и IGBT быстро заменяют большинство старых полупроводниковых и механических устройств, используемых для управления током. Силовые устройства на основе SiC демонстрируют такие преимущества как меньшие потери, меньшие размеры и более высокая эффективность. Подобные инновации будут продолжать расширять пределы использования MOSFET и IGBT транзисторов для схем с более высоким напряжением и большей мощностью.

   Форум по теории электроники

   Обсудить статью MOSFET ТРАНЗИСТОРЫ ПРОТИВ IGBT

что это такое? Конструктивно-технологические особенности

В этой статье будет рассказано о таком элементе, как мосфет. Что это, какими свойствами обладает, для чего используется в современной электронике, будет рассказано ниже. Вы можете встретить два типа силовых транзисторов – MOSFET и IGBT. Они применяются в импульсных преобразователях высокой мощности – инверторах, блоках питания. Стоит рассмотреть все особенности этих элементов.

Основные сведения

мосфет что это

Нужно отметить, что IGBT и мосфет транзисторы способны выдать очень большую мощность в нагрузку. При всем при этом устройство окажется очень маленьким по габаритам. Коэффициент полезного действия превышает у транзисторов значения в 95%. У мосфет и IGBT имеется одна общая черта – у них затворы изолированные, следствие этого – похожие параметры управления. Температурный коэффициент отрицательный у этих устройств, что позволяет делать такие транзисторы, которые будут устойчивы к воздействию короткого замыкания. На сегодняшний день мосфеты с нормированным значением времени перегрузки производятся почти всеми фирмами.

Драйверы для управления

Так как нет тока в цепи управления, в статическом режиме можно не использовать стандартные схемы. Разумнее применить специальный драйвер – интегральную схему. Многие фирмы выпускают устройства, которые позволяют управлять одиночными силовыми транзисторами, а также мостами и полумостами (трехфазными и двухфазными). Они могут выполнить различные вспомогательные функции – защитить от токовой перегрузки или КЗ, а также от большого падения напряжения в цепи управления мосфет. Что это за цепь, будет рассказано более детально ниже. Стоит заметить, что падение напряжения в цепи управления силовым транзистором – это очень опасное явление. Мощные мосфеты могут перейти в другой режим работы (линейный), вследствие чего выйдут из строя. Кристалл перегревается и транзистор сгорает.

Режим КЗ

мосфет транзисторы

Главная вспомогательная функция драйвера – это защита от токовых перегрузок. Необходимо внимательно посмотреть на работу силового транзистора в одном из режимов – короткого замыкания. Перегрузка по току может возникнуть по любой причине, но наиболее частые – замыкание в нагрузке либо же на корпус. Поэтому следует правильно осуществить управление мосфетами.

Перегрузка происходит из-за определенных особенностей схемы. Возможен переходный процесс либо возникновение тока обратного восстановления полупроводникового диода одного из плеч транзистора. Устранение таких перегрузок происходит схемотехническим методом. Используются цепи формирования траектории (снабберы), осуществляется подбор резистора в затворе, изолируется цепь управления от шины высокого тока и напряжения.

Как включается транзистор при КЗ в нагрузке

Когда в нагрузке происходит КЗ, в коллекторной цепи ток ограничивается определенным напряжением в затворе, а также крутизной характеристик самого транзистора. В цепи питания при этом имеется некоторая емкость, поэтому внутреннее сопротивление самого источника никак не может оказать свое влияние на ток короткого замыкания. Как только происходит включение, в транзисторе плавно начинает происходить наращивание тока благодаря тому, что имеется паразитная индуктивность в коллекторной цепи. Этот же факт является причиной того, что имеется некий провал напряжения.

Ложные срабатывания

как проверить мосфет

После того как переходный процесс завершится, к силовому транзистору будет приложено напряжение питания полностью. А это приведет к тому, что большая мощность будет рассеиваться в полупроводниковом кристалле. Отсюда можно сделать вывод о том, что режим короткого замыкания обязательно необходимо прерывать спустя определенный промежуток времени. Его должно хватить, чтобы исключить ложное срабатывание. Как правило, значение времени лежит в интервале 1…10 мкс. Характеристики транзистора должны быть такими, чтобы он без труда выдерживал эту перегрузку.

КЗ нагрузки при включенном транзисторе

канальный мосфет

Аналогично со случаем, рассмотренным выше, ток ограничен характеристиками самого транзистора. Он нарастает со скоростью, которая определяется индуктивностью (паразитной). Перед тем как этот ток дойдет до постоянного установившегося значения, начнется возрастание напряжения коллектора. На затворе происходит увеличение напряжения благодаря эффекту Миллера.

Ток на коллекторе увеличивается, причем он может значительно превышать установившееся значение. Именно для этого режима предусмотрено не только то, что отключается канальный мосфет, но и заложена возможность ограничения напряжения.

От напряжения, приложенного к затвору транзистора, зависит напрямую установившийся ток короткого замыкания. Но при снижении напряжения на затворе полупроводникового элемента происходит довольно интересная картина. Напряжение насыщения увеличивается и, как следствие, увеличиваются потери проводимости. Устойчивость транзистора к короткому замыканию тесным образом связана с крутизной его характеристик.

Ток КЗ и коэффициент усиления

управление мосфетами

Чем выше КУ у мосфетов по току, тем ниже напряжение насыщения. Также они способны выдерживать перегрузки небольшое время. С другой же стороны, полупроводники, которые более устойчивы к воздействию короткого замыкания, обладают очень высоким напряжением насыщения. Потери у них тоже очень существенные.

Большее максимально допустимое значение тока короткого замыкания имеет пионер мосфет, нежели простой биполярный транзистор. Как правило, он в десять раз превышает номинальное значение тока (при условии, что на затворе допустимое напряжение). Большая часть производителей (европейских и азиатских) выпускает транзисторы, которые выдерживают такие нагрузки, причем не повреждаются.

