22.11.2024

Эдс расшифровка в физике: суть и принцип для начинающих чайников

Содержание

Электродвижущая сила (ЭДС) — определение, расшифровка, единица измерения, схемы и формулы

В статье понятным и простым языком объясняется явление ЭДС. Представлена краткая историческая справка, рассмотрены типы ЭДС и её связь с параметрами электрической цепи. Текст подкреплён элементарными формулами.

Что такое ЭДС в физике – физический смысл

Электрический ток будет проходить через проводник только в том случае, если единовременно соблюдаются два простых условия:

  1. В проводнике присутствуют свободные электроны (например, в металлах электронов, не связанных с атомом, большинство).
  2. В проводнике присутствует сила, вынуждающая электроны двигаться.

Допустим, на концы электрода подали разные по знаку заряды, которые под действием кулоновской силы начинают притягиваться друг к другу.

Однако без сторонних сил электрическое поле, появившееся в результате такого взаимодействия, исчезнет, как только электроны придут в равновесие, поэтому для поддержания в проводнике электрического тока нужен источник питания, например батарейка.

ВАЖНО: электроны могут перемещаться только силами неэлектрического происхождения (сторонними силами), ярким примером которых являются химические процессы, происходящие в батарее.

При замыкании цепи «проводник – источник тока» электроны вновь начнут движение друг к другу, но как только положительный заряд приблизится к отрицательному, сторонние силы перенесут его обратно.

Притяжение зарядовПритяжение зарядов

Так, работа этих сторонних сил по переносу единичного положительного заряда называется ЭДС.

Что такое ЭДС в электротехнике?

В электротехнике ЭДС характеризует источники питания и создаёт и поддерживает в течение длительного периода времени разность потенциалов. Численно ЭДС равна работе, которую должны совершить либо сторонние силы, чтобы переместить положительный заряд внутри источника, либо сам источник, чтобы провести заряд по цепи. Таким образом, формула для вычисления ЭДС имеет вид:

E = A / q,

где E – ЭДС,

А – работа,

q – заряд.

ЭДС необходима для поддержания в цепи постоянного тока, причём в технике применяется несколько видов ЭДС.

ВидОбласть применения
ХимическаяБатарейки и аккумуляторы
ТермоэлектрическаяХолодильники и термопары
ИндукционнаяЭлектродвигатели, генераторы и трансформаторы
ФотоэлектрическаяФотоэлементы
ПьезоэлектрическаяПьезоэлементы, датчики, кварцевые генераторы

СПРАВКА: в теории существует идеальный источник ЭДС – генератор с нулевым внутренним сопротивлением, мощность которого приравнивается к бесконечности.

Расшифровка ЭДС

Аббревиатура ЭДС общепринятая и расшифровывается как «электродвижущая сила».

СПРАВКА: понятие ЭДС введено Георгом Омом в 1827 году, а её значение определено Густавом Кирхгофом в 1857.

В чём измеряется ЭДС – единица измерения

Уже было отмечено, что ЭДС – отношение работы к заряду, то есть:

Единица измерения E = 1 джоуль (Дж) / 1 кулон (Кл) = 1 вольт (В).

Таким образом, ЭДС, как напряжение, измеряется в вольтах. Причём на практике часто используют более крупные и мелкие единицы:

  • киловольт (кВ): 1 кВ = 103 В;
  • милливольт (мВ): 1мВ = 10-3 В;
  • микровольт (мкВ): 1 мкВ = 10-6 В.

Чем отличается ЭДС от напряжения?

Известно, что напряжение характеризует работу электрического поля по переносу положительного заряда и измеряется в вольтах. Таким образом, на первый взгляд ЭДС и напряжение мало чем отличаются друг от друга, однако различие между этими понятиями есть и весьма существенное.

Отличие ЭДС от НапряженияОтличие ЭДС от НапряженияСхема с ЭДС

В реальной электрической цепи присутствует внутреннее сопротивление, на котором происходит падение напряжения. Причём, если разомкнуть цепь и соединить вольтметр с батареей, он покажет значение ЭДС – 1,5 В, но при подключении нагрузки, например лампочки, на клеммах будет меньшее значение. Эти процессы описываются законом Ома для полной цепи.

То есть основная разница между величинами состоит в том, что напряжение зависит от нагрузки и тока в цепи, а ЭДС – от источника питания.

СПРАВКА: в идеальной электрической цепи, где отсутствует внутреннее сопротивление, между напряжением и ЭДС не будет разницы.

ЭДС электромагнитной индукции

29 августа 1831 года Майкл Фарадей открыл электромагнитную индукцию – явление возникновения электрического тока при движении замкнутого проводящего контура в магнитном поле или при изменении в течение времени этого поля.

Фарадей в ходе эксперимента обнаружил, что возникающая ЭДС зависит от скорости изменения магнитного потока через поверхность замкнутого контура, но не зависит от причины этого изменения.

Eинд = — dФ / dt,

где Eинд – ЭДС индукции,

Ф – магнитный поток, измеряемый в веберах (Вб),

t – время.

Знак дифференциала d характеризует изменение величин, а минус перед отношением отражает правило Ленца, согласно которому индукционный ток, вызванный ЭДС индукции, направлен таким образом, чтобы противодействовать изменению магнитного потока.

ЭДС источника тока

Электродвижущая сила источника тока характеризует его способность создавать и поддерживать разность потенциалов на зажимах.

ВНИМАНИЕ: ЭДС может возникнуть в источнике и при разомкнутой цепи, при этом данную ситуацию называют «холостым ходом», а величина силы приравнивается к разнице потенциалов.

ЭДС индукции в движущихся проводниках

Пусть в однородном магнитном поле с постоянной скоростью движется проводник. Тогда на каждый свободный электрон проводника будет действовать сила Лоренца, под действием которой отрицательные частицы начнут движение. В результате один из концов проводника зарядится отрицательно, второй – положительно, то есть возникнет разница потенциалов. Исходя из этого можно сделать вывод, что данный проводник в такой ситуации будет представлять собой источник тока, а разность потенциалов на его концах, по сути, представляет собой ЭДС.

Eинд = Blvsinα,

где B – вектор индукции магнитного поля,

l – длина проводника,

v – скорость его перемещения в магнитном поле,

αугол направления движения к направлению действия поля, то есть угол между B и v.

ЭДС катушки индуктивности

Особенность катушки – способность создавать магнитное поле, если по её проводу течёт электрический ток, что называется индуктивностью.

Электродвижущая сила катушки индуктивностиЭлектродвижущая сила катушки индуктивностиСхема ЭДС с катушкой индуктивности

Допустим, собрана схема с катушкой с железным сердечником и лампочкой, подключенной параллельно. Если сначала замкнуть цепь, дав току, протекающему в неё, установиться, а потом резко разомкнуть, лампочка резко вспыхнет. Что свидетельствует о том, что при отключении цепи от источника питания ток из катушки перешёл в лампу. То есть ток в катушке был и имел вокруг себя магнитное поле, после исчезновения которого возникла ЭДС.

Такая электродвижущая сила называется ЭДС самоиндукции, так как она появилась от собственного магнитного поля катушки.

ЭДС гальванического элемента

Гальванический элемент – это источник тока, создающий его из химической энергии. Рассмотрим элемент Даниэля-Якоби, представляющий собой цинковую и медную пластины в соответствующих растворах сульфатов, соединённые между собой электролитом. Если соединить пластины металлическим стержнем, начнётся перераспределение зарядов: свободные электроны будут перемещаться к электроду с менее отрицательным зарядом (медной пластине). То есть возникнет электрический ток. Его работа будет максимальной в том случае, когда процессы на электродах (окисление и восстановление вследствие изменения числа электронов) будут протекать бесконечно медленно.

ЭДС гальванического элемента – максимальная разность потенциалов, возможная в такой ситуации.

Мощность через ЭДС

Известно, что мощность тока – это работа, совершаемая в единицу времени, то есть:

P = A / Δt,

где P – мощность.

Кроме этого, существует формула для вычисления мощности на участке цепи, связывающая эту величину с напряжением и током:

P = UI,

где U – напряжение,

I – ток.

В случае, если участок цепи содержит источник тока, имеющий ЭДС, формула будет иметь вид:

P = (u1u2)∙I + EI,

где u1u2 – разность потенциалов.

ЭДС через магнитный поток

Было отмечено, что Фарадей установил соотношение зависимости ЭДС от магнитного потока:

E = — ΔФ / Δt.

Известно, что магнитный поток можно найти, опираясь на выражение:

Ф = BScosα,

где S – площадь поверхности, через которую проходит поток,

α – угол между вектором магнитной индукции и нормалью к поверхности.

Для некоторого упрощения допустим, что плоскость контура располагается перпендикулярно к магнитному полю, то есть α = 0. Учитывая, что ΔФ = Ф2 — Ф1 = B(S2S1), формула ЭДС может иметь вид:

E = — B(S2S1) / Δt.

Напряжение через ЭДС

Согласно закону Ома для участка цепи:

I = U / R,

где R – сопротивление.

Этот же закон для полной цепи имеет вид:

I = E / (R+r),

где r – сопротивление источника питания.

Пусть количество электронов, произведённых источником тока, равно количеству зарядов, которые «ушли» в цепь. Тогда справедливо равенство:

U / R = E / (R+r).

Путём элементарных математических действий можно получить связь напряжения и ЭДС:

U = ER / (R+r).

СПРАВКА: для идеальной цепи: U = E.

Как обозначается ЭДС на схеме?

Источник ЭДС обычно изображается буквой «Е», расположенной рядом со стрелкой, помещённой в круг. Рассмотрим несколько схем, встречающихся на практике.

Обозначение ЭДСОбозначение ЭДСКак обозначается ЭДС на схеме

На рисунке под буквой «а» изображён идеальный источник ЭДС, под «б» – реальный источник, обладающий внутренним сопротивлением, под «в» – элементарная электрическая цепь: реальный источник ЭДС и потребитель.

Как можно повысить точность измерения ЭДС источника тока?

Одним из способов повышения точности является проведение серии измерений, что позволит снизить риск случайных ошибок. Кроме этого, в серию испытания можно включить измерение разности потенциалов, тока, внутреннего сопротивления источника, а после вычислить среднее значение требуемой величины.

Наиболее простой способ повышение точности – использование вольтметра высокого класса точности.

Электродвижущая сила (ЭДС): формула расчета и определение

Электродвижущая сила или сокращено ЭДС – это способность источника тока ил по-другому питающий элемент, создавать в электрической цепи разность потенциалов. Элементами питания являются аккумуляторы или батареи. Это скалярная физическая величина, равная работе сторонних сил для перемещения одного заряда с положительной величиной. В данной статье будут рассмотрены теоритические вопросы ЭДС, как она образуется, а также для чего она может быть использована на практике и где используются, а главное как рассчитать ее.

Формула ЭДС.

Формула ЭДС.

Что такое ЭДС: объяснение простыми словами

Под ЭДС понимается удельная работа сторонних сил по перемещению единичного заряда в контуре электрической цепи. Это понятие в электричестве предполагает множество физических толкований, относящихся к различным областям технических знаний. В электротехнике — это удельная работа сторонних сил, появляющаяся в индуктивных обмотках при наведении в них переменного поля. В химии она означает разность потенциалов, возникающее при электролизе, а также при реакциях, сопровождающихся разделением электрических зарядов.

В физике она соответствует электродвижущей силе, создаваемой на концах электрической термопары, например. Чтобы объяснить суть ЭДС простыми словами – потребуется рассмотреть каждый из вариантов ее трактовки. Прежде чем перейти к основной части статьи отметим, что ЭДС и напряжение очень близкие по смыслу понятия, но всё же несколько отличаются. Если сказать кратко, то ЭДС — на источнике питания без нагрузки, а когда к нему подключают нагрузку — это уже напряжение. Потому что количество вольт на ИП под нагрузкой почти всегда несколько меньше, чем без неё. Это связано с наличием внутреннего сопротивления таких источников питания, как трансформаторы и гальванические элементы.

Дополнительный материал по теме: Простыми словами о преобразователях напряжения.

Электродвижущая сила (эдс), физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль контура. Если через Eстр обозначить напряжённость поля сторонних сил, то эдс в замкнутом контуре (L) равна , где dl — элемент длины контура. Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — нагреванием проводников.

Сторонние силы приводят в движение заряженные частицы внутри источников тока: генераторов, гальванических элементов, аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах — это химические силы и т. д. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. Ома закон). Измеряется эдс, как и напряжение, в вольтах.

Что такое ЭДС.

Что такое ЭДС.

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  •  Химическая ЭДС.  Возникает в батарейках и аккумуляторах вследствие  химических реакций.
  • Термо ЭДС.  Возникает, когда находящиеся при разных температурах контакты  разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при  помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник  пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление  внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Опыт демонстрирует появление ЭДС в катушке при воздействии изменяющегося магнитного поля постоянного магнита. Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

Что такое самоиндукция.

Что такое самоиндукция.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора. Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Электродвижущая сила индукции

Таблица параметров электродвижущей силы индукции.

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения. Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает. Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы.

Расчет ЭДС.

Расчет ЭДС.

Как раз вот эти 0.3 В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль. Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Материал по теме: Выбираем цифро-аналоговый преобразователь.

Как образуется ЭДС

Идеальный источник ЭДС – генератор, внутреннее сопротивление которого равно нулю, а напряжение на его зажимах не зависит от нагрузки. Мощность идеального источника ЭДС бесконечна. Реальный источник ЭДС, в отличие от идеального, содержит внутреннее сопротивление Ri и его напряжение зависит от нагрузки (рис. 1., б), а мощность источника конечна. Электрическая схема реального генератора ЭДС представляет собой последовательное соединение идеального генератора ЭДС Е и его внутреннего сопротивления Ri.

На практике для того чтобы приблизить режим работы реального генератора ЭДС к режиму работы идеального, внутреннее сопротивление реального генератора Ri стараются делать как можно меньше, а сопротивление нагрузки Rн необходимо подключать величиной не менее чем в 10 раз большей величины внутреннего сопротивления генератора, т.е. необходимо выполнять условие: Rн >> Ri

Для того чтобы выходное напряжение реального генератора ЭДС не зависело от нагрузки, его стабилизируют применением специальных электронных схем стабилизации напряжения. Поскольку внутреннее сопротивление реального генератора ЭДС не может быть выполнено бесконечно малым, его минимизируют и выполняют стандартным для возможности согласованного подключения к нему потребителей энергии. В радиотехнике величины стандартного выходного сопротивления генераторов ЭДС составляют 50 Ом (промышленный стандарт) и 75 Ом (бытовой стандарт).

Например, все телевизионные приемники имеют входное сопротивление 75 Ом и подключены к антеннам коаксиальным кабелем именно такого волнового сопротивления. Для приближения к идеальным генераторам ЭДС источники питающего напряжения, используемые во всей промышленной и бытовой радиоэлектронной аппаратуре, выполняют с применением специальных электронных схем стабилизации выходного напряжения, которые позволяют выдерживать практически неизменное выходное напряжение источника питания в заданном диапазоне токов, потребляемых от источника ЭДС (иногда его называют источником напряжения).

На электрических схемах источники ЭДС изображаются так: Е — источник постоянной ЭДС, е(t) – источник гармонической (переменной) ЭДС в форме функции времени. Электродвижущая сила Е батареи последовательно соединенных одинаковых элементов равна электродвижущей силе одного элемента Е, умноженной на число элементов n батареи: Е = nЕ.

Постоянный ток и ЭДС.

Постоянный ток и ЭДС.

Электродвижущая сила (ЭДС) источника энергии

Для поддержания электрического тока в проводнике требуется внешний источник энергии, создающий все время разность потенциалов между концами этого проводника. Такие источники энергии получили название источников электрической энергии (или источников тока). Источники электрической энергии обладают определенной электродвижущей силой (сокращенно ЭДС), которая создает и длительное время поддерживает разность потенциалов между концами проводника.

Лагутин Виталий Сергеевич

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Задать вопрос

Иногда говорят, что ЭДС создает электрический ток в цепи. Нужно помнить об условности такого определения, так как выше мы уже установили, что причина возникновения и существования электрического тока — электрическое поле.

Источник электрической энергии производит определенную работу, перемещая электрические заряды по всей замкнутой цепи. За единицу измерения электродвижущей силы принят вольт (сокращенно вольт обозначается буквой В или V — «вэ» латинское). ЭДС источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой, цепи источник электрической энергии совершает работу, равную одному джоулю:

Электродвижущая сила (ЭДС) источника энергии.

Электродвижущая сила (ЭДС) источника энергии.

В практике для измерения ЭДС используются как более крупные, так и более мелкие единицы, а именно:

  • 1 киловольт (кВ, kV), равный 1000 В;
  • 1 милливольт (мВ, mV), равный одной тысячной доле вольта (10-3 В),
  • 1 микровольт (мкВ, μV), равный одной миллионной доле вольта (10-6 В).

Очевидно, что 1 кВ = 1000 В; 1 В = 1000 мВ = 1 000 000 мкВ; 1 мВ= 1000 мкВ.

В настоящее, время существует несколько видов источников электрической энергии. Впервые в качестве источника электрической энергии была использована гальваническая батарея, состоящая из нескольких цинковых и медных кружков, между которыми была проложена кожа, смоченная в подкисленной воде. В гальванической батарее химическая энергия превращалась в электрическую (подробнее об этом будет рассказано в главе XVI). Свое название гальваническая батарея получила по имени итальянского физиолога Луиджи Гальвани (1737—1798), одного из основателей учения об электричестве.

Многочисленные опыты по усовершенствованию и практическому использованию гальванических батарей были проведены русским ученым Василием Владимировичем Петровым. Еще в начале прошлого века он создал самую большую в мире гальваническую батарею и использовал ее для ряда блестящих опытов. Источники электрической энергии, работающие по принципу преобразования химической энергии в электрическую, называются химическими источниками электрической энергии.

Полезно знать: Как рассчитать мощность электрического тока.

Другим основным источником электрической энергий, получившим широкое применение в электротехнике и радиотехнике, является генератор. В генераторах механическая энергия преобразуется в электрическую. У химических источников электрической энергии и у генераторов электродвижущая сила проявляется одинаково, создавая на зажимах источника разность потенциалов и поддерживая ее длительное время.

Что такое электродвижущая сила (ЭДС) и как ее рассчитать

Эти зажимы называются полюсами источника электрической энергии. Один полюс источника электрической энергии имеет положительный потенциал (недостаток электронов), обозначается знаком плюс ( + ) и называется положительным полюсом.

Другой полюс имеет отрицательный потенциал (избыток электронов), обозначается знаком минус (—) и называется отрицательным полюсом. От источников электрической энергии электрическая энергия передается по проводам к ее потребителям (электрические лампы, электродвигатели, электрические дуги, электронагревательные приборы и т. д.).

Как образуется ЭДС.

Примеры решения задач

К каждой позиции первого столбца подберите соответствующую позицию второго:

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ
Электродвижущая сила
Сила тока
Сопротивление
Разность потенциалов

Решение: Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому.

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов.

ЭДС определяется по формуле:

Сила тока определяется по формуле:

Сопротивление определяется по формуле:

Разность потенциалов определяется по формуле:

Правильный ответ:

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫФОРМУЛЫ
Электродвижущая сила
Сила тока
Сопротивление
Разность потенциалов

Что такое электродвижущая сила?

Это отношение работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда.

Что такое электрическая цепь?

Набор устройств, которые соединены проводниками, предназначенный для протекания тока.

Как звучит закон Ома для полной цепи?

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Заключение

Лагутин Виталий Сергеевич

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Задать вопрос

Если в проводнике создать электрическое поле и не поддерживать это поле, то перемещение носителей тока приведет к тому, что поле внутри проводника исчезнет, и ток прекратится. Для того чтобы поддерживать ток в цепи достаточно долго, необходимо осуществить движение зарядов по замкнутой траектории, то есть сделать линии постоянного тока замкнутыми. Следовательно, в замкнутой цепи должны быть участки, на которых носители заряда будут двигаться против сил электростатического поля, то есть от точек с меньшим потенциалом к точкам с большим потенциалом. Это возможно лишь при наличии неэлектрических сил, называемых сторонними силами. Сторонними силами являются силы любой природы, кроме кулоновских.

Дополнительную информацию о предмете статьи можно узнать из файла «Электродвижущая сила в цепях электрического тока». А также в нашей группе ВК публикуются интересные материалы, с которыми вы можете познакомиться первыми. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение хочу выразить благодарность источникам, откуда почерпнут материал для подготовки статьи:

www.booksite.ru

www.scsiexplorer.com.ua

www.samelectrik.ru

www.electricalschool.info

www.sxemotehnika.ru

www.zaochnik.ru

www.ido.tsu.ru

Мне нравится1Не нравится Предыдущая

ТеорияЧто такое термопара: об устройстве простыми словами

Следующая

ТеорияЧто такое заземление простыми словами

Что такое ЭДС — объяснение простыми словами

Что такое ЭДС в физике, химии, электротехнике и как она возникает. Определение понятия и формулы. Отличие ЭДС от напряжения в электрической цепи.

Под ЭДС понимается удельная работа сторонних сил по перемещению единичного заряда в контуре электрической цепи. Это понятие в электричестве предполагает множество физических толкований, относящихся к различным областям технических знаний. В электротехнике — это удельная работа сторонних сил, появляющаяся в индуктивных обмотках при наведении в них переменного поля. В химии она означает разность потенциалов, возникающее при электролизе, а также при реакциях, сопровождающихся разделением электрических зарядов. В физике она соответствует электродвижущей силе, создаваемой на концах электрической термопары, например. Чтобы объяснить суть ЭДС простыми словами – потребуется рассмотреть каждый из вариантов ее трактовки.

Прежде чем перейти к основной части статьи отметим, что ЭДС и напряжение очень близкие по смыслу понятия, но всё же несколько отличаются. Если сказать кратко, то ЭДС — на источнике питания без нагрузки, а когда к нему подключают нагрузку — это уже напряжение. Потому что количество вольт на ИП под нагрузкой почти всегда несколько меньше, чем без неё. Это связано с наличием внутреннего сопротивления таких источников питания, как трансформаторы и гальванические элементы.

Содержание:

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора.

Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Для электрического тока постоянной направленности характерны другие проявления этой силы, такие, например, как разность потенциалов на полюсах гальванического элемента, о чем мы расскажем далее.

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения.

Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает.

Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы. Как раз вот эти 0.3В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль.

Этот пример наглядно демонстрирует в чем отличие ЭДС и напряжения. То же рассказывает автор в конце видеоролика, который вы видите ниже.

Подробнее о том, как возникает ЭДС гальванического элемента и в чем оно измеряется вы можете узнать в следующем ролике:

Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Заключение

Давайте подведем итоги и еще раз кратко напомним, что такое ЭДС и в каких единицах СИ выражается эта величина.

  1. ЭДС характеризует работу сторонних сил (химических или физических) неэлектрического происхождения в электрической цепи. Эта сила выполняет работу по переносу электрических зарядов ней.
  2. ЭДС, как и напряжение измеряется в Вольтах.
  3. Отличия ЭДС от напряжения состоят в том, что первое измеряется без нагрузки, а второе с нагрузкой, при этом учитывается и оказывает влияние внутреннее сопротивление источника питания.

И наконец, для закрепления пройденного материала, советую посмотреть еще одно хорошее видео на эту тему:

Материалы по теме:

  • Чем отличается переменный ток от постоянного
  • Что такое электрический заряд
  • Как понизить постоянное и переменное напряжение

Опубликовано: 20.07.2019 Обновлено: 20.07.2019 нет комментариев

Что такое ЭДС (электродвижущая сила)

Электродвижущая сила, в народе ЭДС, также как и напряжение измеряется в вольтах, но носит совсем иной характер.

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Что такое  ЭДС (электродвижущая сила)

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Что такое  ЭДС (электродвижущая сила)

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

 

пустая башня

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд.  Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к  заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

башня с водонасосом

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что  такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

ЭДС электрического тока

Как вы помните из прошлых статей, молекулы воды – это “электроны”. Для возникновения электрического тока, электроны должны двигаться в одном направлении. Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка. То есть вода в башне – это напряжение, а люди, которые тратят воду для своих нужд – это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток – это не что иное, как сила тока.

Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?

Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени. То есть эта сила должна двигать электроны! Электродвижущая сила! Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА!  Можно назвать ее сокращенно ЭДС – Электро Движущая Сила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E.

Значит, в наших батарейках тоже есть такой “насос”? Есть, и правильней было бы его назвать “насос подачи электронов”). Но, конечно, так никто не говорит.  Говорят просто  – ЭДС. Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится “уровень воды” в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как “насос” не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.

Реальный источник ЭДС

Источник электрической энергии  – это источник ЭДС с внутренним сопротивлением Rвн. Это могут быть какие-либо химические элементы питания, наподобие  батареек и аккумуляторов

батарейка

Их внутреннее строение с точки зрения ЭДС выглядит примерно вот так:

батарейка как реальный источник ЭДС

Где E – это ЭДС, а Rвн  – это внутреннее сопротивление батарейки

Итак, какие выводы можно сделать из этого?

Если к батарейке не цепляется никакая нагрузка, типа лампы накаливания и тд, то в результате сила тока в такой цепи будет равняться нулю. Упрощенная схема будет такой:

внутреннее сопротивление батарейки

Но если мы все-таки присоединим к нашей батарейке лампочку накаливания, то у нас цепь станет замкнутой и в цепи будет течь ток:

Что такое  ЭДС (электродвижущая сила)

В результате у нас в цепи побежит электрический ток, а на внутреннем сопротивлении упадет какое-то напряжение, так как в результате у нас получился делитель напряжения, так как нить лампы накаливания также имеет какое-то свое сопротивление. По закону Ома, чем больше сила тока в цепи, тем больше будет падение напряжения на внутреннем сопротивлении Rвн. Более подробно об этом эффекте можно прочитать в статье закон Ома для полной цепи, а также про входное и выходное сопротивление.

Если начертить график зависимости силы в цепи тока от напряжения на батарейке, то он будет выглядеть вот так:

реальный источник ЭДС

Какой напрашивается вывод? Для того, чтобы замерить ЭДС батарейки, нам достаточно просто взять хороший мультиметр с высоким входным сопротивлением и замерять напряжение на клеммах батарейки.

То есть мы увидим, чем больше сила тока в цепи, то тем меньше напряжение на клеммах батарейки. Об этом более подробно я говорил в статье закон Ома для полной цепи.

Идеальный источник ЭДС

Допустим, пусть наша батарейка обладает нулевым внутренним сопротивлением, тогда получается, что Rвн=0.

Нетрудно догадаться, что в этом случае падение напряжение на нулевом сопротивлении также будет равняться нулю. В результате, наш график примет вот такой вид:

идеальный источник ЭДС

В результате мы получили просто источник ЭДС.  Следовательно, источник ЭДС – это идеальный источник питания, у которого напряжение на клеммах не зависит от силы тока в цепи. То есть, какую нагрузку мы бы не цепляли на такой источник ЭДС, у нас он  все равно будет выдавать положенное напряжение без просадки. Сам источник ЭДС обозначается вот так:

обозначение ЭДС

На практике идеального источника ЭДС не существует.

Типы ЭДС

электрохимическая  (ЭДС батареек и аккумуляторов)

фотоэффекта (получение электрического тока от солнечной энергии)

индукции (генераторы, использующие принцип электромагнитной индукции)

Эффект Зеебека или термоЭДС (возникновение электрического тока в замкнутой цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах)

пьезоЭДС (получение ЭДС от пьезоэлектриков)

определение и формула, в чём измеряется, работа источника электродвижущей силы

Электродвижущая силаЭлектрический ток не протекает в медном проводе по той же причине, по которой остаётся неподвижной вода в горизонтальной трубе. Если один конец трубы соединить с резервуаром таким образом, чтобы образовалась разность давлений, жидкость будет вытекать из одного конца. Аналогичным образом, для поддержания постоянного тока необходимо внешнее воздействие, перемещающее заряды. Это воздействие называется электродвижущая сила или ЭДС.

От электростатики к электрокинетике

Между концом XVIII и началом XIX века работы таких учёных, как Кулон, Лагранж и Пуассон, заложили математические основы определения электростатических величин. Прогресс в понимании электричества на этом историческом этапе очевиден. Франклин уже ввёл понятие «количество электрической субстанции», но пока ещё и он, ни его преемники не смогли его измерить.

От электростатики к электрокинетике

Следуя за экспериментами Гальвани, Вольта пытался найти подтверждения того, что «гальванические жидкости» животного были одной природы со статическим электричеством. В поисках истины он обнаружил, что когда два электрода из разных металлов контактируют через электролит, оба заряжаются и остаются заряженными несмотря на замыкание контура нагрузкой. Это явление не соответствовало существующим представлениям об электричестве потому, что электростатические заряды в подобном случае должны были рекомбинировать.

Вольта ввёл новое определение силы, действующей в направлении разделения зарядов и поддержании их в таком состоянии. Он назвал её электродвижущей. Подобное объяснение описания работы батареи не вписывалось в теоретические основы физики того времени. В Кулоновской парадигме первой трети XIX века э. д. с. Вольта определялась способностью одних тел вырабатывать электричество в других.

Важнейший вклад в объяснение работы электрических цепей внёс Ом. Результаты ряда экспериментов привели его к построению теории электропроводности. Он ввёл величину «напряжение» и определил её как разность потенциалов на контактах. Подобно Фурье, который в своей теории различал количество тепла и температуру в теплопередаче, Ом создал модель по аналогии, связывающую количество перемещаемого заряда, напряжение и электропроводность. Закон Ома не противоречил накопленным знаниям об электростатическом электричестве.

Затем, благодаря Максвеллу и Фарадею, пояснительные модели тока получили новую теорию поля. Это позволило разработать связанную с полем концепцию энергии как для статических потенциалов, так и для электродвижущей силы. Основные даты эволюции понятия ЭДС:

  • 1800 г. — создание Вольтой гальванической батареи;
  • 1826 г. — Ом формулирует свой закон для полной цепи;
  • 1831 г. — обнаружение электромагнитной индукции Фарадеем.

Определение и физический смысл

Определение и физический смысл электродвижущей силыПриложение некоторой разности потенциалов между двумя концами проводника создаст перетекание электронов от одного конца к другому. Но этого недостаточно для поддержания потока зарядов в проводнике. Дрейф электронов приводит к уменьшению потенциала до момента его уравновешивания (прекращение тока). Таким образом, для создания постоянного тока необходимы механизмы, непрерывно возвращающие описанную систему в первоначальную конфигурацию, то есть, препятствующие агрегации зарядов в результате их движения. Для этой цели используются специальные устройства, называемые источники питания.

В качестве иллюстрации их работы удобно рассматривать замкнутый контур из сопротивления и гальванического источника питания (батареи). Если предположить, что внутри батареи тока нет, то описанная проблема объединения зарядов остаётся неразрешённой. Но в цепи с реальным источником питания электроны перемещаются постоянно. Это происходит благодаря тому, что поток ионов протекает и внутри батареи от отрицательного электрода к положительному. Источник энергии, перемещающий эти заряды в батарее — химические реакции. Такая энергия называется электродвижущей силой.

ЭДС является характеристикой любого источника энергии, способного управлять движением электрических зарядов в цепи. В аналогии с замкнутым гидравлическим контуром работа источника э. д. с. соответствует работе насоса для создания давления воды. Поэтому значок, обозначающий эти устройства, неотличим на гидравлических и электрических схемах.

Несмотря на название, электродвижущая сила на самом деле не является силой и измеряется в вольтах. Её численное значение равно работе по перемещению заряда по замкнутой цепи. ЭДС источника выражается формулой E=A/q, в которой:

  • E — электродвижущая сила в вольтах;
  • A — работа сторонних сил по перемещению заряда в джоулях;
  • q — перемещённый заряд в кулонах.

Из этой формулы ЭДС следует, что электродвижущая сила не является свойством цепи или нагрузки, а есть способность генератора электроэнергии к разделению зарядов.

Сравнение с разностью потенциалов

Сравнение с разностью потенциаловЭлектродвижущая сила и разность потенциалов в цепи очень похожие физические величины, так как оба измеряются в вольтах и определяются работой по перемещению заряда. Одно из основных смысловых различий заключается в том, что э. д. с. (E) вызывается путём преобразования какой-либо энергии в электрическую, тогда как разность потенциалов (U) реализует электрическую энергию в другие виды. Другие различия выглядят так:

  • E передаёт энергию всей цепи. U является мерой энергии между двумя точками на схеме.
  • Е является причиной U, но не наоборот.
  • Е индуцируется в электрическом, магнитном и гравитационном поле.
  • Концепция э. д. с. применима только к электрическому полю, в то время как разность потенциалов применима к магнитным, гравитационным и электрическим полям.

Напряжение на клеммах источника питания, как правило, отличается от ЭДС источника. Это происходит из-за наличия внутреннего сопротивления источника (электролита и электродов, обмоток генератора). Связывающая разность потенциалов и ЭДС источника тока формула выглядит как U=E-Ir. В этом выражении:

  • U — напряжение на клеммах источника;
  • r — внутреннее сопротивление источника;
  • I — ток в цепи.

Из этой формулы электродвижущей силы следует, что э. д. с. равна напряжению когда ток в цепи не течёт. Идеальный источник ЭДС создаёт разность потенциалов независимо от нагрузки (протекающего тока) и не обладает внутренним сопротивлением.

В природе не может существовать источника с бесконечной мощностью при замыкании на клеммах, как и материала с бесконечной проводимостью. Идеальный источник используется как абстрактная математическая модель.

Источники электродвижущей силы

Суть источника ЭДС заключается в преобразовании других видов энергии в электрическую с помощью сторонних сил. С точки зрения физики обеспечения э. д. с различают следующие два основных вида источников:

  • гальванические;
  • электромагнитные.

Электрохимические источники тока

Первые представляют собой электрохимические источники, основанные на вовлечение в химическую реакцию процесса переноса электронов. В обычных условиях химические взаимодействия сопровождаются выделением или поглощением тепла, но существует немало реакций, в результате которых генерируется электрическая энергия.

Электрохимические процессы в большинстве случаев обратимы, поскольку энергия электрического тока может быть использована, чтобы заставить реагировать вещества между собой. Эта возможность позволяет создавать возобновляемые гальванические источники — аккумуляторы.

В генераторах тока э. д. с. создаётся другим способом. Разделение зарядов происходит с помощью явления электромагнитной индукции, которое заключается в том, что изменение величины или направления магнитного поля создаёт ЭДС. Согласно закону Фарадея, нахождение э. д. с. индукции возможно из выражения E=—dФ/dt. В этой формуле:

  • Ф — магнитный поток;
  • t — время.

ЭДС индукции измеряется также в вольтах. В зависимости от того, каким способом вызываются изменения магнитного потока, различают:

  • Динамически индуцированную. Когда в стационарном магнитном поле перемещается проводник. Характерен для генераторов.
  • Статически индуцированную. Когда изменения потока возникают из-за изменений магнитного поля вокруг неподвижного проводника. Так работают трансформаторы.

Источники электродвижущей силы

Существуют также источники э. д. с, не основанные на электрохимии или магнитной индукции. К таким устройствам можно отнести полупроводниковые фотоэлементы, контактные потенциалы и пьезокристаллы. Понятие ЭДС имеет практическое применение прежде всего как параметр выбора источников питания для тех или иных целей. Чтобы получить максимальный эффект от работы устройств в цепи, нужно согласовывать их возможности и характеристики. Прежде всего внутреннее сопротивление источника ЭДС силы с характеристиками подключаемой нагрузки.

Электродвижущая сила (ЭДС) источника энергии

  

Для поддержания электрического тока в проводнике требуется внешний источник энергии, создающий все время разность потенциалов между концами этого проводника. Такие источники энергии получили название источников электрической энергии (или источников тока).

Источники электрической энергии обладают определенной электродвижущей силой (сокращенно ЭДС), которая создает и длительное время поддерживает разность потенциалов между концами проводника. Иногда говорят, что ЭДС создает электрический ток в цепи. Нужно помнить об условности такого определения, так как выше мы уже установили, что причина возникновения и существования электрического тока — электрическое поле.

Источник электрической энергии производит определенную работу, перемещая электрические заряды по всей замкнутой цепи..

Определение: Работа, совершаемая источником электрической энергии при переносе единицы положительного заряда по всей замкнутой цепи, называется ЭДС источника

За единицу измерения электродвижущей силы принят вольт (сокращенно вольт обозначается буквой В или V — «вэ» латинское).

ЭДС источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой, цепи источник электрической энергии совершает работу, равную одному джоулю:

В практике для измерения ЭДС используются как более крупные, так и более мелкие единицы, а именно:

1 киловольт (кВ, kV), равный 1000 В;

1 милливольт (мВ, mV), равный одной тысячной доле вольта (10-3 В),

1 микровольт (мкВ, μV), равный одной миллионной доле вольта (10-6 В).

Очевидно, что 1 кВ = 1000 В; 1 В = 1000 мВ = 1 000 000 мкВ; 1 мВ= 1000 мкВ.

В настоящее, время существует несколько видов источников электрической энергии. Впервые в качестве источника электрической энергии была использована гальваническая батарея, состоящая из нескольких цинковых и медных кружков, между которыми была проложена кожа, смоченная в подкисленной воде. В гальванической батарее химическая энергия превращалась в электрическую (подробнее об этом будет рассказано в главе XVI). Свое название гальваническая батарея получила по имени итальянского физиолога Луиджи Гальвани (1737—1798), одного из основателей учения об электричестве.

Многочисленные опыты по усовершенствованию и практическому использованию гальванических батарей были проведены русским ученым Василием Владимировичем Петровым. Еще в начале прошлого века он создал самую большую в мире гальваническую батарею и использовал ее для ряда блестящих опытов.

Источники электрической энергии, работающие по принципу преобразования химической энергии в электрическую, называются химическими источниками электрической энергии.

Другим основным источником электрической энергий, получившим широкое применение в электротехнике и радиотехнике, является генератор. В генераторах механическая энергия преобразуется в электрическую.

На электрических схемах источники электрической энергии и генераторы обозначаются так, как это показано на рис. 1.

Рисунок 1. Условные обозначения источников электрической энергии: а — источник ЭДС, общее обозначение, б — источник тока, общее обозначение; в — химический источник электрической энергии; г — батарея химических источников; д — источник потоянного напряжения; е — источник переменного нарияжения; ж —  генератор.

 

У химических источников электрической энергии и у генераторов электродвижущая сила проявляется одинаково, создавая на зажимах источника разность потенциалов и поддерживая ее длительное время. Эти зажимы называются полюсами источника электрической энергии. Один полюс источника электрической энергии имеет положительный потенциал (недостаток электронов), обозначается знаком плюс ( + ) и называется положительным полюсом. Другой полюс имеет отрицательный потенциал (избыток электронов), обозначается знаком минус (—) и называется отрицательным полюсом.

От источников электрической энергии электрическая энергия передается по проводам к ее потребителям (электрические лампы, электродвигатели, электрические дуги, электронагревательные приборы и т. д.).

Определение: Совокупность источника электрической энергии, ее потребителя и соединительных проводов называется электрической цепью.

Простейшая электрическая цепь показана на рис. 2.

Рисунок 2. Простейшая электрическая цепь: Б — источник электрической энергии; SA — выключатель; EL — потребитель электрической энергии (лампа).

Для того чтобы по цепи проходил электрический ток, она должна быть замкнутой. По замкнутой электрической цепи непрерывно проходит ток, так как между полюсами источника электрической энергии существует некоторая разность потенциалов. Эта разность потенциалов называется напряжением источника и обозначается буквой U. Единицей измерения напряжения служит вольт. Так же как и ЭДС, напряжение может измеряться в киловольтах, милливольтах и микровольтах.

Для измерения величины ЭДС и напряжения применяется прибор, называемый вольтметром. Если вольтметр подключить непосредственно к полюсам источника электрической энергии, то при разомкнутой электрической цепи он покажет ЭДС источника электрической энергии, а при замкнутой — напряжение на его зажимах: (рис. 3).

Рисунок 3. Измерение ЭДС и напряжения источника электрической энергии: а— измерение ЭДС источника электрической энергии; б — измерение напряжения на зажимах источника электрической энергии..

Заметим, что напряжение на зажимах источника электрической энергии всегда меньше его ЭДС.  

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Электродвижущая сила. | Объединение учителей Санкт-Петербурга

Электродвижущая сила.

Роль источника тока: разделить заряды за счет совершения работы сторонними силами. Любые силы, действующие на заряд, за исключением потенциальных сил электростатического происхождения (т. е. кулоновских) называютсторонними силами.

(Сторонние силы объясняются электромагнитным взаимодействием между электронами и ядрами)

ЭДС — энергетическая  характеристика источника. Это физическая величина, равная отношению работы, совершенной сторонни­ми силами при перемещении электрического заряда по замкнутой цепи, к этому заряду:

Измеряется в вольтах (В).

Еще одна характеристика источника — внутреннее сопротивление источника тока: r.

 

Закон Ома для полной цепи.

Энергетические преобразования в цепи:

— закон сохранения энергии

(А — работа сторонних сил; Авнеш.— работа тока на внешнем участке цепи сопротивлением RАвнутр.— работа тока на внутреннем сопротивлении источникаr.)

Закон ОмаСила тока в цепи постоянного тока прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению электрической цепи.

Следствия:

 

1. Если R>>r, то ε=U. Измеряют e высокоомным вольтметром при разомкнутой внешней цепи.

2.Если R<<r, то ток   — максимальный ток для данной цепи (ток короткого замыкания).  Опасно, т.к.  — возрастает

e= U1+U2

3. На внутреннем участке цепи:   Aвнутр=U1q , на внешнем участке цепи: Aвнеш=U2q.

A=Aвнутр+ Aвнеш. Тогда: εq=U1q+U2q. Следовательно: ε= U1+U2

ЭДС источника тока равна сумме падений напряжений на внешнем и внутреннем   участках цепи.

 

4.  Если R растет, то I уменьшается.  — при уменьшении силы тока в цепи напряжение увеличивается!

 

5. Мощность: а) Полная..

б) Полезная. .

в) Теряемая. .

г) КПД   .

 

Соединение источников тока.

1. Последовательное соединение источников:  полная ЭДС цепи равнаалгебраической сумме ЭДС отдельных источников, полное внутреннее сопротивление равно сумме внутренних сопротивлений всех источников тока. Если все источники одинаковы и включены в одном направлении, то 

Тогда з-н Ома запишется в виде:

2. Параллельное соединение источников: один из источников (с наибольшейЭДС) работает как источник, остальные — как потребители (на этом принципе основана зарядка аккумулятора). Расчет по правилам Кирхгофа (см.).

Если все источники одинаковы , то закон Ома запишется в виде:.

Закон Ома для  неоднородного участка цепи .

—  знаки «+» или «-« выбираются в зависимости от того, в одну или в противоположные стороны направлены токи создаваемые источником ЭДС и электрическим полем.

Правила Кирхгофа.

1. Алгебраическая сумма сил токов в каждом узле (точке разветвления) равна 0.   Правила Кирхгофа — следствие закона сохранения электрического заряда.

Правила Кирхгофа

2. В любом замкнутом контуре цепи алгебраическая сумма произведений сил токов в отдельных участках на их сопротивления равна алгебраической сумме ЭДС источников в этих контурах.  В любом замкнутом контуре цепи алгебраическая сумма произведений сил токов в отдельных участках на их сопротивления равна алгебраической сумме ЭДС источников в этих контурах — следствие закона Ома для неоднородного участка цепи.

В любом замкнутом контуре цепи алгебраическая сумма произведений сил токов в отдельных участках на их сопротивления равна алгебраической сумме ЭДС источников в этих контурах

Направление токов выбирают произвольно. Если после вычислений значение силы тока отрицательно, то направление противоположно.

Замкнутый контур обходят в одном направлении. Если направление обхода совпадает с направлением тока, то IR>0. Если при обходе приходят к «+» источника, то его ЭДС отрицательна.

В полученную систему уравнений должны входить все ЭДС и все сопротивления. Т.о. система должна состоять из одного уравнения для токов и  k-1 — го уравнения для ЭДС (k — количество замкнутых контуров).

 

Электродвижущая сила и внутреннее сопротивление

Электродвижущая сила (э) или э.д.с. это энергия, обеспечиваемая элементом или батареей на один кулон заряда, проходящего через них, она равна в вольтах (В). Он равен разности потенциалов на выводах ячейки, когда ток не течет.

  • e = электродвижущая сила в вольтах, В
  • E = энергия в джоулях, Дж
  • Q = заряд в кулонах, Кл

Батареи и элементы имеют внутреннее сопротивление (r) , что составляет единиц измерения в омах (Вт). Когда электричество течет по цепи, внутреннее сопротивление самого элемента сопротивляется прохождению тока, и поэтому тепловая энергия теряется в самом элементе.

  • e = электродвижущая сила в вольтах, В
  • I = ток в амперах, А
  • R = сопротивление нагрузки в цепи в Ом, Вт
  • r = внутреннее сопротивление ячейки в Ом, Вт

Мы можем изменить приведенное выше уравнение;

, а затем на

В этом уравнении ( В, ) появляется разность потенциалов на клеммах , измеренная в вольтах (В).Это разность потенциалов на выводах ячейки при протекании тока в цепи, она всегда меньше ЭДС. ячейки.

Пример;

Q1) p.d. на выводах ячейки составляет 3,0 В, когда она не подключена к цепи и не течет ток. Когда ячейка подключена к цепи и течет ток 0,37 А, клемма p.d. падает до 2,8 В. Какое внутреннее сопротивление элемента?

График терминала п.d. против нынешних

Если мы построим график разности потенциалов на клеммах (V) в зависимости от тока в цепи (I), мы получим прямую линию с отрицательным градиентом.

Мы можем им переставить э.д.с. уравнение сверху для соответствия общему выражению для прямой линии y = mx + c.

Из красных прямоугольников выше видно;

  • пересечение по оси Y равно ЭДС. ячейки
  • градиент графика равен -r, где r — внутреннее сопротивление ячейки.

.

ЭДС движения, электродвижущая сила, индуцированная ЭДС

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar

            • RS Aggarwal
              • RS Aggarwal Решения класса 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma Class 8
              • Решения RD Sharma Class 9
              • Решения RD Sharma Class 10
              • Решения RD Sharma Class 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • Числа
              • Число чисел Тр Игонометрические функции
              • Отношения и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убыток
              • Poly

      .

      EMF в MCQ по физике — Вопросы и ответы викторины

      ЭДС в физике MCQs, ЭДС в викторине по физике ответы pdf для изучения онлайн-курса физики. Изучите электромагнитную индукцию в физике с множественным выбором вопросов и ответов (MCQ), вопросы викторины «ЭДС в физике» и ответы для колледжей, которые предлагают онлайн-классы. Изучите электромагнитную индукцию, индукцию в физике, трансформаторы, наведенный ток и подготовку к тесту ЭДС для подготовительных классов ACT.

      «Квадратная катушка со стороной 16 см, имеющая 200 витков, вращающихся в магнитном поле 0.05 T с пиковой ЭДС 12 В даст угловую скорость «Вопросы с множественным выбором» (MCQ) по ЭДС в физике с выбором 47 рад с -1 , 49 рад с -1 , 42 рад с -1 и 48 рад с -1 для колледжей, которые предлагают онлайн-классы. Практикуйте оценочный тест на получение стипендии, онлайн-обучение EMF в вопросах викторины по физике для конкурсных экзаменов по специальностям физики для колледжей, предлагающих онлайн-степени. EMF in Physics Video

      MCQ: Квадратная катушка со стороной 16 см, имеющая 200 витков, вращающихся в магнитном поле 0.05 Тл с пиковой ЭДС 12 В даст угловую скорость

      1. 47 рад с -1
      2. 49 рад с -1
      3. 42 рад с -1
      4. 48 рад с -1

      MCQ: всякий раз, когда магнитный поток, связанный с катушкой, изменяется, наведенная ЭДС в цепи изменяется

      1. на короткое время
      2. давно
      3. навсегда
      4. до изменения потока

      MCQ: ЭДС 5.В катушке индуцируется 6 В, а ток в катушке снижается со 100 А до 20 А за 0,02 с, взаимная индукция будет равна

      .

      1. 1,4 × 10 -3
      2. 2,4 × 10 -3
      3. 3,4 × 10 -3
      4. 4,4 × 10 -3

      MCQ: обратная ЭДС составляет 120 В, когда двигатель вращается со скоростью 1680 об / мин. Обратная ЭДС при вращении двигателя со скоростью 3360 об / мин будет

      .

      1. 220 В
      2. 240 В
      3. 260 В
      4. 280 В

      MCQ: Майкл Фарадей заметил, что ЭДС была установлена ​​в проводнике в

      году.

      1. 1831
      2. 1832
      3. 1840
      4. 1842

      .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *