Напряжённость магнитного поля — это… Что такое Напряжённость магнитного поля?
Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.
В СИ: где
— магнитная постоянная.
В СГС:
- В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ0μ H в системе СИ (см. Магнитная проницаемость, также см. Магнитная восприимчивость).
В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.
1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.
1 А/м = 4π/1000 Э ≈ 0,01256637 Э.
Физический смысл
В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля совпадает с вектором магнитной индукции с точностью до коэффициента, равного 1 в СГС и μ0 в СИ.
В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».
Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B0, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.
При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).
Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля[1]. Энергия магнитного поля как такового выражается только через фундаментальное B. Тем не менее видно, что величина H феноменологически и тут весьма удобна.
См. также
Примечания
- ↑ Действительно, для иллюстрации рассмотрим выражение для так называемой плотности энергии поля в среде
для сравнительно простого случая линейной связи намагниченности напряженности магнитного поля
Тогда
(используем здесь СИ) раскрывается как
где первый член — энергия магнитного поля в чистом виде, поскольку второй — совершенно очевидно энергия взаимодействия поля со средой — например с магнитными диполями парамагнетика.
Напряженность магнитного поля | Формулы и расчеты онлайн
Напряженность магнитного поля можно определить с помощью силы, которая действует на помещенный в поле пробный магнит.
Так как магнитные полюсы не существуют по отдельности, на северный и южный полюсы пробного магнита действуют противоположно направленные силы, и возникает момент пары сил.
Этот момент характеризует величину напряженности поля в данном месте.
В магнитном поле цилиндрической катушки он прямо пропорционален числу витков и силе тока и обратно пропорционален длине катушки.
Направление вектора напряженности магнитного поля в каждой точке совпадает с направлением силовых линий. Внутри катушки (магнита) он направлен от южного полюса к северному,
вне катушки — от северного к южному.
Единица СИ напряженности магнитного поля
Единица СИ напряженности магнитного поля:
\[ [H] = \frac{Ампер}{Метр} \]
Эрстед — Единица напряженности магнитного поля
Единица напряженности магнитного поля Эрстед не принадлежит к системе СИ.
\[ 1 Эрстед = \frac{1000}{4π} \frac{Ампер}{метр} \]
\[ 1 \frac{Ампер}{метр} = \frac{4π}{1000} Эрстед \]
Напряженность магнитного поля в цилиндрической катушке
Напряженность магнитного поля в цилиндрической катушке
Если
H | напряженность магнитного поля внутри цилиндрической катушки, | Ампер/метр |
---|---|---|
I | сила тока в катушке, | Ампер |
n | число витков, | Ампер |
l | длина катушки (т. е. силовых линий в области однородного поля), | метр |
то напряженность магнитного поля определяется формулой
\[ H = \frac{I·n}{l} \]
Напряженность магнитного поля вокруг прямолинейного проводника
Напряженность Н магнитного поля прямолинейного проводника постоянна вдоль круговой силовой линии.
Если
H | напряженность магнитного поля прямолинейного проводника, | Ампер/метр |
---|---|---|
I | сила тока в проводнике, | Ампер |
r | расстояние от проводника в плоскости, перпендикулярной проводнику, | метр |
то напряженность магнитного поля определяется формулой
\[ H = \frac{I}{2πr} \]
Напряженность магнитного поля в центре витка с током
Напряженность магнитного поля в центре витка с током
Если
H | напряженность магнитного поля в центре витка с током, | Ампер/метр |
---|---|---|
I | сила тока в витке, | Ампер |
r | радиус витка, | метр |
то напряженность магнитного поля определяется формулой
\[ H = \frac{I}{2r} \]
Напряженность магнитного поля | стр. 643 |
---|
Напряженность магнитного поля
Итак, мы с вами выяснили, что магнитное поле – это одна из форм проявления электромагнитного поля, особенностью которого является то, что это поле действует только на движущиеся частицы и тела, обладающие электрическим зарядом, а также на намагниченные тела.
Магнитное поле создается проводниками с током, движущимися электрическими заряженными частицами и телами, а также переменными электрическими полями.
Силовой характеристикой магнитного поля служит вектор магнитной индукции поля созданного одним зарядом в вакууме:
.
Еще одной характеристикой магнитного поля является напряженность.
Напряженностью магнитного поля называют векторную величину , характеризующую магнитное поле и определяемую следующим образом:
, | (1.4.1) |
Напряженность магнитного поля заряда q, движущегося в вакууме равна:
, | (1.4.2) |
Это выражение показывает закон Био–Савара–Лапласа для .
Напряженность магнитного поля является, как бы, аналогом вектора электрического смещения в электростатике.
Другие аудио-видео демонстрации по теме или смежным темам:
1. Силовые линии магнитов.
2. Линии магнитной индукции.
3. Намагниченность.
4. Электромагниты.
5. Компас.
Конвертер напряженности магнитного поля • Магнитостатика, магнетизм и электродинамика • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
Опилки в магнитном поле кубических магнитов
Общие сведения
Магнитная пленка-визуализатор позволяет «заглянуть внутрь» мощного неодимового магнита
Напряжённость магнитного поля и магнитная индукция. Казалось бы, зачем было физикам усложнять и без того сложные физические понятия при описании явлений магнетизма? Два вектора, одинаково направленные, отличающиеся разве что коэффициентом пропорциональности — ну какой в этом смысл с точки зрения простого человека, не слишком обременённого знаниями из области современной физики?
Тем не менее, именно в этом различии скрываются нюансы, позволившие учёным открыть и удивительные свойства различных веществ, и законы их взаимодействия с магнитным полем, и даже изменить наши представления об окружающем мире.
В действительности за этой разницей скрывается различный методологический подход. Упрощенно говоря, в случае использования понятия напряжённости магнитного поля мы пренебрегаем влиянием магнитного поля на вещество в конкретном случае; в случае применения понятия магнитной индукции, мы учитываем этот фактор.
С технической точки зрения, напряжённость магнитного поля сколь угодно сложной конфигурации достаточно просто рассчитать, а результирующую магнитную индукцию — измерить.
Левитация пиролитического графита
За этой кажущейся простотой скрывается титанический труд целой плеяды учёных, разделённых во времени и пространстве. Их идеи и концепции определили и определяют развитие науки и техники в прошлом, настоящем и будущем.
И неважно, как скоро мы овладеем термоядерной энергией с помощью нового поколения термоядерных реакторов, основанных на удержании «горячей» плазмы магнитным полем. Когда отправим в космос новые поколения исследовательских роботов на ракетах, основанных на применении иных принципов, чем сжигание химического топлива. Или, в частности, решим задачу коррекции орбит микроспутников двигателями Холла. Или насколько полно сможем утилизировать энергию Солнца, как быстро и дёшево мы сможем передвигаться по нашей планете — имена первопроходцев науки навеки останутся в нашей памяти.
Магнитная пленка показывает как намагничен магнит для холодильника
Уже современному поколению учёных и инженеров двадцать первого века, вооружённому накопленными знаниями своих предшественников, покорится задача магнитной левитации, пока апробированная в лабораториях и пилотных проектах; и проблема извлечения энергии из окружающей среды с помощью технической реализации «демона Максвелла» с использованием невиданных до сих пор материалов и взаимодействий нового типа. Первые прототипы таких устройств уже появились на Kiсkstarter.
При этом будет решена главная проблема человечества — превращения в тепло накопленных за сотни миллионов лет запасов углей и углеводородов, нещадно изменяющих продуктами сгорания климат нашей планеты. И грядущая термоядерная революция, гарантирующая, вслед за её бездумным освоением, тепловую смерть всякой органической жизни на Земле, не станет смертным приговором цивилизации. Ведь энергия любого вида, которую мы расходуем, в конце концов превращается в тепло и нагревает нашу планету.
Дело за малым — временем; доживём — увидим!
Историческая справка
Несмотря на то, что сами магниты и явление намагничивания были известны издавна, научное изучение магнетизма началось с работ французского средневекового учёного Пьера Пелерена де Марикура в далёком 1269 году. Де Марикур подписывал свои труды именем Петруса Перегрина (лат. Petrus Peregrinus).
Слева направо: Симеон Дени Пуассон, Шарль Огюстен де Кулон, Ханс Кристиан Эрстед, Андре-Мари Ампер, Уильямо Гилберт. Источник: Википедия
Исследуя поведение железной иглы возле сферического магнита, учёный обнаружил, что игла по-особенному ведёт себя возле двух точек, названных им полюсами. Так и подмывает дать аналогию с магнитными полюсами Земли, но в то время за такой образ мыслей легко можно было отправиться на костёр! Кроме того, исследователь обнаружил, что любой магнит всегда имеет (в современном представлении) северный и южный полюса. И как не распиливай магнит в продольном или в поперечном сечении, всё равно каждый из полученных магнитов всегда будет иметь два полюса, как бы тонок он ни был.
«Крамольная» идея о том, что Земля сама по себе является магнитом, была опубликована английским врачом и натуралистом Уильямом Гилбертом в работе «De Magnete», увидевшей свет почти три века спустя в 1600 году.
Слева направо: Уильям Томпсон (лорд Кельвин), Феликс Савар, Франц Эрнст Нейман, Майкл Фарадей, Карл Фридрих Гаусс, Жан-Батист Био. Источник: Википедия
В 1750 году английский учёный Джон Митчелл установил, что магниты притягиваются и отталкиваются (взаимодействуют) в соответствии с законом «обратных квадратов». В 1785 году французский учёный Шарль Огюстен де Кулон экспериментально проверил предположения Митчелла и установил, что северный и южный магнитные полюса не могут быть разъединены. Тем не менее, по аналогии с открытым им ранее законом взаимодействия электрических зарядов, Кулон всё же предположил существование и магнитных зарядов — гипотетических магнитных монополей.
Основываясь на известных ему на то время фактов о магнетизме и на преобладающем в то время в науке методологическом подходе к построению теорий взаимодействия как о некоторых жидкостях, в 1824 году соотечественник Кулона Симеон Дени Пуассон создал первую успешную модель магнетизма. В его теоретической модели магнитное поле описывалось диполями магнитных зарядов.
Но буквально сразу же три открытия подряд поставили под сомнение модель Пуассона. Рассмотрим их ниже.
Датский физик Ханс Кристиан Эрстед в 1819 году заметил отклонение стрелки магнитного компаса при включении и отключении электрического тока, протекающего через проводник в виде проволоки, обнаружив, таким образом, взаимосвязь между электричеством и магнетизмом.
В 1820 году французский учёный Андре-Мари Ампер установил, что проводники с токами, текущими в одном направлении притягиваются, а в противоположном — отталкиваются. В том же 1820 году французские физики Жан-Батист Био и Феликс Савар открыли закон названный впоследствии их именами. Этот закон позволял рассчитать напряжённость магнитного поля вокруг любого проводника с током вне зависимости от его геометрической конфигурации.
Обобщая полученные теоретические и экспериментальные данные, Ампер высказал идею об эквивалентности электрических токов и проявлений магнетизма. Он разработал свою модель магнетизма, в которой заменил магнитные диполи циркуляцией электрических токов в крошечных замкнутых петлях. Модель проявления магнетизма Ампера имела преимущество перед моделью Пуассона, поскольку объясняла невозможность разделения полюсов магнитов.
Демонстрация электромагнитной индукции с помощью катушки, гальванометра и постоянного магнита
Ампер также предложил для описания таких явлений термин «электродинамика», который расширил применение науки об электричестве к динамическим электрическим объектам, дополняя тем самым электростатику. Пожалуй, наибольшее влияние на понимание сути проявлений магнетизма оказала концепция представления взаимодействия магнитов через силовое поле, описываемое силовыми линиями, предложенная английским учёным Майклом Фарадеем. Открытое в 1831 году Фарадеем явление электромагнитной индукции позднее было объяснено немецким математиком Францем Эрнстом Нейманом. Последний доказал, что возникновение электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него, является просто следствием закона Ампера. Нейман ввел в обиход науки понятие векторного магнитного потенциала, который во многом эквивалентен напряжённости силовых линий магнитного поля Фарадея.
Окончательную точку в споре двух моделей магнетизма поставил в 1850 году выдающийся английский физик Уильям Томпсон (лорд Кельвин). Введя понятие намагниченности среды M, в которой имеется магнитное поле, он не только установил зависимость между напряжённостью магнитного поля H и вектором магнитной индукции B, но и определил области применимости этих понятий.
Напряжённость магнитного поля. Определение
Напряжённость магнитного поля — это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности М. В Международной системе единиц (СИ) значение напряжённости магнитного поля определяется формулой:
H = (1/μ0) · B — M
где μ₀ — магнитная постоянная, иногда её называют магнитной проницаемостью вакуума
В системе единиц СГС напряженность магнитного поля определяется по другой формуле:
Н = B — 4·π·М
В Международной системе единиц СИ напряжённость магнитного поля измеряется в амперах на метр (А/м), в системе СГС — в эрстедах (Э).
В электротехнике встречается также внесистемная единица измерения напряжённости — ампер-виток на метр. С другими величинами измерения напряжённости магнитного поля, применяемыми в различных приложениях, и их переводами из одной величины в другую, можно ознакомиться в конвертере физических величин.
Измерительные приборы для измерения величины напряжённости магнитного поля, как и приборы для измерения магнитной индукции, называют тесламетрами или магнитометрами.
Напряжённость магнитного поля. Физика явлений
Исследовательский токамак (тороидальная камера с магнитными катушками), работавший в научно-исследовательском институте государственной энергетической компании Hydro-Québec в пригороде Монреаля c 1987 по 1997 год, когда проект был закрыт для экономии бюджетных средств. Установка находится в экспозиции Канадского музея науки и техники
В вакууме (в классическом понимании этого термина) или в отсутствие среды, способной к магнитной поляризации или в случаях, когда магнитной поляризацией среды можно пренебречь, напряжённость магнитного поля Н совпадает (с точностью до коэффициента) с вектором магнитной индукции В. Для системы СГС этот коэффициент равен 1, для системы единиц СИ — μ0.
Напряжённость магнитного поля обусловлена свободными (внешними) токами, которые легко измерить или рассчитать. То есть напряжённость имеет смысл для внешнего магнитного поля, создаваемого катушкой с током, в которую вставлен материал, способный намагничиваться. Если нас не интересует поведение материала под действием магнитного поля, то достаточно оперировать только напряжённостью магнитного поля. Например, напряженности будет достаточно для технического расчёта взаимодействия магнитных полей двух или более катушек с током. Результирующая напряжённость будет векторной суммой полей, создаваемых отдельными катушками с током.
Поскольку большинство электромагнитных устройств работает в воздушной среде, важно знать её магнитную проницаемость. Абсолютная магнитная проницаемость воздуха приблизительно равна магнитной проницаемости вакуума и в технических расчётах принимается равной 4π• 10⁻⁷ Гн/м.
Иное дело, когда нас интересует именно поведение среды, способной к намагничиванию, например, при использовании ядерных магниторезонансных явлений. При ЯМР ядра атомов, иначе называемые нуклонами и обладающие полуцелым спином (магнитным моментом), при воздействии магнитного поля поглощают или излучают электромагнитную энергию на определённых частотах. В этих случаях необходимо учитывать именно магнитную индукцию.
В видеомагнитофонах, которые были популярными в конце XX и начале XXI века, используется несколько шаговых двигателей, в основе которых лежит как раз использование магнитного поля обмоток
Применение напряжённости магнитного поля в технике
В большинстве случаев практического применения магнитного поля, например, для его создания или для измерения его величины, напряжённость магнитного поля играет ключевую роль. Существует множество примеров использования магнитного поля, в первую очередь в измерительной технике и в различных установках для проведения экспериментов.
Магнитное поле определённой силы и конфигурации удерживает плазменные шнуры или потоки заряженных частиц в исследовательских термоядерных реакторах и в ускорителях элементарных частиц, предотвращая тем самым охлаждение плазмы при контакте с ограждающими стенками. Оно же отклоняет потоки ионов или электронов в спектрометрах и кинескопах.
Измерение напряжённости магнитного поля Земли в различных точках очень важно для оценки состояния её магнитосферы. Существует даже целая сеть наземных станций и группировок научных спутников для мониторинга напряжённости магнитного поля Земли. Их работа позволяет предсказывать магнитные бури, возникающие на Солнце, сводя к минимуму, насколько это возможно, их последствия.
Детектор магнитных аномалий берегового патрульного самолета Королевских ВВС Канады Lockheed CP-140 Aurora
Измерение напряженности поля даёт возможность проводить различные изыскания, сортировать материалы и мусор, а также обеспечивать нашу безопасность, обнаруживая оружие террористов или заложённые мины.
Магнитометры
Магнитометрами называется целый класс измерительных приборов, предназначенных для измерения намагниченности материалов или для определения силы и направления магнитного поля.
Первый магнитометр был изобретён великим немецким математиком и физиком Карлом Фридрихом Гауссом в 1833 году. Этот прибор представлял собой оптический прибор с крутящимся намагниченным стержнем, подвешенным на золотой нити, и приклеенным к нему перпендикулярно оси магнита зеркалом. Измерялось различие колебаний намагниченного и размагниченного стержня.
Ныне используются более чувствительные магнитометры на иных принципах, в частности, на датчиках Холла, джозефсоновских туннельных контактах (СКВИД-магнитометры) индукционные и на ЯМР-резонансе. Они находят широкое применение в различных приложениях: измерении магнитного поля Земли, в геофизических исследованиях магнитных аномалий и в поиске полезных ископаемых; в военном деле для обнаружения объектов типа подводных лодок, затонувших кораблей или замаскированных танков, искажающих своим полем магнитное поле Земли; для поиска неразорвавшихся или заложенных боеприпасов на местах ведения боевых действий. В связи с миниатюризацией и снижением потребления тока, современными магнитометрами оснащаются смартфоны и планшеты. Ныне магнитометры входят как неотъемлемый компонент в оборудование разведывательных беспилотных летательных аппаратов и спутников-шпионов.
Металлоискатель на пляже
Любопытная деталь: в связи с повышением чувствительности магнитометров, одним из факторов перехода строительства подводных лодок на титановые корпуса вместо стальных корпусов было именно радикальное снижение их заметности в магнитном поле. Ранее подлодкам со стальным корпусом, как, впрочем, и надводным кораблям, приходилось время от времени проходить процедуру демагнетизации.
Магнитометры применяются при бурении скважин и проходке штолен, в археологии для оконтуривания раскопок и поиска артефактов, в биологии и медицине.
Металлодетекторы
Попытки использования напряжённости магнитного поля в военном деле предпринимались со времён Первой мировой войны, оставившей на полях сражений миллионы неразорвавшихся боеприпасов и установленных мин. Наиболее удачной оказалась разработка в начале 40-х годов прошлого столетия, поручика польской армии Юзефа Станислава Косацкого, принятая на вооружение британской армией и сослужившая немалую пользу при обезвреживании минных полей во время преследовании отступающих немцев войсками генерала Монтгомери при второй битве под Эль-Аламейном. Несмотря на то, что оборудование Коcацкого было выполнено на электронных лампах, оно весило всего 14 килограммов вместе с аккумуляторами питания и было настолько эффективным, что его модификации использовались британской армией в течение 50 лет.
Теперь нас не удивляет, в связи с распространением терроризма, прохождение перед посадкой на самолёт или на футбольные матчи сквозь индукционные рамки металлодетекторов, обследование охраной объектов нашего багажа или личный досмотр ручными металлоискателями на предмет обнаружения оружия.
Широкое распространение получили и бытовые металлоискатели, на пляжах модных курортов стала привычной картина искателей утерянных сокровищ, прочёсывающих местные пляжи в надежде найти что-либо ценное.
Эффект Холла и устройства на его основе
Использование датчика Холла в мобильном телефоне. Слева: магнитная пленка-визуализатор показывает наличие магнита в крышке чехла для телефона. Центр: если крышка закрыта, находящийся в ней магнит активизирует датчик Холла и телефон показывает часы, которые видны в окошке крышки. Справа: тот же эффект достигается с помощью магнита
Эдвин Холл (1855–1938). Источник: Википедия
Существует отдельный класс измерительных приборов, основанных на эффекте, открытом американским учёным Эдвином Холлом в 1879 году. Суть этого явления заключается в возникновении поперечной разности потенциалов (электрического поля) в проводнике с постоянным током, помещённым в магнитное поле, перпендикулярном направлению тока. Разность потенциалов вызвана различным действием силы Лоренца на носители зарядов противоположных знаков — они накапливаются возле противоположных сторон образца, пока электрическое поле не скомпенсирует действие силы Лоренца. Эффект Холла проявляется в различных материалах: в металлах он обусловлен отклонением электронов, в полупроводниках — отклонением электронов и дырок, в плазме — отклонением электронов и ионов.
В середине семидесятых датчики Холла широко использовались в клавиатурах; в клавишах были магнитики, которые управляли датчиками Холла
Поскольку сигнал, вырабатываемый за счёт эффекта Холла, относительно слаб, он требует дополнительного усиления. С развитием интегральной усилительной схемотехники появилась возможность технической реализации датчиков Холла, интегрированных с аналоговыми усилителями постоянного тока. Также они могут интегрироваться в едином корпусе с аналого-цифровыми преобразователями и логическими схемами, образуя интерфейс для подключения к портам микроконтроллеров и компьютеров. Такие датчики находят применение в различных областях науки и техники.
Приложение Компас для смартфона с операционной системой Андроид
По принципу действия датчики Холла относятся к датчикам бесконтактного типа, они нечувствительны к разного рода загрязнениям и воздействию воды, компактны и потребляют мало электроэнергии. Неудивительно, что по этим причинам линейные и логические датчики Холла широко применяются в современных технологиях. Например, вы, скорее всего, не подозреваете, что Ваш автомобиль буквально напичкан датчиками Холла: они работают в системе зажигания автомобиля, в системе автоблокировки колёс и торможения, в блокировке дверей и датчиках расхода топлива, контроля зарядки аккумулятора (датчик тока на основе эффекте Холла) и тахометрах. И принтер, выдающий вам на заправке чек, использует датчики Холла в бесколлекторных двигателях постоянного тока и в датчиках бумаги. Когда вы заходите в свой офис, открывая дверь магнитной карточкой, вы также пользуетесь считывателями магнитных карточек на основе датчиков Холла.
Использование датчика Холла в мобильном телефоне
Этот перечень можно продолжать достаточно долго, достаточно упомянуть применение датчиков Холла для определения положения крышки чехла в современных смартфонах. Следует отметить, что в качестве электронного компаса в смартфонах обычно используются магниторезистивные датчики так как их чувствительность к изменению магнитного поля намного выше, чем чувствительность датчиков Холла.
Применение измерения напряжённости магнитного поля в медицине
Александр Грейам Белл (1847–1922). Источник: Википедия
В 1874 году французский изобретатель Гюстав Труве разработал первое устройство для обнаружения пуль и осколков снарядов в теле раненых бойцов. Позднее изобретатель телефона американец Александр Белл (который обижался, когда его называли именно так, поскольку у него были не менее революционные изобретения в других областях техники) усовершенствовал этот аппарат и даже пытался с помощью него спасти раненого президента США Джеймса Гарфилда. К сожалению, попытка локализации пули оказалась неудачной.
Густав Пиер Труве (1839–1902). Источник: Википедия
Сейчас предложение врачей пройти МРТ-обследование в аппаратах, которые используют в работе напряженность магнитного поля, вызывает тревогу только из-за его возможных результатов, тем не менее, необходимость прохождения обследования не вызывает сомнения.
Визуализация напряжённости магнитного поля
Увидеть само магнитное поле и распределение его напряжённости в пространстве помогают современные магниточувствительные материалы — магнитные жидкости и плёнки. Конечно, можно пилить напильником какую-нибудь стальную деталь для получения некоторого количества железных опилок с целью повторить опыты с магнитами времён Средневековья. Современные высокотехнологичные разработки дают возможность их неоднократного использования без непроизводительного перевода материалов.
Ферромагнитная жидкость
Порой получаются довольно занимательные картинки прямо из мира, который нам не дано ощущать в силу нашего ограниченного восприятия. Но, возможно, именно они натолкнут вас на идею их применения в новом качестве и для новых целей.
Не менее занимательны опыты по воспроизведению шумов переориентации магнитных доменов, известных как эффект Баркгаузена. Обычно для этих опытов используют катушку металлической проволоки и вставленное в нее тело из материала, который легко намагничивается. Катушку подключают к усилителю чтобы слышать шум, вырабатываемый во время переориентации доменов. Когда тело намагничивается, магнитные домены перемещаются так, что вместо случайно направленных они становятся направленными в определенном направлении. Это движение и вызывает характерный шум, который слышен через усилитель и громкоговоритель. Для его перевода в ощутимый эффект, необходимо использовать дополнительные усилители и вставлять фильтр по частоте переменного тока (в Европе это фильтр на 50 Гц, в Штатах и Канаде — фильтр на 60 Гц) или фильтровать сигналы сетевой частоты программно.
Видите, как много полезных и интересных применений у напряженности магнитного поля? Надеюсь, что мы убедили вас попробовать некоторые наблюдения и эксперименты из этой статьи. Если вы не хотите проводить их сами, то на YouTube много занимательных видео на эту тему.
Ферромагнитная жидкость
Автор статьи: Сергей Акишкин
Unit Converter articles were edited and illustrated by Анатолий Золотков
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
НАПРЯЖЁННОСТЬ МАГНИТНОГО ПОЛЯ — это… Что такое НАПРЯЖЁННОСТЬ МАГНИТНОГО ПОЛЯ?
— аксиальный вектор H(r, t), определяющий [наряду с вектором магнитной индукции B(r, t)] свойства макроско-пич. магн. поля. В случае вакуума двухвекторное описание магн. поля является чисто формальным, поэтому в гауссовой системе единиц в вакууме B=H, хотя, в силу традиций, и измеряются в единицах с разным наименованием: В — в гауссах (Гс), a H — в эрстедах (Э). В СИ сохраняется различие и для вакуума: B= m0H, где m0 — магнитная постоянная. Измеряется H. м. п. в СИ в амперах на метр (А/м), 1 A/м = = 4p.10-3 Э.
В соответствии с первым Максвелла уравнением источниками H. м. п. являются электрич. токи (проводимости, смещения и т. п.):
где j, jCM — плотность тока, переносимого зарядами, и плотность тока смещения, D — вектор электрической индукции (здесь и далее применяется гауссова система единиц). В среде могут также присутствовать токи намагничивания с плотностью j м, связанные с индуцированной и (или) спонтанной намагниченностью M; j м = с[M]. Эти токи и обусловливают различие векторов поля В и H:
В этом отношении существует принципиальная разница между пост. и переменными во времени полями. В пост. полях ур-ние (2) (к-рое иногда наз. материальным ур-нием или ур-нием среды) автономно, в перeм. полях оно зависит от вида материальной связи между электрич. векторами: D = D(E) = E+ 4pPe (E — напряжённость электрического поля, Pe — вектор электрической поляризации), потому что вихревая составляющая плотности перем. тока j может быть с известным произволом интерпретирована и как плотность тока поляризации j п = д Pe/дt, и как плотность тока намагничивания j м. В общем случае:
Поэтому определение H. м. п. в случае перем. полей условно и зависит от принятых материальных связей. В ВЧ-электродинамике иногда вообще не различают векторов В и H, относя все токи к токам поляризации. Принципиальным является вопрос о том, какой из векторов, В или H, берётся в качестве «первичного». Историч. традиция выбрала в качестве такового вектор H, с чем и связано его название — H. м. п. Поэтому ур-ние (2) трактовалось как зависимость вектора В от «первичного» поля H: B = H+ 4pM = mH (m- магнитная проницаемость). Однако впоследствии оказалось, что истинно первичным целесообразнее считать вектор магн. индукции В, совпадающий с усредненной по физически малому объёму напряжённостью микроскопич. магн. поля в вакууме (см. Лоренца — Максвелла уравнения).
Лит.:Tамм И. E., Основы теории электричества, 10 изд., M., 1989; Ландау Л. Д., Лившиц E. M., Электродинамика сплошных сред, 2 изд., M., 1982.
M. А. Миллер, Г. В. Пермитии,
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия.
Главный редактор А. М. Прохоров.
1988.
3. Единицы измерения магнитных величин | 13. Магнетизм и электромагнетизм | Часть1
3. Единицы измерения магнитных величин
Единицы измерения магнитных величин
Благодаря раннему отсутствию стандартизации в науке о магнетизме, мы сталкиваемся не менее чем c тремя системами измерения магнитных величин.
Этих величин в магнетизме несколько больше чем в электричестве. В электричестве мы имели дело с четырьмя основными величинами: напряжением (U), силой тока (I), сопротивлением (R) и мощностью (P). Первые три из них связаны друг с другом Законом Ома (U=IR ; I=U/R ; R=U/I), а четвертая, с предыдущими тремя — Законом Джоуля (P = IU, P = I2R, Р = U2/ R).
В магнетизме мы будем иметь дело со следующими величинами:
Магнитодвижущая сила (МДС) — физическая величина, характеризующая способность электрических токов создавать магнитные потоки. Она аналогична электродвижущей силе (ЭДС) в электрических цепях.
Магнитный поток — общее количество поля или его эффект. Аналогичен току в электрических цепях.
Напряженность магнитного поля — количество магнитодвижущих сил, распределенных по длине электромагнита.
Магнитная индукция — общее количество магнитного потока, сконцентрированного в данной точке пространства.
Магнитное сопротивление — Сопротивление определенного объема пространства или материала .магнитному потоку. Аналогично электрическому сопротивлению.
Магнитная проницаемость — величина, характеризующая реакцию среды (материала) на воздействие внешнего магнитного поля. Обратна удельному сопротивлению материала (большая проницаемость означает более легкое прохождение магнитного потока, в то время как большее удельное сопротивление означает более трудное прохождение электрического тока).
В настоящее время существует, как мы уже говорили, три системы измерения этих величин:
Как вы уже догадались, отношение между магнитодвижущей силой, магнитным потоком и магнитным сопротивлением аналогично отношению между напряжением (U), током (I) и сопротивлением (R). Получается нечто похожее на закон Ома для магнитной цепи:
Уравнение для определения магнитного сопротивления материала очень похоже на уравнение для определения сопротивления проводника (учитывая что магнитная проницаемость обратна удельному сопротивлению):
Из этих формул видно, что сопротивление более длинного материала в обоих случаях больше, а сопротивление материала с большей площадью поперечного сечения — меньше (при прочих равных условиях).
Главная загвоздка здесь состоит в том, что сопротивление материала магнитному потоку фактически изменяется при изменении концентрации самого потока. Это делает «Закон Ома» для магнитных цепей нелинейным, и работать с ним намного трудней, чем с электрической версией данного закона.
эрстед [Э] в килоампер на метр [кА/м] • Конвертер напряженности магнитного поля • Магнитостатика, магнетизм и электродинамика • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
1 эрстед [Э] = 0,0795774715459424 килоампер на метр [кА/м]
Опилки в магнитном поле кубических магнитов
Общие сведения
Магнитная пленка-визуализатор позволяет «заглянуть внутрь» мощного неодимового магнита
Напряжённость магнитного поля и магнитная индукция. Казалось бы, зачем было физикам усложнять и без того сложные физические понятия при описании явлений магнетизма? Два вектора, одинаково направленные, отличающиеся разве что коэффициентом пропорциональности — ну какой в этом смысл с точки зрения простого человека, не слишком обременённого знаниями из области современной физики?
Тем не менее, именно в этом различии скрываются нюансы, позволившие учёным открыть и удивительные свойства различных веществ, и законы их взаимодействия с магнитным полем, и даже изменить наши представления об окружающем мире.
В действительности за этой разницей скрывается различный методологический подход. Упрощенно говоря, в случае использования понятия напряжённости магнитного поля мы пренебрегаем влиянием магнитного поля на вещество в конкретном случае; в случае применения понятия магнитной индукции, мы учитываем этот фактор.
С технической точки зрения, напряжённость магнитного поля сколь угодно сложной конфигурации достаточно просто рассчитать, а результирующую магнитную индукцию — измерить.
Левитация пиролитического графита
За этой кажущейся простотой скрывается титанический труд целой плеяды учёных, разделённых во времени и пространстве. Их идеи и концепции определили и определяют развитие науки и техники в прошлом, настоящем и будущем.
И неважно, как скоро мы овладеем термоядерной энергией с помощью нового поколения термоядерных реакторов, основанных на удержании «горячей» плазмы магнитным полем. Когда отправим в космос новые поколения исследовательских роботов на ракетах, основанных на применении иных принципов, чем сжигание химического топлива. Или, в частности, решим задачу коррекции орбит микроспутников двигателями Холла. Или насколько полно сможем утилизировать энергию Солнца, как быстро и дёшево мы сможем передвигаться по нашей планете — имена первопроходцев науки навеки останутся в нашей памяти.
Магнитная пленка показывает как намагничен магнит для холодильника
Уже современному поколению учёных и инженеров двадцать первого века, вооружённому накопленными знаниями своих предшественников, покорится задача магнитной левитации, пока апробированная в лабораториях и пилотных проектах; и проблема извлечения энергии из окружающей среды с помощью технической реализации «демона Максвелла» с использованием невиданных до сих пор материалов и взаимодействий нового типа. Первые прототипы таких устройств уже появились на Kiсkstarter.
При этом будет решена главная проблема человечества — превращения в тепло накопленных за сотни миллионов лет запасов углей и углеводородов, нещадно изменяющих продуктами сгорания климат нашей планеты. И грядущая термоядерная революция, гарантирующая, вслед за её бездумным освоением, тепловую смерть всякой органической жизни на Земле, не станет смертным приговором цивилизации. Ведь энергия любого вида, которую мы расходуем, в конце концов превращается в тепло и нагревает нашу планету.
Дело за малым — временем; доживём — увидим!
Историческая справка
Несмотря на то, что сами магниты и явление намагничивания были известны издавна, научное изучение магнетизма началось с работ французского средневекового учёного Пьера Пелерена де Марикура в далёком 1269 году. Де Марикур подписывал свои труды именем Петруса Перегрина (лат. Petrus Peregrinus).
Слева направо: Симеон Дени Пуассон, Шарль Огюстен де Кулон, Ханс Кристиан Эрстед, Андре-Мари Ампер, Уильямо Гилберт. Источник: Википедия
Исследуя поведение железной иглы возле сферического магнита, учёный обнаружил, что игла по-особенному ведёт себя возле двух точек, названных им полюсами. Так и подмывает дать аналогию с магнитными полюсами Земли, но в то время за такой образ мыслей легко можно было отправиться на костёр! Кроме того, исследователь обнаружил, что любой магнит всегда имеет (в современном представлении) северный и южный полюса. И как не распиливай магнит в продольном или в поперечном сечении, всё равно каждый из полученных магнитов всегда будет иметь два полюса, как бы тонок он ни был.
«Крамольная» идея о том, что Земля сама по себе является магнитом, была опубликована английским врачом и натуралистом Уильямом Гилбертом в работе «De Magnete», увидевшей свет почти три века спустя в 1600 году.
Слева направо: Уильям Томпсон (лорд Кельвин), Феликс Савар, Франц Эрнст Нейман, Майкл Фарадей, Карл Фридрих Гаусс, Жан-Батист Био. Источник: Википедия
В 1750 году английский учёный Джон Митчелл установил, что магниты притягиваются и отталкиваются (взаимодействуют) в соответствии с законом «обратных квадратов». В 1785 году французский учёный Шарль Огюстен де Кулон экспериментально проверил предположения Митчелла и установил, что северный и южный магнитные полюса не могут быть разъединены. Тем не менее, по аналогии с открытым им ранее законом взаимодействия электрических зарядов, Кулон всё же предположил существование и магнитных зарядов — гипотетических магнитных монополей.
Основываясь на известных ему на то время фактов о магнетизме и на преобладающем в то время в науке методологическом подходе к построению теорий взаимодействия как о некоторых жидкостях, в 1824 году соотечественник Кулона Симеон Дени Пуассон создал первую успешную модель магнетизма. В его теоретической модели магнитное поле описывалось диполями магнитных зарядов.
Но буквально сразу же три открытия подряд поставили под сомнение модель Пуассона. Рассмотрим их ниже.
Датский физик Ханс Кристиан Эрстед в 1819 году заметил отклонение стрелки магнитного компаса при включении и отключении электрического тока, протекающего через проводник в виде проволоки, обнаружив, таким образом, взаимосвязь между электричеством и магнетизмом.
В 1820 году французский учёный Андре-Мари Ампер установил, что проводники с токами, текущими в одном направлении притягиваются, а в противоположном — отталкиваются. В том же 1820 году французские физики Жан-Батист Био и Феликс Савар открыли закон названный впоследствии их именами. Этот закон позволял рассчитать напряжённость магнитного поля вокруг любого проводника с током вне зависимости от его геометрической конфигурации.
Обобщая полученные теоретические и экспериментальные данные, Ампер высказал идею об эквивалентности электрических токов и проявлений магнетизма. Он разработал свою модель магнетизма, в которой заменил магнитные диполи циркуляцией электрических токов в крошечных замкнутых петлях. Модель проявления магнетизма Ампера имела преимущество перед моделью Пуассона, поскольку объясняла невозможность разделения полюсов магнитов.
Демонстрация электромагнитной индукции с помощью катушки, гальванометра и постоянного магнита
Ампер также предложил для описания таких явлений термин «электродинамика», который расширил применение науки об электричестве к динамическим электрическим объектам, дополняя тем самым электростатику. Пожалуй, наибольшее влияние на понимание сути проявлений магнетизма оказала концепция представления взаимодействия магнитов через силовое поле, описываемое силовыми линиями, предложенная английским учёным Майклом Фарадеем. Открытое в 1831 году Фарадеем явление электромагнитной индукции позднее было объяснено немецким математиком Францем Эрнстом Нейманом. Последний доказал, что возникновение электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него, является просто следствием закона Ампера. Нейман ввел в обиход науки понятие векторного магнитного потенциала, который во многом эквивалентен напряжённости силовых линий магнитного поля Фарадея.
Окончательную точку в споре двух моделей магнетизма поставил в 1850 году выдающийся английский физик Уильям Томпсон (лорд Кельвин). Введя понятие намагниченности среды M, в которой имеется магнитное поле, он не только установил зависимость между напряжённостью магнитного поля H и вектором магнитной индукции B, но и определил области применимости этих понятий.
Напряжённость магнитного поля. Определение
Напряжённость магнитного поля — это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности М. В Международной системе единиц (СИ) значение напряжённости магнитного поля определяется формулой:
H = (1/μ0) · B — M
где μ₀ — магнитная постоянная, иногда её называют магнитной проницаемостью вакуума
В системе единиц СГС напряженность магнитного поля определяется по другой формуле:
Н = B — 4·π·М
В Международной системе единиц СИ напряжённость магнитного поля измеряется в амперах на метр (А/м), в системе СГС — в эрстедах (Э).
В электротехнике встречается также внесистемная единица измерения напряжённости — ампер-виток на метр. С другими величинами измерения напряжённости магнитного поля, применяемыми в различных приложениях, и их переводами из одной величины в другую, можно ознакомиться в конвертере физических величин.
Измерительные приборы для измерения величины напряжённости магнитного поля, как и приборы для измерения магнитной индукции, называют тесламетрами или магнитометрами.
Напряжённость магнитного поля. Физика явлений
Исследовательский токамак (тороидальная камера с магнитными катушками), работавший в научно-исследовательском институте государственной энергетической компании Hydro-Québec в пригороде Монреаля c 1987 по 1997 год, когда проект был закрыт для экономии бюджетных средств. Установка находится в экспозиции Канадского музея науки и техники
В вакууме (в классическом понимании этого термина) или в отсутствие среды, способной к магнитной поляризации или в случаях, когда магнитной поляризацией среды можно пренебречь, напряжённость магнитного поля Н совпадает (с точностью до коэффициента) с вектором магнитной индукции В. Для системы СГС этот коэффициент равен 1, для системы единиц СИ — μ0.
Напряжённость магнитного поля обусловлена свободными (внешними) токами, которые легко измерить или рассчитать. То есть напряжённость имеет смысл для внешнего магнитного поля, создаваемого катушкой с током, в которую вставлен материал, способный намагничиваться. Если нас не интересует поведение материала под действием магнитного поля, то достаточно оперировать только напряжённостью магнитного поля. Например, напряженности будет достаточно для технического расчёта взаимодействия магнитных полей двух или более катушек с током. Результирующая напряжённость будет векторной суммой полей, создаваемых отдельными катушками с током.
Поскольку большинство электромагнитных устройств работает в воздушной среде, важно знать её магнитную проницаемость. Абсолютная магнитная проницаемость воздуха приблизительно равна магнитной проницаемости вакуума и в технических расчётах принимается равной 4π• 10⁻⁷ Гн/м.
Иное дело, когда нас интересует именно поведение среды, способной к намагничиванию, например, при использовании ядерных магниторезонансных явлений. При ЯМР ядра атомов, иначе называемые нуклонами и обладающие полуцелым спином (магнитным моментом), при воздействии магнитного поля поглощают или излучают электромагнитную энергию на определённых частотах. В этих случаях необходимо учитывать именно магнитную индукцию.
В видеомагнитофонах, которые были популярными в конце XX и начале XXI века, используется несколько шаговых двигателей, в основе которых лежит как раз использование магнитного поля обмоток
Применение напряжённости магнитного поля в технике
В большинстве случаев практического применения магнитного поля, например, для его создания или для измерения его величины, напряжённость магнитного поля играет ключевую роль. Существует множество примеров использования магнитного поля, в первую очередь в измерительной технике и в различных установках для проведения экспериментов.
Магнитное поле определённой силы и конфигурации удерживает плазменные шнуры или потоки заряженных частиц в исследовательских термоядерных реакторах и в ускорителях элементарных частиц, предотвращая тем самым охлаждение плазмы при контакте с ограждающими стенками. Оно же отклоняет потоки ионов или электронов в спектрометрах и кинескопах.
Измерение напряжённости магнитного поля Земли в различных точках очень важно для оценки состояния её магнитосферы. Существует даже целая сеть наземных станций и группировок научных спутников для мониторинга напряжённости магнитного поля Земли. Их работа позволяет предсказывать магнитные бури, возникающие на Солнце, сводя к минимуму, насколько это возможно, их последствия.
Детектор магнитных аномалий берегового патрульного самолета Королевских ВВС Канады Lockheed CP-140 Aurora
Измерение напряженности поля даёт возможность проводить различные изыскания, сортировать материалы и мусор, а также обеспечивать нашу безопасность, обнаруживая оружие террористов или заложённые мины.
Магнитометры
Магнитометрами называется целый класс измерительных приборов, предназначенных для измерения намагниченности материалов или для определения силы и направления магнитного поля.
Первый магнитометр был изобретён великим немецким математиком и физиком Карлом Фридрихом Гауссом в 1833 году. Этот прибор представлял собой оптический прибор с крутящимся намагниченным стержнем, подвешенным на золотой нити, и приклеенным к нему перпендикулярно оси магнита зеркалом. Измерялось различие колебаний намагниченного и размагниченного стержня.
Ныне используются более чувствительные магнитометры на иных принципах, в частности, на датчиках Холла, джозефсоновских туннельных контактах (СКВИД-магнитометры) индукционные и на ЯМР-резонансе. Они находят широкое применение в различных приложениях: измерении магнитного поля Земли, в геофизических исследованиях магнитных аномалий и в поиске полезных ископаемых; в военном деле для обнаружения объектов типа подводных лодок, затонувших кораблей или замаскированных танков, искажающих своим полем магнитное поле Земли; для поиска неразорвавшихся или заложенных боеприпасов на местах ведения боевых действий. В связи с миниатюризацией и снижением потребления тока, современными магнитометрами оснащаются смартфоны и планшеты. Ныне магнитометры входят как неотъемлемый компонент в оборудование разведывательных беспилотных летательных аппаратов и спутников-шпионов.
Металлоискатель на пляже
Любопытная деталь: в связи с повышением чувствительности магнитометров, одним из факторов перехода строительства подводных лодок на титановые корпуса вместо стальных корпусов было именно радикальное снижение их заметности в магнитном поле. Ранее подлодкам со стальным корпусом, как, впрочем, и надводным кораблям, приходилось время от времени проходить процедуру демагнетизации.
Магнитометры применяются при бурении скважин и проходке штолен, в археологии для оконтуривания раскопок и поиска артефактов, в биологии и медицине.
Металлодетекторы
Попытки использования напряжённости магнитного поля в военном деле предпринимались со времён Первой мировой войны, оставившей на полях сражений миллионы неразорвавшихся боеприпасов и установленных мин. Наиболее удачной оказалась разработка в начале 40-х годов прошлого столетия, поручика польской армии Юзефа Станислава Косацкого, принятая на вооружение британской армией и сослужившая немалую пользу при обезвреживании минных полей во время преследовании отступающих немцев войсками генерала Монтгомери при второй битве под Эль-Аламейном. Несмотря на то, что оборудование Коcацкого было выполнено на электронных лампах, оно весило всего 14 килограммов вместе с аккумуляторами питания и было настолько эффективным, что его модификации использовались британской армией в течение 50 лет.
Теперь нас не удивляет, в связи с распространением терроризма, прохождение перед посадкой на самолёт или на футбольные матчи сквозь индукционные рамки металлодетекторов, обследование охраной объектов нашего багажа или личный досмотр ручными металлоискателями на предмет обнаружения оружия.
Широкое распространение получили и бытовые металлоискатели, на пляжах модных курортов стала привычной картина искателей утерянных сокровищ, прочёсывающих местные пляжи в надежде найти что-либо ценное.
Эффект Холла и устройства на его основе
Использование датчика Холла в мобильном телефоне. Слева: магнитная пленка-визуализатор показывает наличие магнита в крышке чехла для телефона. Центр: если крышка закрыта, находящийся в ней магнит активизирует датчик Холла и телефон показывает часы, которые видны в окошке крышки. Справа: тот же эффект достигается с помощью магнита
Эдвин Холл (1855–1938). Источник: Википедия
Существует отдельный класс измерительных приборов, основанных на эффекте, открытом американским учёным Эдвином Холлом в 1879 году. Суть этого явления заключается в возникновении поперечной разности потенциалов (электрического поля) в проводнике с постоянным током, помещённым в магнитное поле, перпендикулярном направлению тока. Разность потенциалов вызвана различным действием силы Лоренца на носители зарядов противоположных знаков — они накапливаются возле противоположных сторон образца, пока электрическое поле не скомпенсирует действие силы Лоренца. Эффект Холла проявляется в различных материалах: в металлах он обусловлен отклонением электронов, в полупроводниках — отклонением электронов и дырок, в плазме — отклонением электронов и ионов.
В середине семидесятых датчики Холла широко использовались в клавиатурах; в клавишах были магнитики, которые управляли датчиками Холла
Поскольку сигнал, вырабатываемый за счёт эффекта Холла, относительно слаб, он требует дополнительного усиления. С развитием интегральной усилительной схемотехники появилась возможность технической реализации датчиков Холла, интегрированных с аналоговыми усилителями постоянного тока. Также они могут интегрироваться в едином корпусе с аналого-цифровыми преобразователями и логическими схемами, образуя интерфейс для подключения к портам микроконтроллеров и компьютеров. Такие датчики находят применение в различных областях науки и техники.
Приложение Компас для смартфона с операционной системой Андроид
По принципу действия датчики Холла относятся к датчикам бесконтактного типа, они нечувствительны к разного рода загрязнениям и воздействию воды, компактны и потребляют мало электроэнергии. Неудивительно, что по этим причинам линейные и логические датчики Холла широко применяются в современных технологиях. Например, вы, скорее всего, не подозреваете, что Ваш автомобиль буквально напичкан датчиками Холла: они работают в системе зажигания автомобиля, в системе автоблокировки колёс и торможения, в блокировке дверей и датчиках расхода топлива, контроля зарядки аккумулятора (датчик тока на основе эффекте Холла) и тахометрах. И принтер, выдающий вам на заправке чек, использует датчики Холла в бесколлекторных двигателях постоянного тока и в датчиках бумаги. Когда вы заходите в свой офис, открывая дверь магнитной карточкой, вы также пользуетесь считывателями магнитных карточек на основе датчиков Холла.
Использование датчика Холла в мобильном телефоне
Этот перечень можно продолжать достаточно долго, достаточно упомянуть применение датчиков Холла для определения положения крышки чехла в современных смартфонах. Следует отметить, что в качестве электронного компаса в смартфонах обычно используются магниторезистивные датчики так как их чувствительность к изменению магнитного поля намного выше, чем чувствительность датчиков Холла.
Применение измерения напряжённости магнитного поля в медицине
Александр Грейам Белл (1847–1922). Источник: Википедия
В 1874 году французский изобретатель Гюстав Труве разработал первое устройство для обнаружения пуль и осколков снарядов в теле раненых бойцов. Позднее изобретатель телефона американец Александр Белл (который обижался, когда его называли именно так, поскольку у него были не менее революционные изобретения в других областях техники) усовершенствовал этот аппарат и даже пытался с помощью него спасти раненого президента США Джеймса Гарфилда. К сожалению, попытка локализации пули оказалась неудачной.
Густав Пиер Труве (1839–1902). Источник: Википедия
Сейчас предложение врачей пройти МРТ-обследование в аппаратах, которые используют в работе напряженность магнитного поля, вызывает тревогу только из-за его возможных результатов, тем не менее, необходимость прохождения обследования не вызывает сомнения.
Визуализация напряжённости магнитного поля
Увидеть само магнитное поле и распределение его напряжённости в пространстве помогают современные магниточувствительные материалы — магнитные жидкости и плёнки. Конечно, можно пилить напильником какую-нибудь стальную деталь для получения некоторого количества железных опилок с целью повторить опыты с магнитами времён Средневековья. Современные высокотехнологичные разработки дают возможность их неоднократного использования без непроизводительного перевода материалов.
Ферромагнитная жидкость
Порой получаются довольно занимательные картинки прямо из мира, который нам не дано ощущать в силу нашего ограниченного восприятия. Но, возможно, именно они натолкнут вас на идею их применения в новом качестве и для новых целей.
Не менее занимательны опыты по воспроизведению шумов переориентации магнитных доменов, известных как эффект Баркгаузена. Обычно для этих опытов используют катушку металлической проволоки и вставленное в нее тело из материала, который легко намагничивается. Катушку подключают к усилителю чтобы слышать шум, вырабатываемый во время переориентации доменов. Когда тело намагничивается, магнитные домены перемещаются так, что вместо случайно направленных они становятся направленными в определенном направлении. Это движение и вызывает характерный шум, который слышен через усилитель и громкоговоритель. Для его перевода в ощутимый эффект, необходимо использовать дополнительные усилители и вставлять фильтр по частоте переменного тока (в Европе это фильтр на 50 Гц, в Штатах и Канаде — фильтр на 60 Гц) или фильтровать сигналы сетевой частоты программно.
Видите, как много полезных и интересных применений у напряженности магнитного поля? Надеюсь, что мы убедили вас попробовать некоторые наблюдения и эксперименты из этой статьи. Если вы не хотите проводить их сами, то на YouTube много занимательных видео на эту тему.
Ферромагнитная жидкость
Автор статьи: Сергей Акишкин
Unit Converter articles were edited and illustrated by Анатолий Золотков
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Напряженность магнитного поля
Магнитные поля, создаваемые токами и рассчитываемые по закону Ампера или закону Био-Савара, характеризуются магнитным полем B, измеряемым в теслах. Но когда генерируемые поля проходят через магнитные материалы, которые сами вносят вклад во внутренние магнитные поля, могут возникнуть неоднозначности относительно того, какая часть поля исходит от внешних токов, а что исходит от самого материала. Обычной практикой было определение другой величины магнитного поля, обычно называемой «силой магнитного поля», обозначенной Х.Его можно определить соотношением
H = B / μ м = B / μ 0 — M
и имеет значение, однозначно определяющее управляющее магнитное влияние от внешних токов в материале, независимо от магнитного отклика материала. Отношение для B можно записать в эквивалентной форме
B = μ 0 (H + M)
H и M будут иметь одинаковые единицы измерения, ампер / метр. Чтобы еще больше отличить B от H, B иногда называют плотностью магнитного потока или магнитной индукцией.Величина M в этих соотношениях называется намагниченностью материала.
Другая часто используемая форма отношения между B и H —
B = μ м H
где
μ = μ м = K м μ 0
μ 0 — магнитная проницаемость пространства, а K м — относительная проницаемость материала. Если материал не реагирует на внешнее магнитное поле, создавая какую-либо намагниченность, тогда K м = 1.Другой часто используемой магнитной величиной является магнитная восприимчивость, которая указывает, насколько относительная проницаемость отличается от единицы.
Магнитная восприимчивость χ м = K м — 1
Для парамагнитных и диамагнитных материалов относительная проницаемость очень близка к 1, а магнитная восприимчивость очень близка к нулю. Для ферромагнитных материалов эти количества могут быть очень большими.
Единица измерения напряженности магнитного поля H может быть получена из ее отношения к магнитному полю B, B = мкГн.Так как единица магнитной проницаемости μ — N / A 2 , то единица измерения напряженности магнитного поля:
T / (N / A 2 ) = (N / Am) / (N / A 2 ) = A / м
Старой единицей измерения напряженности магнитного поля является эрстед: 1 А / м = 0,01257 эрстед
.
Напряженность магнитного поля [Энциклопедия практических магнитов]
Определение
Напряженность магнитного поля $ H $ — физическая величина, используемая как одна из основных мер напряженности магнитного поля. Единица измерения напряженности магнитного поля — ампер на метр или А / м .
Напряженность магнитного поля $ H $ можно рассматривать как возбуждение, а плотность магнитного потока $ B $ — как реакцию среды.
Поддержите us с всего за 0,25 доллара США через PayPal или кредитную карту: |
Рис. 1. Электрический ток $ I $ создает напряженности магнитного поля $ H $, величина которого не зависит от типа однородной изотропной окружающей среды (магнитная или немагнитная).
С. Зурек, Encyclopedia Magnetica, CC-BY-3.0
Магнитное поле является векторным полем в пространстве и представляет собой вид энергии, полное количественное определение которой требует знания векторных полей как напряженности магнитного поля $ H $, так и плотности потока $ B $ (или других значений, коррелирующих с ними, таких как намагничивание или поляризация).В вакууме в каждой точке векторы $ H $ и $ B $ ориентированы в одном направлении и прямо пропорциональны проницаемости свободного пространства, но в других средах они могут быть несовмещены (особенно в неоднородных или анизотропных материалах).
Требование двух величин аналогично, например, электричеству. И электрическое напряжение $ V $, и электрический ток $ I $ требуются для полной количественной оценки воздействия электричества, например количество переданной энергии.
Имя напряженность магнитного поля и символ $ H $ определены Международным бюро мер и весов (BIPM) как одна из когерентных производных физических единиц. Следовательно, строго говоря, другие названия, такие как напряженность магнитного поля или магнитное поле (или даже просто поле ), которые можно встретить на бытовом техническом жаргоне , неверны.
Затруднение с определением
Трудно дать краткое определение такой базовой величины, как магнитное поле, но различные авторы дают хотя бы описательную версию. То же самое касается напряженности магнитного поля , а также другой основной величины — , плотности магнитного потока .
В таблице ниже приведены некоторые примеры определений $ H $, приведенные в литературе (приведены точные цитаты).
Публикация | Определение магнитного поля | Определение напряженности магнитного поля $ H $ | Определение плотности магнитного потока $ B $ |
---|---|---|---|
Ричард М. Бозорт Ферромагнетизм | Магнит будет притягивать кусок железа, даже если они не находятся в контакте, и это действие на расстоянии, как говорят, вызвано магнитным поле или силовое поле. | Напряженность силового поля, напряженность магнитного поля или намагничивающая сила H может быть определена в терминах магнитных полюсов: в одном сантиметре от единичного полюса напряженность поля равна одному эрстеду. | Фарадей показал, что некоторые свойства магнетизма можно уподобить потоку, и задумал бесконечные линии индукции , которые представляют направление и, по их концентрации, поток в любой точке. […] Общее количество линий, пересекающих данную область под прямым углом, и есть поток в этой области.Поток на единицу ара — это плотность потока, или магнитная индукция , и обозначается символом B. |
Дэвид К. Джайлс Введение в магнетизм и магнитные материалы | Одна из самых фундаментальных идей в магнетизме — это концепция магнитного поля. Когда поле создается в объеме пространства, это означает, что происходит изменение энергии этого объема, и, кроме того, существует градиент энергии, так что создается сила, которую можно обнаружить по ускорению электрического заряда, движущегося в поле за счет силы, действующей на проводник с током, крутящего момента на магнитном диполе, такого как стержневой магнит, или даже за счет переориентации спинов электронов в определенных типах атомов. | Существует несколько способов определения напряженности магнитного поля H. В соответствии с развитыми здесь идеями мы хотим подчеркнуть связь между магнитным полем H и генерирующим электрическим током. Поэтому мы определим единицу напряженности магнитного поля, ампер на метр, через генерирующий ток. Самое простое определение выглядит следующим образом. Ампер на метр — это напряженность поля, создаваемая бесконечно длинным соленоидом, содержащим n витков на метр катушки и пропускающим ток 1 / n ампер. | Когда магнитное поле H было создано в среде током, в соответствии с законом Ампера, реакция среды — это ее магнитная индукция B, также иногда называемая плотностью потока. |
Магнитное поле , Британская энциклопедия | Магнитное поле, область вблизи магнитного, электрического или изменяющегося электрического поля, в которой наблюдаются магнитные силы. | Магнитное поле H можно представить как магнитное поле, создаваемое током в проводах […] | […] магнитное поле B [можно рассматривать] как общее магнитное поле включая также вклад магнитных свойств материалов в поле. |
В.А. Бакши, А.В. Бакши Теория электромагнитного поля | Область вокруг магнита, внутри которой может ощущаться влияние магнита, называется магнитным полем. | Количественная мера силы или слабости магнитного поля дается с помощью напряженности магнитного поля или напряженности магнитного поля. Напряженность магнитного поля в любой точке магнитного поля определяется как сила, испытываемая единичным северным полюсом одной силы Вебера, помещенным в эту точку. | Суммарные магнитные силовые линии, то есть магнитный поток, пересекающий единицу площади в плоскости под прямым углом к направлению потока, называется плотностью магнитного потока.Обозначается буквой B и является векторной величиной. |
Аналогия с электрическими цепями
Электросхема
Электрическое напряжение $ V $ и электрический ток $ I $ требуются для полной количественной оценки воздействия электричества в электрических цепях. В цепях постоянного тока пропорциональность между $ V $ и $ I $ определяется электрической проводимостью $ G $ (или сопротивлением $ R $) данной среды.
Произведение $ V $ и $ I $ является мерой мощности и может быть выражено в ваттах (Вт), что с течением времени $ t $ дает энергию $ E $ в джоулях, рассеянную или преобразованную в цепи.
Если к однородной электрической цепи применяется фиксированное значение $ V $, то результирующая амплитуда $ I $ определяется проводимостью цепи. Для того же напряжения более высокие значения проводимости приведут к более высокому току.
Если через проводник проходит ток фиксированной амплитуды, то падение напряжения будет пропорционально сопротивлению проводника. Для сверхпроводника сопротивление равно нулю, нет падения напряжения и, следовательно, $ V · I = 0 $.И наоборот, если на электрический изолятор подается напряжение, то течет очень небольшой ток и, следовательно, рассеивается только небольшое количество энергии, так что $ V · I \ приблизительно 0 $.
Магнитная цепь
По аналогии и напряженность магнитного поля $ H $, и плотность магнитного потока $ B $ (или их представление другими связанными переменными) необходимы для количественной оценки эффектов магнетизма в магнитных цепях. Пропорциональность между $ H $ и $ B $ диктуется магнитной проницаемостью $ μ $ данной среды.
В стационарных условиях произведение $ H $ и $ B $ является мерой удельной энергии в Дж / м 3 , хранящейся в магнитном поле, содержащемся в данной среде. Произведение $ B · H $ (количество накопленной энергии) используется, например, для классификации постоянных магнитов.
Если к магнитной цепи применяется фиксированное значение $ H $, то результирующая амплитуда $ B $ определяется проницаемостью $ μ $ контура. При той же напряженности магнитного поля более высокие значения проницаемости приведут к более высокой плотности потока.
Мягкие ферромагнетики имеют большие значения магнитной проницаемости, и поэтому применение малых $ H $ приводит к большим значениям $ B $ без сохранения большого количества энергии в магнитном поле, так что $ B · H \ приблизительно 0 $ (например, по сравнению с постоянными магнитами, которые может хранить много энергии).
Однако сверхпроводники могут полностью вытеснять магнитное поле из своего объема, так что они ведут себя как «магнитные изоляторы», а значит, и $ B · H \ приблизительно 0 $.
H около электрического тока
Рис.2. Амплитуда магнитного поля $ H $ уменьшается с удалением от проводника с электрическим током $ I $.
С. Зурек, Encyclopedia Magnetica, CC-BY-3.0
Рис. 3. Ориентация вектора напряженности магнитного поля $ H $ относительно тока $ I $ подчиняется правилу правой руки.
С. Зурек, Encyclopedia Magnetica, CC-BY-3.0
$ H $ всегда генерируется вокруг электрического тока $ I $, который может быть твердым проводником с током или просто движущимся электрическим зарядом (также в свободном пространстве). Направление вектора $ H $ перпендикулярно направлению порождающего его тока $ I $, и предполагается, что значения векторов подчиняются правилу правой руки.
Без других источников магнитного поля и в однородной и изотропной среде генерируемая напряженность магнитного поля $ H $ зависит только от величины и направления электрического тока $ I $ и задействованных физических размеров (т.е.г. длина и диаметр проводника и т. д.), поэтому в соответствии с законом Ампера пропорциональность определяется длиной магнитного пути $ l $:
(1) | $$ H = \ frac {I} {l} $$ | (А / м) |
Для простейшего случая круглого, прямого и бесконечно длинного проводника с током (рис.2) значение $ H $ для данной окружности с радиусом $ r $ может быть вычислено по длине магнитного пути круга:
(2) | $$ H = \ frac {I} {2⋅π⋅r} $$ | (А / м) |
В линейной изотропной среде значения из различных источников объединяются и могут быть рассчитаны на основе суперпозиции источников.Для простых геометрических случаев значение $ H $ можно вычислить аналитически, но для очень сложных систем можно выполнить вычисление, например, с помощью конечно-элементного моделирования.
Связь между $ H $ и $ I $ часто демонстрируется с помощью закона Био-Савара. или закон Ампера Часто (но не всегда ) оба они указываются с переменной плотностью потока $ B $, так что проницаемость среды автоматически принимается во внимание.
Во многих примерах, приведенных в литературе, есть неявное предположение (обычно не указываемое), что вывод выполняется для вакуума, а не для произвольной среды с другой проницаемостью .Когда проницаемость $ μ_0 $ уменьшается в уравнениях с обеих сторон, тогда $ H $ пропорциональна только $ I $, и это верно для любой однородной изотропной среды с любой проницаемостью, даже нелинейной (и если другие источники магнитного поля отсутствуют).
Ситуация несколько иная для анизотропной или прерывистой среды. Они могут вызвать дополнительные источники магнитного поля, поскольку возбужденная среда может генерировать новые магнитные полюса, и эти полюса необходимо учитывать для точного описания распределения $ H $.Например, полюсные наконечники в электромагните влияют на $ H $, распределение которого больше не определяется только катушками с электрическим током.
Определение H с силой
В литературе показано, что напряженность магнитного поля в данной точке пространства можно определить как механическую силу, действующую на единичный полюс в данной точке. Однако для расчета силы требуется $ B $, что зависит от свойств среды. Действительно, в первоначальном эксперименте, проведенном Био и Саваром, на провода действовали физические силы.
Следовательно, силы, действующие на два намагниченных тела, будут разными, если они помещены в кислород (который является парамагнитным) или в воде (который является диамагнитным). Эта разница будет прямо пропорциональна относительной проницаемости задействованных сред. Однако $ H $, образующийся вокруг проволоки (рис. 2), будет таким же (пока среда однородна и изотропна).
См. Также
Список литературы
.
единиц магнитного поля — калькулятор преобразования и формулы
единиц магнитного поля — калькулятор преобразования и формулы
ОПРЕДЕЛЕНИЯ, ОНЛАЙН-КАЛЬКУЛЯТОРЫ, УРАВНЕНИЯ В СИ И КГС
Начнем с определения некоторых терминов.
Магнитное поле
— одна из двух составляющих электромагнитного поля. Технически говоря, это относится к области, где могут быть обнаружены силы, действующие на движущиеся электрические заряды. Магнитные поля создаются либо движущимися электрическими зарядами, либо переменным электрическим полем.Движение заряда, создающее поле, может быть макроскопическим (токи в проводниках) или микроскопическим. Последний тип связан со спиновым и орбитальным движением электронов, в результате чего возникают так называемые «магнитные материалы».
Единицей СИ для магнитного потока является Вебер (Вб). Если этот поток изменяется на 1 Вт за время 1 с, то в проводящей петле, окружающей его, индуцируется напряжение 1 В: 1 Вт = 1 В.
Плотность потока называется , индукция . Единица измерения магнитной индукции в системе СИ B — тесла (Тл): 1 Тл = 1 Вт / м 2 = 1 В · с / м 2 .Математически магнитное поле с плотностью 1 Тл генерирует один ньютон силы на один ампер тока на метр проводника.
Когда поля, создаваемые токами, проходят через некоторые материалы, они могут создавать намагниченность в направлении приложенного поля. В ферромагнетиках это приводит к увеличению общего поля B .
Величина, называемая , напряженность магнитного поля (сила намагничивания) является мерой приложенного магнитного поля от внешних токов, независимо от реакции материала.Единица измерения напряженности магнитного поля СГС — эрстед, а единица СИ — ампер / метр. Намагничивание определяет реакцию материала — это магнитный момент на единицу объема материала. Плотность потока (магнитная индукция) описывает результирующее поле в материале, которое представляет собой комбинацию приложенного поля и намагниченности. В силовой электронике это основная величина, используемая при расчете требуемой площади поперечного сечения сердечников силового трансформатора для заданного напряжения и частоты (см. Техническую справочную информацию по конструкции силового трансформатора).
Ниже вы найдете преобразователи для магнитных единиц и таблицу с формулами и коэффициентами магнетизма в системах SI и CGS.
МАГНИТНЫЙ ПЛОТНОСТЬ ПОТОКА |
КОЛИЧЕСТВО | СИМВОЛ | СИСТЕМА СИСТЕМЫ | СИ УРАВНЕНИЕ | УСТРОЙСТВО CGS | УРАВНЕНИЕ CGS | КОЭФФИЦИЕНТ ПРЕОБРАЗОВАНИЯ |
Магнитная индукционная | B | тесла (Т) | B = µ o (H + M) = µ r µ o H | гаусс (G) | B = H + 4πM = µ r H | 1 Т = 10 4 G |
Напряженность магнитного поля | H | ампер / метр (А / м) | H = N × I / lc (lc — магнитный путь , м) | эрстед (Э) | H = 0.4πN × I / lc (lc — магнитный путь , см) | 1 А / м = 4π × 10 -3 Oe |
Магнитный поток | Φ | Вебер (Вт) | Φ знак равно B × Ac (Ac — площадь, м 2 ) | максвелл (М) | Φ знак равно B × Ac (Ac- площадь, см 2 ) | 1 Wb = 10 8 M |
Намагничивание | M | ампер / метр (А / м) | M = m / V (m- общий магнитный момент, V- объем, м 3 ) | emu / cm 3 | M = m / V (m- общий магнитный момент, V- объем, см 3 ) | 1 А / м = 10 -3 ЭМЕ / см 3 |
Магнитная проницаемость вакуума | µ o | ньютон / ампер 2 | µ o = 4π × 10 -7 | 1 | – | 4π × 10 -7 |
Индуктивность | л | генри | L = μ o мкН 2 Ac / lc (Ac- площадь, м 2 , lc — магнитный путь, м) | генри | L = 0.4πμN 2 Ac / lc × 10 -8 (Ac-площадь, см 2 , lc — магнитный путь, см) | 1 |
ЭДС (напряжение) | В | вольт | В = -N × dΦ / dt | вольт | В = -10 -8 Н × dΦ / dt | 1 |
Примечание: в приведенных выше уравнениях: N- витков, I — ток (в амперах) |
© 2007, 2012 Лазарь Розенблат
.
Магнитное поле, напряженность поля и плотность потока
В физике есть два различных атрибута магнитного поля:
- «Сила магнитного поля». Обычно обозначается символом H. Измеряется в амперах на метр (А / м).
- «Плотность магнитного потока». Обычно обозначается символом B. Измеряется в теслах (микротеслах или гауссах).
В теории электромагнетизма совершенно очевидно, что это разные величины, и вам нужно точно указать, какие измерения вы измеряете.
Но для многих практических целей они связаны простой числовой зависимостью:
B = μ 0 H
где μ 0 — постоянная величина — она называется проницаемостью свободного пространства и имеет значение ( в СИ) 4π.10 -7
Чтобы быть более точным, мы можем записать полное соотношение:
B = μ r μ 0 H
Эта вторая постоянная, которую мы ввели, μ r , называется относительной проницаемостью.Для немагнитных материалов — для воздуха, большинства строительных материалов, человеческого тела и т. Д. — он имеет значение почти 1. Вот почему обычно достаточно правильно просто сказать B = μ 0 H. Только рядом с железом или стали или других магнитных материалов, мы должны углубиться в физику, потому что именно тогда μ r начинает принимать другие значения.
Итак, в большинстве случаев на самом деле не имеет большого значения, измеряем ли мы B, плотность магнитного потока в микротеслах, или H, напряженность магнитного поля в амперах на метр.Вы можете просто преобразовать одно в другое, как мы это делаем в нашей таблице единиц.
Иногда люди будут очень точны и говорить либо о плотности магнитного потока, либо о напряженности магнитного поля. Но на самом деле «магнитное поле» прекрасно подходит для описания любого из них — и плотность магнитного потока, и напряженность магнитного поля являются примерами магнитного поля. И просто использовать «магнитное поле» намного проще … так что мы делаем это большую часть времени на этом сайте.
Если вы думаете, что мы немного поработали над этим вопросом, это потому, что иногда люди видели, как мы использовали «магнитное поле», и предполагали, что мы действительно имели в виду «напряженность магнитного поля», а затем поняли, что на самом деле мы говорим о « плотность магнитного потока », поэтому критиковали нас за то, что мы перепутали две величины.Но это немного ложный педантизм — то, что мы делаем, совершенно правильно с точки зрения университетского физика, а также с точки зрения попыток сделать наши коммуникации как можно более простыми.
Запутались? Суть в том, что большую часть времени, когда вы видите «магнитное поле», это все, о чем вам нужно беспокоиться.
.