Драйвер защиты от перегрузки верхнего плеча

Существуют различные методы отключения элементов при перегрузке. При помощи драйверов различных производителей можно реализовывать любые защитные функции, причем максимально эффективно. Если возникла перегрузка, необходимо снизить напряжение затвора. В этом случае распознавание аварийного режима увеличивается по времени.

Благодаря этому получается исключить ложные срабатывания схемы защиты. Вот как проверить мосфет: попробуйте изменить значение емкости конденсатора. Если изменится время реакции на КЗ, то вся схема работает правильно. В схеме используется несколько элементов, у которых определенные обязанности. Например, подключенный к выводу драйвера, “ERR”-конденсатор позволяет определить время анализа перегрузок.

Аварийный режим работы

пионер мосфет

На этот временной промежуток производится включение схемы стабилизации тока в цепи коллектора. Благодаря этому происходит снижение напряжения на затворе полупроводникового элемента. В том случае, если не происходит прекращение перегрузки, транзистор отключается спустя 10 мкс. Защита отключается после того, как будет снят со входа сигнал. Благодаря этому осуществляется триггерная схема защиты.

Когда она применяется, необходимо уделять свое внимание промежутку времени, через которое происходит повторное включение транзистора мосфет. Что это за включение и какие у него особенности? Обратите внимание на то, что это время должно быть больше, чем тепловая постоянная (временная) полупроводникового кристалла, на основе которого изготовлен транзистор.

Недостатки схемы включения

мосфет на плате

В схеме применяются резисторы, у которых высокая мощность, но у них очень высокая индуктивность (паразитная, за счет использования некоторых материалов и технологий). А для идеального функционирования схемы нужно, чтобы емкость была близка нулю. Резисторы, применяемые для измерений импульсного тока, должны соответствовать вышеизложенному условию. Ко всему прочему резисторы теряют огромную мощность. А это отражается на эффективности всей схемы драйвера верхнего плеча.

Но существуют схемы включения, которые снижают потери мощности. Напряжение насыщения в любом случае зависит от коллекторного тока. Мосфет (что это, рассмотрено в статье) данную зависимость демонстрирует, можно сказать, линейную по причине того, что от тока на стоке транзистора не зависит сопротивление канала (активного). Но у мощных IGBT транзисторов эта зависимость не линейна, но можно без труда выбрать напряжение, которое будет соответствовать необходимому току защиты.

Драйвер трехфазного моста

аналоги мосфетов

В таких схемах также применяется резистор для измерений значения тока. Ток защиты определяется при помощи делителя напряжения. Широкую популярность получили драйверы IR2130, которые обеспечивают стабильную работу схемы при напряжении до 600 Вольт. Схема включает в себя транзистор полевого типа, у которого открыт сток (он служит для индикации наличия неисправностей). Устанавливается мосфет на плате при помощи жестких перемычек в качественной изоляции по этим причинам. В нем имеется усилитель, который вырабатывает определенный контрольный и обратной связи сигналы. При помощи драйвера происходит формирование задержки по времени между включениями транзисторов нижнего и верхнего плеч, чтобы исключить появление сквозного тока.

Как правило, в зависимости от модификации, время составляет 0,2…2 мкс. В драйвере IR2130, который используется для реализации схемы защиты, отсутствует функция ограничения максимального значения напряжения на затворе в момент короткого замыкания. При разработке схемы трехфазного плеча необходимо помнить о том, что отключение моста происходит спустя 1 мкс после начала короткого замыкания. Следовательно, ток (в особенности при наличии активной нагрузки) превышает значение, которое было рассчитано. Чтобы сбросить режим защиты и вернуться к рабочему, следует произвести отключение питания драйвера либо же осуществить подачу на его входы запирающего напряжения.

Драйверы нижнего плеча

мощные мосфеты

Чтобы произвести управление транзисторами мосфет нижнего плеча, существуют качественные микросхемы фирмы Motorola, например, МС33153. Этот драйвер особенный, так как его можно с успехом использовать для двух типов защиты (по напряжению и току). Также имеется функция, которая разделяет два режима – перегрузки и короткого замыкания. Имеется возможность подачи некоторого напряжения (отрицательного для управления). Это полезно для случаев, когда необходимо производить управление модулями с высокой мощностью и достаточно большим значением заряда затвора. Отключается режим защиты IGBT (это ближайшие аналоги мосфетов) после того, как напряжение питания падает ниже отметки в 11 Вольт.

Что такое мосфеты | Te4h

Мосфет (MOSFET) — это полупроводниковый полевой транзистор с оксидом металла (metal oxide semiconductor field effect transistor). В мире ПК эти электрические компоненты находятся на материнской плате настольного компьютера или ноутбука, а также на блоке питания.

В этой небольшой статье мы попытаемся разобраться что такое мосфеты (mosfet), а также выясним где они используются.

Содержание статьи:

Мосфеты на материнской плате

На ПК мосфеты образуют VRM (модуль регулятора напряжения), который контролирует, сколько напряжения получают комплектующие на материнской плате, такие как процессор или видеокарта.

Процессоры и видеокарты, имеют строгое рабочее напряжение, и VRM не допускает его превышения. Мосфеты важны для работы VRM и влияют на количество тепла, выделяемого VRM во время работы. Мосфеты могут довольно сильно нагреется, если вы используете мощную видеокарту. Радиатор материнской платы охлаждает мосфеты и, следовательно, VRM. Помимо обеспечения стабильности и безопасности всей системы в целом, охлаждение мосфетов важно для любого разгона.

Как они работают

Мосфеты напоминают выключатели, которые включаются и выключаются по сигналу интегральной микросхемы (ИС), называемой ШИМ-чипом/контроллером. Мосфеты быстро включаются и выключаются, что позволяет пропускать большой ток короткими очередями. Это, наряду с другими частями VRM, управляет напряжением, посылаемым на другие комплектующие.

Для охлаждения мосфетов во время экстремальных разгонов, энтузиасты часто используют водяное охлаждение.

Мосфеты и блоки питания

Мосфеты делают то же самое и в блоках питания. Они используются в преобразователях и цепях регуляторов для коммутации в импульсных источниках питания (SMPS).

