16.02.2025

Для чего служит амперметр и вольтметр: Что такое амперметр и вольтметр

Содержание

Что такое амперметр и вольтметр

Но, если вы достаточно давно окончили школу, а ваша профессиональная деятельность не связана с физикой и другой наукой, то, возможно, вы забыли для чего предназначены эти устройства. И если вы человек любознательный, то будете не против освежить эти знания.

Для измерения силы тока и напряжения в электрической цепи необходимы специальные приборы. Этими приборами и являются амперметр и вольтметр. Итак, чтобы измерить ток, нам понадобится амперметр. Ампер – это единица измерения силы тока. Единица измерения электродвижущей силы и напряжения – это вольт. Следовательно, и прибор называется вольтметр.

Приборы ничем не отличаются по своей конструкции. Принцип работы данных приборов зависит от взаимодействия электрического и магнитного поля. Как только меняется показатель силы тока и напряжения, то стрелка на приборах отклоняется.

Но приборы делают разные измерения электрического тока, следовательно, они отличаются друг от друга. Если вам необходимо измерить силу тока, амперметр должен иметь минимальное сопротивление. При условии, что амперметр имеет сильное сопротивление, показатели силы тока будут искажаться и иметь неверное значение. Сопротивление – важный показатель, который может изменить ход всей работы. В теории, амперметр должен иметь нулевое сопротивление, но на практике это невозможно.

Принцип работы вольтметра противоположный, то есть сила тока должна быть снижена. Это необходимо для поддержания стабильного напряжения. Задача вольтметра измерить показатель напряжения. Для достижения точных показателей нужно максимальное сопротивление, то есть необходимо создать социальные условия для этого. Очень трудно создать эти условия на практике. От показателя сопротивления зависит точность показателя напряжения.

Приборы имеют разные задачи, следовательно, подключаться к электрической цепи они должны по-разному. Подключение амперметра происходит последовательно, а вольтметра по принципу параллельного подключения. Необходимо помнить, что амперметр никогда не подключается напрямую к источнику питания, это может стать причиной короткого замыкания.

Если ваша деятельность связана с работой при помощи данных приборов, то на сайте компании Промышленной группы «Фрегат»  можно приобрести амперметр и вольтметр.

На правах рекламы

устройство и виды приборов, принцип действия, проведение измерения

Прибор амперметрАмперметр — прибор, предназначенный для измерения силы тока в электрической цепи. Подключение измерительного устройства в схему проводится последовательно с участком, который необходимо замерить. Чем ниже внутреннее сопротивление прибора, тем меньше погрешность измерения. Амперметр нельзя подключать как вольтметр, то есть непосредственно к источнику питания, так как произойдет короткое замыкание.

Конструктивные особенности

Существует несколько видов приборов, которые конструктивно отличаются друг от друга. Служат они для измерения переменного и постоянного тока. По своему принципу действия амперметры бывают:

  • электромагнитными;
  • магнитоэлектрическими;
  • тепловыми;
  • электродинамическими;
  • детекторными;
  • индукционными;
  • фото- и термоэлектрическими.

Из всех видов наиболее точными считаются электромагнитные и магнитоэлектрические приборы. Основу магнитоэлектрических устройств составляет постоянный магнит. При прохождении тока через обмотку рамки, между ним и магнитом создается крутящий момент.

С рамкой соединена стрелка, которая перемещается по шкале амперметра и показывает значение силы тока. В электродинамическом приборе основными деталями считаются подвижная и неподвижная катушки. Они могут быть соединены между собой как последовательно, так и параллельно.

Проходящие через них токи взаимодействуют между собой, и подвижная катушка, соединенная со стрелкой, отклоняется. Если с помощью амперметра измеряется большая сила тока, то его соединяют через трансформатор.

Принцип работы

Как измерять ток прибором амперметромПервый прибор в начале XIX века изобрел Швейгер, но он тогда назывался гальванометром. Рисунок простейшего амперметра выглядит так. На оси кронштейна расположен якорь из стали со стрелкой. Эта конструкция расположена параллельно постоянному магниту, который воздействует на якорь и придает ему магнитные свойства.

Вдоль магнита и стрелки проходят силовые линии, что соответствует нулевому положению на шкале. Как только начнет проходить электрический ток по шине, то произойдет образование магнитного потока. Его силовые линии будут расположены перпендикулярно линиям постоянного магнита.

Под таким воздействием якорь будет стараться повернуться на 90°, а магнитный поток воспрепятствует его возвращению в исходное положение. От величины и направления тока, который проходит по шине, зависит взаимодействие магнитных потоков. Соответственно этой величине стрелка отклонится от нуля по шкале.

Применение приборов

Электромагнитные типы устройств обычно применяются в электрическом оборудовании, работающего в сетях переменного тока с частотой 50 Гц. Магнитоэлектрические приборы фиксируют малые значения силы постоянного тока. Все амперметры по отсчетным устройствам бывают:

  • со стрелочным указателем;
  • с записывающим механизмом;
  • электронные;
  • с цифровым показанием.

Принцип действия прибора амперметрДля измерения силы тока в электрических сетях высоких частот применяются термоэлектрические устройства, в которых роль датчика играет термопара. Она фиксирует степень нагрева проводника, при протекании по нему тока. Рамка реагирует на температуру, которая пропорциональна силе тока.

Электродинамические приборы используются для замера силы тока в цепях частотой до 200 Гц. Отличаются чувствительностью к перегрузкам и посторонним электромагнитным волнам. Благодаря точности замеров, применяются в качестве контрольных приборов для проверки остальных устройств для измерения силы тока.

Более современными моделями считаются цифровые амперметры, которые по физическим показаниям сочетают преимущества аналоговых приборов. Пользователи могут делать замеры с их помощью в любых условиях, так как они не боятся тряски, вибрации и т. д.

Модель амперметра

К бесконтактным устройствам относятся клещи для измерения тока. Устроены они из головки трансформатора. С их помощью могут определяться значения в любых участках электрической цепи. Для этого следует клещами охватить замеряемый кабель или провод.

Популярные модели

Как отечественными, так и зарубежными производителями выпускается довольно большое количество приборов, разнообразной классификации. Особенно ценятся цифровые устройства, которые нужны для измерения показаний. К ним относятся:

  1. Виды измерительного прибора амперметрА-05 (DC-2) — прибор устроен с внешним шунтом 75 мВ для измерения показаний в цепях постоянного напряжения. В зависимости от используемого трансформатора, амперметр используется в сетях с током от 100 до 1 тыс. А. Единицей измерения является ампер, замеры которого получают с погрешностью 1%, если класс точности шунта не менее 0,5. Потребляемая мощность не более 5 Вт.
  2. ВАР-М01−083 AC 20−450 В УХЛ4 — универсальный прибор, применяемый как вольтметр, так и амперметр. Устройство может использоваться в качестве основного и дополнительного оборудования. Питается за счет проверяемой электрической цепи. Прибор обладает функцией сохранения в памяти минимального и максимального значения. Управление осуществляется одной кнопкой, переключением которой можно вызвать все функции.
  3. ТДМ SQ 1102−0060 400А/5А — недорогой стрелочный прибор, применяемый в однофазных сетях. Корпус выполнен из негорючего пластика и имеет полную совместимость со многими маркировками трансформаторов. Средний срок службы составляет около 12 лет.
  4. АМ-1 — стационарный измерительный прибор, устанавливаемый на DIN-рейку. В комплект входит дополнительный трансформатор. Погрешность измерения составляет не более 0,5 А.

Стоит отметить еще модели амперметров АМ-3, IEK Э 47−1500/5 А, ACS 712 30 А RD и др. Чтобы избежать больших погрешностей, следует выбирать устройства с сопротивлением до 0,5 Ом. Корпус устройств должен быть герметичным и состоять из негорючего материала. Клеммы обычно покрывают антикоррозийным слоем, назначение которых считается обеспечение более прочного контакта.

Процесс измерения

Измерение амперметромНа практике амперметр используется гораздо реже, но иногда все-таки существует необходимость сделать замеры тока. Обычно такая процедура применяется для определения мощности электрического прибора, если нет соответствующих обозначений. Очень важно, что при измерении тока величина напряжения, приложенного к электрической цепи, не имеет значения. Замер прибором можно проводить, разорвав цепь в любом месте.

Источником может быть простая батарейка на 1,5 В, аккумулятор на 12 В или однофазная сеть 220 В. Перед началом измерений пользователи подготавливают оборудование, переводя ручки настройки в соответствующее начальное положение. Если примерное значение тока неизвестно, то переключатели устанавливаются на максимальное значение.

Когда все будет подготовлено, в одну из розеток подключается электрический прибор, а в другую провода амперметра. Если это бытовая сеть, то на измерительном устройстве следует выставить переменный ток и максимальное его значение. При измерении стрелочными приборами часто допускаются ошибки, так как сам процесс с ними проводить не очень удобно.

В этом случае гораздо удобнее использовать цифровые измерительные устройства. Очень популярны мультиметры M890G, в которых есть два диапазона для измерений как переменного, так и постоянного тока. Опытные электрики обычно примерно знают параметры электрической сети, поэтому они сразу устанавливают переключатели в нужное положение.

Если они не знают значения измеряемого тока, то устанавливают на мультиметре предельное значение равное 10 А. Далее, прибор перенастраивается на меньшее значение, соответствующее току сети.

Следует помнить, что переключение осуществляется при обесточивании проверяемой электрической цепи. Используя универсальный прибор, который выполняет задание вольтметра и амперметра, косвенно измеряют сопротивление подключенного прибора. Для этого дополнительно проводят расчеты, связанные с законом Ома.

что измеряет, виды, характеристики, устройство вольтметра, строение, принцип работы

Для того, чтобы измерить величину «сила тока» используется прибор амперметр. Графически, на принципиальных схемах, устройство имеет обозначение в виде буквы «А». Измерения проводятся в таких единицах как ампер, миллиампер или микроампер. Подключение осуществляется в разрыв цепи последовательным образом.

История создания

Впервые о создании прибора заговорили в 19 веке. Измерять силу тока было принято по отклонению магнитной стрелки на компасе. На протяжении десятилетий конструкция прибора была усовершенствована. К концу 19 века были утверждены официальные величины измерения, тогда же и получил свое окончательное название прибор «амперметр». В начале 20 века амперметры стали использоваться в промышленности. В современном мире их внедрили в сферы услуг, в частности в ателье по ремонту радиоаппаратуры. Тем не менее, название устройство получило в честь известного ученого и изобретателя Ампера.

Изобретатель Андре-Мари Ампер

Многоканальный амперметр был применим достаточно широко в первой половине 20 века. Его применяли в различных отраслях промышленности, особенно в электротехнической сфере.

Что измеряет

Изобрести идеальный амперметр, который влияет на показатели в цепи, нереально. Это происходит из-за внутреннего сопротивления. В теории он, конечно, существует, но в реальности стараются минимизировать потери на сопротивление.

Амперметр применяется для измерения силы постоянного или переменного тока. Относится к электроизмерительным приборам. Соединяется строго последовательно, там, где нужно определить искомую силу тока.

Ток, измеряемый прибором, зависит от величины сопротивления участков электроцепи. Именно поэтому сопротивления самого прибора должно быть минимальным. Это позволяет максимально точно измерить искомую величину, благодаря низкой погрешности.

Обратите внимание! Шкала амперметра может быть представлена маркировкой мкА, мА, А и кА. Прибор выбирают исходя из необходимой точности и пределов измерений. Предельную для измерений прибором силу можно повысить добавлением шунтов, магнитных усилителей и трансформаторов.

Схема подключения амперметра постоянного тока

Характеристики

Рассмотрим технические характеристики некоторых видов амперметров:

Ам-2 DigiTop

Технические данные:

  1. Отрезок измеряемого переменного тока 1-50 А
  2. Шаг деления — 0,1А
  3. Погрешность 1%
  4. Количество входов — 1
  5. Напряжение в сети от 100 до 400 В, 50Гц.

Долговечность работы бытовой техники часто зависит от качества энергии в электроцепи. Поэтому нужно следить за повышением напряжения в сети, которое нередко становится причиной выхода из строя приборов.

Важно! Длительное повышение напряжения может привести не только к неполадкам в блоке питания прибора, но и к его возгоранию!

Амперметр Э537

Лабораторный вариант амперметра Э537 предназначен для точных измерений величины силы постоянного и переменного тока в сети.

Технические данные:

  1. Диапазон измеряемой величины 0,5-1 А
  2. Класс точности — 0,5
  3. Диапазон нормальных частот от 45 до 100 Гц
  4. Диапазон рабочих частот от 100 до 1500Гц

Амперметр СА3020

Существует несколько модификаций этого амперметра в зависимости от параметров измеряемой силы тока. Когда заказывают данную модель, предварительно указывают базовую величину  — 1, 2 или 5 А.

Технические данные:

  1. Диапазон измеряемой силы тока — от 0,01 до 1,5А
  2. Диапазон частот по замеряемым токам от 45 до 850 Герц;
  3. Погрешность 0,2%
  4. Напряжение по питанию сети для переменного — от 85 до 260В, для постоянного — от 120 до 300В.
  5. Мощность, потребляемая прибором, не более 4 ВА.

Конструкция

В самом начале использования амперметры были чисто механическими. Спустя время стали применяться цифровые измерительные приборы. Однако даже сейчас механические амперметры не менее популярны. Это происходит благодаря стойкости к помехам и более наглядному представлению измерений силы тока. Механизм конструкции не подвергся сильным изменениям по сравнению с первыми экземплярами.

Стрелочный тип прибора использует магнитоэлектрический принцип. Внутри находится неподвижно закрепленный постоянный магнит. Между выраженными полюсами магнита расположен сердечник таким образом, что между ним и полюсами образуется постоянное магнитное поле.

Типы

По типу и принципу работы устройства имеют следующую классификацию:

  1. Магнитоэлектрические. Основой является подвижная катушка, которую закрепляют на оси. Ставится она между магнитными полюсами. Если взять электромагнитный амперметр, то вместо катушки используют сердечник, который находится от магнитных полюсов на расстоянии, пропорциональном величине силы тока.
  2. Термоэлектрические. Основой является термопара, которую припаивают к проводке. От того, как происходит нагрев по мере подачи тока разной силы, величина выводится на экран.
  3. Электродинамические. Очень мало применяются в бытовых условиях из-за чувствительности к магнитному полю. В основном их применяют для точных измерений или демонстрационных целей.
  4. Ферродинамические. Самые дорогие, но и самые точные измерительные приборы. Не реагируют на внешние поля.
  5. Цифровой. Основывается на использовании интегратора, который преобразует величину силы тока в показания на экране.

Цифровой амперметр

Как работает

Далее приведен разбор принципа работы амперметра и вольтметра, так как они схожи между собой.

Если рассматривать упрощенную классическую схему амперметра, можно выделить следующий принцип, по которому он работает. Стальной якорь со стрелкой устанавливается параллельно с постоянным магнитом, тем самым якорь получается магнитные свойства. Якорь расположен вдоль силовых линий. Это положение соответствует нулевой отметке на шкале определение прибора.

Когда ток проходит по шине, возникает магнитный поток. Силовые линии потока перпендикулярны силам в постоянном магните. Магнитный поток, действует на якорь, стремящийся повернуться на 90 градусов, однако повороту мешает поток постоянного магнита. Разница в магнитных потоках формирует отклонение стрелки на величину силы тока.

Физическая величина

Амперметр является прибором для измерения силы тока. Подключение приходится последовательно, и сопротивление должно быть меньше общего сопротивления электричества в цепи. Если это не так, значение сопротивления сильно увеличится, а данные приборы будут искажены.

Схема амперметра переменного тока

Если сравнивать амперметр постоянного и переменного тока, то последний основан на электромагнитной системе. Приборы используются чаще в сети частотой 50-60 Герц.

Амперметр переменного тока имеет один или два сердечника, которые соединены со стрелкой. Основное преимущество — универсальность прибора, которая позволяет измерять силу не только переменного, но и постоянного тока в электроцепи.

Однако сопротивление таких амперметров больше, чем у других моделей, поэтому погрешность измерений будет высокой. Измеритель столкнется с проблемой снятия показаний с прибора, так как шкала не линейная.

Если нужно измерить переменный ток немалой силы, часто применяют токовый трансформатор. Как и токовые клещи с бесконтактным замером, это делается для того, чтобы на порядок снизить ток в обмотках. К примеру, если в сети величина 1000 А, то во вторичной обмотке проводника будет не более 0,5А.

Токовый трансформатор

Важно! Прибор не включается при разомкнутой вторичной обмотке трансформатора. Если это произойдет, то есть риск сжечь амперметр. Это может быть опасно и для персонала.

Корпус устройства часто заземляют, также как и вторичную обмотку трансформатора, чтобы в экстренном случае, люди были в безопасности.

Магнитное поле катушки с током взаимодействует с полем магнита. При этом стрелка отклоняется на ту или иную величину, которая показывает разницу этих значений.

Устройство, включенное в цепь с переменным током, не будет показывать правильную величину, а также прибор может сгореть.

Обычно такая проблема решается выпрямительными схемами. Она позволит измерить любой переменный ток с частотами до 10 килогерц. Происходит это только в случае синусоидальной формы тока.

Правила безопасной работы

При пользовании прибором нужно соблюдать следующие меры безопасности:

  1. Прибор нельзя трясти и ронять.
  2. В случае, когда стрелка прибора зашкаливает, необходимо немедленно разомкнуть цепь.

Схема правильного подключения прибора

Правила подключения:

  1. Плюсовую клемму прибора соединить с плюсовой клеммой источника тока. Если цепь состоит только из источника тока, устройство в него включать нельзя!
  2. Амперметр соединяется последовательно. Подключение происходит с тем элементом, силу тока которого нужно измерить.
  3. Устройство должно быть в горизонтальном положении.

Зная правила подключения и разновидности приборов, можно подобрать наиболее подходящий амперметр для измерения.

Отличие вольтамперметра цифрового от вольтметра и амперметра: цифровая модель

Измерение любой величины выполняется её сравнением в ходе практического эксперимента с эталонной единицей. При использовании измерительных приборов непосредственного отсчета, таких как вольтамперметр, необходимость использовать эталон отпала. Шкала прибора при изготовлении уже отградуирована в нужных единицах. Пользователь получает результат, наблюдая за стрелкой, движущейся по шкале, или цифрами на электронном дисплее.

Вольтамперметр стрелочный

Вольтамперметр стрелочный

Определение и виды

При работе с электронными устройствами при определении силы тока и напряжения до сих пор применяют приборы магнитоэлектрической системы. Чем отличается амперметр от вольтметра, нужно чётко представлять.

Для измерения напряжения в электрической цепи или ЭДС применяется измеритель под названием вольтметр. Измерение силы тока осуществляют тестером, который называется амперметр. Для точности измерений учитывают собственные сопротивления этих двух устройств.

Важно! Сопротивление амперметра должно быть максимально ниже, а вольтметра как можно выше. Первый подключают последовательно с измеряемым участком, второй – параллельно источнику питания или нагрузке.

Для удобства пользователей оба приспособления объединили в один комбинированный вид. Он имеет две шкалы и переключатель режимов измерения.

Вольтамперметры подразделяются:

  • по назначению;
  • по принципу действия;
  • по конструкции.

По назначению

В зависимости от вида измеряемого тока, устройства подразделяются на измерители:

  • переменного тока;
  • постоянного тока;
  • импульсные;
  • универсальные.

Для более точных показаний лучше всего пользоваться измерителями с узким профилем работы. У них класс точности измерений выше, чем у универсальных.

Обратите внимание! Узнать, по каким критериям работает данный тестер, можно по условным знакам, нанесённым на его шкалу. Там могут быть указаны пределы его измерений, внутреннее сопротивление, класс точности и многое другое.

Шкала с нанесёнными условными обозначениями

Шкала с нанесёнными условными обозначениями

По принципу действия

Если рассматривать принцип действия этих устройств, то подразделяют их уже не только, исходя от вида применяемой системы.

На сегодняшний день популярны два типа измерительных инструментов:

  1. Электромеханические приборы. В их основе используются электромагнитные, электродинамические и магнитоэлектрические системы отклонения стрелки по шкале. Измеряемую величину определяют по показаниям стрелки, умноженным на цифру, соответствующую выбранному интервалу.
  2. Электронные устройства. В них нет стрелки и шкалы, показания выводятся на дисплей в цифровом формате. Тут ничего умножать не нужно, на дисплее высвечиваются числа с точностью до сотых.

Конструкция таких приборов может быть аналоговой или цифровой.  Это относится к схеме исполнения прибора, а не к индикатору.

Оба типа прекрасно справляются со своими задачами, выбор той или иной конструкции – дело вкуса.

Обязательно. Любой тестер должен проходить испытания в специализированной лаборатории для проверки точности измерений. Использовать не поверенный или тот, у которого срок поверки истёк, нежелательно.

По конструкции

От того, где используется прибор, каковы его габариты и способ подключения, зависит его конструкция. Можно выделить три основных параметра исполнения:

  • переносной;
  • щитовой;
  • стационарный.

Переносными измерителями пользуются при работах вне помещений. Их применяют тогда, когда нужно подключить и измерить параметры в «полевых» условиях. Компактные устройства удобны при транспортировке и не занимают много места.

Щитовой вариант исполнения применим на пультах управления технологическими процессами. Его устанавливают на фронтальной плоскости оборудования, где нужно постоянно контролировать параметры выходного тока и напряжения. Применяют не только на статичных конструкциях, но и передвижных устройствах. Это могут быть щиты дизельных или бензиновых генераторов однофазного переменного тока, сварочные инверторы и им подобные аппараты.

Стационарная установка вольтамперметра обоснована там, где нужны систематические точные измерения. Она входит в состав громоздких приспособлений, установленных в цехах или лабораториях.

Габаритные и установочные размеры

При приобретении или монтаже устройства нужно знать габариты его корпуса. Длина, ширина и высота должны соответствовать размерам ниши, отведённой для установки индикатора. Эти параметры указаны в паспорте и инструкции по эксплуатации.

Отличие от вольтметра, амперметра

Разница между двумя этими тестерами не всегда конструктивная. Принцип их работы основан на измерении величин тока и напряжения определённого участка электрической цепи.

Амперметр и вольтметр щитового исполнения

Амперметр и вольтметр щитового исполнения

Амперметры и вольтметры имеют разную схему подключения при подготовке их к работе. Первый присоединяется последовательно, в искусственный разрыв. Это значит, что ток будет проходить непосредственно от одного щупа прибора к другому через его внутреннюю начинку. Отличие в подключении второго прибора в том, что его присоединяют при работе параллельно испытуемой цепи или вместо нагрузки.

Внимание! Номинальный ток и напряжение этих приборов должны быть больше измеряемых величин. Если на панели имеются переключатели диапазонов измерений, то необходимо выбрать нужный диапазон. Иначе приспособления выйдут из строя.

Электронный вольтамперметр

Это комбинированный измеритель с электронной схемой, для удобства пользования при мониторинге и контроле электрических процессов. Широко распространён вольтамперметр цифровой, на дисплей которого выводятся показания в виде готовых цифр. Они могут применяться в автомобилях, блоках питания, зарядных устройствах.

Электронный вольтамперметр – мультиметр

Электронный вольтамперметр – мультиметр

Как подключить вольтамперметр к зарядному устройству

Присоединение такого электронного устройства к источнику питания зависит от того, входит ли в его состав блок питания. Если имеется, то прибор можно включить прямо в сеть, если нет, то через внешний источник питания.

Обычно с прибором в комплекте поставки идут:

  • провода измерительные;
  • шунты;
  • провода питания;
  • инструкция и схема подключения.

Когда схемы не имеется, то можно придерживаться модели включения, как на картинке ниже.

Схема подключения прибора

Схема подключения прибора

Собранное своими руками зарядное устройство нуждается в обязательном подключении вольтамперметра цифрового. Это необходимо для того, чтобы контролировать процесс зарядки аккумулятора. Можно производить регулировку зарядного тока и контроль напряжения по окончании зарядки.

Существует несколько схем, они приведены на картинке ниже.

Схемы подключения к зарядному устройству на примере ТК1382

Схемы подключения к зарядному устройству на примере ТК1382

Применение вольтамперметра в современном исполнении позволяет получать точные показания. Его подключение и эксплуатация не требуют специальных знаний и углублённых навыков. Провода промаркированы цветом и обозначены на схемах, перепутать их сложно.

Видео

Измерение тока и напряжения — Знаешь как

Содержание статьи

Схемы включения амперметра и вольтметра

Измерение тока и напряженияПоказание амперметра определяется током в его измерительном механизме. Поэтому для измерения тока в каком-либо участке электрической цепи, приемнике или генераторе амперметр надо включить так, чтобы измеряемый ток проходил через него. Следовательно, амперметр включается последовательно с приемником, генератором или участком цепи (рис. 7-7).

Рис. 7-7. Включение амперметров и вольтметров.

Включение амперметра не должно изменить режим работы цепи» следовательно, сопротивление его должно быть малым по сравнению с сопротивлением приемника или участка цепи. При малом сопротивлении амперметра (ra) и номинальном токе его (Ia,н) мала и номинальная мощность потерь в нем

Рa.н = I2а.нra

Если измеряемый ток больше номинального тока измерительного механизма (амперметра), то для расширения предела измерения тока в цепях постоянного тока применяют шунты, рассмотренные ниже, а в цепях переменного тока — трансфо рматоры тока.

Показание вольтметра определяется напряжением на его зажимах. Поэтому для измерения напряжения на зажимах приемника или генератора необходимо его зажимы соединить с зажимами вольтметра, т. е. присоединить вольтметр п араллельно потребителю или генератору (рис. 7-7).

Сопротивление вольтметра должно быть большим по сравнению с сопротивлением приемника энергии (генератора), параллельно которому он включается с тем, чтобы его включение не влияло на измеряемое напряжение (на режим работы цепи). При большом сопротивлении вольтметра (ra) номинальный ток ero(Iв,н) мал, мала и номинальная мощность потерь в нем (Рв,н), так как

Iв.н = Uв.н /rв и Рв.н =U2в.н /rв

Напряжение на зажимах измерительного механизма

Uи = Iиrи

Так как сопротивление медной обмотки измерительного механизма rи изменяется на 4% при изменении температуры на 10° С, то напряжение Uи не пропорционально току Iи, а следовательно, и углу поворота подвижной части. Таким образом, точное измерение напряжения невозможно.

Включив последовательно с измерительным механизмом большое добавочное сопротивление (rД > rи) из манганина, температурный коэффициент которого близок к нулю, получим сопротивление вольтметра rвrиrД практически независимым от температуры.

Таким образом, угол поворота подвижной части вольтметра будет пропорционален не только току, но и напряжению на зажимах

Uв = Iи(rи + rд) = Iиrв = Iиconst.

Добавочное сопротивление, кроме того, применяется для увеличения номинального напряжения вольтметра, так как номинальное напряжение измерительного механизма обычно мало.

Для расширения предела измерения напряжения в цепях переменного тока высокого напряжения наряду с добавочным сопротивлением применяют измерительные трансформаторы напряжения.

Из изложенного следует, что амперметр и вольтметр могут иметь измерительные механизмы одинакового устройства, отличающиеся только своими параметрами. Но амперметр и вольтметр по разному включаются в измеряемую цепь и имеют разные внутренние измерительные схемы.

Магнитоэлектрические амперметры и вольтметры

Выше указывалось, что наибольший номинальный ток, на который изготовляются магнитоэлектрические измерительные механизмы, не превышает 100 ма. Таким образом, магнитоэлектрические приборы для измерения малых токов (гальванометры, микроамперметры, миллиамперметры) представляют собой измерительный механизм, катушка которого присоединена к зажимам прибора, расположенным на его корпусе, а на шкалах непосредственно наносятся значения измеряемого тока.

Измерительный механизм с шунтом

Рис. 7-8. Измерительный механизм с шунтом.

Магнитоэлектрический амперметр представляет собой измерительный механизм той же системы с шунтом для расширения предела измерения тока. Шунт присоединяется параллельно измерительному механизму (рис. 7-8).

Измеряемый ток в узле а делится на две части: ток шунта Iɯ и ток измерительного механизма IиПадение напряжения на разветвлении (рис. 7-8)

Uаб = Iиrи = I((rиrш)/rи+rш)

откуда

I = Iи((rи+rш) /rш) = Iиp

Амперметр с многопредельным шунтом

Рис. 7-9. Амперметр с многопредельным шунтом.

При постоянных значениях сопротивления шунта rш и сопротивлении измерителя rи измеряемым током итоком измерительного механизма Iи будет постоянное отношение р.. Следовательно, по углу поворота подвижной части измерительного механизма можно определять измеряемый ток. Шунты должны иметь достаточное сечение, исключающее возможность их нагревания и связанных с этим погрешностей, Шунты на токи до 25—50 а обычно помещаются в кожухе прибора, а на большие токи — вне прибора отдельно от него.

Технические амперметры имеют однопредельные шунты, а образцовые и лабораторные—многопредельные (рис. 7-9).

Рис. 7-10. Измерительный механизм с добавочным сопротивлениемИзмерительный механизм с добавочным сопротивлением

Различные пределы измерения получаются изменением сопротивления шунта при перестановке штепселя из одного гнездами другое. Магнитоэлектрический вольтметр представляет собой измерительный механизм той же системы с добавочным сопротивлением для расширения предела измерения напряжения (рис. 7-10). На шкале вольтметра наносятся деления, дающие значения напряжения на его зажимах:

U = I(rи + rд)

которое больше напряжений на измерительном механизме

Uи = Irи в р = (rи + rд)/rи раз

Технические вольтметры имеют однопредельное, а образцовые и лабораторные — многопредельные добавочные сопротивления (рис. 7-11). Различные номинальные напряжения получаются использованием различных добавочных сопротивлении, что достигается переносом одного из проводов с одного зажима вольтметра на другой, или переключением переключателя или штепселя.

Вольтметр с многопредельным добавочным сопротивлением

Рис 7-11. Вольтметр с многопредельным добавочным сопротивлением.

Магнитоэлектрические амперметры и вольтметры изготовляются как образцовые и лабораторные (класс точности 0,1—0,5), так и технические (класс 1—2,5).

Они обладают высокой чувствительностью, малым влиянием внешних магнитных полей, незначительным влиянием температуры, малой мощностью потерь, чувствительностью к перегрузкам.

Выпрямительные амперметры и вольтметры

Выпрямительные амперметры представляют собой сочетание магнитоэлектрического измерительного механизма с полупроводниковым выпрямителем (рис. 7-12).

В течение одного пол у пер иода ток идет по пути абгв, в течение второго пол у периода по пути вбга. Следовательно, через измерительный механизм в течение каждого полупериода переменного тока проходит полуволна тока одного и того же направления. Средний вращающий момент и угол поворота подвижной части зависят от среднего тока, а этот последний при синусоидальном токе пропорционален действующему значению тока, значения которого и наносятся на шкале амперметра.

Расширение предела измерения тока достигается применением шунтов.

Схема выпрямительного амперметра и кривая тока в измерительном механизме

Рис. 7-12. Схема выпрямительного амперметра и кривая тока в измерительном механизме.

Выпрямительные вольтметры представляют собой сочетание магнитоэлектрического измерительного механизма с полупроводниковым выпрямителем и добавочным сопротивлением (рис. 7-13).

Угол поворота подвижной части, как и у амперметра, при синусоидальной измеряемой величине пропорционален действующему значению тока, а при постоянном сопротивлении вольтметра — действующему значению напряжения,  которые и наносятся на шкале вольтметра.

Выпрямительные амперметры и вольтметры имеют класс точности 1,5—2,5. Они применяются главным образом в цепях переменного тока повышенной частоты до 10 кгц.

Схема выпрямительного вольтметра

Рис 7.13 Схема выпрямительного вольтметра

Термоэлектрические амперметры и вольтметры

Термоэлектрический амперметр представляет собой сочетание магнитоэлектрического измерительного механизма с термопреобразователем (рис. 7-14), а вольтметр, кроме того, имеет добавочное сопротивление.

Два сваренных конца двух проводов из разных металлов называются термопарой. Несваренные концы термопары называются с в о б о д н ы м и, сваренные — рабочими.

При нагреве рабочих концов термопары на свободных концах появится разность потенциалов называемая термоэлектродвижущей силой — термо-э д. с. Термо-э. д. с. зависит от металлов, образующих термопару, и разности температур между рабочими и свободными концами термопары, а при постоянной температуре свободных концов — от температуры рабочего конца термопары. Приварив к рабочему концу термопары проводник — нагреватель, получим термопреобразователь.

Термоэлектрический амперметр

Рис. 7-14. Термоэлектрический амперметр.

При прохождении переменного тока по нагревателю он нагревается, нагревает рабочий конец термопары и на свободных концах ее появится термо-э. д. с. Если к этим концам присоединен измерительный механизм, то в нем появится ток и подвижная часть повернется на угол зависящий как от термо-э. д. с.,так и от измеряемого переменного тока, проходящего по нагревателю. На шкале амперметра наносятся действующие значения тока.

Вольтметр отличается от амперметра добавочным сопротивлением, соединенным последовательно с нагревателем термопреобразователя. В этом случае угол поворота подвижной части зависит не только от тока, но и от напряжения на зажимах вольтметра. На шкале наносится действующее значение этого напряжения.

Точность термоэлектрических приборов соответствует классам 1,5—2,5.

Термоэлектрические приборы применяются в цепях переменного тока повышенной и высокой частоты (до 10— 50 Мгц).

Электромагнитные амперметры и вольтметры

Показание электромагнитного измерительного механизма зависит от тока в его катушке, значения которого и наносятся на шкале амперметра. Катушка электромагнитного амперметра неподвижна вес ее не влияет на погрешность от трения, поэтому она может быть изготовлена из провода любого сечения и, следовательно, на любой номинальный ток. Щитовые амперметры изготовляются нашими заводами на номинальный ток до 300 а.

Схема электродинамического миллиамперметра

Рис. 7-15. Схема электродинамического миллиамперметра.

Электромагнитный вольтметр состоит из одноименного измерительного механизма на номинальный ток 20—30 ма и последовательно соединенного с ним добавочного сопротивления из манганина (рис. 7-10).Добавочное сопротивление — активное и несоизмеримо больше реактивного сопротивления катушки измерительного механизма, поэтому общее сопротивление вольтметра практически активное и мало зависит от рода тока и частоты. При постоянном сопротивлении вольтметра угол поворота подвижной части зависит не только от тока в катушке, но и пропорционального ему напряжения на зажимах вольтметра, значения которого и наносятся на шкале прибора.

Электромагнитные амперметры и вольтметры широко применяются в установках переменного тока технической частоты как щитовые, приборы классов точности 1,5—2,5. Наша промышленность наряду с техническими приборами выпускает также переносные амперметры и вольтметры для постоянного и переменного тока класса точности 0,5,

Электродинамические и ферродинамические амперметры  и вольтметры

Электродинамический амперметр представляет собой измерительный механизм того же названия, катушки которого соединены последовательно или параллельно в зависимости от его номинального тока, а на шкале нанесены деления, соответствующие значениям тока, проходящего по амперметру.

Подвижная катушка для уменьшения погрешности от трения делается легкой из провода малого сечения на номинальный ток не выше 100 ма. Неподвижную катушку изготовляют из провода разного сечения в зависимости от номинального тока, который может быть 5 а и выше. Поэтому в миллиамперметрах катушки соединяются последовательно (рис. 7-15), а в амперметрах — параллельно (рис. 7-16).

Схема электродинамического амперметра

Рис. 7-16. Схема электродинамического амперметра.

При последовательном соединении катушек токи в них одинаковы и совпадают по фазе, следовательно, угол поворота подвижной части прибора пропорционален квадрату тока

α = Ʀ1I1I2 cosΨ = Ʀ2I2

При параллельном соединении катушек амперметра и постоянных сопротивлениях ветвей каждый из токов катушек I1 и I2 пропорционален измеряемому току Если, кроме того, активные и реактивные сопротивления ветвей подобраны так, что токи I1 и I2 совпадают по фазам (Ψ — 0), то как и в предыдущем случае угол поворота подвижной части амперметра будет пропорционален квадрату измеряемого тока, т. е.

α = Ʀ1I1I2 cosΨ = Ʀ2I2

Электродинамические вольтметры состоят из измерительного механизма того же названия, катушки которого изготовлены из провода малого сечения на номинальный ток 20—50 ма и соединены последовательно между собой и с добавочным сопротивлением (рис. 7-17).

Схема электродинамического вольтметра

Рис. 7-17. Схема электродинамического вольтметра.

Добавочное сопротивление предназначено для расширения предела измерения напряжения и уменьшения влияния температуры, рода тока и частоты на показание вольтметра.

Электродинамические амперметры и вольтметры изготовляются в качестве образцовых и лабораторных приборов (класс точности 0,1—0,5) для цепей переменного тока стандартной и повышенной частоты до 2 000 гц. Электродинамические приборы обладают высокой точностью и пригодны для постоянного и переменного тока.

Они чувствительны к перегрузкам и к влиянию внешних магнитных полей.

Ферродинамические амперметры и вольтметры имеют те же внутренние измерительные схемы, что и электродинамические приборы. Они применяются главным образом как самопишущие приборы для цепей переменного тока. Ферродинамические приборы обладают невысокой точностью (класс точности 1,5—2,5), большим вращающим моментом, прочной и надежной конструкцией. Они практически не чувствительны к влиянию внешних магнитных полей.

 

Статья на тему Измерение тока и напряжения

Назначение амперметра и вольтметра на распределительном щите. — Студопедия

Амперметр предназначен для измерения величины тока заряда и разряда АКБ. Вольтметр предназначен для измерения величины напряжения АКБ и генератора.

54.Действия проводника при срабатывании СКНБ и СКНБ(П) в пути следования. Контроль за работой СКНБ при приемке вагона и в пути следования.

При срабатывании СКНБ — Остановить поезд стоп-краном, оградить состав, вызвать по цепочке НП, ПЭМ. Не дожидаясь прихода НП или ПЭМ, предупредив проводника соседнего вагона, выйти и проверить тыльной стороной ладони нагрев букс и редуктора привода генератора. При обнаружении нагрева дождаться ПЭМ. Если нагрев не обнаружен — снять ограждение поезда и на ближайшей станции совместно с ПЭМ выяснить причину срабатывания СКНБ. При срабатывании СКНБ(П) прерывистым сигналом — вызвать ПЭМ, поезд останавливать не надо. При срабатывании СКНБ(П) постоянным сигналом действовать как при срабатывании СКНБ. При приемке вагона требуется проверка СКНБ или СКНБ(П) путем разрыва цепи тумблером проверки. То же самое нужно делать периодически в пути следования.

Проверка СКНБ при приемке вагона.

При приемке вагона требуется проверка СКНБ или СКНБ(П) путем разрыва цепи тумблером проверки. Если звуковой сигнал есть, значит СКНБ исправно. Поставить тумблер в исходное положение.

56.Контролъ за работой сигнализации замыкания на корпус вагона по «+» и «-«. Действия проводника при утечке и коротком замыкании.

1)При приемке вагона лампы сигнализации замыкания на корпус вагона должны гореть одинаково вполнакала. Если одна из ламп горит ярче другой, значит происходит утечка тока на корпус вагона. Если одна из ламп горит в полный накал, а другая не горит, значит произошло замыкание. При утечке тока — поставить в известность ПЭМ и ЛНП. При замыкании обесточить щит, путем нажатия красной кнопки и вызвать ПЭМ.



2)В том случае, когда обе лампы горят одинаково вполнакала, требуется проверка путем выключения одного из выключателей сигнализации. Если при этом обе лампы гаснут, то замыкания на корпус нет.

3)Если же одна из ламп гаснет, а вторая горит вполнакала, то это означает, что имеется замыкание. Необходимо поочередно выключить нагрузку пока нагрузка не исчезнет.

Измерение постоянного и переменного тока амперметром (ампервольтметром)

После открытия электрического тока возникла необходимость в его измерении. Несмотря на то, что первые прототипы устройств не отличались точностью, принцип их работы не изменялся уже несколько столетий. Сегодня для замеров используют амперметр – это прибор, измеряющий силу электрического тока.

Классический амперметр что такое

Классический амперметр что такое

История происхождения

По названию устройства можно догадаться о том, кто приложил руку к его созданию. Андре-Мари Ампер – блестящий ученый своего времени, многие годы посвятивший электродинамике. Ему принадлежат многие знаковые открытия в этой области:

  • взаимодействие магнитного поля и электрического тока;
  • магнитный эффект катушки с током;
  • введение в научную терминологию понятия кибернетики и кинематики.

Основная заслуга ученого – не разработка прибора, а подготовка научного плацдарма для самой возможности создания амперметра и вольтметра. Поэтому первые упоминания измерительного устройства датируют 20-ми годами XIX века, когда самому Амперу было уже за 50.

Тогда речь шла о самом простом приборе – гальваноскопе, состоящем из закрученной проволоки и магнитной стрелки. Он позволял уловить относительные показатели по градусу отклонения стрелки.

Гальванометр – прототип амперметра

Гальванометр – прототип амперметра

В течение следующих десятилетий конструкция совершенствовалась. В 1884 году отечественными учеными были разработаны более совершенные приборы, однако патенты были переданы в Германию, ввиду недостаточного развития электротехнического производства. Лишь к тому времени были утверждены названия современных величин. В 1881 г. в отношении тока приняли решение о том, в чем измеряется сила – в Амперах.

Как устроены амперметры сегодня? В корпусе с индикацией располагаются измерительная катушка и постоянные магниты, которые выравнивают ее при подаче электрического тока. Чем сильнее отклонение, тем выше показатель прибора. Существует несколько разновидностей, отличающихся конструкцией и областью применения.

К сведению. Классический вид – прибор со шкалой, деления которой обозначают силу тока в Амперах. В зависимости от величины, движущийся элемент поворачивает стрелку на определенный угол.

Виды амперметров

Классифицировать устройства можно по способу индикации. Наиболее широко распространены аналоговые амперметры – с градуированной шкалой, по которой движется стрелка. Современные приборы имеют цифровой дисплей, на котором отображается значение величины тока.

Стрелочные амперметры

Стрелочные амперметры

Приборы со стрелочной головкой

Стрелочные амперметры постепенно исчезают. Они отличаются более сложным устройством, чем современные модели, и обладают ограниченной областью применения. Еще один недостаток – меньший срок работы из-за наличия большего количества механических деталей. При этом современные условия иногда требуют измерения меньших величин, чем требуется для отклонения стрелки даже на одно деление. Из-за этого стрелочные приборы приходится модифицировать усилителями сигнала.

Интересно. Долгое время эти приборы не имели аналогов – точность измерений была достаточно высокой. Однако развитие электротехнической промышленности позволило разработать более дешевые в изготовлении приборы.

Принцип действия стрелочной головки

Еще одна сложность при использовании стрелочного амперметра – принцип работы стрелки, отличающийся в разных системах измерения:

  1. Магнитоэлектрическая. Стрелка поворачивается по линейной шкале, пропорциональной силе тока. Вращающий момент задается током, проходящим через обмотку рамки.
  2. Электромагнитная. Стрелка закреплена на сердечнике из ферромагнита, который двигается внутри катушки.
  3. Электродинамическая. Используются две катушки с последовательным либо параллельным соединением. На подвижной – закреплена стрелка, поворачивающаяся от взаимодействия между токами катушек.

Во всех типах прибора используется корректор – специальный винт, соединенный с пружиной. Он необходим для установки стрелки в нулевое положение.

Игнорирование начальной регулировки может привести к неправильному отображению величины измеряемого тока, так как стартовое положение стрелки будет находиться левее нуля.

Приборы с цифровым индикатором

Цифровые устройства вытесняют аналоговые, благодаря ряду отличий:

  • простота изготовления – дешевле производить, легче собрать самостоятельно;
  • возможность измерения меньших величин;
  • отсутствие износа подвижных частей – дольше служат, не требуют замены элементов;
  • наглядная и удобная индикация;
  • меньший вес.

Цифровой амперметр

Цифровой амперметр

Переход к цифровому исполнению позволил шире применять приборы в быту. Они проще в использовании – вертикальное и горизонтальное расположение не влияет на работу. Также они лучше защищены от внешних воздействий, например, механических ударов по корпусу.

Включение амперметра в цепь

Существует два главных правила использования прибора:

  1. Подключать последовательно с элементом цепи, на котором необходимо измерить силу тока.
  2. Соблюдать полярность.

Схема включения амперметра в цепь

Схема включения амперметра в цепь

Амперметры со стрелкой – это приборы для измерения с ограниченным диапазоном. В случае превышения максимального значения шкалы при включении в цепь используют шунт.

Устройство амперметра

В основе устройства амперметра – взаимодействие между двумя элементами при прохождении электрического тока. В зависимости от того, что измеряет амперметр, используются свои варианты устройств. Замер сил разного типа тока предполагает особое строение и чувствительность. Существует несколько категорий:

  1. Магнитоэлектрические. В основе лежит подвижная катушка, закрепленная на оси между двумя магнитными полюсами.
  2. В электромагнитных амперметрах используется сердечник, отодвигаемый на пропорциональное силе тока расстояние.
  3. Термоэлектрические. Ключевой элемент – термопара, припаянная к проводке. Величина нагрева по мере подачи тока разной величины трансформируется в показатель его силы, после чего выводится на дисплей.
  4. Электродинамические. Подвижная и неподвижная катушки. В быту малоприменимы из-за высокой чувствительности к магнитным полям. Применяются для точных измерений либо в демонстрационных целях.
  5. Ферродинамические. Самые точные и дорогие из механических приборов. Благодаря замкнутому проводу, не реагируют на внешние магнитные поля.
  6. Цифровой. Используется интегратор, преобразующий величину тока в цифровой эквивалент. От его типа и настройки зависит то, как работают амперметры. Различают несколько классов точности по погрешности измерений.

Несмотря на разницу в конструкции, в основе всех механических приборов лежит общий принцип действия.

Принцип действия

Способ измерения основывается на работе нескольких элементов:

  1. На оси между постоянными магнитами располагается якорь со стрелкой.
  2. Благодаря воздействию магнитов, стальной якорь находится вдоль силовых линий, в нулевой позиции.
  3. При подаче тока появляется магнитный поток с силовыми линиями, перпендикулярными магнитам.
  4. Вследствие этого воздействия якорь стремится повернуться под прямым углом, чему мешает основное магнитное поле.
  5. Итоговое отклонение стрелки – результат взаимодействия двух потоков.

Принцип работы амперметра

Принцип работы амперметра

Благодаря простому принципу работы амперметра, механические устройства долгое время отличались лишь материалом изготовления элементов.

Как подключить амперметр

Для правильного подключения необходимо изучить схемы амперметра в разных типах цепей. Для разного тока существуют свои типы прибора – различают амперметры переменного тока и постоянного. Чтобы подключить амперметр постоянного тока, необходимо учитывать диапазон измерения, определив максимальный уровень тока.

Главное – не подключать устройство параллельно. В этом случае велика вероятность того, что оно перегорит. Это связано с низким значением внутреннего сопротивления амперметра.

Внутреннее сопротивление амперметра

Оно должно быть меньше сопротивления самой цепи. Рассчитывается показатель после замеров вольтметром, который подключают параллельно амперметру. Затем показания второго делят на показания первого, результатом будет внутреннее сопротивление. Малое значение необходимо для того, чтобы падение напряжения на приборе не влияло на точность измерений.

Этот прибор – один из самых простых и распространенных. О том, как пользоваться амперметрами, рассказывают еще на уроках физики, поэтому особых проблем при эксплуатации возникнуть не должно, особенно с приходом цифровых амперметров, которые значительно упростили нюансы работы с прибором и расширили область его применения.

Видео

Разница между амперметром и вольтметром

Ключевое отличие: Амперметр — это прибор, который используется для измерения токов в цепи. Вольтметр — это прибор, который используется для измерения напряжения между двумя точками в цепи.

Есть два разных способа измерения электричества; токи и напряжения. Такие устройства, как амперметры и вольтметры, основанные на гальванометре, устройстве, используемом для обнаружения малых токов, используются для измерения электричества.В то время как амперметры используются для измерения токов, вольтметр используется для измерения напряжения. Оба устройства различаются функциональностью и схемой размещения.

Амперметр — это прибор, который используется для измерения токов в цепи. Токи измеряются в амперах (А). Приборы, используемые для измерения малых токов в миллиамперном или микроамперном диапазоне, обозначаются как миллиамперметры или микроамперметры. Первые амперметры должны были быть согласованы с магнитным полем Земли для правильной работы, хотя новые амперметры могут быть установлены в любой цепи для измерения тока.Чтобы получить показания с помощью амперметра, цепь должна быть отключена от сети, чтобы присоединить амперметр к цепи. Для приложений, где отключение цепи является проблемой, доступен альтернативный тип амперметра, известный как бесконтактный амперметр.

Для того, чтобы амперметр мог измерять ток, ток должен проходить через амперметр и, следовательно, он должен быть включен в цепь последовательно. Полярности должны совпадать, положительная и отрицательная полярности должны совпадать с положительной и отрицательной полярностью в цепи.Хотя в идеале амперметры должны иметь нулевое сопротивление, на самом деле они имеют относительно низкое сопротивление по сравнению с вольтметрами. Если сопротивление слишком высокое, это может заблокировать слишком большой ток, повлиять на токи в цепи и изменить показания. Если амперметр случайно подключен параллельно источнику напряжения, это может вызвать короткое замыкание и привести к перегоранию предохранителя. Показания амперметра не всегда могут быть точными, так как многие факторы, такие как выход из строя диода в выпрямителе генератора или проскальзывание ремня генератора, могут изменить показания.

Вольтметр — это прибор, который используется для измерения напряжения между двумя точками в цепи. Первые вольтметры у нас

.

Что такое амперметр? — Определение, типы, шунтирующий амперметр и сопротивление заболачиванию

Определение: Измеритель , используемый для измерения тока, известен как амперметр . Ток — это поток электронов, единицей измерения которого является ампер. Следовательно, прибор, который измеряет потоки тока в амперах, известен как амперметр или амперметр.

Идеальный амперметр имеет нулевое внутреннее сопротивление . Но практически амперметр имеет небольшое внутреннее сопротивление.Диапазон измерения амперметра зависит от величины сопротивления.

Символическое представление

Заглавная буква A обозначает амперметр в цепи.

ammeter-symbol

Подключение амперметра в цепи

Амперметр соединен последовательно с цепью , так что все электроны измеряемой величины тока проходят через амперметр. Потери мощности возникают в амперметре из-за измеряемого тока и их внутреннего сопротивления.Цепь амперметра имеет низкое сопротивление , поэтому в цепи возникает небольшое падение напряжения.

ammeter-circuit

Сопротивление амперметра остается низким по двум причинам.

  • Через амперметр проходит весь ток измеряемой величины.
  • Низкое падение напряжения на амперметре.

Типы амперметров

Классификация амперметров зависит от их конструкции и типа тока, протекающего через амперметр.Ниже приведены типы амперметров в зависимости от конструкции.

  1. Амперметр с постоянной подвижной катушкой.
  2. Амперметр подвижный.
  3. Электродинамический амперметр.
  4. Амперметр выпрямительного типа.

По току амперметры делятся на два типа.

1. Амперметр PMMC — В приборе PMMC проводник помещается между полюсами постоянного магнита. Когда ток протекает через катушку, она начинает отклоняться.Прогиб катушки зависит от величины тока, протекающего через нее. Амперметр PMMC используется только для измерения постоянного тока.

2. Амперметр с подвижной катушкой (MI) — Амперметр MI измеряет как переменный, так и постоянный ток. В этом типе амперметра катушка свободно перемещается между полюсами постоянного магнита. Когда ток проходит через катушку, она начинает отклоняться под определенным углом. Прогиб катушки пропорционален току, протекающему через катушку.

3. Электродинамический амперметр — Он используется для измерения переменного и постоянного тока. Точность прибора выше, чем у приборов PMMC и MI. Калибровка прибора одинакова как для переменного, так и для постоянного тока, т. Е. Если постоянный ток калибрует прибор, то без повторной калибровки он используется для измерения переменного тока.

4. Выпрямительный амперметр — используется для измерения переменного тока. Приборы, использующие выпрямительный прибор, который преобразует направление тока и передает его на прибор PMMC.Такой прибор используется для измерения тока в цепи связи.

Прибор, который измеряет постоянный ток, известен как амперметр постоянного тока, а амперметр, который измеряет переменный ток, известен как амперметр переменного тока,

Шунт амперметра

Высокий ток напрямую проходит через амперметр, что приводит к повреждению его внутренней цепи. Для устранения этой проблемы параллельно с амперметром подключено сопротивление шунта.

ammeter

Если через цепь проходит большой ток измеряемой величины, большая часть тока проходит через шунтирующее сопротивление .Сопротивление шунта не повлияет на работу амперметра, т.е. движение катушки останется прежним.

Влияние температуры в амперметре

Амперметр — это чувствительное устройство, на которое легко влияет окружающая температура. Изменение температуры вызывает ошибку в считывании. Это можно уменьшить за счет сопротивления заболачиванию. Сопротивление, имеющее нулевой температурный коэффициент, известно как сопротивление заболачиванию. Он подключается последовательно с амперметром. Устойчивость к заболачиванию снижает влияние температуры на счетчик.

swamping-resistance

Амперметр имеет встроенный предохранитель, который защищает амперметр от сильного тока. Если через амперметр будет протекать значительный ток, предохранитель сломается. Амперметр не сможет измерить ток, пока новый не заменит предохранитель.

.

Как правильно подключить амперметр и вольтметр?

  • Socratic Q&A logo

Физика

Наука
  • Анатомия и физиология

  • Астрономия

  • Астрофизика

  • Биология

  • Химия

  • наука о планете Земля

  • Наука об окружающей среде

  • Органическая химия

  • Физика

Математика
  • Алгебра

  • Исчисление

  • Геометрия

.

Что такое вольтметр? (с рисунками)

Вольтметр — это устройство, используемое для измерения потенциала напряжения между двумя точками в электрической цепи. Эти устройства, впервые созданные в начале 1800-х годов, первоначально назывались гальванометрами. Технически все они амперметры, поскольку они измеряют ток, а не напряжение. Хотя ток измеряется в амперах, закон Ома, который устанавливает взаимосвязь между напряжением, током и сопротивлением, можно использовать для масштабирования ампер до вольт.

Voltmeters and multimeters are used to measure voltage levels for an outlet or circuit.
Вольтметры и мультиметры используются для измерения уровней напряжения в розетке или цепи.

вольтметра стали возможны благодаря открытию 1819 года Ганса Эрстеда. Когда он пропустил ток через провод рядом со стрелкой компаса, он заметил, что стрелка меняет направление. Самые ранние попытки воспользоваться этим эффектом были не более чем мотком проволоки, намотанной вокруг компаса; чем сильнее ток, проходящий через провод, тем больше отклонение стрелки компаса. Несмотря на функциональность, эти ранние модели не были очень точными.

Digital voltmeters have a display, amp controller and sometimes require calibration.
Цифровые вольтметры имеют дисплей, контроллер усилителя и иногда требуют калибровки.

В конце 19-го века Арсен Д’Арсонваль обнаружил, что инструмент можно сделать гораздо более чувствительным, если сделать катушку вокруг компаса меньше, прикрепить к основанию иглы и окружить круговой магнит. Он стал известен как механизм D’Arsonval и до сих пор используется в аналоговых измерителях.

A voltage drop can be measured across a resistor.
Падение напряжения можно измерить на резисторе.

Поскольку все измеряемые электрические свойства связаны друг с другом законом Ома, на практике большинство вольтметров фактически являются мультиметрами, способными измерять напряжение, ток и сопротивление.При измерении напряжения большое сопротивление помещается на линию катушки механизма Д’Арсонваля, чтобы минимизировать помехи в измеряемой цепи. Это также связано с законом Ома, который гласит, что напряжение прямо пропорционально сопротивлению. Минимизируя напряжение, потребляемое самим измерителем, можно получить более точное измерение напряжения цепи. Ток обратно пропорционален сопротивлению; и наоборот, чтобы свести к минимуму количество тока, протекающего в амперметр, большое сопротивление помещается параллельно катушке.

Analog voltmeters are typically easy to read.
Аналоговые вольтметры обычно легко читаются.

Современные мультиметры поставляются с цифровыми дисплеями и могут даже использовать цифровые методы измерения, а не механизм Д’Арсонваля. Благодаря наличию микропроцессоров они также могут выполнять расширенные функции, такие как измерение частоты, подсчет электрических событий и измерение емкости.

Ohm
Закон Ома был назван в честь и впервые описан немецким физиком Гёргом Омом.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *