Атомная энергетика России. Электроэнергетика атомная
Ядерная энергетика Википедия
АЭС Пало-Верде — крупнейшая в США атомная электростанция, расположена в пустыне, это единственная атомная станция в мире, не расположенная около большого водоёма.Ядерная энергетика (Атомная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии[1].
Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235[2]. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.
Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.
Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; Россия осуществляет программу создания и испытания ядерного ракетного двигателя, США прекратили программу по созданию ядерного двигателя для космических кораблей, кроме того, предпринимались попытки создать ядерный двигатель для самолётов (атомолётов) и «атомных» танков.
Технология
Топливный цикл
Ядерная энергетика основана на использовании ядерного топлива, совокупность промышленных процессов которого составляют топливный ядерный цикл. Хотя существуют различные типы топливных циклов, зависящие как от типа реактора, так и от характеристик конечной стадии цикла, в целом у него существуют общие этапы[3].
- Добыча урановой руды.
- Измельчение урановой руды
- Отделение диоксида урана, т. н. жёлтого хека, от отходов, тоже радиоактивных, идущих в отвал.
- Преобразование диоксида урана в газообразный гексафторид урана.
- Обогащение урана — процесс повышения концентрации урана-235, производится на специальных заводах по разделению изотопов.
- Обратное превращение гексафторида урана в диоксид урана в виде топливных таблеток.
- Изготовление из таблеток тепловыделяющих элементов (сокр. твэл), которые в скомпонованном виде вводятся в активную зону ядерного реактора АЭС.
- Извлечение отработанного топлива.
- Охлаждение отработанного топлива.
- Захоронение отработанного топлива в специальном хранилище[3].
В ходе эксплуатации в процессах технического обслуживания удаляются образующиеся низкорадиоактивные отходы. С окончанием срока службы производится вывод из эксплуатации самого реактора, демонтаж сопровождается дезактивацией и удалением в отходы деталей реактора[3].
Ядерный реактор
Ядерный реактор — устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления, которая всегда сопровождается выделением энергии.
Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми. Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде 5 сентября 1945 года[4]. В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова[5]. К 1978 году в мире работало уже около сотни ядерных реакторов различных типов.
Существуют разные типы реакторов, основные отличия в них обусловлены используемым топливом и теплоносителем, применяемым для поддержания нужной температуры активной зоны, и замедлителем, используемым для снижения скорости нейтронов, которые выделяются в результате распада ядер, для поддержания нужной скорости цепной реакции[3].
- Наиболее распространенным типом является легководный реактор, использующий в качестве топлива обогащённый уран, в нём в качестве и теплоносителя, и замедлителя используется обычная вода, т. н. «легкая». У него есть две основные разновидности:
- кипящий реактор, где пар, вращающий турбины, образуется непосредственно в активной зоне
- водо-водяной энергетический реактор, где пар образуется в контуре, связанном с активной зоной теплообменниками и парогенераторами.
- Газоохлаждаемый ядерный реактор с графитовым замедлителем получил широкое распространение благодаря возможности эффективно вырабатывать оружейный плутоний и возможности использовать необогащённый уран.
- В тяжеловодном реакторе в качестве и теплоносителя, и замедлителя используется тяжелая вода, а топливом является необогащённый уран, используется в основном в Канаде, имеющей собственные месторождения урановых руд[3].
История
Исторический обзор статистики строительства атомных электростанцийВпервые цепная реакция ядерного распада была осуществлена 2 декабря 1942 года в Чикагском университете с использованием урана в качестве топлива и графита в качестве замедлителя. Первая электроэнергия из энергии ядерного распада была получена 20 декабря 1951 года в Национальной лаборатории Айдахо с помощью реактора на быстрых нейтронах EBR-I (Experimental Breeder Reactor-I). Произведённая мощность составляла около 100 кВт[6].
9 мая 1954 года на ядерном реакторе в г. Обнинск была достигнута устойчивая цепная ядерная реакция. Реактор мощностью 5 МВт работал на обогащённом уране с графитом в качестве замедлителя, для охлаждения использовалась вода с обычным изотопным составом. 26 июня в 17:30 энергия, выработанная здесь, стала поступать в потребительскую электросеть Мосэнерго[6].
Военные корабли США — атомные крейсера «Бейнбридж» и «Лонг Бич», и первый в мире авианосец с ядерным реактором «Энтерпрайз», самое длинное в мире военное судно, в 1964 году во время рекордного кругосветного путешествия, в течение которого они преодолели 49,190 км за 65 дней без дозаправкиВ декабре 1954 года в США вошла в строй первая атомная подводная лодка «Наутилус»[6].
В 1956 году в Великобритании начала работу пятидесятимегаваттная АЭС «Calder Hall-1». Далее последовали в 1957 году АЭС Шиппингпорт в США — 60 МВт[2][6] и в 1959 году АЭС Маркуль во Франции — 37 МВт[6]. В 1958 начала выдавать электроэнергию первая очередь второй советской АЭС — Сибирской, мощностью 100 Мвт, полная проектная мощность которой составляла 600 Мвт[2]. В 1959 году в СССР спущено на воду первое в мире невоенное атомное судно — ледокол «Ленин»[6].
Ядерная энергетика, как новое направление в энергетике, получила признание на проходившей в Женеве в августе 1955 года 1-й Международной научно-технической конференции по мирному использованию атомной энергии[2], положившей начало международному сотрудничеству в области мирного использования ядерной энергии и ослабившей завесу секретности над ядерными исследованиями, существовавшей со времён Второй мировой войны[6].
В 1960-х годах в США происходил перевод ядерной энергетики на коммерческую основу. Первой коммерческой АЭС стала «Yankee Rowe» мощностью 250 МВТ, проработавшая с 1960 до 1992 года. Первой атомной станцией в США, строительство которой финансировалось из частных источников, стала АЭС Дрезден[7].
В СССР в 1964 году вступили в строй Белоярская АЭС (первый блок 100МВт) и Нововоронежская АЭС (первый блок 240МВт). В 1973 году на Ленинградской АЭС в городе Сосновый бор был запущен первый высокомощный энергоблок (1000 МВт). Энергия пущенного в 1972 году в Казахстане первого промышленного реактора на быстрых нейтронах (150 МВт) использовалась для производства электроэнергии и опреснения воды из Каспийского моря[7].
В начале 1970-х годов существовали видимые предпосылки для развития ядерной энергетики. Потребность в электроэнергии росла, гидроэнергетические ресурсы большинства развитых стран были практически полностью задействованы, соответственно росли цены на основные виды топлива. Ситуацию усугубляло введение эмбарго на поставки нефти арабскими странами в 1973–1974 годах. Предполагалось снижение стоимости строительства АЭС[3].
Тем не менее, к началу 1980-х годов обозначились серьёзные экономические трудности, причинами которых стали стабилизация спроса на электроэнергию, прекращение роста цен на природное топливо, удорожание, вместо прогнозируемого удешевления, строительства новых АЭС[3].
Экономическое значение
Доля атомной энергетики в общем производстве электроэнергии в различных странах.В 2014 году ядерная энергия обеспечивала 2,6 % всей потребляемой человечеством энергии[8]. Ядерный сектор энергетики наиболее значителен в промышленно развитых странах, где недостаточно природных энергоресурсов — во Франции, на Украине[9], в Бельгии, Финляндии, Швеции, Болгарии и Швейцарии. Эти страны производят от 20 до 76 % (во Франции) электроэнергии на АЭС.
В 2013 году мировое производство ядерной энергии выросло впервые с 2010 года — по сравнению с 2012 годом произошёл рост на 0,5 % — до 6,55 млрд МВт ч (562,9 млн тонн нефтяного эквивалента). Наибольшее потребление энергии атомных станций в 2013 году составило в США — 187,9 млн тонн нефтяного эквивалента. В России потребление составило 39,1 млн тонн нефтяного эквивалента, в Китае — 25 млн тонн нефтяного эквивалента, в Индии — 7,5 млн тонн[10].
Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на конец 2016 года насчитывалось 450 действующих ядерных энергетических[11] (то есть производящих утилизируемую электрическую и/или тепловую энергию) реакторов в 31 стране мира[12] (кроме энергетических, существуют также исследовательские и некоторые другие).
Примерно половина мирового производства электроэнергии на АЭС приходится на две страны — США и Францию. США на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства.
Абсолютным лидером по использованию ядерной энергии являлась Литва. Единственная Игналинская АЭС, расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд кВт⋅ч, из них — 15,5 Игналинской АЭС[13]). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт[14]. Однако, под давлением ЕС (из-за сомнений в её безопасности — ИАЭС использовала энергоблоки того же типа, что и Чернобыльская АЭС), с 1 января 2010 года эта АЭС была окончательно закрыта (предпринимались попытки добиться продолжения эксплуатации станции и после 2009 года, но они не увенчались успехом[источник не указан 658 дней]), сейчас[когда?] решается вопрос о строительстве на той же площадке АЭС современного типа.
Объёмы производства ядерной электроэнергии по странам
Страны с атомными электростанциями. Эксплуатируются АЭС, строятся новые энергоблоки. Эксплуатируются АЭС, планируется строительство новых энергоблоков. Нет АЭС, станции строятся. Нет АЭС, планируется строительство новых энергоблоков. Эксплуатируются АЭС, строительство новых энергоблоков пока не планируется. Эксплуатируются АЭС, рассматривается сокращение их количества. Гражданская ядерная энергетика запрещена законом. Нет АЭС..За 2016 год суммарно АЭС мира выработали 2477 млрд кВт⋅ч энергии, что составило 10,8 % всемирной генерации электричества.
Мировыми лидерами в производстве ядерной электроэнергии на 2017 год являются[15]:
- США (804 млрд кВт·ч/год), работает 99 атомных реакторов (20 % от вырабатываемой электроэнергии)[16]
- Франция (379 млрд кВт·ч/год), 58 реакторов, 71,6%[17].
- Китай (210 млрд кВт·ч/год), 39 реакторов, 3,6%[18].
- Россия (202,868 млрд кВт.ч /год), 35 реакторов, 18,9%[19].
- Южная Корея (141 млрд кВт·ч/год), 24 реактора, 27,1%[20].
- Канада (96 млрд кВт·ч/год), 19 реакторов, 14,6%[21].
- Украина (85 млрд кВт·ч/год), 15 реакторов, 55,1%[22].
- Германия (72 млрд кВт·ч/год), 9 реакторов, 11,6%[23].
- Швеция (63 млрд кВт·ч/год), 8 реакторов, 39,6%[24].
- Великобритания (65 млрд кВт·ч/год), 15 реакторов, 19,3%[25].
Примерно половина всемирной выработки электроэнергии на АЭС приходится на США и Францию.
Проблемы
Безопасность
Ядерная энергетика остаётся предметом острых дебатов. Сторонники и противники ядерной энергетики резко расходятся в оценках её безопасности, надёжности и экономической эффективности. Опасность связана с проблемами утилизации отходов, авариями, приводящими к экологическим и техногенным катастрофам, а также с возможностью использовать повреждение этих объектов (наряду с другими: ГЭС, химзаводами и тому подобным) обычным оружием или в результате теракта — как оружие массового поражения. «Двойное применение» предприятий ядерной энергетики, возможная утечка (как санкционированная, так и преступная) ядерного топлива из сферы производства электроэнергии и его теоретическое использование для производства ядерного оружия служат постоянными источниками общественной озабоченности, политических интриг и поводов к военным акциям (например, Операция «Опера», Иракская война).
Вместе с тем, выступающая за продвижение ядерной энергетики Всемирная ядерная ассоциация опубликовала в 2011 году данные, согласно которым гигаватт·год электроэнергии, произведённой на угольных электростанциях, в среднем (учитывая всю производственную цепочку) обходится в 342 человеческих жертвы, на газовых — в 85, на гидростанциях — в 885, тогда как на атомных — всего в 8[26][27].
Рентабельность
Высказываются сомнения в рентабельности ядерной энергетики. В связи с тем, что производство электричества на АЭС дорожает, а цена некоторых других источников электричества снижается, в условиях свободного рынка ядерные станции становятся убыточными. Так в США по причине нерентабельности были закрыты два реактора: АЭС Вермонт Янки и АЭС Кевони[28]. Множество проектов строительства новых реакторов отменено или заморожено. В 2005 году Финляндия выдала разрешение на строительство третьего блока АЭС Олкилуото. Предполагалось, что энергоблок будет введён в эксплуатацию в 2010 году. По состоянию на 2015 год предполагалось, что реактор не будет запущен ранее 2018 года. Стоимость строительства данного реактора оценивалась в 3 миллиарда евро. На 2015 год затраты возросли на 2 миллиарда евро. В итоге Финляндия отменила запланированное строительство четвёртого энергоблока на Олкилуото. Правительства могут страховать АЭС от закрытия, гарантируя закупку электричества по установленной цене. Однако такие схемы также подвергаются критике из-за ограничения конкуренции и чрезмерной растраты денег налогоплательщиков.
Тепловое загрязнение
Одной из проблем ядерной энергетики является тепловое загрязнение. По мнению некоторых специалистов, атомные электростанции, «в расчёте на единицу производимой электроэнергии», выделяют в окружающую среду больше тепла, чем сопоставимые по мощности ТЭС. В качестве примера можно привести проект строительства в бассейне Рейна нескольких атомных и теплоэлектростанций. Расчеты показали, что, в случае запуска всех запланированных объектов, температура в ряде рек поднялась бы до +45°С, уничтожив в них всякую жизнь.[29]
Подотрасли
Ядерная электроэнергетика
А́томная электроста́нция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом), предназначенная для производства электрической энергии (ОПБ-88/97).
Ядерная транспортная энергетика
Атомоход (атомное судно) — общее название судов с ядерной энергетической установкой, обеспечивающей ход судна. Различают атомоходы гражданские (атомные ледоколы, транспортные суда) и военные (авианосцы, подводные лодки, крейсеры, тяжёлые фрегаты).
Ядерная теплоэнергетика
См. также
Примечания
- ↑ [1]Ядерная энергетика // Большой энциклопедический словарь / Гл. ред. А. М. Прохоров. — 1-е изд. — М. : Большая российская энциклопедия, 1991. — ISBN 5-85270-160-2.
- ↑ 1 2 3 4 Атомная электростанция // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ 1 2 3 4 5 6 7 Атомная Энергетика. Энциклопедия Кольера.
- ↑ «ZEEP — Canada’s First Nuclear Reactor», Canada Science and Technology Museum.
- ↑ Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. — М.: Логос, 2008. — 438 с. — ISBN 978-5-98704-272-0.
- ↑ 1 2 3 4 5 6 7 50 Years of Nuclear Energy (англ.). International Atomic Energy Agency (2004). Проверено 17 марта 2016.
- ↑ 1 2 Nuclear share figures, 2004-2014 (англ.). World Nuclear Association (2015). Проверено 13 марта 2016.
- ↑ REN21: Renewables Global Status Report 2015
- ↑ АЭС Украины в 2015 г. выработали 87,6 млрд кВтч электроэнергии
- ↑ В 2013 году производство ядерной энергии на планете выросло впервые за 3 года — ИА «Финмаркет»
- ↑ IAEA — Power Reactor Information System
- ↑ World Nuclear Power Reactors 2007-08 and Uranium Requirements. World Nuclear Association (9 июня 2008). Проверено 21 июня 2008. Архивировано 3 марта 2008 года.
- ↑ Vatesi Brosiura+RUS.indd
- ↑ energo.net.ua — НОВОСТИ ЭНЕРГЕТИКИ в 2003 году Игналинская АЭС реализовала на внутреннем рынке Литвы 6,8 млрд кВт⋅ч электроэнергии и экспортировала 7,5 млрд кВт⋅ч
- ↑ Top 10 Nuclear Generating Countries — Nuclear Energy Institute
- ↑ PRIS - Country Details USA (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details France (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details China (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details Russia (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details South Korea (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details Canada (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details Ukraine (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details Germany (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details Sweden (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details UK (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ Управление риском «ядерного страха»
- ↑ От редакции: Страшная безопасность. // Ведомости, 26.04.2011, № 74 (2840). Проверено 26 апреля 2011. Архивировано 25 августа 2011 года.
- ↑ First US nuclear power closures in 15 years signal wider industry problems | Environment | The Guardian
- ↑ Родионов В. Г. Проблемы традиционной энергетики // Энергетика: проблемы настоящего и возможности будущего. — М.: ЭНАС, 2010. — С. 22. — 352 с. — ISBN 978-5-4248-0002-3.
Ссылки
Российское законодательство
Международные соглашения
Учебные пособия
wikiredia.ru
Атомная энергетика Википедия
АЭС Пало-Верде — крупнейшая в США атомная электростанция, расположена в пустыне, это единственная атомная станция в мире, не расположенная около большого водоёма.Ядерная энергетика (Атомная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии[1].
Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235[2]. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.
Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.
Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; Россия осуществляет программу создания и испытания ядерного ракетного двигателя, США прекратили программу по созданию ядерного двигателя для космических кораблей, кроме того, предпринимались попытки создать ядерный двигатель для самолётов (атомолётов) и «атомных» танков.
Технология[ | код]
Топливный цикл[ |
ru-wiki.ru
Атомная энергетика России — Documentation
Материал из Documentation.
Производство электроэнергии АЭС России (в млрд. кВт∙ч) и мощность АЭС России (в ГВт) в 1991—2010 годахАтомная энергетика России — отрасль российской энергетики.
Россия обладает технологией ядерной электроэнергетики полного цикла от добычи урановых руд до выработки электроэнергии. На сегодняшний день в России эксплуатируется 10 атомных электростанций (АЭС) — в общей сложности 33 энергоблока установленной мощностью 23,2 ГВт, которые вырабатывают около 17 % всего производимого электричества. В стадии строительства — ещё 5 АЭС.[1]
Широкое развитие атомная энергетика получила в европейской части России (30 %) и на Северо-Западе (37 % от общего объёма выработки электроэнергии).[2]
В 2011 году атомными электростанциями выработано рекордное за всю историю отрасли количество электроэнергии — 173 млрд кВт*ч, что составило около 1,5 % прироста по сравнению с 2010 годом. В декабре 2007 года в соответствии с указом президента России В. В. Путина была образована Государственная корпорация по атомной энергии «Росатом», которая управляет всеми ядерными активами России, включая как гражданскую часть атомной отрасли, так и ядерный оружейный комплекс. На неё также возложены задачи по выполнению международных обязательств России в области мирного использования атомной энергии и режима нераспространения ядерных материалов.[3]
Оператор российских АЭС — ОАО «Концерн „Росэнергоатом“» — является второй в Европе энергетической компанией по объёму атомной генерации. АЭС России вносят заметный вклад в борьбу с глобальным потеплением. Благодаря их работе ежегодно предотвращается выброс в атмосферу 210 млн тонн углекислого газа. Приоритетом эксплуатации АЭС является безопасность. С 2004 года на российских АЭС не зафиксировано ни одного серьёзного нарушения безопасности, классифицируемых по международной шкале ИНЕС выше нулевого (минимального) уровня. Важной задачей в сфере эксплуатации российских АЭС является повышение коэффициента использования установленной мощности (КИУМ) уже работающих станций. Планируется, что в результате выполнения программы повышения КИУМ ОАО «Концерн „Росэнергоатом“», рассчитанной до 2015 года, будет получен эффект, равноценный вводу в эксплуатацию четырёх новых атомных энергоблоков (эквивалент 4,5 ГВт установленной мощности).[4]
[править] Действующие АЭС
[править] Балаковская АЭС
Характеристика:[5]
- Расположение: близ г. Балаково (Саратовская обл.)
- Типы реакторов: ВВЭР-1000
- Энергоблоков: 4
- Годы ввода в эксплуатацию: 1985, 1987, 1988, 1993
Балаковская АЭС относится к числу крупнейших и современных предприятий энергетики России, обеспечивая четверть производства электроэнергии в Приволжском федеральном округе. Ее электроэнергией надежно обеспечиваются потребители Поволжья (76 % поставляемой электроэнергии), Центра (13 %), Урала (8 %) и Сибири (3 %). Она оснащена реакторами ВВЭР (водо-водяные энергетические реакторы корпусного типа с обычной водой под давлением). Электроэнергия Балаковской АЭС — самая дешевая среди всех АЭС и тепловых электростанций России. Коэффициент использования установленной мощности (КИУМ) на Балаковской АЭС составляет более 80 %. Станция по итогам работы в 1995, 1999, 2000, 2003 и 2005—2007 гг. удостаивалась звания «Лучшая АЭС России».[6]
[править] Белоярская АЭС
Характеристика:[7]
- Расположение: близ г. Заречный (Свердловская обл.)
- Типы реакторов: АМБ-100/200, БН-600
- Энергоблоков: 3 (2 — выведены из эксплуатации) + 1 в стадии строительства
- Годы ввода в эксплуатацию: 1964, 1967, 1980
Это первая АЭС большой мощности в истории атомной энергетики страны, и единственная с реакторами разных типов на площадке. Именно на Белоярской АЭС эксплуатируется единственный в мире мощный энергоблок с реактором на быстрых нейтронах БН-600 (№ 3). Энергоблоки на быстрых нейтронах призваны существенно расширить топливную базу атомной энергетики и минимизировать объем отходов за счёт организации замкнутого ядерно-топливного цикла. Энергоблоки №№ 1 и 2 выработали свой ресурс, и в 1980-е годы были выведены из эксплуатации. Блок № 4 с реактором БН-800 планируется сдать в эксплуатацию в 2014 году.[8]
[править] Билибинская АЭС
Характеристика:[9]
- Расположение: близ г. Билибино (Чукотский автономный округ)
- Типы реакторов: ЭГП-6
- Энергоблоков: 4
- Годы ввода в эксплуатацию: 1974 (2), 1975, 1976
Станция производит около 75 % электроэнергии, вырабатываемой в изолированной Чаун-Билибинской энергосистеме (на эту систему приходится около 40 % потребления электроэнергии в Чукотском АО). На АЭС эксплуатируются четыре уран-графитовых канальных реактора установленной электрической мощностью 12 МВт каждый. Станция вырабатывает как электрическую, так и тепловую энергию, которая идет на теплоснабжение Билибино.[10]
Билибинская АЭС — самая северная АЭС в мире.[11]
[править] Калининская АЭС
Характеристика:[12]
- Расположение: близ г. Удомля (Тверская обл.)
- Тип реактора: ВВЭР-1000
- Энергоблоков: 4
- Год ввода в эксплуатацию: 1984, 1986, 2004, 2012
В составе Калининской атомной станции четыре действующих энергоблока с водо-водяными энергетическими реакторами ВВЭР-1000 мощностью 1000 МВт (эл.) каждый.[13]
[править] Кольская АЭС
Характеристика:[14]
- Расположение: близ г. Полярные Зори (Мурманская обл.)
- Тип реактора: ВВЭР-440
- Энергоблоков: 4
- Год ввода в эксплуатацию: 1973, 1974, 1981, 1984
Кольская АЭС, расположенная в 200 км к югу от г. Мурманска на берегу озера Имандра, является основным поставщиком электроэнергии для Мурманской области и Карелии. В эксплуатации находятся 4 энергоблока с реакторами типа ВВЭР-440 проектов В-230 (блоки №№ 1, 2) и В-213 (блоки №№ 3, 4). Генерируемая мощность — 1760 МВт. В 1996—1998 гг. признавалась лучшей атомной станцией России.[15]
[править] Курская АЭС
Характеристика:[16]
- Расположение: близ г. Курчатов (Курская обл.)
- Тип реактора: РБМК-1000
- Энергоблоков: 4
- Год ввода в эксплуатацию: 1976, 1979, 1983, 1985
Курская АЭС расположена на левом берегу реки Сейм, в 40 км юго-западнее Курска. На ней эксплуатируются четыре энергоблока с реакторами РБМК-1000 (уран-графитовые реакторы канального типа на тепловых нейтронах) общей мощностью 4 ГВт (эл.). В 1993—2004 гг. были радикально модернизированы энергоблоки первого поколения (блоки №№ 1, 2), в 2008—2009 гг. — блоки второго поколения (№№ 3, 4). В настоящее время Курская АЭС демонстрирует высокий уровень безопасности и надежности.[17]
[править] Ленинградская АЭС
Характеристика:[18]
- Расположение: близ г. Сосновый Бор (Ленинградская обл.)
- Тип реактора: РБМК-1000
- Энергоблоков: 4 + 2 в стадии строительства
- Год ввода в эксплуатацию: 1973, 1975, 1979, 1981
ЛАЭС была первой в стране станцией с реакторами РБМК-1000. Она была построена в 80 км западнее Санкт-Петербурга, на берегу Финского залива. На АЭС эксплуатируются 4 энергоблока электрической мощностью 1000 МВт каждый. В настоящий момент сооружается вторая очередь станции (Ленинградская АЭС-2).[19]
[править] Нововоронежская АЭС
Характеристика:[20]
- Расположение: близ г. Нововоронеж (Воронежская обл.)
- Тип реактора: ВВЭР различной мощности
- Энергоблоков: 3 (еще 2 выведены из эксплуатации)
- Год ввода в эксплуатацию: 1964, 1969, 1971, 1972, 1980
Первая в России АЭС с реакторами типа ВВЭР. Каждый из пяти реакторов станции является прототипом серийных энергетических реакторов. Энергоблок № 1 был оснащен реактором ВВЭР-210, энергоблок № 2 — реактором ВВЭР-365, энергоблоки №№ 3, 4 — реакторами ВВЭР-440, энергоблок № 5 — реактором ВВЭР-1000. В настоящее время в эксплуатации находятся три энергоблока (энергоблоки №№ 1,2 были остановлены в 1988 и 1990 гг.). Нововоронежская АЭС-2 сооружается по проекту АЭС-2006 с использованием реакторной установки ВВЭР-1200. Генеральным подрядчиком по сооружению Нововоронежской АЭС-2 выступает ОАО «Атомэнергопроект» (г. Москва).[21]
[править] Ростовская АЭС
Характеристика:[22]
- Расположение: близ г. Волгодонска (Ростовская обл.)
- Тип реактора: ВВЭР-1000
- Энергоблоков: 2 + 2 в стадии строительства
- Год ввода в эксплуатацию: 2001, 2010
Ростовская АЭС расположена на берегу Цимлянского водохранилища, в 13,5 км от Волгодонска. Она является одним из крупнейших предприятий энергетики Юга России, обеспечивающим около 15 % годовой выработки электроэнергии в регионе. Станция обеспечивает 40 % производства электроэнергии в Ростовской области. Кроме того, электроэнергия по пяти ЛЭП-500 поступает в Волгоградскую и Ростовскую области, Краснодарский и Ставропольский края, по двум ЛЭП-220 — г. Волгодонск. На станции работают два энергоблока. Первый с реактором типа ВВЭР-1000 и мощностью 1000 МВт введен в эксплуатацию в 2001 году. Энергоблок № 2 введён в промышленную эксплуатацию 10 декабря 2010 года.[23][24]
На площадке станции ведётся строительство энергоблоков №№ 3,4.[25]
[править] Смоленская АЭС
Характеристика:[26]
- Расположение: близ г. Десногорска (Смоленская обл.)
- Тип реактора: РБМК-1000
- Энергоблоков: 3
- Год ввода в эксплуатацию: 1982, 1985, 1990
Смоленская АЭС — одно из ведущих энергетических предприятий Северо-Западного региона России. Она состоит из трёх энергоблоков с реакторами РБМК-1000. Станция сооружена в 3 км от города-спутника Десногорск, на юге Смоленской области. В 2007 году она первой среди АЭС России получила сертификат соответствия системы менеджмента качества международному стандарту ISO 9001:2000. САЭС — крупнейшее градообразующее предприятие Смоленской области, доля поступлений от нее в областной бюджет составляет более 30 %.[27]
[править] АЭС, выведенные из эксплуатации
[править] Обнинская АЭС
Первая в мире АЭС. Была запущена в 1954 году и остановлена в 2002 году. В настоящее время на базе станции создается музей.[28]
[править] Сибирская АЭС
Ввод в эксплуатацию 1958 г. АЭС в городе Северске (Томск-7) Томской области. Является второй атомной электростанцией в СССР и первой промышленной атомной электростанцией в стране (реактор в Обнинске имел мощность всего 6 МВт).[29]
Её главным назначением являлась наработка оружейного плутония для Сибирского химического комбината (в его состав станция входит как подразделение «Реакторный завод»), вырабатываемые тепло и электроэнергия были только полезным побочным продуктом.[30]
Выведена из эксплуатации в 2008 году.[31]
[править] Строящиеся и проектируемые АЭС
[править] Балтийская АЭС
Расположение: близ г. Неман, Калининградская обл. Тип реактора: ВВЭР-1200. Энергоблоков: 2.[32]
Балтийская АЭС — первый проект сооружения атомной станции на территории России, к которому будет допущен частный инвестор. Проект предусматривает использование реакторной установки ВВЭР мощностью 1200 МВт (электрических). Первый блок планируется построить к 2016 году, второй — к 2018. Расчетный срок службы каждого блока — 60 лет. Генеральным подрядчиком по сооружению станции выступает ЗАО «Атомстройэкспорт». В 2011 году получена лицензия Ростехнадзора на сооружение АЭС.[33]
[править] Белоярская АЭС-2
Расположение: близ г. Заречный (Свердловская обл.). Тип реактора: БН-800. Энергоблоков: 1 — в стадии строительства.[34]
Основу второй очереди станции должен составить энергоблок № 4 Белоярской АЭС с реакторной установкой на быстрых нейтронах БН-800. Он сооружается в соответствии с Федеральной целевой программой «Развитие атомного энергопромышленного комплекса России на 2007—2010 годы и на перспективу до 2015 года». Ориентировочные сроки завершения строительства — 2013—2014 годы. Ввод в строй этого энергоблока обещает существенно расширить топливную базу атомной энергетики, а также минимизировать радиоактивные отходы, за счёт организации замкнутого ядерно-топливного цикла.[35]
[править] Ленинградская АЭС-2
Расположение: близ г. Сосновый Бор (Ленинградская обл.). Тип реактора: ВВЭР-1200. Энергоблоков: 2 — в стадии строительства, 4 — по проекту.[36]
Станция строится на площадке ЛАЭС. Сооружение энергоблоков №№ 1 и 2 ЛАЭС-2 включено в Программу деятельности Государственной корпорации по атомной энергии «Росатом» на долгосрочный период (2009—2015 годы), утвержденную постановлением Правительства Российской Федерации от 20.09.2008 № 705. Функции заказчика-застройщика выполняет ОАО "Концерн «Росэнергоатом». 12 сентября 2007 г. Ростехнадзор официально сообщил о выдаче лицензий на размещение 1-го и 2-го энергоблоков типа ВВЭР-1200 Ленинградской АЭС-2. ОАО «СПб АЭП» (входит в состав интегрированной компании ОАО «Атомэнергопром») по итогам открытого конкурса 14 марта 2008 года подписало с Росатомом госконтракт на «выполнение комплекса работ по сооружению и вводу в эксплуатацию энергоблоков №№ 1 и 2 Ленинградской АЭС-2, включая проектно-изыскательские, строительно-монтажные, пусконаладочные работы, поставку оборудования, материалов и изделий». В июне 2008 года и июле 2009 года Ростехнадзор выдал лицензии на сооружение энергоблоков.[37]
[править] Нижегородская АЭС
Расположение: близ пос. Монаково, Нижегородская область. Тип реактора: ВВЭР-ТОИ. Энергоблоков: 2.[38]
Строительство двухблочной Нижегородской АЭС перейдет в активную фазу в конце 2014 года. Генеральный проектировщик станции — ОАО «НИАЭП». В 2012 году инжиниринговая компания продолжит работать над проектной документацией и материалами для получения лицензий на сооружение АЭС. Кроме того, планируется завершить инженерные изыскания на площадке будущего строительства, в том числе на территории будущего жилого поселка энергетиков и линейных объектов на окрестных территориях. В 2013—2015 годах компания намерена разработать полный комплект рабочей документации, построить поселок для строителей и сотрудников, инженерные сети и подготовить базу стройиндустрии, где будут производиться строительные материалы и оборудование. Собственно проектирование станции начнется в 2013 году, активное строительство — в конце 2014-го — начале 2015 годов. Как ожидается, первый блок АЭС будет введен в эксплуатацию в 2019 году, второй — в 2021 году.[39]
[править] Нововоронежская АЭС-2
Расположение: близ г. Нововоронежа (Воронежская обл.). Тип реактора: ВВЭР-1200. Энергоблоков: 2 — строятся, еще 2 — в проекте.[40]
Нововоронежская АЭС-2 строится на площадке действующей станции. Генеральным подрядчиком по сооружению Нововоронежской АЭС-2 выступает ОАО «Атомэнергопроект» (г. Москва). Проект предусматривает использование реакторной установки ВВЭР мощность до 1200 МВт (электрических) со сроком эксплуатации 60 лет. Первая очередь Нововоронежской АЭС-2 будет включать два энергоблока.[41]
[править] Плавучая АЭС «Академик Ломоносов»
Расположение: г. Вилючинск, Камчатский край. Тип реактора: КЛТ-40С. Энергоблоков: 2.[42]
Первая в мире плавучая атомная теплоэлектростанция (ПАТЭС) оснащена судовыми реакторами типа КЛТ-40С. Аналогичные реакторные установки имеют большой опыт успешной эксплуатации на атомных ледоколах «Таймыр» и «Вайгач» и лихтеровозе «Севморпуть». Электрическая мощность станции составит 70 МВт. Основной элемент станции — плавучий энергоблок сооружается промышленным способом на судостроительном заводе и доставляется к месту размещения ПАТЭС морским путем в полностью готовом виде. На площадке размещения строятся только вспомогательные сооружения, обеспечивающие установку плавучего энергоблока и передачу тепла и электроэнергии на берег. Строительство первого плавучего энергоблока началось в 2007 году на ОАО «ПО „Севмаш“», в 2008 году проект был передан ОАО «Балтийский завод» в Санкт-Петербурге. 30 июня 2010 года состоялся спуск на воду плавучего энергоблока. В 2013 планируется начало опытно-промышленной эксплуатации. ПАТЭС будет размещена в городе Вилючинске Камчатского края.[43]
[править] Центральная АЭС
Расположение: близ г. Буй (Костромская обл.). Тип реактора: ВВЭР-1200. Энергоблоков: 2.[44]
Начало строительства 1979 год, остановлено в 1990 году, возобновлено в 2008. Центральную АЭС предполагается разместить в 5 км на северо-запад от города Буй, на правом берегу реки Костромы. Генеральным проектировщиком выступает ОАО «Атомэнергопроект».[45]
- ↑ Основные виды производства электроэнергии на территории России
- ↑ Основные виды производства электроэнергии на территории России
- ↑ Основные виды производства электроэнергии на территории России
- ↑ Основные виды производства электроэнергии на территории России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор действующих АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
- ↑ Обзор строящихся АЭС в России
newsruss.ru
Ядерная энергетика — Википедия РУ
АЭС Пало-Верде — крупнейшая в США атомная электростанция, расположена в пустыне, это единственная атомная станция в мире, не расположенная около большого водоёма.Ядерная энергетика (Атомная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии[1].
Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235[2]. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.
Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.
Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; Россия осуществляет программу создания и испытания ядерного ракетного двигателя, США прекратили программу по созданию ядерного двигателя для космических кораблей, кроме того, предпринимались попытки создать ядерный двигатель для самолётов (атомолётов) и «атомных» танков.
Технология
Топливный цикл
Ядерная энергетика основана на использовании ядерного топлива, совокупность промышленных процессов которого составляют топливный ядерный цикл. Хотя существуют различные типы топливных циклов, зависящие как от типа реактора, так и от характеристик конечной стадии цикла, в целом у него существуют общие этапы[3].
- Добыча урановой руды.
- Измельчение урановой руды
- Отделение диоксида урана, т. н. жёлтого хека, от отходов, тоже радиоактивных, идущих в отвал.
- Преобразование диоксида урана в газообразный гексафторид урана.
- Обогащение урана — процесс повышения концентрации урана-235, производится на специальных заводах по разделению изотопов.
- Обратное превращение гексафторида урана в диоксид урана в виде топливных таблеток.
- Изготовление из таблеток тепловыделяющих элементов (сокр. твэл), которые в скомпонованном виде вводятся в активную зону ядерного реактора АЭС.
- Извлечение отработанного топлива.
- Охлаждение отработанного топлива.
- Захоронение отработанного топлива в специальном хранилище[3].
В ходе эксплуатации в процессах технического обслуживания удаляются образующиеся низкорадиоактивные отходы. С окончанием срока службы производится вывод из эксплуатации самого реактора, демонтаж сопровождается дезактивацией и удалением в отходы деталей реактора[3].
Ядерный реактор
Ядерный реактор — устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления, которая всегда сопровождается выделением энергии.
Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми. Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде 5 сентября 1945 года[4]. В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова[5]. К 1978 году в мире работало уже около сотни ядерных реакторов различных типов.
Существуют разные типы реакторов, основные отличия в них обусловлены используемым топливом и теплоносителем, применяемым для поддержания нужной температуры активной зоны, и замедлителем, используемым для снижения скорости нейтронов, которые выделяются в результате распада ядер, для поддержания нужной скорости цепной реакции[3].
- Наиболее распространенным типом является легководный реактор, использующий в качестве топлива обогащённый уран, в нём в качестве и теплоносителя, и замедлителя используется обычная вода, т. н. «легкая». У него есть две основные разновидности:
- кипящий реактор, где пар, вращающий турбины, образуется непосредственно в активной зоне
- водо-водяной энергетический реактор, где пар образуется в контуре, связанном с активной зоной теплообменниками и парогенераторами.
- Газоохлаждаемый ядерный реактор с графитовым замедлителем получил широкое распространение благодаря возможности эффективно вырабатывать оружейный плутоний и возможности использовать необогащённый уран.
- В тяжеловодном реакторе в качестве и теплоносителя, и замедлителя используется тяжелая вода, а топливом является необогащённый уран, используется в основном в Канаде, имеющей собственные месторождения урановых руд[3].
История
Исторический обзор статистики строительства атомных электростанцийВпервые цепная реакция ядерного распада была осуществлена 2 декабря 1942 года в Чикагском университете с использованием урана в качестве топлива и графита в качестве замедлителя. Первая электроэнергия из энергии ядерного распада была получена 20 декабря 1951 года в Национальной лаборатории Айдахо с помощью реактора на быстрых нейтронах EBR-I (Experimental Breeder Reactor-I). Произведённая мощность составляла около 100 кВт[6].
9 мая 1954 года на ядерном реакторе в г. Обнинск была достигнута устойчивая цепная ядерная реакция. Реактор мощностью 5 МВт работал на обогащённом уране с графитом в качестве замедлителя, для охлаждения использовалась вода с обычным изотопным составом. 26 июня в 17:30 энергия, выработанная здесь, стала поступать в потребительскую электросеть Мосэнерго[6].
Военные корабли США — атомные крейсера «Бейнбридж» и «Лонг Бич», и первый в мире авианосец с ядерным реактором «Энтерпрайз», самое длинное в мире военное судно, в 1964 году во время рекордного кругосветного путешествия, в течение которого они преодолели 49,190 км за 65 дней без дозаправкиВ декабре 1954 года в США вошла в строй первая атомная подводная лодка «Наутилус»[6].
В 1956 году в Великобритании начала работу пятидесятимегаваттная АЭС «Calder Hall-1». Далее последовали в 1957 году АЭС Шиппингпорт в США — 60 МВт[2][6] и в 1959 году АЭС Маркуль во Франции — 37 МВт[6]. В 1958 начала выдавать электроэнергию первая очередь второй советской АЭС — Сибирской, мощностью 100 Мвт, полная проектная мощность которой составляла 600 Мвт[2]. В 1959 году в СССР спущено на воду первое в мире невоенное атомное судно — ледокол «Ленин»[6].
Ядерная энергетика, как новое направление в энергетике, получила признание на проходившей в Женеве в августе 1955 года 1-й Международной научно-технической конференции по мирному использованию атомной энергии[2], положившей начало международному сотрудничеству в области мирного использования ядерной энергии и ослабившей завесу секретности над ядерными исследованиями, существовавшей со времён Второй мировой войны[6].
В 1960-х годах в США происходил перевод ядерной энергетики на коммерческую основу. Первой коммерческой АЭС стала «Yankee Rowe» мощностью 250 МВТ, проработавшая с 1960 до 1992 года. Первой атомной станцией в США, строительство которой финансировалось из частных источников, стала АЭС Дрезден[7].
В СССР в 1964 году вступили в строй Белоярская АЭС (первый блок 100МВт) и Нововоронежская АЭС (первый блок 240МВт). В 1973 году на Ленинградской АЭС в городе Сосновый бор был запущен первый высокомощный энергоблок (1000 МВт). Энергия пущенного в 1972 году в Казахстане первого промышленного реактора на быстрых нейтронах (150 МВт) использовалась для производства электроэнергии и опреснения воды из Каспийского моря[7].
В начале 1970-х годов существовали видимые предпосылки для развития ядерной энергетики. Потребность в электроэнергии росла, гидроэнергетические ресурсы большинства развитых стран были практически полностью задействованы, соответственно росли цены на основные виды топлива. Ситуацию усугубляло введение эмбарго на поставки нефти арабскими странами в 1973–1974 годах. Предполагалось снижение стоимости строительства АЭС[3].
Тем не менее, к началу 1980-х годов обозначились серьёзные экономические трудности, причинами которых стали стабилизация спроса на электроэнергию, прекращение роста цен на природное топливо, удорожание, вместо прогнозируемого удешевления, строительства новых АЭС[3].
Экономическое значение
Доля атомной энергетики в общем производстве электроэнергии в различных странах.В 2014 году ядерная энергия обеспечивала 2,6 % всей потребляемой человечеством энергии[8]. Ядерный сектор энергетики наиболее значителен в промышленно развитых странах, где недостаточно природных энергоресурсов — во Франции, на Украине[9], в Бельгии, Финляндии, Швеции, Болгарии и Швейцарии. Эти страны производят от 20 до 76 % (во Франции) электроэнергии на АЭС.
В 2013 году мировое производство ядерной энергии выросло впервые с 2010 года — по сравнению с 2012 годом произошёл рост на 0,5 % — до 6,55 млрд МВт ч (562,9 млн тонн нефтяного эквивалента). Наибольшее потребление энергии атомных станций в 2013 году составило в США — 187,9 млн тонн нефтяного эквивалента. В России потребление составило 39,1 млн тонн нефтяного эквивалента, в Китае — 25 млн тонн нефтяного эквивалента, в Индии — 7,5 млн тонн[10].
Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на конец 2016 года насчитывалось 450 действующих ядерных энергетических[11] (то есть производящих утилизируемую электрическую и/или тепловую энергию) реакторов в 31 стране мира[12] (кроме энергетических, существуют также исследовательские и некоторые другие).
Примерно половина мирового производства электроэнергии на АЭС приходится на две страны — США и Францию. США на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства.
Абсолютным лидером по использованию ядерной энергии являлась Литва. Единственная Игналинская АЭС, расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд кВт⋅ч, из них — 15,5 Игналинской АЭС[13]). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт[14]. Однако, под давлением ЕС (из-за сомнений в её безопасности — ИАЭС использовала энергоблоки того же типа, что и Чернобыльская АЭС), с 1 января 2010 года эта АЭС была окончательно закрыта (предпринимались попытки добиться продолжения эксплуатации станции и после 2009 года, но они не увенчались успехом[источник не указан 569 дней]), сейчас[когда?] решается вопрос о строительстве на той же площадке АЭС современного типа.
Объёмы производства ядерной электроэнергии по странам
Страны с атомными электростанциями. Эксплуатируются АЭС, строятся новые энергоблоки. Эксплуатируются АЭС, планируется строительство новых энергоблоков. Нет АЭС, станции строятся. Нет АЭС, планируется строительство новых энергоблоков. Эксплуатируются АЭС, строительство новых энергоблоков пока не планируется. Эксплуатируются АЭС, рассматривается сокращение их количества. Гражданская ядерная энергетика запрещена законом. Нет АЭС..За 2016 год суммарно АЭС мира выработали 2477 млрд кВт⋅ч энергии, что составило 10,8 % всемирной генерации электричества.
Мировыми лидерами в производстве ядерной электроэнергии на 2017 год являются[15]:
- США (804 млрд кВт·ч/год), работает 99 атомных реакторов (20 % от вырабатываемой электроэнергии)[16]
- Франция (379 млрд кВт·ч/год), 58 реакторов, 71,6%[17].
- Китай (210 млрд кВт·ч/год), 39 реакторов, 3,6%[18].
- Россия (187 млрд кВт·ч/год), 37 реакторов, 17,8%[19].
- Южная Корея (141 млрд кВт·ч/год), 24 реактора, 27,1%[20].
- Канада (96 млрд кВт·ч/год), 19 реакторов, 14,6%[21].
- Украина (85 млрд кВт·ч/год), 15 реакторов, 55,1%[22].
- Германия (72 млрд кВт·ч/год), 9 реакторов, 11,6%[23].
- Швеция (63 млрд кВт·ч/год), 8 реакторов, 39,6%[24].
- Великобритания (65 млрд кВт·ч/год), 15 реакторов, 19,3%[25].
Примерно половина всемирной выработки электроэнергии на АЭС приходится на США и Францию.
Проблемы
Безопасность
Ядерная энергетика остаётся предметом острых дебатов. Сторонники и противники ядерной энергетики резко расходятся в оценках её безопасности, надёжности и экономической эффективности. Опасность связана с проблемами утилизации отходов, авариями, приводящими к экологическим и техногенным катастрофам, а также с возможностью использовать повреждение этих объектов (наряду с другими: ГЭС, химзаводами и тому подобным) обычным оружием или в результате теракта — как оружие массового поражения. «Двойное применение» предприятий ядерной энергетики, возможная утечка (как санкционированная, так и преступная) ядерного топлива из сферы производства электроэнергии и его теоретическое использование для производства ядерного оружия служат постоянными источниками общественной озабоченности, политических интриг и поводов к военным акциям (например, Операция «Опера», Иракская война).
Вместе с тем, выступающая за продвижение ядерной энергетики Всемирная ядерная ассоциация опубликовала в 2011 году данные, согласно которым гигаватт·год электроэнергии, произведённой на угольных электростанциях, в среднем (учитывая всю производственную цепочку) обходится в 342 человеческих жертвы, на газовых — в 85, на гидростанциях — в 885, тогда как на атомных — всего в 8[26][27].
Рентабельность
Высказываются сомнения в рентабельности ядерной энергетики. В связи с тем, что производство электричества на АЭС дорожает, а цена некоторых других источников электричества снижается, в условиях свободного рынка ядерные станции становятся убыточными. Так в США по причине нерентабельности были закрыты два реактора: АЭС Вермонт Янки и АЭС Кевони[28]. Множество проектов строительства новых реакторов отменено или заморожено. В 2005 году Финляндия выдала разрешение на строительство третьего блока АЭС Олкилуото. Предполагалось, что энергоблок будет введён в эксплуатацию в 2010 году. По состоянию на 2015 год предполагалось, что реактор не будет запущен ранее 2018 года. Стоимость строительства данного реактора оценивалась в 3 миллиарда евро. На 2015 год затраты возросли на 2 миллиарда евро. В итоге Финляндия отменила запланированное строительство четвёртого энергоблока на Олкилуото. Правительства могут страховать АЭС от закрытия, гарантируя закупку электричества по установленной цене. Однако такие схемы также подвергаются критике из-за ограничения конкуренции и чрезмерной растраты денег налогоплательщиков.
Тепловое загрязнение
Одной из проблем ядерной энергетики является тепловое загрязнение. По мнению некоторых специалистов, атомные электростанции, «в расчёте на единицу производимой электроэнергии», выделяют в окружающую среду больше тепла, чем сопоставимые по мощности ТЭС. В качестве примера можно привести проект строительства в бассейне Рейна нескольких атомных и теплоэлектростанций. Расчеты показали, что, в случае запуска всех запланированных объектов, температура в ряде рек поднялась бы до +45°С, уничтожив в них всякую жизнь.[29]
Подотрасли
Ядерная электроэнергетика
А́томная электроста́нция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом), предназначенная для производства электрической энергии (ОПБ-88/97).
Ядерная транспортная энергетика
Атомоход (атомное судно) — общее название судов с ядерной энергетической установкой, обеспечивающей ход судна. Различают атомоходы гражданские (атомные ледоколы, транспортные суда) и военные (авианосцы, подводные лодки, крейсеры, тяжёлые фрегаты).
Ядерная теплоэнергетика
См. также
Примечания
- ↑ [1]Ядерная энергетика // Большой энциклопедический словарь / Гл. ред. А. М. Прохоров. — 1-е изд. — М. : Большая российская энциклопедия, 1991. — ISBN 5-85270-160-2.
- ↑ 1 2 3 4 Атомная электростанция // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ 1 2 3 4 5 6 7 Атомная Энергетика. Энциклопедия Кольера.
- ↑ «ZEEP — Canada’s First Nuclear Reactor», Canada Science and Technology Museum.
- ↑ Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. — М.: Логос, 2008. — 438 с. — ISBN 978-5-98704-272-0.
- ↑ 1 2 3 4 5 6 7 50 Years of Nuclear Energy (англ.). International Atomic Energy Agency (2004). Проверено 17 марта 2016.
- ↑ 1 2 Nuclear share figures, 2004-2014 (англ.). World Nuclear Association (2015). Проверено 13 марта 2016.
- ↑ REN21: Renewables Global Status Report 2015
- ↑ АЭС Украины в 2015 г. выработали 87,6 млрд кВтч электроэнергии
- ↑ В 2013 году производство ядерной энергии на планете выросло впервые за 3 года — ИА «Финмаркет»
- ↑ IAEA — Power Reactor Information System
- ↑ World Nuclear Power Reactors 2007-08 and Uranium Requirements. World Nuclear Association (9 июня 2008). Проверено 21 июня 2008. Архивировано 3 марта 2008 года.
- ↑ Vatesi Brosiura+RUS.indd
- ↑ energo.net.ua — НОВОСТИ ЭНЕРГЕТИКИ в 2003 году Игналинская АЭС реализовала на внутреннем рынке Литвы 6,8 млрд кВт⋅ч электроэнергии и экспортировала 7,5 млрд кВт⋅ч
- ↑ Top 10 Nuclear Generating Countries — Nuclear Energy Institute
- ↑ PRIS - Country Details USA (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details France (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details China (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details Russia (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details South Korea (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details Canada (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details Ukraine (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details Germany (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details Sweden (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ PRIS - Country Details UK (англ.). www.iaea.org. Проверено 25 марта 2018.
- ↑ Управление риском «ядерного страха»
- ↑ От редакции: Страшная безопасность. // Ведомости, 26.04.2011, № 74 (2840). Проверено 26 апреля 2011. Архивировано 25 августа 2011 года.
- ↑ First US nuclear power closures in 15 years signal wider industry problems | Environment | The Guardian
- ↑ Родионов В. Г. Проблемы традиционной энергетики // Энергетика: проблемы настоящего и возможности будущего. — М.: ЭНАС, 2010. — С. 22. — 352 с. — ISBN 978-5-4248-0002-3.
Ссылки
Российское законодательство
Международные соглашения
Учебные пособия
http-wikipediya.ru
Ядерная энергетика Википедия
АЭС Пало-Верде — крупнейшая в США атомная электростанция, расположена в пустыне, это единственная атомная станция в мире, не расположенная около большого водоёма.Ядерная энергетика (Атомная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии[1].
Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235[2]. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.
Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.
Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; Россия осуществляет программу создания и испытания ядерного ракетного двигателя, США прекратили программу по созданию ядерного двигателя для космических кораблей, кроме того, предпринимались попытки создать ядерный двигатель для самолётов (атомолётов) и «атомных» танков.
Технология[ | код]
Топливный цикл[ | код]
Ядерная энергетика основана на использовании ядерного топлива, совокупность промышленных процессов которого составляют топливный ядерный цикл. Хотя существуют различные типы топливных циклов, зависящие как от типа реактора, так и от характеристик конечной стадии цикла, в целом у него существуют общие этапы[3].
- Добыча урановой руды.
- Измельчение урановой руды
- Отделение диоксида урана, т. н. жёлтого хека, от отходов, тоже радиоактивных, идущих в отвал.
- Преобразование
ru-wiki.ru
Атомная энергетика мира
Атомная энергетика мира
Еще не так давно слова “атомная энергетика” и “научно-технический прогресс” сливались в неразрывное целое. И тому было немало причин. Молодая отрасль стимулировала развитие целого ряда новых направлений в физике, химии, биологии. Больше того, открывалась очень радужная перспектива решения энергетических проблем, в первую очередь замены традиционных видов топлива принципиально иным – компактным, “бездымным” и, что особенно важно, практически неисчерпаемым. Именно поэтому атомная энергетика сразу получила приоритетное развитие во многих промышленно развитых странах.
Атомная энергетика — вопрос, который занимает и экономистов, и политиков во всех странах мира. Мы привыкли следить за ценами на нефть, хотя можем и не понимать, сколько вообще литров в этом барреле, и почему он столько стоит. Мы знаем, что от цен на нефть зависит и политическая ситуация в государстве, и его авторитет. Но если бы мы внимательно изучили список мировых источников энергии, то легко бы обнаружили, что атомная энергетика почти так же важна, как нефть и газ. И точно так же, как наличие нефтяных скважин, наличие атомных станций и продуманной государственной политики в области атомной самым серьезным образом влияет на экономическое благополучие страны.
Атомную (ядерную) энергетику можно рассматривать как одну из важных подотраслей мировой энергетики, которая во второй половине XX в. стала вносить существенный вклад в производство электроэнергии. Особенно это относится к тем регионам планеты, где нет или почти нет собственных первичных энергетических ресурсов. По себестоимости вырабатываемой электроэнергии современные АЭС уже вполне конкурентоспособны в сравнении с другими типами электростанций. В отличие от обычных ТЭС, работающих на органическом топливе, они не выбрасывают в атмосферу парниковые газы и аэрозоли, что тоже является их достоинством.
Рис. 1. Рост мощности АЭС мира
Неудивительно, что на протяжении последних десятилетий мировая атомная энергетика превратилась в крупную отрасль, важную составную часть мирового хозяйства. Еще в 1970 г. все атомные электростанции мира выработали лишь 85 млрд кВт-ч электроэнергии, но уже в 1980 г. – около 700 млрд, в 1990 г. – 1800 млрд, а в 2005 г. – почти 2750 млрд кВт-ч. Одновременно возрастала и суммарная мощность АЭС мира (рис. 74). Однако рисунок 1. наглядно отражает и очень существенные перепады, которые были характерны для развития мировой атомной энергетики во второй половине XX в.
Первые программы быстрого роста атомной энергетики были разработаны еще в 50—60-е гг. XX в. в США, Великобритании, СССР, затем в ФРГ, Японии. Но в большинстве своем они не были выполнены. Это объяснялось, прежде всего, недостаточной конкурентоспособностью АЭС по сравнению с тепловыми электростанциями, работающими на угле, мазуте и газе.
С началом мирового энергетического кризиса, который привел к резкому подорожанию нефти, да и других видов минерального топлива, по-новому поставил вопросы надежности энергоснабжения, шансы атомной энергетики быстро возросли. В первую очередь это относилось к странам, не обладавшим большими ресурсами нефти и газа, а иногда и угля, – Франции, ФРГ, Бельгии, Швеции, Финляндии, Японии, Республике Корея. Однако крупные программы развития атомной энергетики были приняты также и в таких богатых минеральным топливом странах, как США и СССР.
В конце 1970-х гг. большинство западных экспертов считало, что к началу XXI в. мощность АЭС может достигнуть 1300–1600 млн кВт, или примерно половины суммарной мощности всех электростанций, а сами АЭС появятся в 50 странах мира. На X сессии МИРЭК обсуждался прогноз на 2020 г., согласно которому доля атомной энергетики в мировом потреблении топлива и энергии должна была составить 30 %.
Но уже в середине 1980-х гг. темпы роста атомной энергетики снова замедлились, в большинстве стран были пересмотрены и планы сооружения АЭС, и прогнозы. Объясняется это комплексом причин. Среди них – успехи политики энергосбережения, постепенное удешевление нефти и в особенности – переоценка экологических последствий сооружения АЭС. Эта переоценка произошла после аварии на американской АЭС «Три Майл Айленд» и в особенности после катастрофы на Чернобыльской АЭС в 1986 г., которая затронула 11 областей Украины, Белоруссии и России с населением 17 млн человек и привела к повышению уровня радиации в 20 странах в радиусе 2000 км от Чернобыля. На северо-западе радиоактивные осадки достигли северных районов Норвегии, на западе – р. Рейн, на юге – Персидского залива.
Вот почему в 1980-егг. сложилась совершенно новая ситуация, и развитие атомной энергетики мира в целом явно замедлилось. Правда, политика разных стран по отношению к данной отрасли оказалась отнюдь не одинаковой. С этих позиций их можно, пожалуй, подразделить на три группы.
К первой группе относятся, так сказать, страны-«отказники», которые вообще отменили свои атомные программы и приняли решение о немедленном или постепенном закрытии своих АЭС. Так, в Австрии была законсервирована уже готовая АЭС, построенная неподалеку от Вены. В Италии после референдума 1987 г. три АЭС были закрыты, а четвертая – почти завершенная – переоборудована в ТЭС. Польша прекратила сооружение АЭС в Жарновице. Практически были заморожены ядерные программы Швейцарии, Нидерландов, Испании. В Швеции в соответствии с результатами референдума правительство приняло решение закрыть до 2010 г. все 12 действующих атомных реакторов. А ведь в этой стране АЭС дают более половины всей выработки электроэнергии, да и по производству «атомной» электроэнергии на душу населения она занимает первое место в мире.
Ко второй группе можно отнести страны, решившие не демонтировать свои АЭС, но и не строить новые. В эту группу попадают США и большинство стран зарубежной Европы, где в 1990-егг. фактически не было начато строительство ни одной новой атомной электростанции. В нее же входят Россия и Украина, которая сначала объявила мораторий на сооружение АЭС, но затем отменила его (независимо от этого Чернобыльская АЭС в 2000 г. благодаря специальным западным инвестициям была наконец-то закрыта). Нужно иметь в виду, что в некоторых странах второй группы, где новые АЭС действительно не сооружают, достройку действующих АЭС с пуском новых энергоблоков все-таки продолжают.
Рис. 2. Распределение мощностей АЭС по регионам и странам мира
В третью группу, не очень многочисленную, входят страны, которые несмотря ни на что по-прежнему осуществляют свои широкомасштабные атомно-энергетические программы (Франция, Япония, Республика Корея) или принимают их заново (Китай, Иран).
Состав этих трех групп не остается неизменным. Так, в последнее время под влиянием тех или иных причин несколько пересмотрели свое негативное отношение к строительству атомных электростанций такие страны, как Италия, Испания, Швеция, а в 2002 г. – США. Ввела в строй свою первую АЭС Румыния. А Канада, напротив, стала применять некоторые ограничения. В еще большей степени это относится к Германии.
После того как осенью 1998 г. к власти в этой стране пришло коалиционное правительство социал-демократов и «зеленых», под давлением вторых было принято решение о закрытии всех 20 германских атомных энергоблоков, которые дают 1/3 производимой в стране электроэнергии. У этого решения есть свои сторонники, но есть и противники, которые доказывают, что оно может нанести стране большой ущерб. В печати обсуждаются три возможных «сценария» развития событий: 1) прекращение использования АЭС по мере выработки их производственного ресурса; 2) прекращение их работы в течение пяти лет, что потребует, однако, очень больших капиталовложений; 3) прекращение их работы в течение 20 лет.
Самая "ядерная" страна сегодня - Литва: 80% ее энергетики обеспечивается за счет расщепления атома. Но если в бывшей советской республике просто не нашлось других сильных производств, то настоящий лидер индустрии - Франция. Французы вырабатывают на АЭС 78% своей энергии и являются самыми крупными ее экспортерами.
Общая мировая ситуация в атомной энергетике на начало XXI в. может быть охарактеризована при помощи следующих главных показателей. В 31 стране на 248 АЭС в эксплуатации находится 441 промышленный атомный энергоблок суммарной установленной мощностью более 354 млн кВт. Такие энергоблоки вырабатывают 18 % всей производимой в мире электроэнергии. В стадии строительства находятся еще примерно 40 энергоблоков мощностью 35 млн кВт.
Географические аспекты мировой атомной энергетики будут наиболее наглядными, если их представить в графической, картографической и табличной форме. Рисунок 75 показывает распределение мощностей АЭС по крупным регионам и некоторым странам мира. Обобщая, можно утверждать, что мировая атомная энергетика, образно говоря, держится на «трех китах» – Европе (включая СНГ), Северной Америке и Азиатско-Тихоокеанском регионе. Этот же вывод можно сделать на основе анализа таблицы 97.
Анализ таблицы 1 показывает также, что более 2/3 установленной мощности всех АЭС мира и такая же доля выработки электроэнергии приходятся всего на пять ведущих в этой отрасли стран – США, Францию, Японию, Германию и Россию, а рисунок 76 демонстрирует конкретное размещение АЭС мира. На нем отчетливо видны те же три главных сгустка концентрации АЭС – европейский, североамериканский и восточноазиатский. Наряду с этим многие крупные регионы, субрегионы и даже целые континенты выглядят на этом рисунке как «белые пятна». Рисунок 76 позволяет также выделить самые крупные АЭС мира, мощностью 4 млн кВт и более каждая. Оказывается, что их всего 12 (в Канаде, во Франции, в Японии, России, на Украине). Самая крупная из них – АЭС Касивадзаки в Японии (8,2 млн кВт).
Давно ведущаяся дискуссия о судьбах и перспективах атомной энергетики мира разделила всех ее участников на два больших лагеря – сторонников и противников развития этой отрасли. Первые доказывают, что без АЭС человечество не сможет обеспечить себя необходимым количеством электроэнергии. Вторые делают акцент на очень высокую капиталоемкость (стоимость одного энергоблока мощностью 1 млн кВт составляет 2 млрд долл.) атомной энергетики и в еще большей степени – на ее недостаточную экологическую и радиационную безопасность; поэтому и имеющиеся прогнозы, сценарии развития АЭС на будущее различаются весьма сильно.
mirznanii.com
Атомная энергетика России - это... Что такое Атомная энергетика России?
Атомная энергетика России — отрасль российской энергетики.
Россия обладает технологией атомной энергетики полного цикла: от добычи урановых руд до выработки электроэнергии; обладает значительными разведанными запасами руд, а также запасами в оружейном виде.
В настоящее время в России на 10 действующих АЭС эксплуатируется 33 энергоблока общей мощностью 23 643 МВт, из них 17 реакторов с водой под давлением — 11 ВВЭР-1000, 6 ВВЭР-440; 15 канальных кипящих реакторов — 11 РБМК-1000 и 4 ЭГП-6; 1 реактор на быстрых нейтронах — БН-600.
История
С 1991 года к сети было подключено пять новых энергоблоков. На конец 2011 года в стадии строительства находятся ещё девять.
В 2007 году федеральные власти инициировали создание единого государственного холдинга «Атомэнергопром» объединяющего компании Росэнергоатом, ТВЭЛ, Техснабэкспорт и Атомстройэкспорт
Выработка электроэнергии
Выработка электроэнергии на российских АЭС в 1991—2010 годах, млрд кВт*чЗа 2007 год российскими АЭС было выработано рекордное за всю историю отрасли количество электроэнергии — 158,3 млрд кВт·ч, что составило 15,9 % от общей выработки в Единой энергосистеме.
В 2009 году на АЭС было выработано 163,1 млрд кВт•ч электроэнергии, что на 0,6 % превышает показатель 2008 года.[1]
В 2010 году АЭС России выработали 170,1 млрд кВт•ч электроэнергии, что составляет 100,5% от задания ФСТ России и 104,2% от выработки 2009 г.
В 2011 году российские атомные станции выработали 172,7 млрд кВт•ч (101,7 % к балансу ФСТ России и 101,5 к аналогичным показателям 2010 года). [2]
Доля атомной генерации в общем энергобалансе России около 17 %. Высокое значение атомная энергетика имеет в европейской части России и особенно на северо-западе, где выработка на АЭС достигает 42 %.
После запуска энергоблока Волгодонской АЭС в 2010 году, председатель правительства России В. В. Путин озвучил планы доведения атомной генерации в общем энергобалансе России с 16 % до 20-30 %[3].
В разработках проекта Энергетической стратегии России на период до 2030 г. предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.
Действующие АЭС
Балаковская АЭС
Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.
Балаковская АЭС — крупнейшая в России АЭС. Ежегодно она вырабатывает более 30 миллиардов кВт·ч электроэнергии.[4] С вводом второй очереди станция должна сравняться с самой мощной в Европе Запорожской АЭС.
Балаковская АЭС работает в базовой части графика нагрузки Объединённой энергосистемы Средней Волги.
Белоярская АЭС
Расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).
На станции были сооружены три энергоблока: два с реакторами на тепловых нейтронах и один с реактором на быстрых нейтронах. В настоящее время единственным действующим энергоблоком является 3-й энергоблок с реактором БН-600 электрической мощностью 600 МВт, пущенный в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.
Первые два энергоблока с водографитовыми канальными реакторами АМБ-100 и АМБ-200 функционировали в 1964—1981 и 1967—1989 годах и были остановлены в связи с выработкой ресурса. Топливо из реакторов выгружено и находится на длительном хранении в специальных бассейнах выдержки, расположенных в одном здании с реакторами. Все технологические системы, работа которых не требуется по условиям безопасности, остановлены. В работе находятся только вентиляционные системы для поддержания температурного режима в помещениях и система радиационного контроля, работа которых обеспечивается круглосуточно квалифицированным персоналом.
Новый 4-й энергоблок с реактором БН-800 мощностью 880 МВт находится в стадии строительства (работы ведутся под руководством ОКБМ им. И. И. Африкантова). Согласно Федеральной целевой программе развития атомной энергетики, ввод энергоблока в эксплуатацию запланирован на 2012 г. Сметная стоимость блока — $1,2 млрд.
Билибинская АЭС
Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.
Вырабатывает электрическую и тепловую энергию.
Калининская АЭС
Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.
Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011.
4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году [5].
12 декабря Председатель Правительства РФ В.В. Путин принял участие в церемонии ввода в опытно-промышленную эксплуатацию энергоблока №4 Калининской АЭС. В настоящее время блок работает на 50% от номинальной мощности.
Кольская АЭС
Расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра. Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.
Курская АЭС
Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм. Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.
Мощность станции — 4 ГВт.
Ленинградская АЭС
Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива. Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.
Проектная годовая выработка электроэнергии — 4000 МВт (т.к. 1 реактор РБМК-1000 выделяет 1000 МВт). В 2007 году выработка составила 24,635 млрд кВт·ч[6].
Нововоронежская АЭС
Расположена в Воронежской области рядом с городом Нововоронеж, на левом берегу реки Дон. Состоит из трёх блоков ВВЭР.
На 85 % обеспечивает Воронежскую область электрической энегией, на 50 % обеспечивает город Нововоронеж теплом.
Ростовская АЭС
Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.
В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС[7].
В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.
Смоленская АЭС
Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990. В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.
Производство урана
Россия обладает разведанными запасами урановых руд, на 2006 год оцениваемыми в 615 тыс. тонн урана.
Основная уранодобывающая компания Приаргунское производственное горно-химическое объединение, добывает 93 % российского урана, обеспечивая 1/3 потребности в сырье.
В 2009 году прирост производства урана составил 25 % в сравнении с 2008 годом.[8]
Строительство реакторов
В России существует большая национальная программа по развитию атомной энергетики, включающей строительство 28 ядерных реакторов в ближайшие годы[9]. Так ввод первого и второго энергоблоков Нововоронежской АЭС-2 должен состояться в 2013—2015 годах[10].
По данным на март 2010 года, в России строится 10 атомных энергоблоков, а также плавучая АЭС.[11]
Строящиеся АЭС
Ленинградская АЭС-2
Основная статья: ЛАЭС-2
Нововоронежская АЭС-2
Плавучая АЭС «Академик Ломоносов»
Федеральным агентством по атомной энергии России ведётся не имеющий аналогов в мире проект по созданию уникальных плавучих атомных электростанций малой мощности.
Строящаяся АЭС «Академик Ломоносов» будет первой в мире плавучей атомной электростанцией. Ввод станции в эксплуатацию планируется в 2013 году[12].
Балтийская АЭС
Балтийская АЭС строится вблизи города Неман, в Калининградской области. Станция будет состоять из двух энергоблоков ВВЭР-1200. Строительство первого блока планируется завершить в 2016 году, второго блока — в 2018 году.
Прочие
Также прорабатываются планы постройки Нижегородской АЭС (в Нижегородской области), Центральной АЭС (в Костромской области), Северской АЭС (в Томской области).
Международные проекты России в атомной энергетике
На начало 2010 года за Россией было 16 % на рынке услуг по строительству и эксплуатации АЭС в мире, эта доля может увеличиться до 25 %[3]. По данным на март 2010 года, российская компания Атомстройэкспорт строит за рубежом 5 атомных энергоблоков: два блока АЭС «Куданкулам» в Индии, один блок АЭС «Бушер» в Иране и 2 блока АЭС «Белене» в Болгарии.[13]
В настоящее время Росатому принадлежит 40 % мирового рынка услуг по обогащению урана и 17 % рынка по поставке ядерного топлива для АЭС[3][11]. Россия имеет крупные комплексные контракты в области атомной энергетики с Индией[9], Бангладеш[14], Китаем[15], Вьетнамом [16], Ираном[17], Турцией[18] и с рядом стран Восточной Европы[19][20][21]. Вероятны комплексные контракты в проектировании, строительстве атомных энергоблоков, а также в поставках топлива с Аргентиной[22], Белоруссией[21], Нигерией[21], Казахстаном[21], Украиной[23]. Ведутся переговоры о совместных проектах по разработке урановых месторождений с Монголией[24]
Безопасность
Надзор за безопасностью российских АЭС осуществляет Ростехнадзор.
Охрана труда регламентируется следующими документами:
- Правила охраны труда при эксплуатации тепломеханического оборудования и тепловых сетей атомных станций ОАО «Концерн Энергоатом». СТО 1.1.1.02.001.0673-2006
Ядерная безопасность регламентируется следующими документами:
- Общие положения обеспечения безопасности атомных станций. ОПБ-88/97 (ПНАЭ Г-01-011-97)
- Правила ядерной безопасности реакторных установок атомных станций. ПБЯ РУ АС-89 (ПНАЭ Г — 1 — 024 — 90)
Радиационная безопасность регламентируется следующими документами:
- Санитарные правила проектирования и эксплуатации атомных станций (СП АС-03)
- Основные правила обеспечения радиационной безопасности (ОСПОРБ-02)
- Правила радиационной безопасности при эксплуатации атомных станций (ПРБ АС-99)
- Нормы радиационной безопасности (НРБ-99/2009)
- Федеральный закон «О санитарно-эпидемиологическом благополучии населения».
Ссылки
Примечания
США · Франция · Япония · Россия · Германия · Южная Корея · Украина · Канада · Великобритания · Китай | |
Швеция · Испания · Бельгия · Тайвань · Индия · Чехия · Швейцария · Финляндия | |
Болгария · Бразилия · ЮАР · Венгрия · Словакия · Румыния · Мексика | |
Аргентина · Словения · Нидерланды · Пакистан · Армения · Иран | |
Албания · Алжир · Бангладеш · Беларусь · Египет · Индонезия · Италия · Иордания · Казахстан · Ливия · Литва · Марокко · Нигерия · Польша · Таиланд · Тунис · Турция · ОАЭ · Венесуэла · Вьетнам |
dikc.academic.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.