Единица измерения энергии, теория и онлайн калькуляторы
Определение
Энергия — это физическая величина служащая мерой разных форм движения и взаимодействия материи, мерой перехода разных форм материи.
Энергия отображает способность физической системы к совершению работы, при этом работа является мерой изменения энергии. Из этого следует, что работа и энергия имеют одинаковые единицы измерения.
Единицы измерения энергии в Международной системе единиц
В международной системе единиц (СИ) джоуль (Дж) — единица измерения энергии и работы. Исходя из механического определения работы:
\[A=\overline{F}\cdot \overline{s}(1)\]
один джоуль — это работа ($A$), которую совершает сила ($\overline{F}$) в один ньютон при перемещении ($\overline{s}$) точки приложения силы в один метр:
\[1\ Дж=1\ Н\cdot 1\ м.\]
Джоуль не является основной единицей системы СИ. Через основные единицы джоуль легко выразить, используя механическое определение работы и единицы измерения соответствующих величин:
\[\left[A\right]=\left[F\right]\left[s\right]=Н\cdot м=\frac{кг\cdot м}{с^2}\cdot м=\frac{кг\cdot м^2}{с^2}.\]
Такую же размерность можно получить, если использовать определение энергии вида:
\[E=mc^2\left(2\right),\]
где $c$ — скорость света; $m$ — масса тела. Исходя из выражения (2), имеем:
\[\left[A\right]=\left[E\right]=кг\cdot {\left(\frac{м}{с}\right)}^2=\frac{кг\cdot м^2}{с^2}.\]
И так, мы убедились, что джоуль — единица измерения энергии. Насколько велик джоуль можно понять, если решить простую задачу: тело массой 2 кг движется со скоростью 1$\frac{м}{с}$ , какова его кинетическая энергия? Вычислим кинетическую энергию ($E_k$) нашего тела используя ее определение:
\[E_k=\frac{mv^2}{2}\left(3\right),\]
получаем:
\[E_k=\frac{2\cdot 1^2}{2}=1\ \left({\rm Дж}\right).\]
Единицы измерения энергии в других системах единиц
В системе СГС (сантиметр, грамм, секунда) энергия (и работа) измеряются в эргах (эрг). При этом одни эрг равен:
\[1\ эрг=1\ дин\cdot 1\ см.\]
Зная, что:
\[1\ Н={10}^5{\rm дин};;1\ {\rm м}=100\ см,\]
получаем:
\[1\ Дж={10}^7эрг.\]
В технических расчетах встречается такая единица измерения энергии как килограммометр (кгм) или килограмм силы (кгс) на метр (м): (кгсм). При этом считают, что:
\[1кгсм=1\ кгс\cdot 1\ м=9,81\ Дж.\]
При расчетах тепла часто в качестве единицы измерения энергии используют калорию. Калорию определяют как:
\[1\ кал=4,1868\ Дж.\]
Гигакалорию (Гкал) применяют в теплоэнергетике, коммунальных хозяйствах, система отопления.
Энергию можно выражать в киловатт часах:
\[1\ кВт\cdot ч=3,6\cdot {10}^5Дж.\]
В основном данную единицу измерения используют в электроэнергетике.
В атомной и квантовой физике применяют такую единицу измерения энергии как электрон-вольт (эВ). При этом полагают, что:
\[1\ эВ=1,6\cdot {10}^{-19}Дж.\]
Энергия — Википедия
Эне́ргия (др.-греч. ἐνέργεια — действие, деятельность, сила, мощь) — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.
С фундаментальной точки зрения, энергия представляет собой один из трёх (энергия, импульс, момент импульса) аддитивных интегралов движения (то есть сохраняющихся при движении величин), связанный, согласно теореме Нётер, с однородностью времени.
Слово «энергия» введено Аристотелем в трактате «Физика», однако там оно обозначало деятельность человека.
Используемые обозначения
Обычно обозначается символом Е — от лат. energīa (действие, деятельность, мощь).
Для обозначения тепловой энергии обычно используется символ Q — от англ. quantity of heat (количество теплоты).
Для обозначения внутренней энергии тела обычно используется символ U (происхождение символа подлежит уточнению).
В отдельных случаях может использоваться символ W — от англ. work (работа, труд), как способность выполнять работу.
История термина
Термин «энергия» происходит от греческого слова ἐνέργεια, которое впервые появилось в работах Аристотеля и обозначало действие или действительность (т.е. действительное осуществление действия в противоположность его возможности), праиндоевропейский корень werg обозначал работу или деятельность (ср. англ. work, нем. Werk) и в виде οργ/ουργ присутствует в таких греческих словах, как оргия или теургия и т.п.
Томас Юнг первым использовал понятие «энергия» в современном смысле слова
Лейбниц в своих трактатах 1686 и 1695 годов ввёл понятие «живой силы» (vis viva), которую он определил как произведение массы объекта и квадрата его скорости (в современной терминологии — кинетическая энергия, только удвоенная). Кроме того, Лейбниц верил в сохранение общей «живой силы». Для объяснения уменьшения скорости тел из-за трения, он предположил, что утраченная часть «живой силы» переходит к атомам.
Маркиза Эмили дю Шатле в книге «Учебник физики» (фр. Institutions de Physique, 1740), объединила идею Лейбница с практическими наблюдениями Виллема Гравезанда.
В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия «живая сила»[1]. Гаспар-Гюстав Кориолис раскрыл связь между работой и кинетической энергией в 1829 году. Уильям Томсон (будущий лорд Кельвин) впервые использовал термин «кинетическая энергия» не позже 1851 года, а в 1853 году Уильям Ренкин впервые ввёл понятие «потенциальная энергия».
Несколько лет велись споры, является ли энергия субстанцией (теплород) или только физической величиной.
Развитие паровых двигателей требовало от инженеров разработать понятия и формулы, которые позволили бы им описать механический и термический КПД своих систем. Инженеры (Сади Карно), физики (Джеймс Джоуль, Эмиль Клапейрон и Герман Гельмгольц), математики — все развивали идею, что способность совершать определённые действия, называемая работой, была как-то связана с энергией системы. В 1850-х годах, профессор натурфилософии из Глазго Уильям Томсон и инженер Уильям Ренкин начали работу по замене устаревшего языка механики с такими понятиями как «кинетическая и фактическая (actual) энергии»[1]. Уильям Томсон соединил знания об энергии в законы термодинамики, что способствовало стремительному развитию химии. Рудольф Клаузиус, Джозайя Гиббс и Вальтер Нернст объяснили многие химические процессы, используя законы термодинамики. Развитие термодинамики было продолжено Клаузиусом, который ввёл и математически сформулировал понятие энтропии, и Джозефом Стефаном, который ввёл закон излучения абсолютно чёрного тела. В 1853 году Уильям Ренкин ввёл понятие «потенциальная энергия»[1]. В 1881 году Уильям Томсон заявил перед слушателями[2]:
Само слово энергия, хотя и было впервые употреблено в современном смысле доктором Томасом Юнгом приблизительно в начале этого века, только сейчас входит в употребление практически после того, как теория, которая дала определение энергии, … развилась от просто формулы математической динамики до принципа, пронизывающего всю природу и направляющего исследователя в области науки.
Оригинальный текст (англ.)
The very name energy, though first used in its present sense by Dr Thomas Young about the beginning of this century, has only come into use practically after the doctrine which defines it had … been raised from mere formula of mathematical dynamics to the position it now holds of a principle pervading all nature and guiding the investigator in the field of science.
В течение следующих тридцати лет эта новая наука имела несколько названий, например, «динамическая теория тепла» (англ. dynamical theory of heat) и «энергетика» (англ. energetics). В 1920-х годах общепринятым стало название «термодинамика» — наука о преобразовании энергии.
Особенности преобразования тепла и работы были показаны в первых двух законах термодинамики. Наука об энергии разделилась на множество различных областей, таких как биологическая термодинамика и термоэкономика (англ. thermoeconomics). Параллельно развивались связанные понятия, такие как энтропия, мера потери полезной энергии, мощность, поток энергии за единицу времени, и так далее. В последние два века использование слова энергия в ненаучном смысле широко распространилось в популярной литературе.
В 1918 году было доказано, что закон сохранения энергии есть математическое следствие трансляционной симметрии времени, величины сопряжённой энергии. То есть энергия сохраняется, потому что законы физики не отличают разные моменты времени (см. Теорема Нётер, изотропия пространства).
В 1961 году выдающийся преподаватель физики и нобелевский лауреат, Ричард Фейнман в лекциях так выразился о концепции энергии[3]:
Существует факт, или, если угодно, закон, управляющий всеми явлениями природы, всем, что было известно до сих пор. Исключений из этого закона не существует; насколько мы знаем, он абсолютно точен. Название его — сохранение энергии. Он утверждает, что существует определённая величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Само это утверждение весьма и весьма отвлечённо. Это по существу математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного, просто-напросто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним.
Оригинальный текст (англ.)
There is a fact, or if you wish, a law, governing natural phenomena that are known to date. There is no known exception to this law—it is exact so far we know. The law is called conservation of energy; it states that there is a certain quantity, which we call energy that does not change in manifold changes which nature undergoes. That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity, which does not change when something happens. It is not a description of a mechanism, or anything concrete; it is just a strange fact that we can calculate some number, and when we finish watching nature go through her tricks and calculate the number again, it is the same.
Виды энергии
Механика различает потенциальную энергию (или, в более общем случае, энергию взаимодействия тел или их частей между собой или с внешними полями) и кинетическую энергию (энергия движения). Их сумма называется полной механической энергией.
Энергией обладают все виды полей. По этому признаку различают: электромагнитную (разделяемую иногда на электрическую и магнитную энергии), гравитационную (тяготения) и атомную (ядерную) энергии (также может быть разделена на энергию слабого и сильного взаимодействий).
Термодинамика рассматривает внутреннюю энергию и иные термодинамические потенциалы.
В химии рассматриваются такие величины, как энергия связи и энтальпия, имеющие размерность энергии, отнесённой к количеству вещества. См. также: химический потенциал.
Энергия взрыва иногда измеряется в тротиловом эквиваленте.
Кинетическая
Кинетическая энергия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в СИ — джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением.
Потенциальная
Потенциальная энергия U(r→){\displaystyle U({\vec {r}})} — скалярная физическая величина, характеризует запас энергии некоего тела (или материальной точки), находящегося в потенциальном силовом поле, который идет на приобретение (изменение) кинетической энергии тела за счет работы сил поля. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы[5].
Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином. Единицей измерения энергии в СИ является джоуль. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.
Электромагнитная
Гравитационная
Гравитационная энергия — потенциальная энергия системы тел (частиц), обусловленная их взаимным тяготением. Гравитационно-связанная система — система, в которой гравитационная энергия больше суммы всех остальных видов энергий (помимо энергии покоя). Общепринята шкала, согласно которой для любой системы тел, находящихся на конечных расстояниях, гравитационная энергия отрицательна, а для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационная энергия равна нулю. Полная энергия системы, равная сумме гравитационной и кинетической энергии постоянна, для изолированной системы гравитационная энергия является энергией связи. Системы с положительной полной энергией не могут быть стационарными.
Ядерная
Ядерная энергия (атомная энергия) — это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях.
Энергия связи — энергия, которая требуется, чтобы разделить ядро на отдельные нуклоны, называется энергией связи. Энергия связи, приходящаяся на один нуклон, неодинакова для разных химических элементов и, даже, изотопов одного и того же химического элемента.
Внутренняя
Внутренняя энергия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекул. Внутреннюю энергию тела нельзя измерить напрямую. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между её значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.
Химический потенциал
Химический потенциал μ{\displaystyle \mu } — один из термодинамических параметров системы, а именно энергия добавления одной частицы в систему без совершения работы.
Энергия взрыва
Взрыв — физический или/и химический быстропротекающий процесс с выделением значительной энергии в небольшом объёме за короткий промежуток времени, приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду и высокоскоростному расширению газов.
При химическом взрыве, кроме газов, могут образовываться и твёрдые высокодисперсные частицы, взвесь которых называют продуктами взрыва. Энергию взрыва иногда измеряют в тротиловом эквиваленте — мере энерговыделения высокоэнергетических событий, выраженной в количестве тринитротолуола (ТНТ), выделяющем при взрыве равное количество энергии.
Энергия вакуума
Энергия вакуума — энергия, равномерно распределённая в вакууме и вызывающая отталкивание между любыми материальными объектами во Вселенной с силой, прямо пропорциональной их массе и расстоянию между ними. Обладает крайне низкой плотностью.
Осмотическая энергия
Осмотическая энергия — работа, которую надо произвести, чтобы повысить концентрацию молекул или ионов в растворе.
Энергия и работа
Энергия является мерой способности физической системы совершить работу, поэтому количественно энергия и работа выражаются в одних единицах.
В специальной теории относительности
Энергия и масса
Согласно специальной теории относительности между массой и энергией существует связь, выражаемая знаменитой формулой Эйнштейна
- E=mc2,{\displaystyle E=mc^{2},}
где E{\displaystyle E} — энергия системы, m{\displaystyle m} — её масса, c{\displaystyle c} — скорость света в вакууме. Несмотря на то, что исторически предпринимались попытки трактовать это выражение как полную эквивалентность понятия энергии и массы, что, в частности, привело к появлению такого понятия как релятивистская масса, в современной физике принято сужать смысл этого уравнения, понимая под массой массу тела в состоянии покоя (так называемая масса покоя), а под энергией — только внутреннюю энергию, заключённую в системе.
Энергия тела, согласно законам классической механики, зависит от системы отсчета, то есть неодинакова для разных наблюдателей. Если тело движется со скоростью v относительно некоего наблюдателя, то для другого наблюдателя, движущегося с той же скоростью, оно будет казаться неподвижным. Соответственно, для первого наблюдателя кинетическая энергия тела будет равна, mv2/2{\displaystyle mv^{2}/2}, где m{\displaystyle m} — масса тела, а для другого наблюдателя — нулю.
Эта зависимость энергии от системы отсчета сохраняется также в теории относительности. Для определения преобразований, происходящих с энергией при переходе от одной инерциальной системы отсчета к другой используется сложная математическая конструкция — тензор энергии-импульса.
Зависимость энергии тела от скорости рассматривается уже не так, как в ньютоновской физике, а согласно вышеназванной формуле Эйнштейна:
- E=mc21−v2/c2,{\displaystyle E={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}},}
где m{\displaystyle m} — инвариантная масса. В системе отсчета, связанной с телом, его скорость равна нулю, а энергия, которую называют энергией покоя, выражается формулой:
- E0=mc2.{\displaystyle E_{0}=mc^{2}.}
Это минимальная энергия, которую может иметь массивное тело. Значение формулы Эйнштейна также в том, что до неё энергия определялась с точностью до произвольной постоянной, а формула Эйнштейна находит абсолютное значение этой постоянной.
Энергия и импульс
Специальная теория относительности рассматривает энергию как компоненту 4-импульса (4-вектора энергии-импульса), в который наравне с энергией входят три пространственные компоненты импульса. Таким образом энергия и импульс оказываются связанными и оказывают взаимное влияние друг на друга при переходе из одной системы отсчёта в другую.
В квантовой механике
В квантовой механике энергия E{\displaystyle E} свободной частицы связана с круговой частотой ω{\displaystyle \omega } соответствующей волны де Бройля соотношением E=ℏω{\displaystyle E=\hbar \omega }, где ℏ{\displaystyle \hbar } — постоянная Планка.
[6][7] Это уравнение является математическим выражением принципа корпускулярно-волнового дуализма волн и частиц для случая энергии.[8] В квантовой механике энергия двойственна времени. В частности, в силу фундаментальных причин принципиально невозможно измерить абсолютно точно энергию системы в каком-либо процессе, время протекания которого конечно. При проведении серии измерений одного и того же процесса значения измеренной энергии будут флуктуировать, однако среднее значение всегда определяется законом сохранения энергии. Это приводит к тому, что иногда говорят, что в квантовой механике сохраняется средняя энергия.
В общей теории относительности
В общей теории относительности время не является однородным, поэтому возникают определённые проблемы при попытке введения понятия энергии. В частности, оказывается невозможным определить энергию гравитационного поля как тензор относительно общих преобразований координат.
Энергия и энтропия
Внутренняя энергия (или энергия хаотического движения молекул) является самым «деградированным» видом энергии — она не может превращаться в другие виды энергии без потерь (см.: энтропия).
Физическая размерность
В системе физических величин LMT энергия имеет размерность ML2T−2{\displaystyle ML^{2}T^{-2}}.
Единица | Эквивалент | |||
---|---|---|---|---|
в Дж | в эрг | в межд. кал | в эВ | |
1 Дж | 1 | 107 | 0,238846 | 0,624146·1019 |
1 эрг | 10−7 | 1 | 2,38846·10−8 | 0,624146·1012 |
1 межд. Дж[9] | 1,00020 | 1,00020·107 | 0,238891 | 0,624332·1019 |
1 кгс·м | 9,80665 | 9,80665·107 | 2,34227 | 6,12078·1019 |
1 кВт·ч | 3,60000·106 | 3,60000·1013 | 8,5985·105 | 2,24693·1025 |
1 л·атм | 101,3278 | 1,013278·109 | 24,2017 | 63,24333·1019 |
1 межд. кал (calIT) | 4,1868 | 4,1868·107 | 1 | 2,58287·1019 |
1 термохим. кал (калТХ) | 4,18400 | 4,18400·107 | 0,99933 | 2,58143·1019 |
1 электронвольт (эВ) | 1,60219·10−19 | 1,60219·10−12 | 3,92677·10−20 | 1 |
Источники энергии
Условно источники энергии можно поделить на два типа: невозобновляемые и постоянные. К первым относятся газ, нефть, уголь, уран и т. д. Технология получения и преобразования энергии из этих источников отработана, но, как правило, неэкологична, и многие из них истощаются. К постоянным источникам можно отнести энергию солнца, энергию, получаемую на ГЭС и т. д.
Невозобновляемые ресурсы энергии и их величина (Дж)[10]
Вид ресурса | Запасы |
Термоядерная энергия | 3,6*1026 |
Ядерная энергия | 2*1024 |
Химическая энергия нефти и газа | 2*1023 |
Внутреннее тепло Земли | 5*1020 |
Возобновляемые ресурсы энергии и их годовая величина (Дж)[10]
Вид ресурса | Запасы |
Солнечная энергия | 2*1024 |
Энергия морских приливов | 2,5*1023 |
Энергия ветра | 6*1021 |
Энергия рек | 6,5*1019 |
Потребление энергии
Существует довольно много форм энергии, большинство из которых[11] так или иначе используются в энергетике и различных современных технологиях.
Темпы энергопотребления растут во всем мире, поэтому на современном этапе развития цивилизации наиболее актуальна проблема энергоэффективности и энергосбережения.
См. также
Примечания
- ↑ 1 2 3 Смит, Кросби. The science of energy: a cultural history of energy physics in Victorian Britain. — The University of Chicago Press, 1998. — ISBN 0-226-76421-4.
- ↑ Томсон, Уильям. Об источниках энергии, доступных человеку для совершения механических эффектов = On the sources of energy available to man for the production of mechanical effect. — BAAS Rep, 1881. С. 513
- ↑ Richard Feynman. The Feynman Lectures on Physics. — США: Addison Wesley, 1964. — Vol. 1. — ISBN 0-201-02115-3.
- ↑ Фейнман, Ричард. Фейнмановские лекции по физике = The Feynman Lectures on Physics. — Т. 1.
- ↑ Ландау, Л. Д., Лифшиц, Е. М. Теоретическая физика. — 5-е изд. — М.: Физматлит, 2004. — Т. I. Механика. — 224 с. — ISBN 5-9221-0055-6.
- ↑ Паули, 1947, с. 11.
- ↑ Широков, 1972, с. 18.
- ↑ Широков, 1972, с. 19.
- ↑ Джоуль (единица энергии и работы) — статья из Большой советской энциклопедии. Г. Д. Бурдун.
- ↑ 1 2 Алексеев, 1978, с. 134.
- ↑ http://profbeckman.narod.ru/InformLekc.files/Inf03.pdf
Литература
Ссылки
В чем измеряется энергия 🚩 единица измерения электрической энергии 🚩 Естественные науки
Джеймс Джоуль развил и доработал законы Ньютона, что сыграло важную роль в определении видов механической энергии. В частности, он показал, что теплота – это разновидность энергии.
Связь между силой и энергией
Чтобы понять, что такое джоуль, нужно сперва обратиться к определению понятия единицы силы – ньютона. Ньютон – это сила, которая может ускорить 1 кг массы со скоростью 1 метр в секунду. Джоуль – это количество израсходованной энергии или работы. Так, 1 джоуль равен израсходованной силе в 1 ньютон.
Мощность и энергия
Когда речь заходит о приборах, которыми люди пользуются дома, то обычно никого не интересует, сколько устройство расходует энергии в секунду. Важнее то, с какой скоростью прибор забирает энергию за единицу времени. Такая величина называется «мощность». Ее можно представить формулой:
Мощность = энергия/время
В частности, разновидностью мощности является электроэнергия. Ее измеряют в ваттах. Ватт – это единица измерения мощности, названная в честь ученого Джеймса Уатта. Соотношение ватта и джоуля можно выразить формулой:
1 ватт = 1 джоуль/1 секунда
Хотя энергия и мощность тесно связаны, их не следует путать. Важно понимать, что мощность – это скорость поглощаемой энергии, а не само количество энергии. Прибегнув к помощи алгебры, можно выразить энергию простым уравнением:
Энергия = сила *время
Опираясь на вышесказанное, можно утверждать, что электрическая лампочка мощностью в 100 ватт – это прибор, который превращает 100 джоулей электрической энергии в 100 джоулей электромагнитного излучения (или света) каждую секунду. Если не погашать такую лампу в течение часа, то энергия, которую она поглотит, будет равна 360000 джоулей. Это можно показать в уравнении:
Энергия = сила*время= 100 дж./сек. * 3600 секунд = 360000 джоулей
Ватты – это удобная единица измерения, когда речь заходит об электроприборах. Например, с их помощью можно определить мощность ламп. Но бывают ситуации, когда важно знать расход энергии в целом. Например, вам нужно посчитать, сколько придется заплатить за электроэнергию по квитанции. На практике для подсчета энергопотребления пользоваться джоулями в качестве единицы измерения не очень удобно. Тогда используется другая единица – киловатт в час. 1 киловатт в час энергии равен 1000 ваттам мощности, поглощаемой за 60 минут. Примерно столько энергии уходит на работу обычного фена для волос в течение одного часа.
В измерении электроэнергии также применяют амперы и вольты. Вольт – это единица измерения определенного заряда энергии. С помощью амперов измеряют электрический ток.
Калории и джоули
Энергия также может измеряться в калориях. Калории, как правило, связаны с едой. Но их можно использовать для измерения и других видов энергии. 1 калория равна 4, 184 джоуля.
Чтобы израсходовать 1 литр бензина, потребуется 7 750 000 калорий.
Калории, которые вы видите на упаковках с пищевыми продуктами, — это, на самом деле, килокалории. В одной килокалории содержится 1000 калорий.
Понятие энергии, единицы измерения — Студопедия
Тема 2. Энергия и энергоресурсы
С понятием энергия человек сталкивается постоянно и подчас не задумывается о глубоком смысле. Энергия определяется как общая количественная мера различных форм движения материи. В соответствии с разнообразием форм движения и различают механическую, тепловую, электрическую, ядерную, химическую и другие виды энергии.
В соответствии с законом сохранения, открытым М.В. Ломоносовым, энергия не теряется, а сохраняется и преобразуется в другие виды энергии.
Поэтому энергия является тем стержнем, который связывает воедино все процессы и явления материального мира. Для объектов энергетики энергетический анализ является основным инструментом исследования процессов преобразования энергии с проверкой на каждом этапе технологического процесса выполнения условия баланса энергии. В процессе преобразования часть энергии может изменять свой вид, что часто усложняет количественный учет и проверку баланса.
Именно потребности измерений энергии на заре развития электротехники стимулировали активное обсуждение на международных выставках 1851 года в Лондоне и 1855 года в Париже необходимости введения единой системы мер и весов. На I Международном конгрессе электриков, состоявшемся в 1881 году, был предложен проект полной системы единиц СГС, в основу которой были положены сантиметр как единица длины, грамм как единица массы и секунда как единица времени. Но применение этой системы в инженерных расчетах создавало определенные трудности из-за малости основных единиц. В 1918 году во Франции, а в 1927 году и в СССР была принята система единиц МТС на основе метра, тонны и секунды. Однако и она оказалась неудобной, но уже из-за другой крайности.
В октябре 1960 года XI Генеральная конференция по мерам и весам утвердила проект единой системы единиц, над которым специальная комиссия работала с 1954 года. Эта система стала известна под наименованием Международная система единиц СИ. В 1961 году в СССР был утвержден ГОСТ 9867-61 «Международная система единиц», которым устанавливалось предпочтительное применение единиц СИ во всех областях науки, техники, образования и народного хозяйства.
Основными единицами СИ являются семь следующих единиц: длины – метр, массы – килограмм, времени – секунда, силы электрического тока – ампер, температуры – кельвин, количества вещества – моль, силы света – кандела.
Кроме основных единиц в состав СИ вводится большое число производных величин, определяемых по отраслям науки и техники. Ниже в табл. 3 приведены производные единицы СИ, которые применяются в электротехнике.
Таким образом, несмотря на разнообразие видов энергии все они измеряются в джоулях. Для механической работы, например, один джоуль определяется работой, выполненной единицей силы на пути в один метр, т.е. 1Дж=1Н·1м.
Производные единицы системы СИ Таблица 3
Величина | Наименование
единицы | Обозначение
единицы | Выражение
через удобные единицы | Выражение
через основные единицы |
Частота | герц | Гц | – | с-1 |
Сила | ньютон | Н | – | м кг с-2 |
Давление | паскаль | Па | Н/м2 | м-1 кг с-2 |
Энергия,
работа | джоуль | Дж | Н м | м2 кг с-2 |
Мощность | ватт | Вт | Дж/с | м2 кг с-3 |
Количество
электричества | кулон | Кл | – | с А |
Электрическое
напряжение | вольт | В | Вт/А | м2 кг с-3А-1 |
Электрическая
емкость | фарад | Ф | Кл/В | м-2 кг-1 с4 А2 |
Электрическое
сопротивление | ом | Ом | В/А | м2 кг с-3 А-2 |
Электрическая проводимость | сименс | См | А/В | м-2 кг-1 с3 А2 |
Поток магнитной
индукции | вебер | Вб | В·с
| м2 кг с-2 А-1 |
Магнитная
индукция | тесла | Тл | Вб/м2 | кг с-2 А-1 |
Индуктивность | генри | Гн | Вб/А | м2 кг с-2 А-2 |
Наряду с единицами системы СИ и их производными в специальных областях, в том числе и в энергетике, допускается применение единиц измерения из других систем и даже внесистемных единиц. Так, например, в энергетике для измерения тепловой энергии часто используется калория, имеющая простой физический смысл: за 1 калорию принимается такое количество теплоты, которое повышает температуру 1 грамма воды на 1 градус. Эта единица может рассматриваться как теплоемкость воды, равная 1 кал/(г·град). Из физики известно соотношение калории и джоуля
1 кал=4,187 Дж.
Для измерения электрической энергии повсеместно используется внесистемная единица кВт·ч. Соотношение между кВт·ч и джоулем можно получить используя системную единицу мощности – 1 Ватт:
1 кВт·ч = 103 Вт ·3600 с =3,6 ·106 Дж.
Учитывая предыдущее соотношение можно определить связь между единицами измерения электрической и тепловой энергии
1 кВт·ч = 3,6·106/4187=860 ккал.
Для измерения больших объемов энергии, имеющих промышленное значение, а также больших и малых значений других физических величин используются приставки кратных и дольных единиц, основные из которых с шагом 1000 перечислены в табл. 4.
Приставки кратных и дольных единиц Таблица 4
Приставка | Множитель | Сокращение | |
русское | международное | ||
тера | 1012 | Т | T |
гига | 109 | Г | G |
мега | 106 | М | M |
кило | 103 | к | k |
милли | 10-3 | м | m |
микро | 10-6 | мк | µ |
нано | 10-9 | н | n |
пико | 10-12 | п | p |
Применение полученных представлений об энергии и единицах измерения позволяет решать некоторые практические задачи по оценке важнейших технико-экономических показателей, которые характеризуют процессы получения и преобразования энергии с использованием в качестве первичных энергоресурсов органического топлива. Важнейшей характеристикой топлива является теплота сгорания, измеряемая в кДж/кг или в ккал/кг и определяющая количество тепловой энергии выделяемой при сгорании 1 кг натурального топлива. Для объективной оценки эффективности процессов выработки энергии на объектах, которые работают на разных видах топлива, вводят понятие условного топлива (у.т.), имеющего фиксированную теплоту сгорания, равную 7000 ккал/кг.
При решении задач будет использоваться понятие коэффициента полезного действия (КПД) как отношения полезной энергии к полной затраченной, и удельного расхода топлива, т.е. расходуемого на единицу полезно отпущенной энергии.
Задача № 2.1.
Сколько воды можно нагреть от температуры to=20 0C до кипения на электроплите при расходе электроэнергии W= 1 кВт·ч , если установка работает с КПД 0=50 %.
единицы энергии — это… Что такое единицы энергии?
- единицы энергии
эрг. джоуль. | килограммометр.
калория. | ватт.
градус. кельвин. | электрон — вольт.
Идеографический словарь русского языка. — М.: Издательство ЭТС.
Баранов О.С..
1995.
- кинематические единицы
- электрические единицы
Смотреть что такое «единицы энергии» в других словарях:
полная стоимость выработки единицы энергии — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN total unit energy costTUEC … Справочник технического переводчика
ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН — величины, по определению считающиеся равными единице при измерении других величин такого же рода. Эталон единицы измерения ее физическая реализация. Так, эталоном единицы измерения метр служит стержень длиной 1 м. В принципе, можно представить… … Энциклопедия Кольера
Единицы мер — С древнейших времен употребляются для практических надобностей троякого рода меры: пространственности, веса и времени. Е. меры называется такая основная мера, которой или частями которой измеряются другие величины того же рода. В новейшее время к … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Единицы измерения объёма — В СИ основная единица измерения объёма кубический метр (м³, кубометр). Применяются также производные от неё: кубический сантиметр, литр (кубический дециметр) и т. д. Внесистемные единицы измерения объёма жидкостей: аам … … Википедия
Уровни энергии — возможные значения энергии квантовых систем, т. е. систем, состоящих из микрочастиц (электронов, протонов и др. элементарных частиц, атомных ядер, атомов, молекул и т.д.) и подчиняющихся законам квантовой механики (См. Квантовая механика) … Большая советская энциклопедия
Ридберг (единица энергии) — Ридберг (Ry), внесистемная единица энергии, применяемая в атомной физике и оптике. Названа в честь И. Ридберга. 1 Р. = hcR¥,, где h ≈ Планка постоянная, с ≈ скорость света, R¥ ≈ Ридберга постоянная; численно 1 Р. = 13,60 эв, т. е. 1 Р.… … Большая советская энциклопедия
РИДБЕРГ (единица энергии) — РИДБЕРГ, внесистемная единица энергии, применяемая в атомной физике и оптике, названная в честь Ю. Р. Ридберга, обозначается Ry. 1Ry = 13,60 эВ, т. е. энергии ионизации атома водорода из основного состояния. 1Ry = 2,1796·10 11 эрг = 1/2 единицы… … Энциклопедический словарь
СВЕТОВЫЕ ЕДИНИЦЫ — единицы измерения световых величин. Основной единицей является единица измерения силы света кандела (от лат. candela свеча), которая является основной единицей в системе СИ и с помощью которой определяются все остальные Се. 1 это сила света,… … Энциклопедический словарь по психологии и педагогике
Закон сохранения энергии — Закон сохранения энергии фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и… … Википедия
Виды норм удельной затраты энергии и требования к ним — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/7 ноября 2012. Пока процесс обсуждения … Википедия
Единицы измерения расстояний, энергий и масс
Атомные ядра и составляющие их частицы очень маленькие, поэтому измерять их в метрах или сантиметрах неудобно. Физики измеряют их в фемтометрах (фм). 1 фм = 10–15 м, или одна квадриллионная доля метра. Это в миллион раз меньше нанометра (типичный размер молекул). Размер протона или нейтрона как раз примерно 1 фм. Существуют тяжелые частицы, размер которых еще меньше.
Энергии в мире элементарных частиц тоже слишком малы, чтоб измерять их в Джоулях. Вместо этого используют единицу энергии электронвольт (эВ). 1 эВ, по определению, это энергия, которую приобретет электрон в электрическом поле при прохождении разности потенциалов в 1 Вольт. 1 эВ примерно равен 1,6·10–19 Дж. Электронвольт удобен для описания атомных и оптических процессов. Например, молекулы газа при комнатной температуре имеют кинетическую энергию примерно 1/40 электронвольта. Кванты света, фотоны, в оптическом диапазоне имеют энергию около 1 эВ.
Явления, происходящие внутри ядер и внутри элементарных частиц, сопровождаются гораздо большими изменениями энергии. Здесь уже используются мегаэлектронвольты (МэВ), гигаэлектронвольты (ГэВ) и даже тераэлектронвольты (ТэВ). Например, протоны и нейтроны движутся внутри ядер с кинетической энергией в несколько десятков МэВ. Энергия протон-протонных или электрон-протонных столкновений, при которых становится заметна внутренняя структура протона, составляет несколько ГэВ. Для того, чтобы родить самые тяжелые из известных на сегодня частиц — топ-кварки, — требуется сталкивать протоны с энергией около 1 ТэВ.
Между шкалой расстояний и шкалой энергии можно установить соответствие. Для этого можно взять фотон с длиной волны L и вычислить его энергию: E = c·h/L. Здесь c — скорость света, а h — постоянная Планка, фундаментальная квантовая константа, равная примерно 6,62·10–34 Дж·сек. Это соотношение можно использовать не только для фотона, но и более широко, при оценке энергии, необходимой для изучения материи на масштабе L. В «микроскопических» единицах измерения 1 ГэВ отвечает размеру примерно 1,2 фм.
Согласно знаменитой формуле Эйнштейна E0 = mc2, масса и энергия покоя тесно взаимосвязаны. В мире элементарных частиц эта связь проявляется самым непосредственным образом: при столкновении частиц с достаточной энергией могут рождаться новые тяжелые частицы, а при распаде покоящейся тяжелой частицы разница масс переходит в кинетическую энергию получившихся частиц.
По этой причине массы частиц тоже принято выражать в электронвольтах (а точнее, в электронвольтах, деленных на скорость света в квадрате). 1 эВ соответствует массе всего в 1,78·10–36 кг. Электрон в этих единицах весит 0,511 МэВ, а протон 0,938 ГэВ. Открыто множество и более тяжелых частиц; рекордсменом пока является топ-кварк с массой около 170 ГэВ. Самые легкие из известных частиц с ненулевой массой — нейтрино — весят всего несколько десятков мэВ (миллиэлектронвольт).
Далее: Краткая история развития ускорителей
Энергия единицы измерения — Справочник химика 21
Электрическая энергия определяется тремя факторами — напряжением, силой тока и временем его протекания. Единицы измерения электрической энергии по размерности совпадают с единицами измерения тепловой и механической энергии. Все 36 [c.36]
Джоуль (Дж)—единица измерения всех видов энергии и работы в Международной системе единиц СИ. Он равен работе силы в 1 Н на пути в 1 м. [c.23]
Единицей измерения разности потенциальной энергии электронов в двух различных точках пространства является вольт. Для того чтобы между двумя точками пространства возник электрический ток, между ними должно существовать некоторое напряжение. Для определения напряжения электрического поля используется механический эквивалент потенциальной энергии, единицей измерения которого является джоуль эта единица энергии измеряется работой, которую необходимо выполнить, чтобы на пути длиной 1 м придать телу массой 1 кг ускорение 1 м/с . Вольт представляет собой напряжение между двумя точками электрического поля, при перемещении между которыми заряда в 1 Кл выполняется работа в [c.285]
Из-за наличия прямой пропорциональности между Т и д значение Т можно было бы измерять в тех же единицах, что и количество теплоты, т. е. в единицах энергии, например в эргах, джоулях. Но для измерения температуры следует сохранить, и не только по историческим соображениям, особую единицу — градус. Изучающие термодинамику не легко усваивают, что температуру — интенсивную величину — измеряют иными методами, чем экстенсивную величину, например энергию. Зачем же вносить в представления начинающих путаницу я предлагать для измерения температуры единицу, какой измеряют экстенсивную величину Как, измеряя температуру в эргах, объяснить, что триста эргов температуры совсем не то, что триста эргов энергии . Единица измерения температуры должна подчеркнуть, а не затушевать качественный характер интенсивной величины ([20], стр. 219). Останемся при заслуженной и удачной единице градус . [c.187]
Энергия, Единицей измерения энергии в системе СИ является джоуль. В качестве производной величины допускается термохимическая калория, равная по определению 4,1840 джоулей (точно). Поскольку большинство термодинамических экспериментальных работ, обзоров и справочников основаны на термохимической калории, эта величина используется также и в настоящем Справочнике. Ниже дана табл. IV, в которой приведены коэффициенты для пересчета важнейших из встречающихся в литературе единиц энергии в джоули и термохимические калории. [c.11]
Почему, несмотря на то что в спектроскопии принято пользоваться в качестве единиц измерения длинами волн, для описания величин, пропорциональных энергии, предпочтительнее пользоваться волновыми числами, а не частотами [c.377]
Здесь также важно выбрать единицу измерения и размерность удельного расхода работы, так как в данном случае речь идет не о работе в физическом смысле или энергии с размерностью [МЬ Т ] а о человеческой деятельности в известных общественных условиях в сфере материального производства. [c.316]
Зависимость между единицами измерения работы (энергии) [c.20]
Ранее вы уже встречались с единицей измерения под названием джоуль при измерении количества энергии. При рассмотрении энергоемкости пищевых продуктов мы используем понятие калория вовсе не для того, чтобы сбить вас с толку. Энергию измеряли в калориях во всех случаях до тех пор, пока не была введена метрическая систсма мер СИ. В принципе энергоемкость продуктов питания можно считать и в джоулях, поскольку [c.240]
Джоуль является очень удобной единицей измерения теплоты, так как с его помощью легко понять связь между теплотой, работой-и энергией. До введения системы СИ в химии было принято пользоваться в качестве единицы измерения теплоты калорией. Одна калория (кал) определяется как количество теплоты, необходимое для повышения температуры 1 г чистой воды на 1″С (точнее от 14,5 до 15,5″»С). Это определение основано на измерениях теплоты и непосредственно не связано с работой. Дело в том, что калория была введена в XIX столетии, когда еще не было известно, что теплота и работа являются различными формами энергии. [c.88]
Таким образом, энергия как мера движения материи всегда проявляется в качественно своеобразном виде, соответствующем данной форме движения, и выражается в соответствующих единицах измерения. С другой стороны, она количественно отражает единство всех форм движения, их взаимную превращаемость и неразрушимость движения. [c.24]
СООТНОШЕНИЕ МЕЖДУ РАЗЛИЧНЫМИ ЕДИНИЦАМИ ИЗМЕРЕНИЯ ЭНЕРГИИ [c.602]
Каждый, кто следит за своим весом, должен считать калории. Калория -это единица измерения количества энергии, в том числе и в продуктах питания. Например, порция жареной в масле картошки содержит 220 килокалорий. Откуда берется эта энергия Ответ прост. Вся энергия пищи — это сохраненная энергия солнечного света. [c.238]
В СИ предусматривается одна и та же единица — джоуль для измерения всех видов анергии, в том числе тепловой. Это устраняет необходимость введения в расчетные формулы дополнительных множителей для пересчета единиц измерения различных видов энергии. Если же тепловая энергия измеряется в ккал, то для перехода к единицам СИ или МКГСС в расчетные формулы вводится делитель А (термический эквивалент работы), равитга количеству тепла, которое соответствует данной единице работы (дж или кгс-м) [c.34]
Чтобы получить представление о величине джоуля, укажем, что бейсбольный мяч массой около 150 г, летящий после подачи со скоростью около 150 км ч (40 м с ), обладает кинетической энергией в 120 Дж. Широко распространенная в прошлом единица измерения тепла-калория (кал)-приблизительно в четыре раза больше джоуля (точнее, 1 кал = = 4,184 Дж). [c.101]
Традиционной единицей измерения теплоты, работы и энергии является калория, которая вводится эмпирически как количество теплоты, необходимое для повышения температуры одного грамма воды на один градус Кельвина (в системе СИ просто на 1 кельвин). Хотя, согласно термодинамике, теплота, энергия и работа эквивалентные величины, единица их измерения-калория-не связана очевидным образом с массой и ускорением. Такой выбор единиц затрудняет понимание физической связи между ними. Джоуль как единица измерения теплоты гораздо удобнее в том отношении, что позволяет видеть связь между теплотой, работой и энергией уже по самому своему определению. Хотя большая часть термодинамической литературы основана на использовании калории, логическая простота определения джоуля должна в конце концов обеспечить его повсеместное использование, подобно тому как литр и метр вытеснили галлон и ярд в бол
единиц энергии и преобразования
единиц энергии и преобразования
Единицы энергии и преобразования
Деннис Сильверман
У. К. Ирвин, физика и астрономия
Единицы энергии и преобразования
1 Джоуль (Дж) — единица энергии МКС, равная силе в один Ньютон.
действующий через один метр.
1 ватт — мощность джоуля энергии в секунду
Мощность = Ток x Напряжение (P = I В)
1 Вт — это мощность тока в 1 А, протекающего через 1 Вольт.
1 киловатт — это тысяча ватт.
1 киловатт-час — это энергия одного киловатта мощности, протекающая на одного человека.
час. (E = P t).
1 киловатт-час (кВтч) = 3,6 x 10 6 Дж = 3,6 миллиона
Джоули
1 калория тепла — это количество, необходимое для получения 1 грамма воды 1
степень
По Цельсию.
1 калория (кал.) = 4,184 Дж.
(Калории в рейтинге продуктов питания на самом деле являются килокалориями.)
BTU (британская тепловая единица) — это количество тепла, необходимое для
один
фунт воды на 1 градус Фаренгейта (F).
1 британская тепловая единица (BTU) = 1055 Дж (механический эквивалент
Отношение тепла)
1 БТЕ = 252 кКал.
= 1.055 кДж
1 Quad = 10 15 BTU (мировое потребление энергии составляет около 300
Квадроциклы в год, США — около 100 квадроциклов в год в 1996 году.)
1 терм = 100000 БТЕ
1000 кВтч = 3,41 миллиона БТЕ
Преобразование энергии
1 лошадиная сила (лс) = 745,7 Вт
Объем газа для преобразования энергии
Одна тысяча кубических футов газа (Mcf) -> 1,027 миллиона БТЕ = 1,083
миллиард
J = 301 кВтч
Один терм = 100000 БТЕ = 105.5 МДж = 29,3 кВтч
1 мкф -> 10,27 термов
Энергосодержание топлива
Уголь
25 миллионов БТЕ / тонна
сырая
Масло
5,6 млн БТЕ / баррель
Нефть
5,78 миллиона БТЕ / баррель = 1700 кВтч
/ баррель
Бензин
5,6 миллиона БТЕ / баррель (баррель — 42 галлона) = 1,33 терм / галлон
Сжиженный природный газ 4,2 миллиона БТЕ / баррель
Натуральный
газ
1030 БТЕ / куб.
стопа
Дерево
20 миллионов БТЕ / корд
CO2 Загрязнение ископаемым топливом
Фунтов CO2 на миллиард БТЕ энергии ::
угля
208000 фунтов
Нефть
164 000 фунтов
Природный газ 117 000 фунтов
Коэффициент загрязнения CO2:
Нефть / природный газ = 1.40
Уголь / природный газ = 1,78
фунтов CO2 на 1000 кВтч, при 100% эффективности:
угля
709 фунтов
Нефть
559 фунтов
Природный газ 399 фунтов
.
Конвертер единиц энергии
Единица измерения энергии в Международной системе единиц (СИ) — джоуль.
Джоуль — производная единица. Формула Джоуля:
1 Дж = 1 Н · м = 1 кг · м 2 / с 2
Один джоуль — это количество энергии, необходимое для выполнения следующих действий (источник: wikipedia.org)
- Работа, совершаемая силой в один ньютон, перемещающейся на расстояние в один метр;
- Работа, необходимая для перемещения электрического заряда в один кулон через разность электрических потенциалов в один вольт; или один кулон-вольт с обозначением C · V;
- Работа, проделанная для получения мощности в один ватт непрерывно в течение одной секунды; или одна ватт-секунда (сравните киловатт-час) с обозначением W · s.Таким образом, киловатт-час составляет 3 600 000 джоулей или 3,6 мегаджоулей;
- Кинетическая энергия массы 2 кг, движущейся со скоростью 1 м / с.
Формула от джоуля к калориям : на основе Международной таблицы пара (1956 г.)
1 калория равна 4,1868Дж. Ergo:
1 кал = 4,1868 Дж => N калорий = N * 4,1868 Дж
1 Дж = 0,238846 кал => N джоулей = N * 0,238846 калорий.
Единица | В Джоулях |
---|---|
Метрическая система | |
Джоуль [Дж] | 1 |
Джоуль [кДж] | 1000 |
Килограммметр [кгм] | 9.80665 |
Ватт-час [Втч] | 3600 |
Киловатт-час [кВтч] | 3600000 |
эрг [эрг] | 1e-7 |
Имперская система | |
фут-фунт [ft pdl] | 0,0421401100938 |
дюйм-фунт сила [фунт-сила] | 0,1129848290276167 |
фут-фунт сила [фут-фунт-сила] | 1,3558179483314004 |
л.с. / час | 2.6845e + 6 |
БТЕ | 1055.05585262 |
калорий | |
Калорий [кал] | 4,1868 |
Ккал [ккал] | 4186,8 |
Атомный | |
Электронвольт [эВ] | 1,6021765314e-19 |
Hartree [E h ] | 4.3597441775e-18 |
Rydberg [Ry] | 2.179872e-18 |
.
джоуль [Дж] гигаджоуль [ГДж] мегаджоуль [МДж] килоджоуль [кДж] миллиджоуль [мДж] микроджоуль [мкДж] наноджоуль [нДж] аттоджоуль [aJ] мегаэлектрон-вольт [ килоэлектрон-вольт [кэВ] электрон-вольт [эВ] эрггигаватт-час [ГВт * час] мегаватт-час [МВт * час] киловатт-час [кВт * час] киловатт-секунда [кВт * с] ватт-час [Вт * ч] ватт-секунда [Вт * с] ньютон-метр [Н * м] лошадиные силы-час [л.с. * ч] лошадиные силы (метрические) часы килокалорий (ИТ) [ккал (ИТ), ккал] килокалорий (th) [ккал (th)] калория (IT) [кал (IT), кал] калория (th) [cal (th)] калория (питательная) [кал (питательная)] британские тепловые единицы (ИТ) [британские тепловые единицы (ИТ), британские тепловые единицы] британские тепловые единицы (th) [британские тепловые единицы (th)] мега британских тепловых единиц (IT) [MBtu (IT), MBtu] тонна-час (охлаждение) [тонна * час] эквивалент жидкого топлива @ килолитертопливный нефтяной эквивалент @ баррель (США) гигатонна [Гтонна] мегатонна [Мтон] килотонна [ ктон] тонна (взрывчатые вещества) дин сантиметр [дин * см] грамм-сила-метр [gf * m] грамм-сила-сантиметр [gf * cm] килограмм-сила-сантиметр [кгс * см] килограмм-сила-метр [кгс * м] килопонд метр [кп * м] фунт-сила-фут [фунт-сила * фут] фунт-сила орс дюйм [фунт-сила * дюйм] унция-сила дюйм [ozf * дюйм] фут-фунт [фут * фунт-сила] дюйм-фунт [дюйм * фунт-сила] дюйм-унция [дюйм * ozf] фунт-фут [pdl * ft] thermtherm (EC ) терм (США) энергия Хартри Константа Ридберга | джоуль [Дж] гигаджоуль [ГДж] мегаджоуль [МДж] килоджоуль [кДж] миллиджоуль [мДж] микроджоуль [мкДж] наноджоуль [нДж] аттоджоуль [aJ] мегаэлектрон-вольт [ вольт [кэВ] электрон-вольт [эВ] эргигаватт-час [ГВт * ч] мегаватт-час [МВт * час] киловатт-час [кВт * час] киловатт-секунда [кВт * с] ватт-час [Вт * час] ватт-секунда [Вт * с] ньютон-метр [Н * м] лошадиные силы-час [л.с. * ч] мощность (метрическая) час килокалория (IT) [ккал (IT), ккал] килокалория (th) [ккал (th)] калория ( IT) [кал (IT), кал] калория (th) [кал (th)] калория (питательная) [cal (питательная)] Btu (IT) [Btu (IT), Btu] Btu (th) [Btu (th )] мега БТЕ (IT) [MBtu (IT), MBtu] тонна-час (охлаждение) [тонна * час] эквивалент жидкого топлива @kiloliterfuel нефтяной эквивалент @ баррель (США) гигатонна [Гтон] мегатонна [Мтон] килотонна [ктон] тонна (взрывчатые вещества) дин-сантиметр [дин * см] грамм-сила-метр [гс * м] грамм-сила-сантиметр [гс * см] килограмм-сила-сантиметр [кгс * см] килограмм-сила-метр [кгс * м] килопонд-метр [кп * м] фунт-сила-фут [фунт-сила * фут] фунт-сила дюйм [фунт-сила * дюйм] унция-сила дюйм [ozf * дюйм] фут-фунт [фут * фунт-сила] дюйм-фунт [дюйм * фунт-сила] дюйм-унция [дюйм * унция] фунт-фут [пдл * фут] thermtherm (EC) therm (США) Энергия Хартри Константа Ридберга |
.
Работа, Определение энергии и мощности, Единицы, Формула, Примеры, Типы
- БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
- КОНКУРСНЫЕ ЭКЗАМЕНА
- BNAT
- Классы
- Класс 1-3
- Класс 4-5
- Класс 6-10
- Класс 110003 CBSE
- Книги NCERT
- Книги NCERT для класса 5
- Книги NCERT, класс 6
- Книги NCERT для класса 7
- Книги NCERT для класса 8
- Книги NCERT для класса 9
- Книги NCERT для класса 10
- NCERT Книги для класса 11
- NCERT Книги для класса 12
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
9plar
- Книги NCERT
- RS Aggarwal
- RS Aggarwal Решения класса 12
- RS Aggarwal Class 11 Solutions
- RS Aggarwal Решения класса 10
- Решения RS Aggarwal класса 9
- Решения RS Aggarwal класса 8
- Решения RS Aggarwal класса 7
- Решения RS Aggarwal класса 6
- RD Sharma
- RD Sharma Class 6 Решения
- RD Sharma Class 7 Решения
- Решения RD Sharma класса 8
- Решения RD Sharma класса 9
- Решения RD Sharma класса 10
- Решения RD Sharma класса 11
- Решения RD Sharma Class 12
- PHYSICS
- Механика
- Оптика
- Термодинамика
- Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- MATHS
- Статистика
- 9000 Pro Числа
- Числа
- 9000 Pro Числа Тр Игонометрические функции
- Взаимосвязи и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убытки
- Полиномиальные уравнения
- Деление фракций
- Microology
- 0003000
- FORMULAS
- Математические формулы
- Алгебраные формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- 000 CALCULATORS
- 000
- 000 Калькуляторы по химии Образцы документов для класса 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 1 1
- Образцы документов CBSE для класса 12
0003000
- Вопросники предыдущего года CBSE
- Вопросники предыдущего года CBSE, класс 10
- Вопросники предыдущего года CBSE, класс 12
- HC Verma Solutions
- HC Verma Solutions Класс 11 Физика
- HC Verma Solutions Класс 12 Физика
- Решения Лакмира Сингха
- Решения Лахмира Сингха класса 9
- Решения Лахмира Сингха класса 10
- Решения Лакмира Сингха класса 8
9000 Класс
9000BSE 9000 Примечания3 2 6 Примечания CBSE
Примечания
- Дополнительные вопросы по математике класса 8 CBSE
- Дополнительные вопросы по науке 8 класса CBSE
- Дополнительные вопросы по математике класса 9 CBSE
- Дополнительные вопросы по математике класса 9 CBSE Вопросы
- CBSE Class 10 Дополнительные вопросы по математике
- CBSE Class 10 Science Extra questions
- Class 3
- Class 4
- Class 5
- Class 6
- Class 7
- Class 8 Класс 9
- Класс 10
- Класс 11
- Класс 12
- Решения NCERT для класса 11
- Решения NCERT для класса 11 по физике
- Решения NCERT для класса 11 Химия
- Решения NCERT для биологии класса 11
- Решение NCERT s Для класса 11 по математике
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Business Studies
- NCERT Solutions Class 11 Economics
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Commerce
- NCERT Solutions for Class 12
- Решения NCERT для физики класса 12
- Решения NCERT для химии класса 12
- Решения NCERT для биологии класса 12
- Решения NCERT для математики класса 12
- Решения NCERT, класс 12, бухгалтерский учет
- Решения NCERT, класс 12, бизнес-исследования
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 Accountancy Part 1
- NCERT Solutions Class 12 Accountancy Part 2
- NCERT Solutions Class 12 Micro-Economics
- NCERT Solutions Class 12 Commerce
- NCERT Solutions Class 12 Macro-Economics
- NCERT Solut Ионы Для класса 4
- Решения NCERT для математики класса 4
- Решения NCERT для класса 4 EVS
- Решения NCERT для класса 5
- Решения NCERT для математики класса 5
- Решения NCERT для класса 5 EVS
- Решения NCERT для класса 6
- Решения NCERT для математики класса 6
- Решения NCERT для науки класса 6
- Решения NCERT для класса 6 по социальным наукам
- Решения NCERT для класса 6 Английский язык
- Решения NCERT для класса 7
- Решения NCERT для математики класса 7
- Решения NCERT для науки класса 7
- Решения NCERT для социальных наук класса 7
- Решения NCERT для класса 7 Английский язык
- Решения NCERT для класса 8
- Решения NCERT для математики класса 8
- Решения NCERT для науки 8 класса
- Решения NCERT для социальных наук 8 класса ce
- Решения NCERT для класса 8 Английский
- Решения NCERT для класса 9
- Решения NCERT для класса 9 по социальным наукам
- Решения NCERT для математики класса 9
- Решения NCERT для математики класса 9 Глава 1
- Решения NCERT для математики класса 9, глава 2
- для математики класса 9, глава 3
- Решения NCERT для математики класса 9, глава 4
- Решения NCERT для математики класса 9, глава 5
- для математики класса 9, глава 6
- Решения NCERT для математики класса 9 Глава 7
- для математики класса 9 Глава 8
- Решения NCERT для математики класса 9 Глава 9
- Решения NCERT для математики класса 9 Глава 10
- для математики класса 9 Глава 11
- NCERT для математики класса 9 Глава 12
- для математики класса 9 Глава 13
- NCER Решения T для математики класса 9 Глава 14
- Решения NCERT для математики класса 9 Глава 15
Решения NCERT
Решения NCERT
Решения NCERT
Решения NCERT
Решения
Решения NCERT
- Решения NCERT для науки класса 9
- Решения NCERT для науки класса 9 Глава 1
- Решения NCERT для науки класса 9 Глава 2
- Решения NCERT для науки класса 9 Глава 3
- Решения NCERT для науки класса 9 Глава 4
- Решения NCERT для науки класса 9 Глава 5
- Решения NCERT для науки класса 9 Глава 6
- Решения NCERT для науки класса 9 Глава 7
- Решения NCERT для науки класса 9 Глава 8
.