16.07.2024

Давление определение: Физика (7 класс)/Давление — Викиверситет

Содержание

Физика (7 класс)/Давление — Викиверситет

Давление. Единицы давления.

Человек на лыжах, и без них.

По рыхлому снегу человек идёт с большим трудом, глубоко проваливаясь при каждом шаге. Но, надев лыжи, он может идти, почти не проваливаясь в него. Почему? На лыжах или без лыж человек действует на снег с одной и той же силой, равной своему весу. Однако действие этой силы в обоих случаях различно, потому что различна площадь поверхности, на которую давит человек, с лыжами и без лыж. Площадь поверхности лыж почти в 20 раз больше площади подошвы. Поэтому, стоя на лыжах, человек действует на каждый квадратный сантиметр площади поверхности снега с силой, в 20 раз меньшей, чем стоя на снегу без лыж.

Ученик, прикалывая кнопками газету к доске, действует на каждую кнопку с одинаковой силой. Однако кнопка, имеющая более острый конец, легче входит в дерево.

Значит, результат действия силы зависит не только от её модуля, направления и точки приложения, но и от площади той поверхности, к которой она приложена (перпендикулярно которой она действует).

Этот вывод подтверждают физические опыты.

Опыт.Результат действия данной силы зависит от того, какая сила действует на единицу площади поверхности.

По углам небольшой доски надо вбить гвозди. Сначала гвозди, вбитые в доску, установим на песке остриями вверх и положим на доску гирю. В этом случае шляпки гвоздей лишь незначительно вдавливаются в песок. Затем доску перевернем и поставим гвозди на острие. В этом случае площадь опоры меньше, и под действием той же силы гвозди значительно углубляются в песок.

Опыт. Вторая иллюстрация.

От того, какая сила действует на каждую единицу площади поверхности, зависит результат действия этой силы.

В рассмотренных примерах силы действовали перпендикулярно поверхности тела. Вес человека был перпендикулярен поверхности снега; сила, действовавшая на кнопку, перпендикулярна поверхности доски.

Величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности, называется давлением.

Чтобы определить давление, надо силу, действующую перпендикулярно поверхности, разделить на площадь поверхности:

давление = сила / площадь.

Обозначим величины, входящие в это выражение: давление — p, сила, действующая на поверхность, — F и площадь поверхности — S.

Тогда получим формулу:

p = F/S

Понятно, что бóльшая по значению сила, действующую на ту же площадь, будет производить большее давление.

За единицу давления принимается такое давление, которое производит сила в 1 Н, действующая на поверхность площадью 1 м2 перпендикулярно этой поверхности.

Единица давления — ньютон на квадратный метр ( 1 Н / м2 ). В честь французского ученого Блеза Паскаля она называется паскалем (Па). Таким образом,

1 Па = 1 Н / м2.

Используется также другие единицы давления: гектопаскаль (гПа) и килопаскаль (кПа).

1 кПа = 1000 Па;

1 гПа = 100 Па;

1 Па = 0,001 кПа;

1 Па = 0,01 гПа.

Пример. Рассчитать давление, производимое на пол мальчиком, масса которого 45 кг, а площадь подошв его ботинок, соприкасающихся с полом, равна 300 см2.

Запишем условие задачи и решим её.

Дано: m = 45 кг, S = 300 см2; p = ?

В единицах СИ: S = 0,03 м2

Решение:

p = F/S,

F = P,

P = g·m,

P = 9,8 Н · 45 кг ≈ 450 Н,

p = 450/0,03 Н / м2 = 15000 Па = 15 кПа

‘Ответ’: p = 15000 Па = 15 кПа

Способы уменьшения и увеличения давления.

Тяжелый гусеничный трактор производит на почву давление равное 40 — 50 кПа, т. е. всего в 2 — 3 раза больше, чем давление мальчика массой 45 кг. Это объясняется тем, что вес трактора распределяется на бóльшую площадь за счёт гусеничной передачи. А мы установили, что чем больше площадь опоры, тем меньше давление, производимое одной и той же силой на эту опору.

В зависимости от того, нужно ли получить малое или большое давление, площадь опоры увеличивается или уменьшается. Например, для того, чтобы грунт мог выдержать давление возводимого здания, увеличивают площадь нижней части фундамента.

Шины грузовых автомобилей и шасси самолетов делают значительно шире, чем легковых. Особенно широкими делают шины у автомобилей, предназначенных для передвижения в пустынях.

Тяжелые машины, как трактор, танк или болотоход, имея большую опорную площадь гусениц, проходят по болотистой местности, по которой не пройдет человек.

С другой стороны, при малой площади поверхности можно небольшой силой произвести большое давление. Например, вдавливая кнопку в доску, мы действуем на нее с силой около 50 Н. Так как площадь острия кнопки примерно 1 мм2, то давление, производимое ею, равно:

p = 50 Н/ 0, 000 001 м2 = 50 000 000 Па = 50 000 кПа.

Для сравнения, это давление в 1000 раз больше давления, производимого гусеничным трактором на почву. Можно найти еще много таких примеров.

Лезвие режущих и острие колющих инструментов (ножей, ножниц, резцов, пил, игл и др.) специально остро оттачивается. Заточенный край острого лезвия имеет маленькую площадь, поэтому при помощи даже малой силы создается большое давление, и таким инструментом легко работать.

Режущие и колющие приспособления встречаются и в живой природе: это зубы, когти, клювы, шипы и др. — все они из твердого материала, гладкие и очень острые.

Давление

Известно, что молекулы газа беспорядочно движутся.
Опыт. Здесь мы узнаем, что газ давит на стенки сосуда по всем направлениям одинаково.

Мы уже знаем, что газы, в отличие от твердых тел и жидкостей, заполняют весь сосуд, в котором находятся. Например, стальной баллон для хранения газов, камера автомобильной шины или волейбольный мяч. При этом газ оказывает давление на стенки, дно и крышку баллона, камеры или любого другого тела, в котором он находится. Давление газа обусловлено иными причинами, чем давление твердого тела на опору.

Известно, что молекулы газа беспорядочно движутся. При своем движении они сталкиваются друг с другом, а также со стенками сосуда, в котором находится газ. Молекул в газе много, поэтому и число их ударов очень велико. Например, число ударов молекул воздуха, находящегося в комнате, о поверхность площадью 1 см2 за 1 с выражается двадцатитрехзначным числом. Хотя сила удара отдельной молекулы мала, но действие всех молекул на стенки сосуда значительно, — оно и создает давление газа.

Итак, давление газа на стенки сосуда (и на помещенное в газ тело) вызывается ударами молекул газа.

Рассмотрим следующий опыт. Под колокол воздушного насоса поместим резиновый шарик. Он содержит небольшое количество воздуха и имеет неправильную форму. Затем насосом откачиваем воздух из-под колокола. Оболочка шарика, вокруг которой воздух становится все более разреженным, постепенно раздувается и принимает форму правильного шара.

Как объяснить этот опыт?

Для хранения и перевозки сжатого газа используются специальные прочные стальные баллоны.

В нашем опыте движущиеся молекулы газа непрерывно ударяют о стенки шарика внутри и снаружи. При откачивании воздуха число молекул в колоколе вокруг оболочки шарика уменьшается. Но внутри шарика их число не изменяется. Поэтому число ударов молекул о внешние стенки оболочки становится меньше, чем число ударов о внутренние стенки. Шарик раздувается до тех пор, пока сила упругости его резиновой оболочки не станет равной силе давления газа. Оболочка шарика принимает форму шара. Это показывает, что газ давит на ее стенки по всем направлениям одинаково. Иначе говоря, число ударов молекул, приходящихся на каждый квадратный сантиметр площади поверхности, по всем направлениям одинаково. Одинаковое давление по всем направлениям характерно для газа и является следствием беспорядочного движения огромного числа молекул.

Попытаемся уменьшить объем газа, но так, чтобы масса его осталась неизменной. Это значит, что в каждом кубическом сантиметре газа молекул станет больше, плотность газа увеличится. Тогда число ударов молекул о стенки увеличится, т. е. возрастет давление газа. Это можно подтвердить опытом.

На рисунке а изображена стеклянная трубка, один конец которой закрыт тонкой резиновой пленкой. В трубку вставлен поршень. При вдвигании поршня объем воздуха в трубке уменьшается, т. е. газ сжимается. Резиновая пленка при этом выгибается наружу, указывая на то, что давление воздуха в трубке увеличилось.

Наоборот, при увеличении объема этой же массы газа, число молекул в каждом кубическом сантиметре уменьшается. От этого уменьшится число ударов о стенки сосуда — давление газа станет меньше. Действительно, при вытягивании поршня из трубки объем воздуха увеличивается, пленка прогибается внутрь сосуда. Это указывает на уменьшение давления воздуха в трубке. Такие же явления наблюдались бы, если бы вместо воздуха в трубке находился бы любой другой газ.

Итак, при уменьшении объема газа его давление увеличивается, а при увеличении объема давление уменьшается при условии, что масса и температура газа остаются неизменными.

А как изменится давление газа, если нагреть его при постоянном объеме? Известно, что скорость движения молекул газа при нагревании увеличивается. Двигаясь быстрее, молекулы будут ударять о стенки сосуда чаще. Кроме того, каждый удар молекулы о стенку будет сильнее. Вследствие этого, стенки сосуда будут испытывать большее давление.

Следовательно, давление газа в закрытом сосуде тем больше, чем выше температура газа, при условии, что масса газа и объем не изменяются.

Из этих опытов можно сделать общий вывод, что давление газа тем больше, чем чаще и сильнее молекулы ударяют о стенки сосуда.

Для хранения и перевозки газов их сильно сжимают. При этом давление их возрастает, газы необходимо заключать в специальные, очень прочные баллоны. В таких баллонах, например, содержат сжатый воздух в подводных лодках, кислород, используемый при сварке металлов. Конечно же, мы должны навсегда запомнить, что газовые баллоны нельзя нагревать, тем более, когда они заполнены газом. Потому что, как мы уже понимаем, может произойти взрыв с очень неприятными последствиями.

Закон Паскаля.

Давление передается в каждую точку жидкости или газа.
Давление поршня передается в каждую точку жидкости, заполняющей шар.

В отличие от твердых тел отдельные слои и мелкие частицы жидкости и газа могут свободно перемещаться относительно друг друга по всем направлениям. Достаточно, например, слегка подуть на поверхность воды в стакане, чтобы вызвать движение воды. На реке или озере при малейшем ветерке появляется рябь.

Подвижностью частиц газа и жидкости объясняется, что давление, производимое на них, передается не только в направлении действия силы, а в каждую точку. Рассмотрим это явление подробнее.

На рисунке, а изображен сосуд, в котором содержится газ (или жидкость). Частицы равномерно распределены по всему сосуду. Сосуд закрыт поршнем, который может перемещаться вверх и вниз.

Прилагая некоторую силу, заставим поршень немного переместиться внутрь и сжать газ (жидкость), находящийся непосредственно под ним. Тогда частицы (молекулы) расположатся в этом месте более плотно, чем прежде(рис, б). Благодаря подвижности частицы газа будут перемещаться по всем направлениям. Вследствие этого их расположение опять станет равномерным, но более плотным, чем раньше (рис, в). Поэтому давление газа всюду возрастет. Значит, добавочное давление передается всем частицам газа или жидкости. Так, если давление на газ (жидкость) около самого поршня увеличится на 1 Па, то во всех точках внутри газа или жидкости давление станет больше прежнего на столько же. На 1 Па увеличится давление и на стенки сосуда, и на дно, и на поршень.

Давление, производимое на жидкость или газ, передается на любую точку одинаково во всех направлениях.

Это утверждение называется законом Паскаля.

На основе закона Паскаля легко объяснить следующие опыты.

На рисунке изображен полый шар, имеющий в различных местах небольшие отверстия. К шару присоединена трубка, в которую вставлен поршень. Если набрать воды в шар и вдвинуть в трубку поршень, то вода польется из всех отверстий шара. В этом опыте поршень давит на поверхность воды в трубке. Частицы воды, находящиеся под поршнем, уплотняясь, передают его давление другим слоям, лежащим глубже. Таким образом, давление поршня передается в каждую точку жидкости, заполняющей шар. В результате часть воды выталкивается из шара в виде одинаковых струек, вытекающих из всех отверстий.

Если шар заполнить дымом, то при вдвигании поршня в трубку из всех отверстий шара начнут выходить одинаковые струйки дыма. Это подтверждает, что и газы передают производимое на них давление во все стороны одинаково.

Давление в жидкости и газе.

Под действием веса жидкости резиновое дно в трубке прогнется.

На жидкости, как и на все тела на Земле, действует сила тяжести. Поэтому, каждый слой жидкости, налитой в сосуд, своим весом создает давление, которое по закону Паскаля передается по всем направлениям. Следовательно, внутри жидкости существует давление. В этом можно убедиться на опыте.

В стеклянную трубку, нижнее отверстие которой закрыто тонкой резиновой пленкой, нальем воду. Под действием веса жидкости дно трубки прогнется.

Опыт показывает, что, чем выше столб воды над резиновой пленкой, тем больше она прогибается. Но всякий раз после того, как резиновое дно прогнулось, вода в трубке приходит в равновесие (останавливается), так как, кроме силы тяжести, на воду действует сила упругости растянутой резиновой пленки.

По мере опускания трубки резиновая пленка постепенно выпрямляется. Силы, действующие на резиновую пленку, одинаковы с обеих сторон.


Дно отходит от цилиндра вследствие давления на него силы тяжести.

Опустим трубку с резиновым дном, в которую налита вода, в другой, более широкий сосуд с водой. Мы увидим, что по мере опускания трубки резиновая пленка постепенно выпрямляется. Полное выпрямление пленки показывает, что силы, действующие на нее сверху и снизу, равны. Наступает полное выпрямление пленки тогда, когда уровни воды в трубке и сосуде совпадают.

Такой же опыт можно провести с трубкой, в которой резиновая пленка закрывает боковое отверстие, как это показано на рисунке, а. Погрузим эту трубку с водой в другой сосуд с водой, как это изображено на рисунке, б. Мы заметим, что пленка снова выпрямится, как только уровни воды в трубке и сосуде сравняются. Это означает, что силы, действующие на резиновую пленку, одинаковы со всех сторон.

Возьмем сосуд, дно которого может отпадать. Опустим его в банку с водой. Дно при этом окажется плотно прижатым к краю сосуда и не отпадет. Его прижимает сила давления воды, направленная снизу вверх.

Будем осторожно наливать воду в сосуд и следить за его дном. Как только уровень воды в сосуде совпадет с уровнем воды в банке, оно отпадет от сосуда.

В момент отрыва на дно давит сверху вниз столб жидкости в сосуде, а снизу вверх на дно передается давление такого же по высоте столба жидкости, но находящейся в банке. Оба эти давления одинаковы, дно же отходит от цилиндра вследствие действия на него собственной силы тяжести.

Выше были описаны опыты с водой, но если взять вместо воды любую другую жидкость, результаты опыта будут те же.

Итак, опыты показывают, что внутри жидкости существует давление, и на одном и том же уровне оно одинаково по всем направлениям. С глубиной давление увеличивается.

Газы в этом отношении не отличаются от жидкостей, ведь они тоже имеют вес. Но надо помнить, что плотность газа в сотни раз меньше плотности жидкости. Вес газа, находящегося в сосуде, мал, и его «весовое» давление во многих случаях можно не учитывать.

Расчет давления жидкости на дно и стенки сосуда.

Расчет давления жидкости на дно и стенки сосуда.

Рассмотрим, как можно рассчитывать давление жидкости на дно и стенки сосуда. Решим сначала задачу для сосуда, имеющего форму прямоугольного параллелепипеда.

Сила F, с которой жидкость, налитая в этот сосуд, давит на его дно, равна весу P жидкости, находящейся в сосуде. Вес жидкости можно определить, зная ее массу m. Массу, как известно, можно вычислить по формуле: m = ρ·V. Объем жидкости, налитой в выбранный нами сосуд, легко рассчитать. Если высоту столба жидкости, находящейся в сосуде, обозначить буквой h, а площадь дна сосуда S, то V = S·h.

Масса жидкости m = ρ·V, или m = ρ·S·h .

Вес этой жидкости P = g·m, или P = g·ρ·S·h.

Так как вес столба жидкости равен силе, с которой жидкость давит на дно сосуда, то, разделив вес P на площадь S, получим давление жидкости p:

p = P/S , или p = g·ρ·S·h/S,

то есть

p = g·ρ·h.

Мы получили формулу для расчета давления жидкости на дно сосуда. Из этой формулы видно, что давление жидкости на дно сосуда зависит только от плотности и высоты столба жидкости.

Следовательно, по выведенной формуле можно рассчитывать давление жидкости, налитой в сосуд любой формы (строго говоря, наш расчет годится только для сосудов, имеющих форму прямой призмы и цилиндра. В курсах физики для института доказано, что формула верна и для сосуда произвольной формы). Кроме того, по ней можно вычислить и давление на стенки сосуда. Давление внутри жидкости, в том числе давление снизу вверх, также рассчитывается по этой формуле, так как давление на одной и той же глубине одинаково по всем направлениям.

При расчете давления по формуле p = gρh надо плотность ρ выражать в килограммах на кубический метр (кг/м3), а высоту столба жидкости h — в метрах (м), g = 9,8 Н/кг, тогда давление будет выражено в паскалях (Па).

Пример. Определите давление нефти на дно цистерны, если высота столба нефти 10 м, а плотность ее 800 кг/м3 .

Запишем условие задачи и запишем ее.

Дано:

h = 10 м

ρ = 800 кг/м3

P = ?

Решение:

p = gρh,

p = 9.8 Н/кг · 800 кг/м3 · 10 м ≈ 80 000 Па ≈ 80 кПа.

Ответ: p ≈ 80 кПа.

Сообщающиеся сосуды.

Сообщающиеся сосуды.

На рисунке изображены два сосуда, соединённые между собой резиновой трубкой. Такие сосуды называются сообщающимися. Лейка, чайник, кофейник — примеры сообщающихся сосудов. Из опыта мы знаем, что вода, налитая, например, в лейку, стоит всегда на одном уровне в носике и внутри.

Сообщающиеся сосуды встречаются нам часто. Например, им может быть чайник, лейка или кофейник. Поверхности однородной жидкости устанавливаются на одном уровне в сообщающихся сосудах любой формы. Разные по плотности жидкости.

С сообщающимися сосудами можно проделать следующий простой опыт. В начале опыта резиновую трубку зажимаем в середине, и в одну из трубок наливаем воду. Затем зажим открываем, и вода вмиг перетекает в другую трубку, пока поверхности воды в обеих трубках не установятся на одном уровне. Можно закрепить одну из трубок в штативе, а другую поднимать, опускать или наклонять в разные стороны. И в этом случае, как только жидкость успокоится, ее уровни в обеих трубках уравняются.

В сообщающихся сосудах любой формы и сечения поверхности однородной жидкости устанавливаются на одном уровне (при условии, что давление воздуха над жидкостью одинаково) (рис. 109).

Это можно обосновать следующим образом. Жидкость покоится, не перемещаясь из одного сосуда в друго

ДАВЛЕНИЕ — это… Что такое ДАВЛЕНИЕ?

  • давление — См. бремя, влияние, иго, насилие оказывать давление, производить давление… Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. давление бремя, влияние, иго, насилие, нажим, гнет, напор,… …   Словарь синонимов

  • давление — падает • изменение, субъект, мало давление поднялось • изменение, субъект, много измерять давление • оценка, измерение оказать давление • действие оказывать давление • действие поднялось давление • изменение, субъект, много подскочило давление •… …   Глагольной сочетаемости непредметных имён

  • ДАВЛЕНИЕ — ДАВЛЕНИЕ, действие силы, приложенной к определенной поверхности. Действие силы на твердое тело в направлении, перпендикулярном к поверхности, производит нормальное давление на поверхность тела. Поверхность твердого тела находится под Д.… …   Большая медицинская энциклопедия

  • ДАВЛЕНИЕ — ДАВЛЕНИЕ, давления, ср. (книжн.). 1. Действие по гл. давить в 1 и 7 знач. 2. Степень упругости (газов и жидкостей; физ. тех.). Давление воды. Паровой котел высокого давления. Атмосферное давление. 3. перен. Моральное принуждение, насильственное… …   Толковый словарь Ушакова

  • ДАВЛЕНИЕ — ДАВЛЕНИЕ, я, ср. 1. см. давить. 2. Сила действия одного тела на поверхность другого (спец.). Д. жидкости на стенки сосуда. Д. воды. Атмосферное д. Кровяное д. (давление крови в сосудах). 3. То же, что кровяное давление (разг.). Повышенное,… …   Толковый словарь Ожегова

  • ДАВЛЕНИЕ — (Pressure) равнодействующая внешних сил, приложенных к поверхности. Единица давления в абсолютной системе мер бария, равна дине/см2, техническая единица давления атмосфера или бар = 1 000 000 бариям. В системе МТС пьеза или стэн/м2 = 10 000… …   Морской словарь

  • ДАВЛЕНИЕ — ДАВЛЕНИЕ, физическая величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил F, с которыми одно тело действует на поверхность S другого (например, фундамент здания на грунт, жидкость на стенки сосуда и т.п.). Если… …   Современная энциклопедия

  • ДАВЛЕНИЕ — физическая величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил F, с которыми одно тело действует на поверхность S другого (напр., фундамент здания на грунт, жидкость на стенки сосуда и т. п.). Если силы… …   Большой Энциклопедический словарь

  • ДАВЛЕНИЕ — физ. величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил, с к рыми одно тело действует на поверхность другого (напр., фундамент здания на грунт, жидкость на стенки сосуда, газ в цилиндре двигателя на поршень).… …   Физическая энциклопедия

  • Давление — ДАВЛЕНИЕ, физическая величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил F, с которыми одно тело действует на поверхность S другого (например, фундамент здания на грунт, жидкость на стенки сосуда и т.п.). Если… …   Иллюстрированный энциклопедический словарь

  • Давление — Давление. В механике и математической физике под давлением накакое либо тело подразумевается совокупность сил, сплошным образомприложенных к поверхности тела и направленных по нормалям ее внутрьтела; таковы, напр., Д. газов и жидкостей на стенки… …   Энциклопедия Брокгауза и Ефрона

  • 04-а. Определение давления

          § 04-а. Определение давления

    До сих пор мы изучали случаи, когда сила, действующая на тело, была приложена к нему в одной точке. Мы так и говорили про неё: «точка приложения силы» (см. § 3-а). Настало время ситуаций, когда сила приложена к телу во множестве точек, то есть действует на некоторую площадь поверхности. В каждом из таких случаев говорят не только о самой силе, но и о создаваемом ею давлении.

    Рис. 4.1. Вы видите двух мальчиков примерно одинакового телосложения, а значит, и веса. Следовательно, лыжник давит на снег с такой же силой, как и «пешеход». Почему же результат действия этих сил различен?.

    Как приятна зимняя прогулка на лыжах! Однако стоит выйти на снег без них, как ноги будут глубоко проваливаться при каждом шаге, идти будет трудно, и удовольствие будет испорчено.

    На этом рисунке вес лыжника примерно равен весу «пешехода». Поэтому силы, с которыми мальчики давят на снег, будем считать равными. Но заметьте: они действуют не на одну точку, а «распределяются» по некоторым поверхностям. У лыжника – по площади касания снега и лыж, а у пешехода – снега и подошв.

    Понятно, что Sлыж > Sподошв. Поэтому и результат действия лыжника на снег проявляется в меньшей степени – лыжник проваливается на меньшую глубину.

    Распределение силы по площади её приложения характеризуют особой физической величиной – давлением. Отношение силы F к площади поверхности S, при условии, что сила действует перпендикулярно поверхности, называют давлением. Это определение давления, и его можно записать в виде формулы:

    Форм. 4.2. Формула для подсчета давления. Формула читается так: «Пэ равно отношению эф к эс».

    Единица давления – 1 паскаль (обозначается: 1 Па). Из формулы-определения видно, что 1 Па = 1 Н/м2

    Числовое значение давления показывает силу, приходящуюся на единицу площади её приложения. Например, при давлении 5 паскалей на каждый 1 м2 будет действовать сила 5 ньютонов.

    Вернёмся к примеру с мальчиками. На рисунке не указаны числовые значения F и S. Значит, мы не можем количественно сравнить давления, которое оказывают мальчики (с лыжами и без лыж) на снег. Однако мы можем сравнить их качественно, используя слова «больше» и «меньше». Сделаем это.

    Сначала запишем исходные данные: силы, с которыми мальчики давят на снег, равны, и площадь лыж больше площади подошв (см. столбик слева):

    Форм. 4.3. Образец сравнения двух давлений. Если знаменатель одной дроби больше знаменателя другой, то значение первой дроби меньше, чем второй.

    После знака «Ю», который значит «следовательно», мы составили две дроби. Обратите внимание: знак «больше», присутствовавший в исходных данных, изменился на знак «меньше». Почему? Поскольку знаменатель левой дроби больше знаменателя правой, значит, согласно свойству дроби, сама левая дробь меньше правой. Вспомнив, что каждая дробь в этом неравенстве является давлением, получим: давление лыжника меньше давления пешехода. Этим и объясняется то, что лыжник меньше проваливается в снег, чем пешеход.

    Формула-определение давления подсказывает нам, как его можно изменять: чтобы увеличить давление, нужно увеличить силу или уменьшать площадь её приложения. И наоборот: чтобы уменьшить давление, нужно уменьшить силу или увеличить площадь, на которую эта сила действует.

    В вашем браузере отключен Javascript.
    Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

    p – давление, Па.
    F^ – перпендикулярно приложенная сила, Н.
    S – площадь поверхности, м2

    ВозрастЗначение верхнееЗначение нижнее
    МужчиныЖенщиныМужчиныЖенщины
    Дети до года95946564
    Дети от года до 10 лет1021026869
    10-20 лет1221157571
    20-30 лет1251197874
    30-40 лет1281268080
    40-50 лет1341368284
    50-60 лет1411438484
    60-70 лет1441588184
    70-80 лет1461568182
    90-100 лет1441497878

    КатегорияСистолическоеДиастолическое
    Гипотония – низкий уровеньМеньше 100Меньше 60
    ОптимальноеВ пределах 100-120В пределах 60-80
    Нормальное121-13080-85
    Высокое131-14086-90
    Умеренная гипертония141-16091-100
    Средняя гипертония161-180101-110
    Тяжелая гипертонияСвыше 180Свыше 110