В SMPS энергия извлекается из розетки перед ее разбиением на небольшие пакеты, а мосфеты работают переключателями. Затем эти пакеты передаются через конденсаторы, индукторы и другие электрические компоненты, способные накапливать энергию. В конце концов, пакеты сливаются в один для получения стабильного электропитания.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Полевой транзистор MOSFET | Уголок радиолюбителя

Транзистор является полупроводниковым электронным компонентом. Мы относим его к активным элементам схемы, поскольку он  позволяет преобразовывать  электрические сигналы (нелинейно).

Полевой транзистор или MOSFET ( Metal-Oxide Semiconductor Field-Effect Transistor) — полевый транзистор со структурой металл-оксид-полупроводник. Поэтому его часто еще называют просто МОП транзистор.

Производимые по этой технологий транзисторы состоят из трех слоев:

  • Первый слой  — это пластина, вырезанная из однородного кристалла кремния  или из кремния с примесью германия.
  • Второй по порядку слой — напыление очень тонкой прослойки диэлектрика (изолятора) из диоксида кремния или оксида металла (оксиды алюминия или циркония). Толщина этого слоя составляет, в зависимости от технологии исполнения, около 10 нм, а  в лучшем варианте толщина этого слоя может иметь около 1,2 нм. Для сравнения: 5 атомов кремния, расположенных друг над другом вплотную как раз составляют толщину, близкую к 1,2 нм.
  • Третий слой – это слой состоит из хорошо проводящего металла. Чаще всего для этой цели используют золото.

Конструкция такого транзистора схематично представлена ниже:

Следует отметить, что полевые транзисторы бывают двух типов: N-типа и  P-типа, почти так же, как и в случае с биполярными транзисторами, которые производятся в вариантах PNP и NPN.

Среди полевых транзисторов  гораздо чаще встречается N-тип. Кроме того, существуют полевые транзисторы:

  • с обедненным каналом, то есть такие, которые пропускают через себя слабый ток   при отсутствии напряжении на  затворе, и чтобы полностью его запереть необходимо подать на затвор обратное смещение  в пару вольт;
  • с обогащенным каналом – это такой вид полевых транзисторов, которые  при  отсутствии напряжения на затворе  не проводят ток, а проводят его лишь тогда, когда напряжение, приложенное к затвору, превышает напряжение истока.

 

Большим преимуществом полевых транзисторов   является то, что они управляются напряжением, в отличие от биполярных транзисторов, которые управляются током.

Легче понять принцип их действия полевого транзистора на примере гидравлического крана.

 

Чтобы управлять потоком жидкости под высоким давлением в большой трубе, требуется мало усилий, чтобы открыть или закрыть кран. Другими словами, при небольшом объеме работы, мы получаем большой эффект. Небольшая сила, которую мы прикладываем к ручке крана управляет намного большей силой воды, которая давит на клапан.

Благодаря этому свойству полевых транзисторов, мы можем управлять токами и напряжениями, которые намного выше, чем те, которые выдает нам, например, микроконтроллер.

 Как уже было отмечено ранее, обычный MOSFET, как правило, не проводит ток на пути источник – сток. Чтобы перевести такой транзистор состояние проводимости необходимо подать напряжение между истоком и затвором так, как указано на рисунке ниже.

На следующем рисунке приведена вольт-амперная характеристика транзистора IRF540.

На графике видно, что транзистор начинает проводить тогда, когда напряжение между затвором и истоком приближается к 4В. Однако для полного открытия нужно почти 7 вольт. Это гораздо больше, чем может выдать   микроконтроллер на выходе.

В некоторых случаях может быть достаточным ток  на уровне 15 мА и напряжением 5В. Но что делать, если это слишком мало? Есть два выхода.

  1. Можно применить специальные МОП-транзисторы с пониженным напряжением затвор – исток, например, BUZ10L.
  2. Как вариант можно использовать дополнительный усилитель для повышения управляющего напряжения.

Независимо от сферы применения, каждый полевой транзистор имеет несколько ключевых параметров, а именно:

  • Допустимое напряжение сток-исток: UDSmax
  • Максимальный ток стока: IDmax
  • Пороговое напряжение открытия: UGSth
  • Сопротивление канала в открытом состоянии: RDSon 

Во многих случаях ключевым параметром является RDSon, поскольку косвенно указывает нам на потерю мощности, которая крайне нежелательна.

Для примера возьмем транзистор в корпусе ТО-220 с сопротивлением RDSon = 0,05 Ом и протекающий через этот транзистор ток в  4А.

 

Давайте посчитаем потери мощности:

  • UDS=0,05Ом х 4A=0,2В
  • P=0,2В х 4A=0,8Вт

Мощность потерь, которую способен рассеивать транзистор в корпусе ТО-220 составляет чуть более 1 Вт, так что в этом случае можно обойтись без радиатора. Однако, уже для тока 10А потери составят 5Вт, так что без радиатора никак не обойтись.

Следовательно, чем меньше RDSon, тем лучше. Поэтому при выборе MOSFET транзистора для конкретного применения следует всегда принимать во внимание этот параметр.

На практике с увеличением допустимого напряжения UDSmax растет сопротивление исток-сток. По этой причине не следует выбирать транзисторы с большим, чем это требуется UDSmax.

Полевые транзисторы с изолированным затвором (MOSFET)

Добавлено 4 ноября 2016 в 22:00

Сохранить или поделиться

Полевой транзистор с изолированным затвором (IGFET, insulated-gate field-effect transistor), также известный, как полевой транзистор со структурой металл-оксид-полупроводник (MOSFET), является разновидностью полевого транзистора. В настоящее время большинство транзисторов MOSFET типа служат в качестве компонентов цифровых интегральных микросхем. Но когда речь идет о дискретных элементах, биполярные транзисторы более многочисленны по сравнению с MOSFET транзисторами. Количество MOSFET транзисторов в интегральной схеме может приближаться к сотням миллионов. Размеры отдельных MOSFET устройств составляют порядка микрона и уменьшаются каждые 18 месяцев. Гораздо более крупные MOSFET транзисторы способны коммутировать токи до 100 ампер при низких напряжениях; а некоторые работают с напряжениями почти 1000 вольт при низких токах. Эти устройства могут занимать до 1 квадратного сантиметра кремния. MOSFET транзисторы нашли более широкое применение по сравнению с обычными полевыми транзисторами. Тем не менее, мощные MOSFET устройства не так широко используются по сравнению с биполярными транзисторами.

MOSFET транзистор обладает выводами истока, затвора и стока, как и простой полевой транзистор. Тем не менее, вывод затвора не подключается напрямую к кремнию, по сравнению с затвором в полевом транзисторе. Затвор в MOSFET транзисторе представляет собой металлический слой или слой поликристаллического кремния поверх изолятора из диоксида кремния. Затвор похож на конденсатор со структурой металл-оксид-полупроводник (MOS, МОП), показанный на рисунке ниже. При заряде пластины конденсатора принимают полярность соответствующих выводов батареи. Нижняя пластина – это кремний P-типа, электроны из которой выталкиваются отрицательным (-) выводом батареи в сторону оксида и притягиваются положительной (+) верхней пластиной. Этот избыток электронов вблизи оксида создает инверсный канал под слоем оксида (инверсный означает, что проводимость в этой области определяется концентрацией неосновных носителей заряда полупроводника). Этот канал также сопровождается обедненной областью, изолирующей канал от остальной подложки кремния.

N-канальный МОП конденсатор: (a) незаряженный, (b) заряженныйN-канальный МОП конденсатор: (a) незаряженный, (b) заряженный

На рисунке ниже (a) МОП конденсатор помещается между парой диффузионных областей N-типа в подложке P-типа. При отсутствии заряда в конденсаторе, т.е. без смещения на затворе, диффузионные области N-типа, исток и сток остаются изолированными друг от друга.

N-канальный MOSFET транзистор (работающий в режиме обогащения): (a) смещение на затворе 0 вольт, (b) положительное смещение на затвореN-канальный MOSFET транзистор (работающий в режиме обогащения): (a) смещение на затворе 0 вольт, (b) положительное смещение на затворе

Положительное смещение, приложенное к затвору, заряжает конденсатор (затвор). Затвор над слоем оксида приобретает положительный заряд от батареи смещения затвора. Подложка P-типа под затвором приобретает отрицательный заряд. Под слоем оксида затвора формируется инверсная область с избытком электронов. Эта область теперь соединяет области N-типа истока и стока, образуя непрерывную N-область от истока к стоку. Таким образом, MOSFET, как и обычный полевой транзистор, является однополярным устройством. За проводимость отвечает один тип носителей заряда. Это пример N-канального MOSFET транзистора. При прикладывании напряжения между истоком и стоком возможно проведение большого тока между этими выводами. Практическая схема будет содержать нагрузку, включенную последовательно с батареей стока, показанной на рисунке выше (b).

MOSFET транзистор, показанный на рисунке выше, известен как MOSFET транзистор, работающий в режиме обогащения. Непроводящий, выключенный канал включается путем обогащения канала под затвором при прикладывании смещения. Это наиболее распространенный тип устройств. Другой тип MOSFET транзисторов здесь не описывается. Для подробной информации об устройстве, работающем в режиме обеднения, смотрите главу 6 о полевых транзисторах с изолированным затвором.

MOSFET, как и простой полевой транзистор, является устройством, управляемым напряжением. Входное напряжение на затворе управляет протеканием тока от истока к стоку. Затвор не проводит непрерывный ток. Хотя затвор и проводит кратковременно ток при зарядке емкости затвора.

Поперечное сечение N-канального дискретного MOSFET транзистора показано на рисунке ниже (a). Дискретные устройства обычно оптимизированы для коммутации больших мощностей. N+ показывает, что исток и сток сильно являются сильно легированными областями N-типа. Это сводит к минимуму резистивные потери в пути протекания большого тока от истока к стоку. N показывает слабое легирование. Область P-типа под затвором, между истоком и стоком, может быть инвертирована с помощью прикладывания положительного напряжения смещения. Профиль распределения легирующей примеси может представлять собой змеевидный контур на поперечном сечении кремниевого кристалла. Это значительно увеличивает площадь и, соответственно, величину тока, с которым может работать прибор.

N-канальный MOSFET транзистор (работающий в режиме обогащения): (a) поперечное сечение, (b) условное графическое обозначениеN-канальный MOSFET транзистор (работающий в режиме обогащения): (a) поперечное сечение, (b) условное графическое обозначение

Условное графическое обозначение MOSFET транзистора на рисунке выше (b) показывает «плавающий» затвор, указывая на отсутствие прямого подключения к кремниевой подложке. Пунктирная линия от истока к стоку показывает, что это устройство выключено, не проводит ток, с нулевым смещением на затворе. Нормально «выключенный» MOSFET транзистор является устройством, работающим в режиме обогащения. «Указывающая» (Pointing) стрелка подложки соответствует P-типу материала, которая указывает на канал N-типа, «не указывающий» (Non-pointing) конец. Это обозначение N-канального MOSFET транзистора. Для P-канального устройства стрелка указывает в противоположном направлении (не показано). MOSFET транзисторы – это четырехвыводные устройства: исток, затвор, сток и подложка. В дискретном MOSFET транзисторе подложка подключена к истоку, что делает корпус устройства трехвыводным. У MOSFET транзисторов, которые являются частью интегральной схемы, подложка общая для всех устройств, если только они намеренно не изолированы. Это общее соединение может быть выведено из кристалла для соединения с землей или источником напряжения смещения.

N-канальный «V-MOS» транзистор: (a) поперечное сечение, (b) условное графическое обозначениеN-канальный «V-MOS» транзистор: (a) поперечное сечение, (b) условное графическое обозначение

V-MOS устройство (на рисунке выше) представляет собой усовершенствованный мощный MOSFET транзистор с профилем легирования, способствующим получению более низкого сопротивления между истоком и стоком во включенном состоянии. VMOS транзистор получил свое название из-за V-образной области затвора, которая увеличивает площадь поперечного сечения канала исток-сток. Это сводит к минимуму потери и позволяет коммутировать более высокие мощности. Разновидность UMOS данного типа транзисторов, использующая U-образную канавку, является более повторяемой, что предпочтительнее для производства.

Подведем итоги

  • MOSFET транзисторы – это однополярные устройства, проводимость которых обусловлена одним типом носителей заряда, как и простые полевые транзисторы, но они отличаются этим от биполярных транзисторов.
  • MOSFET – это устройство, управляемое напряжением, как и простой полевой транзистор. Входное напряжение на затворе управляет током между истоком и стоком.
  • Затвор MOSFET транзистора не проводит непрерывный ток, за исключением тока утечки. Тем не менее, для начальной зарядки емкости затвора требуется значительный импульс тока.

Оригинал статьи:

Теги

MOSFET / МОП транзисторОбучениеПолевой транзисторЭлектроника

Сохранить или поделиться

Основы, принцип работы и применение

MOSFET (Металлооксидный полупроводниковый полевой транзистор) представляет собой полупроводниковое устройство, которое широко используется для коммутации и усиления электронных сигналов в электронных устройствах. МОП-транзистор — это либо сердечник, либо интегральная схема, где он спроектирован и изготовлен в виде единого кристалла, поскольку доступны устройства очень малых размеров. Введение устройства MOSFET внесло изменения в область коммутации в электронике .Давайте подробно объясним эту концепцию.

Что такое полевой МОП-транзистор?

МОП-транзистор — это четырехконтактное устройство, имеющее выводы истока (S), затвора (G), стока (D) и корпуса (B). Как правило, корпус полевого МОП-транзистора соединен с выводом истока, образуя трехконтактное устройство, такое как полевой транзистор. MOSFET обычно считается транзистором и используется как в аналоговых, так и в цифровых схемах. Это базовое введение в MOSFET . И общая структура этого устройства выглядит следующим образом:

MOSFET MOSFET MOSFET

Из приведенной выше структуры MOSFET , функциональность MOSFET зависит от электрических изменений, происходящих в ширине канала вместе с потоком носителей (дырок или электронов ).Носители заряда входят в канал через вывод истока и выходят через сток.

Ширина канала контролируется напряжением на электроде, который называется затвором и расположен между истоком и стоком. Он изолирован от канала очень тонким слоем оксида металла. Емкость MOS, которая существует в устройстве, является важной частью, в которой вся операция осуществляется через нее.

MOSFET With Terminals MOSFET With Terminals MOSFET с клеммами

MOSFET может работать двумя способами.

  • Depletion Mode
  • Enhancement Mode

Depletion Mode

Когда на клемме затвора нет напряжения, канал показывает максимальную проводимость.Тогда как когда напряжение на выводе затвора является положительным или отрицательным, проводимость канала уменьшается.

PCBWay PCBWay

Например,

Deflection mode Deflection mode Режим расширения

Когда на клемме затвора нет напряжения, устройство не проводит ток. Когда на выводе затвора имеется максимальное напряжение, устройство показывает повышенную проводимость.

Enhancement Mode Enhancement Mode Режим расширения

Принцип работы полевого МОП-транзистора

Основным принципом полевого МОП-транзистора является возможность управления напряжением и током между выводами истока и стока.Он работает почти как выключатель, а функциональность устройства основана на МОП-конденсаторе. Конденсатор MOS является основной частью MOSFET.

Поверхность полупроводника в нижнем оксидном слое, который расположен между выводами истока и стока, может быть инвертирован из p-типа в n-тип путем приложения положительного или отрицательного напряжения затвора соответственно. Когда мы прикладываем силу отталкивания к положительному напряжению затвора, то дырки под оксидным слоем толкаются вниз вместе с подложкой.

Область обеднения, заполненная связанными отрицательными зарядами, которые связаны с атомами акцептора. Когда достигаются электроны, развивается канал. Положительное напряжение также притягивает электроны из n + областей истока и стока в канал. Теперь, если между стоком и истоком приложено напряжение, ток свободно течет между истоком и стоком, а напряжение затвора управляет электронами в канале. Если вместо положительного напряжения приложить отрицательное напряжение, под слоем оксида образуется дырочный канал.

MOSFET Block Diagram MOSFET Block Diagram Блок-схема полевого МОП-транзистора

МОП-транзистор с Р-каналом

МОП-транзистор с Р-каналом имеет область Р-канала, расположенную между выводами истока и стока. Это четырехконтактное устройство, имеющее выводы как затвор, сток, исток и корпус. Сток и исток представляют собой сильно легированную p + область, а тело или подложка — n-типа. Ток идет в направлении положительно заряженных дырок.

Когда мы прикладываем отрицательное напряжение с силой отталкивания к выводу затвора, электроны, находящиеся под оксидным слоем, проталкиваются вниз в подложку.Область обеднения заселена связанными положительными зарядами, которые связаны с донорными атомами. Отрицательное напряжение затвора также притягивает дырки из области истока и стока p + в область канала.

Depletion Mode P Channel Depletion Mode P Channel Режим истощения P-канал P Channel Enhanced Mode P Channel Enhanced Mode P-канал расширенный режим

N-канальный MOSFET

N-канальный MOSFET имеет N-канальную область, расположенную между выводами истока и стока. Это четырехконтактное устройство, имеющее выводы как затвор, сток, исток и корпус.В этом типе полевого транзистора сток и исток имеют сильно легированную n + область, а подложка или тело относятся к P-типу.

Ток в этом типе полевого МОП-транзистора возникает из-за отрицательно заряженных электронов. Когда мы прикладываем положительное напряжение с силой отталкивания к выводу затвора, отверстия, имеющиеся под оксидным слоем, проталкиваются вниз в подложку. Область обеднения населена связанными отрицательными зарядами, которые связаны с атомами акцептора.

При достижении электронами формируется канал. Положительное напряжение также притягивает электроны из n + областей истока и стока в канал. Теперь, если между стоком и истоком приложено напряжение, ток свободно течет между истоком и стоком, а напряжение затвора управляет электронами в канале. Вместо положительного напряжения, если мы приложим отрицательное напряжение, то под слоем оксида будет образовываться дырочный канал.

Enhancement Mode N Channel Enhancement Mode N Channel Режим расширения N Канал

MOSFET Области работы

В наиболее общем сценарии работа этого устройства происходит в основном в трех регионах, а именно:

  • Cut-off Region — Это регион где устройство будет в выключенном состоянии и через него протекает нулевой ток.Здесь устройство функционирует как основной переключатель и используется, когда они необходимы для работы в качестве электрических переключателей.
  • Область насыщения — В этой области устройства будут иметь постоянное значение тока между стоком и истоком без учета увеличения напряжения между стоком и истоком. Это происходит только один раз, когда напряжение между стоком и истоком увеличивается больше, чем значение напряжения отсечки. В этом сценарии устройство функционирует как замкнутый переключатель, в котором протекает ток насыщения через сток к клеммам истока.Благодаря этому выбирается область насыщения, когда предполагается, что устройства должны выполнять переключение.
  • Линейная / омическая область — Это область, в которой ток через сток к выводу истока увеличивается с увеличением напряжения на пути от стока к истоку. Когда полевые МОП-транзисторы работают в этой линейной области, они выполняют функции усилителя.

Давайте теперь рассмотрим характеристики переключения MOSFET

Полупроводник, такой как MOSFET или Bipolar Junction Transistor, в основном функционирует как переключатели в двух сценариях: один находится в состоянии ВКЛ, а другой — в состоянии ВЫКЛ.Чтобы рассмотреть эту функциональность, давайте взглянем на идеальные и практические характеристики устройства MOSFET.

Идеальные характеристики переключателя

Когда MOSFET должен работать как идеальный переключатель, он должен иметь следующие свойства, а именно:

  • В состоянии ВКЛ должно быть ограничение тока, которое он несет.
  • В Состояние ВЫКЛ, уровни напряжения блокировки не должны иметь каких-либо ограничений
  • Когда устройство работает в состоянии ВКЛ, значение падения напряжения должно быть нулевым
  • Сопротивление в состоянии ВЫКЛ должно быть бесконечным
  • Не должно быть ограничений по скорости работы

Практические характеристики переключателя

Поскольку мир не ограничивается только идеальными приложениями, функционирование MOSFET применимо даже для практических целей.В практическом сценарии устройство должно обладать следующими свойствами.

  • В состоянии ВКЛ возможности управления мощностью должны быть ограничены, что означает, что необходимо ограничить протекание тока проводимости.
  • В выключенном состоянии уровни напряжения блокировки не должны ограничиваться
  • Включение и выключение на конечное время ограничивает ограничивающую скорость устройства и даже ограничивает функциональную частоту
  • В состоянии ВКЛ устройства MOSFET будет минимальные значения сопротивления, при которых это приводит к падению напряжения при прямом смещении.Кроме того, существует конечное сопротивление в выключенном состоянии, которое обеспечивает обратный ток утечки.
  • Когда устройство работает с практическими характеристиками, оно теряет питание при включении и выключении. Это происходит даже в переходных состояниях.

Пример полевого МОП-транзистора в качестве переключателя

В приведенной ниже схеме схемы расширенный режим и N-канальный полевой МОП-транзистор используются для переключения пробной лампы в условиях ВКЛ и ВЫКЛ. Положительное напряжение на выводе затвора подается на базу транзистора, и лампа переходит в состояние ВКЛ, и здесь V GS = + v или при нулевом уровне напряжения устройство переключается в состояние ВЫКЛ, где V GS = 0 .

MOSFET As Switch MOSFET As Switch MOSFET As Switch

Если резистивная нагрузка лампы должна была быть заменена индуктивной нагрузкой и подключена к реле или диоду, который защищен от нагрузки. В приведенной выше схеме это очень простая схема для переключения резистивной нагрузки, такой как лампа или светодиод. Но при использовании MOSFET в качестве переключателя с индуктивной или емкостной нагрузкой для устройства MOSFET требуется защита.

Если в случае, если MOSFET не защищен, это может привести к повреждению устройства.Чтобы полевой МОП-транзистор работал как аналоговое переключающее устройство, его необходимо переключать между его областью отсечки, где V GS = 0, и областью насыщения, где V GS = + v.

Описание видео

МОП-транзистор также может работать как транзистор, и его сокращенно называют полевым транзистором на основе оксида кремния и металла. Здесь само название указывало на то, что устройство может работать как транзистор. Он будет иметь P-канал и N-канал. Устройство подключается таким образом с помощью четырех клемм истока, затвора и стока, резистивная нагрузка 24 Ом подключается последовательно с амперметром, а измеритель напряжения подключается к полевому МОП-транзистору.

В транзисторе ток в затворе протекает в положительном направлении, а вывод истока соединен с землей. В то время как в устройствах с биполярным соединением транзисторов ток протекает по пути база-эмиттер. Но в этом устройстве нет тока, потому что в начале затвора есть конденсатор, ему просто требуется только напряжение.

Это может быть выполнено путем продолжения процесса моделирования и включения / выключения. Когда переключатель находится в положении ON, ток через цепь не протекает, когда сопротивление 24 Ом и 0.29 амперметра, то мы находим пренебрежимо малое падение напряжения на источнике, потому что на этом устройстве есть + 0,21 В.

Сопротивление между стоком и истоком обозначается как RDS. Благодаря этому RDS, при протекании тока в цепи появляется падение напряжения. RDS различается в зависимости от типа устройства (он может варьироваться в пределах от 0,001, 0,005 до 0,05 в зависимости от типа напряжения.

Несколько понятий, которые следует изучить:

1). Как выбрать полевой МОП-транзистор в качестве коммутатора ?

При выборе полевого МОП-транзистора в качестве переключателя необходимо соблюдать следующие условия:

  • Использование полярности канала P или N
  • Максимальные номинальные значения рабочего напряжения и тока
  • Повышенное значение Rds ON, которое означает, что сопротивление на выводе «сток к источнику» при полностью открытом канале.
  • Повышенная рабочая частота
  • Тип упаковки — To-220, DPAck и многие другие.

2). Что такое КПД переключателя MOSFET?

Основным ограничением при использовании полевого МОП-транзистора в качестве переключающего устройства является повышенное значение тока стока, на которое может быть способно это устройство. Это означает, что RDS в состоянии ON является решающим параметром, определяющим коммутационную способность MOSFET. Он представлен как отношение напряжения сток-исток к току стока. Его следует рассчитывать только в состоянии ВКЛ транзистора.

3).Почему переключатель MOSFET используется в повышающем преобразователе?

Как правило, повышающему преобразователю необходим переключающий транзистор для работы устройства. Итак, в качестве переключающих транзисторов используются полевые МОП-транзисторы. Эти устройства используются для определения текущего значения и значений напряжения. Кроме того, учитывая скорость переключения и стоимость, они широко используются.

Таким же образом MOSFET можно использовать по-разному. и это

  • MOSFET в качестве переключателя для светодиода
  • remove_circle_outline
  • MOSFET в качестве переключателя для Arduino
  • MOSFET переключатель для нагрузки переменного тока
  • MOSFET переключатель для двигателя постоянного тока
  • MOSFET переключатель для отрицательного напряжения
  • MOSFET в качестве переключателя с Arduino
  • MOSFET

  • в качестве переключателя с микроконтроллером
  • MOSFET переключатель с гистерезисом
  • MOSFET в качестве переключающего диода и активного резистора
  • MOSFET в качестве уравнения переключения
  • MOSFET переключатель для страйкбола
  • MOSFET в качестве резистора затвора переключения
  • переключающий соленоид
  • Переключатель MOSFET с использованием оптопары
  • Переключатель MOSFET с гистерезисом

Применение MOSFET в качестве переключателя

Одним из наиболее ярких примеров этого устройства является его использование в качестве переключателя для автоматической регулировки яркости уличного освещения.В наши дни многие огни, которые мы наблюдаем на шоссе, состоят из газоразрядных ламп высокой интенсивности. Но использование HID-ламп потребляет повышенный уровень энергии.

Яркость не может быть ограничена в зависимости от требований, поэтому должен быть переключатель для альтернативного метода освещения, и это светодиод. Использование светодиодной системы позволит преодолеть недостатки ламп высокой интенсивности. Основная идея, лежащая в основе конструкции, заключалась в том, чтобы управлять освещением непосредственно на шоссе с помощью микропроцессора.

MOSFET Application as Switch MOSFET Application as Switch Применение полевого МОП-транзистора в качестве переключателя

Этого можно достичь, просто изменив тактовые импульсы. По необходимости это устройство используется для включения ламп. Он состоит из платы Raspberry Pi, на которой установлен процессор для управления. Здесь светодиоды могут быть заменены на HID, и они связаны с процессором через MOSFET. Микроконтроллер выполняет соответствующие рабочие циклы, а затем переключается на MOSFET, чтобы обеспечить высокий уровень интенсивности.

Преимущества

Некоторые из преимуществ:

  • Он обеспечивает повышенную эффективность даже при работе при минимальных уровнях напряжения
  • Отсутствует ток затвора, что создает больший входной импеданс, который дополнительно обеспечивает повышенную скорость переключения для устройства
  • Эти устройства могут работать при минимальных уровнях мощности и потребляют минимальный ток.

Недостатки

К недостаткам относятся следующие:

  • Когда эти устройства работают при уровнях напряжения перегрузки, это создает нестабильность устройства.
  • Поскольку устройства имеют тонкий оксидный слой, это может привести к повреждению устройства при воздействии электростатических зарядов.

Приложения

Области применения MOSFET:

  • Усилители, изготовленные из MOSFET, широко используются в широком диапазоне частот
  • Регулировка для двигателей постоянного тока обеспечивают эти устройства 900 27
  • Поскольку они имеют повышенную скорость переключения, они идеально подходят для создания усилителей-прерывателей.
  • Функционирует как пассивный компонент для различных электронных элементов.

В конце концов, можно сделать вывод, что транзистору требуется ток, тогда как MOSFET требует напряжения. Требования к управлению MOSFET намного лучше, намного проще по сравнению с BJT. А также знаю Как подключить Mosfet к переключателю?

Фото

.

Что такое полевой МОП-транзистор? (с изображением)

MOSFET-транзистор — это полупроводниковое устройство, которое переключает или усиливает сигналы в электронных устройствах. MOSFET — это аббревиатура от полевого транзистора металл – оксид – полупроводник. Имя может быть записано по-разному: MOSFET, MOS FET или MOS-FET; Термин MOSFET-транзистор широко используется, несмотря на его избыточность. Назначение MOSFET-транзистора — влиять на поток электрических зарядов через устройство, используя небольшое количество электричества для воздействия на поток гораздо больших количеств.МОП-транзисторы — наиболее часто используемые транзисторы в современной электронике.

MOSFET transistors come in a variety of shapes, sizes and arrangements.
MOSFET-транзисторы бывают разных форм, размеров и расположений.

MOSFET-транзистор широко используется в современной жизни, потому что это тип транзистора, наиболее часто используемый в интегральных схемах, являющихся основой почти всех современных компьютеров и электронных устройств.MOSFET-транзистор хорошо подходит для этой роли благодаря низкому энергопотреблению и рассеиванию, низкому отходящему теплу и низкой стоимости массового производства. Современная интегральная схема может содержать миллиарды полевых МОП-транзисторов. MOSFET-транзисторы используются в различных устройствах, от сотовых телефонов и цифровых часов до огромных суперкомпьютеров, используемых для сложных научных расчетов в таких областях, как климатология, астрономия и физика элементарных частиц.

МОП-транзистор имеет четыре полупроводниковых вывода, которые называются истоком, затвором, стоком и корпусом.Исток и сток расположены в корпусе транзистора, а затвор находится над этими тремя выводами, между истоком и стоком. Затвор отделен от других выводов тонким слоем изоляции.

МОП-транзистор может быть разработан для использования либо отрицательно заряженных электронов, либо положительно заряженных электронных дырок в качестве носителей электрического заряда.Клеммы истока, затвора и стока сконструированы так, чтобы иметь избыток электронов или электронных дырок, что придает каждой из них отрицательную или положительную полярность. Исток и сток всегда имеют одинаковую полярность, а затвор всегда имеет противоположную полярность истока и стока.

Когда напряжение между корпусом и затвором увеличивается и затвор получает электрический заряд, носители электрического заряда с таким же зарядом отталкиваются от области затвора, создавая так называемую область истощения.Если эта область станет достаточно большой, она создаст так называемый инверсионный слой на границе раздела изолирующего и полупроводникового слоев, обеспечивая канал, по которому могут легко течь носители заряда с противоположной полярностью затвора. Это позволяет большому количеству электричества течь от источника к канализации. Как и все полевые транзисторы, каждый отдельный МОП-транзистор использует исключительно положительные или отрицательные носители заряда.

MOSFET-транзисторы

изготавливаются в основном из кремния или сплава кремний-германий.Свойства полупроводниковых выводов можно изменить, добавив небольшие примеси таких веществ, как бор, фосфор или мышьяк. Этот процесс называется легированием. Затвор обычно изготавливается из поликристаллического кремния, хотя некоторые МОП-транзисторы имеют затвор из поликремния, легированного металлами, такими как титан, вольфрам или никель. В сверхмалых транзисторах используются затворы из металлов, таких как вольфрам, тантал или нитрид титана. Изолирующий слой чаще всего изготавливается из диоксида кремния (SO 2 ), хотя также используются другие оксидные соединения.

.

Simple English Wikipedia, бесплатная энциклопедия

В этой статье много вопросов . Пожалуйста, помогите исправить их или обсудите эти проблемы на странице обсуждения .

МОП-транзисторы в индивидуальной упаковке

MOSFET обозначает полевой транзистор металл-оксид-полупроводник . Транзисторы — это небольшие электрические устройства, которые используются, помимо прочего, в будильниках, калькуляторах и, что, пожалуй, наиболее широко известно, в компьютерах; они являются одними из самых основных строительных блоков современной электроники.Несколько полевых МОП-транзисторов усиливают или обрабатывают аналоговые сигналы. Большинство из них используются в цифровой электронике.

МОП-транзисторы

действуют как электрические клапаны. У них есть одно входное соединение («ворота»), которое используется для управления потоком электричества между двумя другими соединениями («источником» и «стоком»). Другими словами, вентиль действует как переключатель, который управляет двумя выходами. Представьте себе переключатель с регулируемой яркостью: ручка сама выбирает «ВКЛ», «ВЫКЛ» или что-то среднее между ними, регулируя яркость света.Представьте себе полевой МОП-транзистор вместо переключателя света: сам переключатель — это «ворота», «источник» — это энергия, поступающая в дом, а «сток» — это лампочка.

Название MOSFET описывает структуру и функцию транзистора. МОП относится к тому факту, что полевой МОП-транзистор состоит из наслоения металла («затвор») на оксиде (изолятор, который предотвращает прохождение электричества) на полупроводнике («исток» и «сток»). FET описывает действие затвора на полупроводник. Электрический сигнал отправляется на затвор, который создает электрическое поле, изменяющее соединение между «истоком» и «стоком».

Почти все полевые МОП-транзисторы используются в интегральных схемах. По состоянию на 2008 год в одной интегральной схеме можно разместить 2 000 000 000 транзисторов. В 1970 году это число составляло около 2000 человек.

Схема простого полевого МОП-транзистора

Есть много разных способов сделать полевые МОП-транзисторы на полупроводнике. Самый простой способ показан на схеме справа от этого текста. Синяя часть представляет кремний P-типа, а красная часть представляет кремний N-типа. Пересечение двух типов образует диод.В кремниевых полупроводниках есть особенность, называемая «область истощения». В легированном кремнии, когда одна часть легирована N-типом, а одна часть легирована P-типом, область обеднения естественно образуется на пересечении между ними. Это из-за их акцепторов и доноров. Кремний P-типа имеет акцепторы, также известные как дырки, которые притягивают к себе электроны. Кремний N-типа имеет доноры или электроны, которые притягиваются к дыркам. На границе между ними электроны из N-типа заполняют дыры в P-типе.Это приводит к тому, что акцептор или атомы P-типа становятся отрицательно заряженными, и, поскольку отрицательные заряды притягивают положительные заряды, акцепторы или дырки будут течь к «соединению». На стороне N-типа имеется положительный заряд, в результате чего доноры, или электроны, движутся к «переходу». Когда они попадут туда, они будут отталкиваться отрицательным зарядом на другой стороне перехода, так как одинаковые заряды отталкиваются. То же самое произойдет на стороне P-типа, доноры или отверстия будут отталкиваться положительной областью на стороне N-типа.Между ними не может протекать электричество, поскольку электроны не могут перемещаться на другую сторону.
МОП-транзисторы

используют это в своих интересах. «Тело» полевого МОП-транзистора питается отрицательно, что расширяет область истощения, поскольку дырки заполняются новыми электронами, поэтому сила, противоположная электронам на стороне N, становится намного больше. «Источник» полевого МОП-транзистора питается отрицательно, что полностью сжимает зону истощения в типе N, так как электронов достаточно для заполнения зоны положительного истощения.«Слив» обладает положительной силой. Когда на «Ворота» подается положительная мощность, они создают небольшое электромагнитное поле, которое удаляет зону истощения непосредственно под воротами, поскольку будет «брызги» отверстий, которые создадут нечто, называемое «N- Канал ». N-канал — это временная область кремниевой области P-типа, где нет зоны истощения. Положительное электрическое поле нейтрализует все запасные электроны, составляющие зону истощения. Электроны в области источника тогда получат четкий путь к «сливу», что заставит электричество течь от источника к стоку.

Викискладе есть медиафайлы, связанные с MOSFET .

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *