15.08.2024

Формула мощности для трехфазной сети: Как рассчитать мощность трехфазной сети: формулы для расчета показателей

Содержание

Мощность трехфазной сети: расчет полной мощности формулой

В подавляющем большинстве случаев в домах и квартирах используется трехфазная сеть. Однако часто применяются приборы, которым необходимо однофазное питание. Чтобы лучше разбираться в особенностях использования трехфазной сети, нужно понимать, как она работает. В статье подробно рассмотрено, как правильно определить ее мощность и каким образом это можно использовать.

Что такое трехфазная сеть в электричестве

Многофазная электрическая сеть переменного тока была создана благодаря американскому ученому Н. Тесле. В России ученый М. Доливо-Добровольский разработал и содействовал повсеместному внедрению трехфазной электросети.

Соединение источника и потребителей

Подаются три фазы переменного тока, которые равны по амплитуде и сдвинуты друг относительно друга на 120°. Фазы могут быть соединены между собой несколькими способами. Самыми распространенными из них являются «звезда» и «треугольник».

В первом случае у них имеется один общий провод. При таком варианте использования появляется возможность подавать линейное или фазовое напряжение. В квартире первое равно 380 В, второе — 220 В. Общий провод обычно соединен с землей, хотя существуют схемы подключения, в которых это не так.

К сведению! При подключении «треугольником» каждый выход фазы соединен с одним выходом другой фазы.

Трехфазная линия передачи

Свойства трехфазной сети

Использование трехфазного электропитания завоевало широкую популярность по следующим причинам:

  • таким способом минимизируются потери при передаче электроэнергии на большие расстояния;
  • трехфазные схемы требуют для реализации меньшего количества деталей и материалов по сравнению с однофазными;
  • есть возможность обеспечить в сети питание 380 В или 220 В.

Обратите внимание! Трехфазное напряжение часто используется для питания асинхронных двигателей, некоторых теплонагревательных приборов, для работы мощных устройств.

Четыре провода питания

Какая сила тока трехфазной сети

На практике часто мощность электроприбора является известной величиной. Поскольку в большинстве случаев для питания используется напряжение 220 В, то имеются все необходимые данные для расчета силы тока. Эта величина важна, чтобы сравнить ее с предельно допустимой для используемых проводов, розеток и удлинителей.

Важно! Слишком сильный ток может вызвать перегорание предохранителей или порчу используемого удлинителя.

Трехфазная система с нейтралью

Для определения силы тока можно воспользоваться формулой мощности: P = кв. корень(3) * U(l) * I(l) * cos(«фи«).

Здесь можно использовать известные данные:

  • P — мощность электроприбора, известная из его инструкции по эксплуатации;
  • U(l). В большинстве случаев речь идет о напряжении 220 В (для устройств с трехфазным питанием эта величина будет равна 380 В).

Значение и формула для cos («фи») обычно точно неизвестны. Их берут из технического паспорта прибора или обращаются за этой информацией к справочникам. Как правило, для определенных типов приборов такая величина известна. Например, она близка к 1 у нагревательных приборов, а у электродвигателей равна 0,7-0,9.

Таким образом на основе приведенной формулы можно посчитать силу тока на основании известных данных.

Прибор для измерения мощности — ваттметр

Какая стандартная потребляемая ее мощность

Чтобы рассчитать электрическую мощность, потребляемую квартирой или частным домом, нужно учесть потребление энергии всеми используемыми электроприборами. Это удобно делать в два этапа:

  1. Рассмотреть все те приборы, которым необходимо питание, использующее три фазы.
  2. Просуммировать потребляемую мощность однофазных устройств.

Искомые значения можно взять либо из техпаспорта электроприбора, либо из технического справочника. При необходимости эту величину можно рассчитывать на основе сделанных измерений. В реальной жизни устройства практически никогда не включаются одновременно.

Обратите внимание! Знание предельной величины потребляемой энергии позволит правильно организовать электроснабжение дома или квартиры.

На основе полученных данных можно, используя формулы мощности, вычислить, какова предельно допустимая сила тока в трехфазной сети, которую должна выдерживать электропроводка. Это позволит правильно подобрать предохранители и используемые во внутренней электросети провода.

Принцип действия трехфазного генератора

Как правильно рассчитать мощность трехфазной сети

Если трехфазная сеть использует соединение «треугольник», то потребители могут получать однофазное напряжение фазное или линейное. При этом оно будет иметь разную величину: первое будет меньше второго примерно в 1,71 раза (точное значение равно квадратному корню из 3). Силу тока в первом и втором случаях легко рассчитать — будет одинаковой.

К сведению! Если используется вариант соединения «треугольником», то линейное и фазовое напряжения будут равны. Однако фазовый ток будет меньше линейного в 1,71 раза.

Характеристики трехфазных цепей

Далее рассказано, как рассчитать мощность трехфазной сети. Для этого необходимо просуммировать мощности всех трех фаз. В качестве примера соединение «треугольником». В этом случае для каждой фазы эта характеристика определяется по следующей формуле: P1 = U(f) * I(f) * cos(«фи«).

В формуле расчета мощности трехфазной сети использованы такие обозначения:

  • P1 — мощность каждой из трех фаз;
  • U (f) — фазовое напряжение;
  • I (f) — фазовая сила тока;
  • «фи» — угол, определяемый соотношением активной и реактивной мощности.

Мощность, выделяющаяся на нагрузке, включает в себя активную и реактивную компоненты. Между ними существует сдвиг фаз «фи». Его смысл состоит в том, что при помощи указанного коэффициента определяется доля реактивной мощности в ее суммарной величине.

Чтобы определить мощность трехфазной сети, нужно просуммировать мощность всех трех фаз. Формула выглядит следующим образом: P = 3 * (U (f) * I(f) * cos(«фи»)). P означает искомую величину. Эту величину при расчете можно определить с помощью линейных величин силы тока и напряжения. Поскольку U(f) = U(l) / кв. корень(3), а I(f) = I(l), то мощность можно будет вычислять таким образом.

P = 3 * (U(f) * I(f) * cos(«фи»)) = 3 * (U(l) * I(l) * cos(«фи») / кв. корень(3)) = кв. корень(3) * U(l) * I(l) * cos(«фи«).

При подключении с помощью схемы «треугольник» вычисления выполняются аналогичным образом. При расчете активной мощности в трехфазной сети нужно учитывать, что фазовое и линейное напряжения будут равны, но фазовая сила тока будет в кв. корень (3) меньше линейной.

Обратите внимание! После выполнения преобразований формула мощности трехфазного тока будет такой же, как и для соединения «звездой».

Счетчик электроэнергии

Использование трехфазных сетей имеет свои важные преимущества и является широко распространенным. Чтобы грамотно их эксплуатировать, необходимо знать характеристики и формулы для расчета напряжения.

формула, как определить — Asutpp

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности  Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Соотношение энергий

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

ПриборМощность бытовых приборов, Вт/час
Зарядное устройство2
Люминесцентная лампа ДРЛОт 50
Акустическая система30
Электрический чайник1500
Стиральной машины2500
Полуавтоматический инвертор3500
Мойка высокого давления3500

 

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Генерация активной составляющей

Обозначение реактивной составляющей:

Это  номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Схема симметричной нагрузки

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

S = U * I * cos φ.

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.

Расчет трехфазной сети

Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

QL = ULI = I2xL

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P2 + Q2, и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: xL = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

Диаграмма треугольников напряжений

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

cos φ = r/z = P/S

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL — QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит:

  1. Значительно уменьшается нагрузка силовых трансформаторов;
  2. Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  3. У сигнальных и радиоустройств уменьшаются помехи;
  4. На порядок уменьшаются гармоники в электрической сети.

В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

Формула расчета мощности в 3 х фазной сети — Портал о стройке

Содержание статьи:

Как найти мощность трехфазной сети по току и напряжению, расчет по формулам

Трехфазные и однофазные сети распространены примерно одинаково в частных и многоквартирных домах. Но стоит заметить, что промышленная сеть является трехфазной по умолчанию и в большинстве случаев к улице, где расположены частные дома или к многоквартирному дому подходит как раз-таки трехфазная сеть. А уже потом ее разветвляют на три однофазные, и заводят к конечному потребителю тока.

Расчет сделан не просто так, а с целью обеспечить максимально эффективную передачу электричества от электростанции к вам, а также преследуется цель наибольшего снижения потерь электричества в транспортировочном процессе, ведь на ток оказывает сопротивление проводник, по которому этот самый ток течет.

Если вам интересно, какая сеть у вас в доме или квартире, то определить это достаточно просто. Если вы откроете электрический щиток и посмотрите, сколько проводов используется для вашей квартиры, то если вы увидите 2 или 3 провода, это однофазная сеть, 1 и 2 провод — это фаза и ноль, 3 провод, если он присутствует — это заземление. В трехфазной же сети проводов будет или 4, или 5. Три фазы А, В,С, ноль и если присутствует — заземляющий проводник.

Так же определяется и количество фаз по так называемому пакетнику, вводному автоматическому выключателю. Для однофазной сети выделяется 2 или 1 сдвоенный кабель, а в трехфазной будет 1 строенный кабель и одинарный. Но не следует забывать о напряжении, с которым нужно быть очень осторожным.

Для того чтобы произвести расчет по току, и расчет по напряжению чтобы узнать мощность несложно, как правило, в трехфазных сетях нуждаются большие энергопотребители. С помощью формулы, приведенной в статье, произвести расчет мощности, используя значения тока и напряжения, вы сможете с легкостью.

Узнаем потребляемую мощность электричества

Итак, перейдем к существу, нам нужно узнать мощность электричества по току и напряжению. Прежде всего нужно знать, сколько потреблять энергии вы будете. Это легко узнать, сопоставив все энергопотребители в вашем доме. Давайте выберем самую распространенную технику, без которой не обойтись современному человеку. Кстати, узнать сколько потребляет тот или иной прибор, можно в паспортных данных вашего электроприбора, или на бирке, которая может быть на корпусе. Начнем с самого высокого потребления напряжения:

  • Стиральная машина — 2700 Ватт
  • Водонагреватель (бойлер) — 2000 Ватт
  • Утюг — 1875 Ватт
  • Кофеварка — 1200 Ватт
  • Пылесос — 1000 Ватт
  • Микроволновая печь — 800 Ватт
  • Компьютер — 500 Ватт
  • Освещение — 500 Ватт
  • Холодильник — 300 Ватт
  • Телевизор — 100 Ватт

По формуле нам нужно все добавить и поделить на 1000, для перевода из ватт в киловатты.

Суммарно у нас получилось 10975 Ватт, переведем в киловатты, поделив на 1000.

Итого у нас потребление 10.9 кВт.

Для обычного обывателя вполне достаточно и одной фазы. Особенно если вы не собираетесь включать все одновременно, что, конечно же, маловероятно.

Но нужно помнить что потребление тока может быть значительно выше, особенно если вы живете в частном доме и/или у вас есть гараж, тогда потребление одного прибора может составлять 4-5 кВт. Тогда вам будет предпочтительнее трехфазная сеть, как более мощная и позволяющая подключать значительно более мощных потребителей тока.

Трехфазная сеть

Давайте более подробно рассмотрим именно трехфазную сеть, как более предпочтительную для нас. Для начала приведем сравнительную характеристику однофазной и трехфазной сети. Выделим некоторые плюсы и минусы.

Когда используется трехфазная сеть есть вероятность что нагрузка распределиться неравномерно на каждую фазу. Если, к примеру, от первой фазы будет запитан электрический котел и мощный нагреватель, а от второй — телевизор и холодильник, то будет иметь место такое явления, как «перекос фаз» — несимметрия напряжений и токов, что может быть следствием выхода из строя некоторых потребителей тока. Для избежания подобной ситуации следует тщательнее планировать распределение нагрузки еще на начальном этапе проектирования сети.

Также трехфазной сети потребуется большее число проводов, кабелей и автоматических выключателей, пропускающих ток, так как мощность будет значительно выше, соответственно монтаж такой сети будет дороже.

Однофазная сеть по возможной потенциальной мощности уступает трехфазной. Так что если вы предполагаете использовать много мощных потребителей тока, то второй вариант будет соответственно лучше. Для примера, если в дом заходит двужильный (трехжильный если он с заземлением), с линии электропередач, кабель сечением 16 мм2, тогда общая мощность всех электропотребителей в доме не должна превышать 14кВт, как в примере, наведенном выше.

Но если же вы будете использовать то же сечение провода для трехфазной сети, но соответственно кабель будет 4-5 жильным, то уже тогда максимальная суммарная мощность будет равняться уже 42 кВт.

Рассчитываем мощность трехфазной сети

Для расчета примем некий производственный цех, в котором установлены тридцать электродвигателей. В цех заходит четырехпроводная линия, помним что это 3 фазы: A, B, C, и нейтраль(ноль). Номинальное напряжение 380/220 вольт. Суммарная мощность всех двигателей составляет Ру1 — 48кВт, еще у нас есть осветительные лампы в мастерской, суммарная мощность которых составляет Ру2- 2кВт.

  • Ру — установленная суммарная мощность группы потребителей, по величине равная сумме их заявленных мощностей, измеряется в кВт.
  • Кс — коэффициент спроса при режиме наивысшей нагрузки. Коэффициент спроса учитывает самое большое возможное число включений приемников группы. Для электродвигателей коэффициент спроса должен брать в расчет величину их загрузки.

Коэффициент спроса для осветительной (освещения) нагрузки, то есть освещения, Кс2-0,9, и для силовой нагрузки, то есть электродвигателей Кс1=0,35. Усредненный коэффициент мощности для всех потребителей cos( φ ) = 0,75. Необходимо найти расчетный ток линии.

Расчет

Подсчитаем расчетную силовую нагрузку P1 = 0,35*48 = 16,8 кВт

и расчетную осветительную нагрузку Р2 = 0,9 *2 = 1.8 кВт.

Полная расчетная нагрузка P = 16,8+1,8=18,6 кВт;

Расчетный ток считаем с помощью формулы:

где

Р — расчетная мощность потребителя (электродвигатели и освещение), кВт;

Uн — напряжение номинальное на клеммах приемника, которое равняется междуфазному (линейному, когда подключается фаза и фаза, тоесть 380 В) то есть напряжению в сети, от которой он запитан, В;

cos ( φ ) — коэффициент мощности приемника.

Таким образом, мы произвели расчет мощности по току, который позволит вам разобраться с трехфазными сетями. Но перейдя непосредственно к монтажу системы не забывайте технику безопасности, ведь ток и напряжение опасное для вашей жизни явление.

Оцените статью:

Поделитесь с друзьями!

elektro.guru

Расчёт мощности трёхфазной сети | Сайт электрика

Привет читатели моего сайта. Сегодня мы с вами на реальном примере рассмотрим формулу, с помощью которой, можно рассчитать мощность (нагрузку) трёхфазной сети.

Но для начала нужно определиться какая у вас мощность, так как она бывает двух видов:

1. равномерная (симметричная)

2. неравномерная (несимметричной)

Пример равномерной нагрузки – это когда у вас работает электродвигатель. То есть ток по всем фазам протекает одинаковый. Не большими разбежностями, тут можно пренебречь. А в нулевом проводе ток равняется нулю. В таком случае формула имеет вот такой вид:

P = √3*Uф*I* cos (φ) = 1,73Uл*I* cos (φ)

Где Uф – это фазное напряжение

Uл – это линейное напряжение

I – ток, который протекает в проводнике. Его можно измерять токоизмерительными клещами.

cos (φ) – коэффициент мощности. Обычно берут 0.76

Неравномерная нагрузка – это когда ток во всех фазах разный. К примеру, от трёхфазной сети питается освещение какого-то помещения. Один ряд светильников включили, и там горят все светильники. Во втором ряду не горит 7 светильник, а в третьем 12. В таком случае нужно взять клещи, и измерить ток во всех фазах. А формула будет выглядеть вот так:

Pобщ = Ua*Ia* cos (φ1) + Ub*Ib* cos (φ2) + Uc*Ic* cos (φ3)

Давайте решим задачу.

Нужно найти мощность, которую потребляет загородный домик с трёхфазной сетью. Ток по фазам – A — 5.4, B – 7, C – 3 Ампер. cos (φ3) – для упрощения возьмём 1.

Решение.

Если cos (φ3) у нас равняется 1, то это число можно сократить, а все токовые показатели сложить и умножить на напряжение 220 В.

Робщ = (5,4 + 7+3)*220 = 15,4*220 = 3388 Вт ≈ 3,4 кВт

На этом у меня все. В статье я привел реальный пример, как можно рассчитать мощность трёхфазной сети. Конечно, если углубится в эту тему, то можно ещё найти активную и реактивную мощность. Но об этом я напишу в следующих статьях, так что подписывайтесь на обновления. Если статья была вам полезна, то поделитесь нею со своими друзьями в социальных сетях. Пока.

Кстати, советую вам посмотреть статью Расчет тока электродвигателя.

С уважением Александр!

Читайте также статьи:
  • Электротехника. Справочник том 2 Лихачёв В.Л.
  • Группы допуска по электробезопасности – виды и порядок присвоения
  • Устройство, принцип действия, способы регулирования частоты вращения, применение, достоинства и недостатки двигателя постоянного тока
  • Инструкция по ОТ для электромонтёра обслуживающего автоподъёмник
  • Библиотека электромонтёра выпуск 3,4,5,7,8,9,10

fazanet.ru

Как рассчитать мощность трехфазного тока

Содержание:
  1. Характеристики трехфазной системы
  2. Измерение мощности ваттметром

Мощность постоянного тока в электрической цепи определяется простым способом, путем умножения силы тока и напряжения. Эти величины являются постоянными и не подвержены изменениям во времени, поэтому и значение мощности будет постоянным, поскольку вся система находится в уравновешенном состоянии.

Переменный ток по всем параметрам отличается от постоянного, особенно наличием количества фаз. Очень часто возникают ситуации, когда нужно выполнить расчет мощности трехфазного тока, для того чтобы правильно определить характеристики подключаемой нагрузки. Проведение таких расчетов требует специальных знаний о работе трехфазной системы питания. Трехфазные сети, наряду с однофазными, получили широкое распространение в связи с низкими материальными затратами и удобством эксплуатации.

Характеристики трехфазной системы

Трехфазные цепи как правило соединяются двумя основными способами – звездой (рис. 1) и треугольником, который будет рассмотрен ниже. На всех схемах для более удобного пользования фазы обозначаются символами А, В, С или U, V, W.

При использовании схемы «звезда» (рис. 1), значение суммарного напряжения в точке пересечения фаз N является равным нулю. В этом случае трехфазный ток, по сравнению с однофазным, будет обладать постоянной мощностью. Данное положение указывает на уравновешенность трехфазной системы, а мгновенная полная мощность будет выражена в виде формулы:

Соединение звездой характеризуется двумя видами напряжения – фазным (рис. 2) и линейным (рис. 3). В первом случае напряжение определяется между одной из фаз и нулевой точной пересечения N. Линейное напряжение соответствует напряжению, существующему между самими фазами.

Таким образом, значение полной мощности для соединения звездой отображается следующей формулой:

Однако следует учитывать разницу между линейным и фазным напряжением, составляющую √3. Поэтому считать необходимо сумму мощностей всех фаз. Для расчетов активной мощности применяется формула Р = 3 х Uф х Iф х cosφ, а для реактивной – Р = √3 х Uл х Iф х cosφ.

Другим распространенным способом фазного соединения считается «треугольник».

Данный вид соединения предполагает одинаковое значение фазного (Uф) и линейного (Uл) напряжения. Соотношение между фазными и линейными токами определяется в виде формулы I = √3 х Iф, в соответствии с которой значение фазного тока составит Iф = I х √3.

Таким образом, мощности линейных величин при данном способе соединения будут выражаться с помощью следующих формул:

  • Полная мощность: S = 3 х Sф = √3 х U х I;
  • Активная мощность: Р = √3 х U х I х cosφ;
  • Реактивная мощность: Q = √3 х U х I х sinφ.

На первый взгляд формулы мощности для каждого вида соединений кажутся одинаковыми. При отсутствии достаточных знаний и опыта, это может привести к неправильным выводам. Чтобы избежать подобных ошибок, следует рассмотреть пример типового расчета.

  • Соединение электродвигателя выполнено в виде треугольника, напряжение в сети составляет 380 В, сила тока – 10 А. Поэтому значение полной мощности будет следующим: S = 1,73 х 380 х 10= 6574 В х А.
  • Далее этот же электродвигатель был соединен звездой. В этом случае на каждую обмотку фазы стало поступать напряжение в 1,73 раза ниже, чем при подключении треугольником, хотя сетевое напряжение осталось прежним. Соответственно сила тока в обмотках также уменьшилась в 1,73 раза. Существует еще один важный момент: если при соединении треугольником линейный ток в 1,73 раза превышал фазный, то в дальнейшем, когда схема изменилась на звезду, их значение стало равным. В результате, уменьшение линейного тока составило: 1,73 х 1,73 = 3 раза.
  • Таким образом, в одной и той же формуле используются разные значения: S = 1,73 х 380 х 10/3= 2191 В х А, следовательно при переподключении электродвигателя со схемы треугольника на звезду, происходит снижение мощности в 3 раза.

Измерение мощности ваттметром

В электрических сетях измерение мощности осуществляется специальным прибором – ваттметром. Схемы подключения могут быть разными, в зависимости от подключения нагрузки и ее характеристик. В случае симметричной нагрузки (рис. 1), для проведения измерений используется только одна фаза, а полученные результаты, затем, умножаются на три. Данный способ является наиболее экономичным, позволяя существенно снизить размеры измерительного прибора. Он используется в тех случаях, когда нет необходимости в получении точных данный по каждой фазе.

В случае несимметричной нагрузки (рис. 2) измерения будут более точными. Однако для замеров мощности каждой фазы потребуется три прибора с большими габаритными размерами. Обрабатывать показания также придется со всех трех приборов.

Расчет мощности трехфазного тока и ее измерение можно выполнить в электрической цепи при отсутствии нулевого проводника (рис. 3). В такой схеме применяется два прибора, а для расчетов используется первый закон Кирхгофа: IA+IB+IC=0. Таким образом, показания двух ваттметров в сумме дают значение трехфазной мощности для данной цепи.

electric-220.ru

Расчет мощности трехфазной сети: формулы для расчета

Содержание:

  1. Специфика и особенности трехфазных сетей
  2. Расчет мощности потребителей
  3. Как рассчитать трехфазную сеть
  4. Использование калькулятора для расчета мощности

Электрическая энергия на все объекты изначально поступает через трехфазную сеть. В частные дома она может заводиться напрямую, а в многоквартирном доме доходит лишь до вводного распределительного устройства. Далее по квартирам расходятся уже однофазные линии. В любом случае потребуется выполнить расчет мощности трехфазной сети, чтобы заранее определить ее способность выдерживать запланированные нагрузки по току.

Для того чтобы сделать правильные вычисления, нужно знать особенности таких сетей, принципы их работы и технические характеристики. Все необходимые расчеты выполняются вручную при помощи формул или с использованием онлайн-калькулятора.

Специфика и особенности трехфазных сетей

Трехфазные электрические сети наиболее эффективно передают ток через промежуточные звенья, вплоть до потребителя. В процессе доставки потери энергии минимальны.

Наличие трехфазной сети в квартире или частном доме очень легко определить. Для этого нужно просто заглянуть в щиток и посчитать количество проводов. Если в наличии 2 или 3 проводника, значит сеть однофазная. В ней два провода являются фазой и нулем. При наличии заземления может быть третий провод. В трехфазных сетях проводов больше на два из-за двух дополнительных фаз. При отсутствии заземления – их всего четыре, а при наличии заземляющего контура – пять.

Эту же задачу можно решить и с помощью вводного автоматического выключателя. К нему также подводится определенное количество проводов, подключаемых в соответствующие клеммы.

В процессе эксплуатации трехфазной сети велика вероятность неравномерного распределения нагрузки по отдельным фазам. Если к одной из них будет подключено только мощное оборудование, а к другим – обычные бытовые приборы, в этом случае может возникнуть ситуация, называемая перекосом фаз. В результате асимметрии тока и напряжения, отдельные потребители могут выйти из строя. Во избежание негативных последствий, нагрузка должна быть равномерно спланирована еще на стадии проектирования и выполнен расчет мощности трехфазной сети.

Трехфазная сеть, по сравнению с однофазной, отличается большим количеством кабельно-проводниковой продукции, автоматов и других устройств. К ней подключается специфическое трёхфазное оборудование Суммарная мощность будет выше ровно в три раза. Значение мощности рассчитывается по току и напряжению с использованием формул.

Расчет мощности потребителей

В первую очередь нужно заранее установить объемы потребляемой электроэнергии. Для этого суммируется мощность всех потребителей, находящихся в доме. Сюда входит мощное оборудование, обычная бытовая техника и осветительные приборы. У некоторых хозяев этот список может быть дополнен теплыми электрическими полами.

Все необходимы сведения можно посмотреть в техническом паспорте, который прилагается к каждому устройству. На некоторые приборы наносится соответствующая маркировка. Вначале идут самые мощные агрегаты и далее – все остальное оборудование, по мере уменьшения мощности.

Для вычислений берется стиральная машина-автомат, мощностью 2600 Вт, электрический водонагреватель – 1900 Вт, утюг – 1500 Вт, пылесос – 1000 Вт, микроволновка – 800 Вт, компьютер и оргтехника – 600 Вт, осветительные приборы (с лампами эконом) – 400 Вт, холодильник – 300 Вт, телевизор – 100 Вт. Итоговый результат получился 9200 Вт и его необходимо перевести в киловатты. Для этого 9200 Вт делится на 1000, получается 9,2 кВт, что и будет расчетным потреблением электроэнергии.

С данной мощностью может справиться и одна фаза, однако в частных домах устанавливается более мощное оборудование, для работы которого лучше пользоваться сетями 380в. В этом случае гарантируется бесперебойное функционирование отопительных и водонагревательных котлов, насосов, электродвигателей и других агрегатов.

Как рассчитать трехфазную сеть

В качестве примера можно взять некие производственные площади с установленным оборудованием и по этим исходным данным делать расчет мощности трехфазного тока.

В каждом станке используется электродвигатель. Их общая мощность Ру1 составляет 50 кВт, с учетом активной мощности. Кроме того, в помещении установлены осветительные приборы общей мощностью (Ру2) – 3 кВт. Символ Ру обозначает величину установленной суммарной мощности для конкретных групп потребителей. Работа оборудования осуществляется от трехфазной сети с 4 проводами и номинальным напряжением 380 В.

Кроме того, при расчетах учитывается коэффициент спроса Кс, действующий в режиме максимальной нагрузки. Он учитывает наивысшее количество включений потребителей данной группы. Для электродвигателей Кс1 берется с учетом величины их загруженности и составляет 0,35. Для приборов освещения Кс2 составляет 0,9. Все потребители выравниваются усредненным коэффициентом мощности cos φ = 0,75.

Расчеты начинаются с определения силовой нагрузки Р1 = 0,35 х 50 = 17,5 кВт. Далее рассчитывается осветительная нагрузка Р2 = 0,9 х 3 = 2,7 кВт. Таким образом, величина полной расчетной нагрузки составит Р = Р1 + Р2 = 17,5 + 2,7 = 20,2 кВт.

Для определения и расчета тока используется формула I = (1000 x P)/(1,73 x Uн x cos φ), в которой Р является расчетной мощностью потребителей, Uн – номинальным напряжением 380 вольт, cos φ – коэффициентом мощности.

Подставив нужные значения, находим значение силы и мощности по току: I = (1000 x 20,2)/(1,73 x 380 x 0,75) = 41 А. Полученный результат дает возможность узнать, сможет ли сеть обеспечить нормальную работу потребителей.

Использование калькулятора для расчета мощности

Онлайн-калькулятор существенно ускоряет проведение расчетов мощности в трехфазной сети. Для этого должны быть заранее известны мощность и характер нагрузки – активной и реактивной, сетевое напряжение, а также тип сети – одно- или трехфазный. Все параметры рассчитываются по формулам и методикам, приведенным выше. Достаточно всего лишь вставить в окна необходимые данные и нажать кнопку «Рассчитать ток». В окне с обозначением тока в А появится искомый результат, показывающий величину тока по мощности.

electric-220.ru

Трехфазная сеть: расчет мощности, схема подключения

Не всякому обывателю понятно, что такое электрические цепи. В квартирах они на 99 % однофазные, где ток поступает к потребителю по одному проводу, а возвращается по другому (нулевому). Трехфазная сеть представляет собой систему передачи электрического тока, который течет по трем проводам с возвратом по одному. Здесь обратный провод не перегружен благодаря сдвигу тока по фазе. Электроэнергия вырабатывается генератором, приводимым во вращение внешним приводом.

Увеличение нагрузки в цепи приводит к росту силы тока, проходящего по обмоткам генератора. В результате магнитное поле в большей степени сопротивляется вращению вала привода. Количество оборотов начинает снижаться, и регулятор скорости вращения подает команду на увеличение мощности привода, например путем подачи большего количества топлива к двигателю внутреннего сгорания. Число оборотов восстанавливается, и генерируется больше электроэнергии.

Трехфазная система представляет собой 3 цепи с ЭДС одинаковой частоты и сдвигом по фазе 120°.

Особенности подключения питания к частному дому

Многие считают, что трехфазная сеть в доме повышает потребляемую мощность. На самом деле лимит устанавливается электроснабжающей организацией и определяется факторами:

  • возможностями поставщика;
  • количеством потребителей;
  • состоянием линии и оборудования.

Для предупреждения скачков напряжения и перекоса фаз их следует нагружать равномерно. Расчет трехфазной системы получается примерным, поскольку невозможно точно определить, какие приборы в данный момент будут подключены. Наличие импульсных приборов в настоящее время приводит к повышенному энергопотреблению при их пуске.

Распределительный электрощит при трехфазном подключении берется больших размеров, чем при однофазном питании. Возможны варианты с установкой небольшого вводного щитка, а остальных — из пластика на каждую фазу и на надворные постройки.

Подключение к магистрали реализуется по подземному способу и по воздушной линии. Предпочтение отдают последней благодаря небольшому объему работ, низкой стоимости подключения и удобству ремонта.

Сейчас воздушное подключение удобно делать с помощью самонесущего изолированного провода (СИП). Минимальное сечение алюминиевой жилы составляет 16 мм2, чего с большим запасом хватит для частного дома.

СИП крепится на опорах и стене дома с помощью анкерных кронштейнов с зажимами. Соединение с главной воздушной линией и кабелем ввода в электрощит дома производится ответвительными прокалывающими зажимами. Кабель берется с негорючей изоляцией (ВВГнг) и проводится через металлическую трубу, вставленную в стену.

Воздушное подключение трехфазного питания дома

При расстоянии от ближайшей опоры более 15 м необходима установка еще одного столба. Это необходимо для снижения нагрузок, приводящих к провисанию или обрыву проводов.

Высота места присоединения составляет 2,75 м и выше.

Электрораспределительный шкаф

Подключение к трехфазной сети производится по проекту, где внутри дома производится разделение потребителей на группы:

  • освещение;
  • розетки;
  • отдельные мощные приборы.

Одни нагрузки можно отключать для ремонта при работающих других.

Мощность потребителей рассчитывается для каждой группы, где выбирается провод необходимого сечения: 1,5 мм2 — к освещению, 2,5 мм2 — к розеткам и до 4 мм2 — к мощным приборам.

Проводка защищается от короткого замыкания и перегрузки автоматическими выключателями.

Электрический счетчик

При любой схеме подключения необходим прибор учета расхода электроэнергии. 3-фазный счетчик может подключаться непосредственно к сети (прямое включение) или через трансформатор напряжения (полукосвенное), где показания прибора умножаются на коэффициент.

Важно соблюдать порядок подключения, где нечетные номера – это питание, а четные – нагрузка. Цвет проводов указывается в описании, а схема размещается на задней крышке прибора. Вход и соответствующий выход 3-фазного счетчика обозначаются одним цветом. Наиболее распространен порядок присоединения, когда сначала идут фазы, а последний провод – ноль.

3-фазный счетчик прямого включения для дома обычно рассчитан на мощность до 60 кВт.

Перед выбором многотарифной модели следует согласовать вопрос с энергоснабжающей компанией. Современные устройства с тарификаторами дают возможность подсчитывать плату за электроэнергию в зависимости от времени суток, регистрировать и записывать значения мощности во времени.

Температурные показатели приборов выбираются как можно шире. В среднем они составляют от -20 до +50 °С. Срок эксплуатации приборов достигает 40 лет с межповерочным интервалом 5-10 лет.

Счетчик подключается после вводного трех- или четырехполюсного автоматического выключателя.

Трехфазная нагрузка

К потребителям относятся электрокотлы, асинхронные электродвигатели и другие электроприборы. Преимуществом их использования является равномерное распределение нагрузки на каждой фазе. Если трехфазная сеть содержит неравномерно подключенные однофазные мощные нагрузки, это может привести к перекосу фаз. При этом электронные устройства начинают работать со сбоями, а лампы освещения тускло светятся.

Схема подключения трехфазного двигателя к трехфазной сети

Работа трехфазных электродвигателей отличается высокой производительностью и эффективностью. Здесь не требуется наличие дополнительных пусковых устройств. Для нормальной эксплуатации важно правильно подключить устройство и выполнять все рекомендации.

Схема подключения трехфазного двигателя к трехфазной сети создает вращающее магнитное поле тремя обмотками, соединенными звездой или треугольником.

У каждого способа есть свои достоинства и недостатки. Схема звезды позволяет плавно запускать двигатель, но его мощность снижается до 30 %. Эта потеря отсутствует в схеме треугольника, но при пуске токовая нагрузка значительно больше.

У двигателей есть коробка подключения, где находятся выводы обмоток. Если их три, то схема соединяется только звездой. При наличии шести выводов двигатель можно подключить любым способом.

Потребляемая мощность

Для хозяина дома важно знать, сколько потребляется энергии. Это легко подсчитать по всем электроприборам. Сложив все мощности и поделив результат на 1000, получим суммарное потребление, например 10 кВт. Для бытовых электроприборов достаточно одной фазы. Однако потребление тока значительно возрастает в частном доме, где есть мощная техника. На один прибор может приходиться 4-5 кВт.

Важно спланировать потребляемую мощность трехфазной сети на этапе ее проектирования, чтобы обеспечить симметрию по напряжениям и токам.

В дом заходит четырехжильный провод на три фазы и нейтраль. Напряжение электрической сети составляет 380/220 В. Между фазами и нулевым проводом подключаются электроприборы на 220 В. Кроме того, может быть еще трехфазная нагрузка.

Расчет мощности трехфазной сети производится по частям. Сначала целесообразно рассчитать чисто трехфазные нагрузки, например электрический котел на 15 кВт и асинхронный электродвигатель на 3 кВт. Суммарная мощность составит P = 15 + 3 = 18 кВт. В фазном проводе при этом протекает ток I = Px1000/(√3xUxcosϕ). Для бытовых электросетей cosϕ = 0,95. Подставив в формулу числовые значения, получим величину тока I = 28,79 А.

Теперь следует определить однофазные нагрузки. Пусть для фаз они составят PA = 1,9 кВт, PB = 1,8 кВт, PC = 2,2 кВт. Смешанная нагрузка определяется суммированием и составляет 23,9 кВт. Максимальный ток будет I = 10,53 А (фаза С). Сложив его с током от трехфазной нагрузки, получим IC = 39,32 А. Токи на остальных фазах составят IB = 37,4 кВт, IA = 37,88 А.

В расчетах мощности трехфазной сети удобно пользоваться таблицами мощности с учетом типа подключения.

По ним удобно подбирать защитные автоматы и определять сечения проводки.

Заключение

При правильном проектировании и обслуживании трехфазная сеть идеально подходит для частного дома. Она позволяет равномерно распределить нагрузку по фазам и подключить дополнительные мощности электропотребителей, если позволяет сечение проводки.

fb.ru

формулы расчета на 220в и 380в

Содержание:
  1. Для чего нужен расчет тока
  2. Расчет тока для однофазной сети
  3. Расчет тока для трехфазной сети
  4. Как определить мощность тока

Включение потребителей в бытовые или промышленные электрические сети с использованием кабеля меньшей мощности, чем это необходимо, может вызвать серьезные негативные последствия. В первую очередь это приведет к постоянному срабатыванию автоматических выключателей или перегоранию плавких предохранителей. При отсутствии защиты питающий провод или кабель может перегореть. В результате перегрева изоляция оплавляется, а между проводами возникает короткое замыкание. Чтобы избежать подобных ситуаций, необходимо заранее выполнить расчет тока по мощности и напряжению, в зависимости от имеющейся однофазной или трехфазной электрической сети.

Для чего нужен расчет тока

Расчет величины тока по мощности и напряжению выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы тока используется значение напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы тока выбирается сечение жил кабелей и проводов.

Если все потребители в доме или квартире известны заранее, то выполнение расчетов не представляет особой сложности. В дальнейшем проведение электромонтажных работ значительно упрощается. Таким же образом проводятся расчеты для кабелей, питающих промышленное оборудование, преимущественно электрические двигатели и другие механизмы.

Расчет тока для однофазной сети

Измерение силы тока производится в амперах. Для расчета мощности и напряжения используется формула I = P/U, в которой P является мощностью или полной электрической нагрузкой, измеряемой в ваттах. Данный параметр обязательно заносится в технический паспорт устройства. U – представляет собой напряжение рассчитываемой сети, измеряемое в вольтах.

Взаимосвязь силы тока и напряжения хорошо просматривается в таблице:

Электрические приборы и оборудование

Потребляемая мощность (кВт)

Сила тока (А)

Стиральные машины

2,0 – 2,5

9,0 – 11,4

Электрические плиты стационарные

4,5 – 8,5

20,5 – 38,6

Микроволновые печи

0,9 – 1,3

4,1 – 5,9

Посудомоечные машины

2,0 – 2,5

9,0 – 11,4

Холодильники, морозильные камеры

0,14 – 0,3

0,6 – 1,4

Электрический подогрев полов

0,8 – 1,4

3,6 – 6,4

Мясорубка электрическая

1,1 – 1,2

5,0 – 5,5

Чайник электрический

1,8 – 2,0

8,4 – 9,0

Таким образом, взаимосвязь мощности и силы тока дает возможность выполнить предварительные расчеты нагрузок в однофазной сети. Таблица расчета поможет подобрать необходимое сечение провода, в зависимости от параметров.

Диаметры жил проводников (мм)

Сечение жил проводников (мм2)

Медные жилы

Алюминиевые жилы

Сила тока (А)

Мощность (кВт)

Сила (А)

Мощность (кВт)

0,8

0,5

6

1,3

 

 

0,98

0,75

10

2,2

 

 

1,13

1,0

14

3,1

 

 

1,38

1,5

15

3,3

10

2,2

1,6

2,0

19

4,2

14

3,1

1,78

2,5

21

4.6

16

3,5

2,26

4,0

27

5,9

21

4,6

2,76

6,0

34

7,5

26

5,7

3,57

10,0

50

11,0

38

8,4

4,51

16,0

80

17,6

55

12,1

5,64

25,0

100

22,0

65

14,3

Расчет тока для трехфазной сети

В случае использования трехфазного электроснабжения вычисление силы тока производится по формуле: I = P/1,73U, в которой P означает потребляемую мощность, а U – напряжение в трехфазной сети. 1,73 является специальным коэффициентом, применяемым для трехфазных сетей.

Так как напряжение в этом случае составляет 380 вольт, то вся формула будет иметь вид: I = P/657,4.

Точно так же, как и в однофазной сети, диаметр и сечение проводников можно определить с помощью таблицы, отражающей зависимости этих параметров от различных нагрузок.

Диаметры жил проводников (мм)

Сечение жил проводников (мм2)

Медные жилы

Алюминиевые жилы

Сила тока (А)

Мощность (кВт)

Сила (А)

Мощность (кВт)

0,8

0,5

6

2,25

 

 

0,98

0,75

10

3,8

 

 

1,13

1,0

14

5,3

 

 

1,38

1,5

15

5,7

10

3,8

1,6

2,0

19

7,2

14

5,3

1,78

2,5

21

7,9

16

6,0

2,26

4,0

27

10,0

21

7,9

2,76

6,0

34

12,0

26

9,8

3,57

10,0

50

19,0

38

14,0

4,51

16,0

80

30,0

55

20,0

5,64

25,0

100

38,0

65

24,0

В некоторых случаях расчет тока по напряжению и мощности следует проводить с учетом полной реактивной мощности, присутствующей в электродвигателях, сварочном и другом оборудовании. Для таких устройств коэффициент мощности будет равен 0,8.

Как рассчитать мощность тока

electric-220.ru

Мощность трехфазной сети и ее измерение

В цепи постоянного тока мощность определяется довольно просто – это произведение тока и напряжения. Они не изменяются во времени и есть постоянной величиной, соответственно и мощность является постоянной, то есть система уравновешена.

С сетями переменного напряжения все гораздо сложнее. Они бывают однофазные, двухфазные, трехфазные и т.д. Наибольшее распространение получили однофазные и трехфазные сети в силу своего удобства и наименьших затрат.

Рассмотрим трехфазную систему питания

Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или  А, В, С.

Схема соединения звезда:

Схема соединения фаз в звезду

Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:

В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:

Фазное напряжение в цепи

Линейное – между фазами:

Линейное напряжение

Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:

Но поскольку линейное и фазное напряжение отличаются между собой в , но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:

Или:

Соответственно  для активной:

Для реактивной:

Схема соединения в треугольник

Схема соединения обмоток в треугольник

Как видим при таком виде соединения, фазное и линейное напряжение равны, из чего следует, что мощность для соединения в треугольник равна:

И соответственно:

Измерение мощности

Измерение активной мощности в сетях производится с помощью ваттметра

Цифровой ваттметрАналоговый ваттметр

В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:

Схема включения ваттметра при симметричной нагрузке

Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.

Измерение при несимметричной нагрузке:

Схема включения ваттметра при несимметричной нагрузке

Этот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.

Измерении в цепи без нулевого проводника:

Схема включения ваттметра при отсутствии нулевого провода

Эта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа

IA+IB+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:

Векторная диаграмма включения двух ваттметров при различных видах нагрузки

Мы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.

Из диаграммы следует, что мы можем определить показание приборов аналитически:

Проанализировав полученный результат можем сделать вывод что, при преобладании активной нагрузки (φ=0) результаты измерения ваттметров тождественны (W1=W2). При активной и индуктивной (R-L)  показания W1 меньше чем W2 (W1<W2), при φ>600 показания W1 вообще отрицательные (W1<0).

При активной и емкостной(R-C)  и W1>W2, а при φ<-600 показания W2 <0.

При современном развитии техники появились цифровые ваттметры. Они в отличии от аналоговых меньше в размерах, гораздо легче и менее габаритны. Более того цифровые ваттметры могут фиксировать ток, напряжение, измерять cosφ в сети и другое. Они позволяют в режиме реального времени отслеживать различные величины и выдавать предупреждения при их отклонении. Это очень удобно и не требуется проводить измерения тока, напряжения, а потом математически это все высчитывать. Цифровой ваттметр заключен в корпус и подключается (для бытовых потребителей) самым обычным способом – как и обычный потребитель — втыканием вилки в розетку.

elenergi.ru

Source: ikeacover.ru

Читайте также

Мощность трехфазной цепи при несимметричной нагрузке кратко…

Привет, мой друг, тебе интересно узнать все про мощность трехфазной цепи при несимметричной нагрузке, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое
мощность трехфазной цепи при несимметричной нагрузке,мощность трехфазной цепи , настоятельно рекомендую прочитать все из категории Электротехника, Схемотехника, Аналоговые устройства

Трехфазная цепь это совокупность трех однофазных цепей, поэтому активная и реактивная мощности трехфазной цепи равны сумме отдельных фаз.

Активная мощность:

Рассчитываются активные мощности:

Реактивные мощности:

Модуль полной мощности трехфазной цепи:
, но модули полных мощностей суммировать нельзя

Полная мощность может быть определена только в комплексной форме.

При соединении треугольником получаем соответственно так же

Мощности трехфазной цепи


В трехфазных цепях, так же как и в однофазных, пользуются понятиями активной, реактивной и полной мощностей.


Соединение потребителей звездой


В общем случае несимметричной нагрузки активная мощность трехфазного приемника равна сумме активных мощностей отдельных фаз

P = Pa + Pb + Pc,

где

Pa = Ua Ia cos φa; Pb = Ub Ib cos φb; Pc = Uc Ic cos φc;

Ua, Ub, Uc; Ia, Ib, Ic – фазные напряжения и токи;

φa, φb, φc – углы сдвига фаз между напряжением и током.


Реактивная мощность соответственно равна алгебраической сумме реактивных мощностей отдельных фаз

Q = Qa + Qb + Qc,

где

Qa = Ua Ia sin φa;

Qb = Ub Ib sin φb;

Qc = Uc Ic sin φc.


Полная мощность отдельных фаз

Sa = Ua Ia; Sb = Ub Ib; Sc = Uc Ic.

Полная мощность трехфазного приемника

.


При симметричной системе напряжений (Ua = Ub = Uc = UФ) и симметричной нагрузке (Ia = Ib = Ic = IФ; φa = φb = φc = φ) фазные мощности равны Pa = Pb = Pc = PФ = UФ IФ cos φ;

Qa = Qb = Qc = QФ = UФ IФ sin φ.


Активная мощность симметричного трехфазного приемника


P = 3 PФ = 3 UФ IФ cos φ.

Аналогично выражается и реактивная мощность


Q = 3 QФ = 3 UФ IФ sin φ.

Полная мощность

S = 3 SФ = 3 UФ IФ.

Отсюда следует, что в трехфазной цепи при симметричной системе напряжений и симметричной нагрузке достаточно измерить мощность одной фазы и утроить результат.

Соединение потребителей треугольником


В общем случае несимметричной нагрузки активная мощность трехфазного приемника равна сумме активных мощностей отдельных фаз

P = Pab + Pbc + Pca,

где

Pab = Uab Iab cos φab;

Pbc = Ubc Ibc cos φbc;

Pca = Uca Ica cos φca;

Uab, Ubc, Uca; Iab, Ibc, Ica – фазные напряжения и токи;

φab, φbc, φca – углы сдвига фаз между напряжением и током.

Реактивная мощность соответственно равна алгебраической

сумме реактивных мощностей отдельных фаз

Q = Qab + Qbc + Qca,

где

Qab = Uab Iab sin φab;

Qbc = Ubc Ibc sin φbc;

Qca = Uca Ica sin φca.

Полная мощность отдельных фаз

Sab = Uab Iab;

Sbc = Ubc Ibc;

Sca = Uca Ica.

Полная мощность трехфазного приемника

. Об этом говорит сайт https://intellect.icu .

При симметричной системе напряжений

Uab = Ubc = Uca = UФ

и симметричной нагрузке

Iab = Ibc = Ica = IФ; φab = φbc = φca = φ

фазные мощности равны

Pab = Pbc = Pca = PФ = UФ IФ cos φ;

Qab = Qbc = Qca = QФ = UФ IФ sin φ.

Активная приемника мощность симметричного трехфазного

P = 3 PФ = 3 UФ IФ cos φ.

Аналогично выражается и реактивная мощность

Q = 3 QФ = 3 UФ IФ sin φ.

Полная мощность

S = 3 SФ = 3 UФ IФ.

Так как за номинальные величины обычно принимают линейные напряжения и токи, то мощности удобней выражать через линейные величины UЛ и IЛ.

При соединении фаз симметричного приемника звездой

UФ = UЛ / , IФ = IЛ, при соединении треугольником

UФ = UЛ, IФ = IЛ / . Поэтому независимо от схемы соединения фаз приемника активная мощность при

симметричной нагрузке определяется одной и той же формулой


где UЛ и IЛ – линейное напряжение и ток; cos φ – фазный.

Обычно индексы «л» и «ф» не указывают и формула принимает вид

P = U I cos φ.

Соответственно реактивная мощность

Q = U I sin φ.

и полная мощность

S = U I.

При этом надо помнить, что угол φ является углом сдвига фаз между фазными напряжением и током, и, что при неизмененном линейном напряжении, переключая приемник со звезды в треугольник его мощность увеличивается в три раза:

Δ P = Υ 3P.

Измерение активной мощности в трехфазных цепях


Измерение активной мощности в трехфазных цепях производят с помощью трех, двух или одного ваттметров, используя различные схемы их включения. Схема включения ваттметров для измерения активной мощности определяется схемой сети (трехили четырехпроводная), схемой соединения фаз приемника

(звезда или треугольник), характером нагрузки (симметричная или несимметричная), доступностью нейтральной точки.

При несимметричной нагрузке в четырехпроводной цепи активную мощность измеряют тремя ваттметрами (рис. 19),

каждый из которых измеряет мощность одной фазы – фазную мощность.

Активная мощность приемника показаний трех ваттметров определяют по сумме


Измерение мощности тремя ваттметрами возможно при любых условиях.

При симметричном приемнике и доступной нейтральной точке активную мощность приемника определяют с помощью одного

ваттметра, измеряя активную мощность одной фазы PФ по схеме рис. 20. Активная мощность всего трехфазного приемника равна

при этом утроенному показанию ваттметра: P = 3 PФ.


На рис. 20 показано включение прибора непосредственно в одну из фаз приемника. В случае, если нейтральная точка приемника недоступна или зажимы фаз приемника, включенного треугольником не выведены, применяют схему рис. 21 с использованием искусственной нейтральной точки n’.

В этой схеме дополнительно в две фазы включают резисторы с сопротивлением R = RV. Измерение активной мощности симметричного приемника в

трехфазной цепи одним ваттметром применяют только при полной гарантии симметричности трехфазной системы.

См. также

мощность трехфазной цепи при симметричной нагрузке , смещение нейтрали ,

Как ты считаеешь, будет ли теория про мощность трехфазной цепи при несимметричной нагрузке улучшена в обозримом будующем? Надеюсь, что теперь ты понял что такое мощность трехфазной цепи при несимметричной нагрузке,мощность трехфазной цепи
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
Электротехника, Схемотехника, Аналоговые устройства

Расчет мощности трехфазного автомата

Для расчета мощности номинала трехфазного автомата необходимо суммировать всю мощность электроприборов, которые будут подключены через него. Например, нагрузка по фазам одинакова:

L1 5000 W + L2 5000 kW + L3 5000W = 15000 W

Полученные ваты переводим в киловатты:

15000 W / 1000 = 15 kW

Полученное число умножаем на 1,52 и получаем рабочий ток А.

15 kW * 1,52 = 22,8 А.

Номинальный ток автомата должен быть больше рабочего. В нашем случае рабочий ток 22,8 А, поэтому мы выбираем автомат 25 А.

Номинал автоматов по току: 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100.

Уточняем сечение жил кабеля на соответствие нагрузке здесь.

Данная формула справедлива при одинаковой нагрузке по трем фазам. Если потребление по одной из фаз значительно больше, то номинал автомата подбирается по мощности этой фазы:

Например, нагрузка по фазам: L1 5000 W; L2 4000 W; L3 6000 W.

Ваты переводим в киловатты для чего 6000 W / 1000 = 6 kW.

Теперь определяем рабочий ток по этой фазе 6 kW * 4,55 = 27,3 А.

Номинальный ток автомата должен быть больше рабочего в нашем случае рабочий ток 27,3 А мы выбираем автомат 32 А.

В приведенных формулах 1,52 и 4,55 – коэффициенты пропорциональности для напряжений 380 и 220 В.

Материалы, близкие по теме:

Расчет мощности трехфазного тока

В статье для упрощения обозначений линейные величины напряжения, тока и мощности трехфазной системы будут даваться без индексов, т. е. U, I и P. Мощность трехфазного тока равна тройной мощности одной фазы. При соединении в звезду PY=3UфIф

cosфи=3UфIcosфи. При соединении в треугольник P=3UфIфcosфи=3UIфcosфи. На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник. В первое уравнение подставим Uф=U/3, а во второе …

В статье для упрощения обозначений линейные величины напряжения, тока и мощности трехфазной системы будут даваться без индексов, т. е. U, I и P.

Мощность трехфазного тока равна тройной мощности одной фазы.

При соединении в звезду PY=3UфIфcos=3UфIcos.

При соединении в треугольник P=3UфIфcos=3UIфcos.

На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник. В первое уравнение подставим Uф=U/3, а во второе Iф=I/3, получим общую формулу P=3UI cos.

Примеры

1. Какую мощность P1 берет из сети трехфазный асинхронный двигатель, показанный на рис. 1 и 2, при соединении в звезду и треугольник, если линейное напряжение U=380 В, а линейный ток I=20 А при cos=0,7?

Вольтметр и амперметр показывают линейные значения, действующие значения.

Рис. 1.

Рис. 2.

Мощность двигателя по общей формуле будет:

P1=3UI cos=3380200,7=9203 Вт=9,2 кВт.

Если подсчитать мощность через фазные значения тока и напряжения, то при соединении в звезду фазный ток равен Iф=I=20 А, а фазное напряжение Uф=U/3=380/3,

значит, мощность

P1=3UфIф cos=3U/3Icos=3380/3200,7;

P1=3380/1,73200,7=9225 Вт 9,2 кВт.

При соединении в треугольник фазное напряжение Uф=U, а фазный ток Iф=I/3=20/3; таким образом,

P1=3UфIф cos=3UI/3cos;

P1=338020/1,730,7=9225 Вт 9,2 кВт.

2. В четырехпроводную сеть трехфазного тока между линейными и нулевым проводами включены лампы, а к трем линейным проводам подключается двигатель Д, как показано на рис. 3.

Рис. 3.

На каждую фазу включены 100 ламп по 40 Вт каждая и 10 двигателей мощностью по 5 кВт. Какие активную и полную мощности должен отдавать генератор Г при sin=0,8? Каковы токи фазный, линейный и в нулевом проводе генератора при линейном напряжении U=380 В?

Общая мощность ламп Pл=310040 Вт =12000 Вт =12 кВт.

Лампы находятся под фазным напряжением Uф=U/3=380/1,73=220 В.

Общая мощность трехфазных двигателей Pд=105 кВт =50 кВт.

10.12.2016

Без рубрики

Как рассчитать мощность, силу тока и напряжение: принципы и примеры расчета для бытовых условий

Расчет электрического тока по мощности: формулы, онлайн расчет, выбор автомата

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока.

Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети.

Обратите внимание

Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя.

Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление.

В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше.

Важно

Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое.

Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки.

Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину.

А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия.

Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) — 60 А;
  • электроплита (10 кВт) — 50 А;
  • варочная панель (8 кВт) — 40 А;
  • электроводонагреватель проточный (6 кВт) — 30 А;
  • посудомоечная машина (2,5 кВт) — 12,5 А;
  • стиральная машина (2,5 кВт) — 12,5 А;
  • джакузи (2,5 кВт) — 12,5 А;
  • кондиционер (2,4 кВт) — 12 А;
  • СВЧ-печь (2,2 кВт) — 11 А;
  • электроводонагреватель накопительный (2 кВт) — 10 А;
  • электрочайник (1,8 кВт) — 9 А;
  • утюг (1,6 кВт) — 8 А;
  • солярий (1,5 кВт) — 7,5 А;
  • пылесос (1,4 кВт) — 7 А;
  • мясорубка (1,1 кВт) — 5,5 А;
  • тостер (1 кВт) — 5 А;
  • кофеварка (1 кВт) — 5 А;
  • фен (1 кВт) — 5 А;
  • настольный компьютер (0,5 кВт) — 2,5 А;
  • холодильник (0,4 кВт) — 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А.

И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом.

Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала.

Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Онлайн расчет мощности тока для однофазной и трехфазной сети

Источник: http://remontnichok.ru/elektrichestvo/raschet-elektricheskogo-toka-po-moshchnosti-formuly-onlayn-raschet-vybor-avtomata

Как рассчитать мощность по току и напряжению?

При проектировании любых электрических цепей выполняется расчет мощности. На его основе производится выбор основных элементов и вычисляется допустимая нагрузка.

Если расчет для цепи постоянного тока не представляет сложности (в соответствии с законом Ома, необходимо умножить силу тока на напряжение – Р=U*I), то с вычислением мощности переменного тока – не все так просто.

Для объяснения потребуется обратиться к основам электротехники, не вдаваясь в подробности, приведем краткое изложение основных тезисов.

Полная мощность и ее составляющие

В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P).  Графическое описание этих величин можно сделать через треугольник мощностей (см. рис.1).

Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т.д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).

Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.

Рис. 1. Треугольник мощностей (А) и напряжений (В)

В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы:

  • S = √P2+Q2, – для полной мощности;
  • и Q = U*I*cos⁡ φ , и P = U*I*sin φ  – для реактивной и активной составляющих.

Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √3  (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).

Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.

Активная нагрузка

Возьмем гипотетическую схему, в которой используется «чистое» активное сопротивление и соответствующий источник переменного напряжения. Графическое описание работы такой цепи продемонстрировано на рисунке 2, где отображаются основные параметры для определенного временного диапазона (t).

Рисунок 2. Мощность идеальной активной нагрузки

Мы можем увидеть, что напряжение и ток синхронизированы как по фазе, так и частоте, мощность же имеет удвоенную частоту. Обратите внимание, что направление этой величины положительное, и она постоянно возрастает.

Емкостная нагрузка

Как видно на рисунке 3, график  характеристик емкостной нагрузки несколько отличается от активной.

Рисунок 3. График идеальной емкостной нагрузки

Частота колебаний емкостной мощности вдвое превосходит частоту синусоиды изменения напряжения. Что касается суммарного значения этого параметра, в течение одного периода гармоники оно равно нулю.

При этом увеличения энергии (∆W) также не наблюдается. Такой результат указывает, что ее перемещение происходит в обоих направлениях цепи. То есть, когда увеличивается напряжение, происходит накопление заряда в емкости.

При наступлении отрицательного полупериода накопленный заряд разряжается в контур цепи.

В процессе накопления энергии в емкости нагрузки и последующего разряда не производится полезной работы.

Индуктивная нагрузка

Представленный ниже график демонстрирует характер «чистой» индуктивной нагрузки. Как видим, изменилось только направление мощности, что касается наращения, оно равно нулю.

График идеальной емкостной нагрузки

Негативное воздействие реактивной нагрузки

В приведенных выше примерах рассматривались варианты, где присутствует «чистая» реактивная нагрузка. Фактор воздействия активного сопротивления в расчет не принимался.

В таких условиях реактивное воздействие равно нулю, а значит, можно не принимать его во внимание. Как вы понимаете, в реальных условиях такое невозможно.

Даже, если гипотетически такая нагрузка бы существовала, нельзя исключать сопротивление медных или алюминиевых жил кабеля, необходимого для ее подключения к источнику питания.

Реактивная составляющая может проявляться в виде нагрева активных компонентов цепи, например, двигателя, трансформатора, соединительных проводов, питающего кабеля и т.д. На это тратится определенное количество энергии, что приводит к снижению основных характеристик.

Реактивная мощность воздействует на цепь следующим образом:

  • не производит ни какой полезной работы;
  • вызывает серьезные потери и нештатные нагрузки на электроприборы;
  • может спровоцировать возникновение серьезной аварии.

Именно по этому, производя соответствующие вычисления для электроцепи, нельзя исключать фактор влияния индуктивной и емкостной нагрузки и, если необходимо, предусматривать использование технических систем для ее компенсации.

Расчет потребляемой мощности

В быту часто приходится сталкиваться с вычислением потребляемой мощности, например, для проверки допустимой нагрузки на проводку перед подключением ресурсоемкого электропотребителя (кондиционера, бойлера, электрической плиты и т.д.).  Также в таком расчете есть необходимость при выборе защитных автоматов для распределительного щита, через который выполняется подключение квартиры к электроснабжению.

В таких случаях расчет мощности по току и напряжению делать не обязательно, достаточно просуммировать потребляемую энергию всех приборов, которые могут быть включены одновременно. Не связываясь с расчетами, узнать эту величину для каждого устройства можно тремя способами:

  1. обратившись к технической документации устройства;
  2. посмотрев это значение на наклейке задней панели;Потребляемая мощность прибора часто указывается на тыльной стороне
  3. воспользовавшись таблицей, где указано среднее значение потребляемой мощности для бытовых приборов.

Таблица значений средней потребляемой мощности

При расчетах следует учитывать, что пусковая мощность некоторых электроприборов может существенно отличаться от номинальной.

Для бытовых устройств этот параметр практически никогда не указывается в технической документации, поэтому необходимо обратиться к соответствующей таблице, где содержатся средние значения параметров стартовой мощности для различных приборов (желательно выбирать максимальную величину).

Источник: https://www.asutpp.ru/raschet-moshhnosti-po-toku-i-naprjazheniju.html

Как рассчитать мощность по току и напряжению?

Любой из элементов электрической сети является материальным объектом определенной конструкции. Но его особенность состоит в двойственном состоянии. Он может быть как под электрической нагрузкой, так и обесточен.

Если электрического подключения нет, целостности объекта ничто не угрожает.

Но при присоединении к источнику электропитания, то есть при появлении напряжения (U) и электротока, неправильная конструкция элемента электросети может стать для него фатальной, если напряжение и электроток приведут к выделению тепла.

Далее из статьи наши читатели получат информацию о том, как правильно сделать расчет мощности по току и напряжению, чтобы электрические цепи работали исправно и продолжительно.

Отличия мощности при постоянном и переменном напряжении

Наиболее простым получается расчет мощности электрических цепей на постоянном электротоке. Для их участков справедлив закон Ома, в котором задействовано только приложенное U, и сопротивление. Чтобы рассчитать силу тока I, U делится на сопротивление R:

I=U/R ,

причем искомая сила тока именуется амперами.

А поскольку электрическая мощность Р для такого случая — это произведение U и силы электротока, она так же легко, как и электроток, вычисляется по формуле:

P=U*I ,

причем искомая мощность нагрузки именуется ваттами.

Все компоненты этих двух формул характерны для постоянного электротока и называются активными. Напоминаем нашим читателям, что закон Ома, позволяющий выполнить расчет силы тока, весьма многообразен по своему отображению.

Совет

Его формулы учитывают особенности физических процессов, соответствующих природе электричества. А при постоянном и переменном U они протекают существенно отличаясь. Трансформатор на постоянном U — это абсолютно бесполезное устройство.

Также как синхронные и асинхронные движки.

Принцип их функционирования заключен в изменяющемся магнитном поле, создаваемом элементами электрических цепей, обладающими индуктивностью. А такое поле появляется только как следствие переменного U и соответствующего ему переменного тока.

Но электричеству свойственно также и накопление зарядов в элементах электрических цепей. Это явление называется электрической емкостью и лежит в основе конструкции конденсаторов.

Параметры, связанные с индуктивностью и емкостью, называют реактивными.

Расчет мощности в цепях переменного электротока

Поэтому, чтобы определить ток по мощности и напряжению как в обычной электросети 220 В, так и в любой другой, где используется переменное U, потребуется учесть несколько активных и реактивных параметров.

Для этого применяется векторное исчисление. В результате отображение рассчитываемой мощности и U имеет вид треугольника. Две стороны его — это активная и реактивная составляющие, а третья — их сумма.

Например, полная мощность нагрузки S, именуемая вольт-амперами.

Реактивная составляющая называется варами. Зная величины сторон для треугольников мощности и U, можно выполнить расчет тока по мощности и напряжению. Как это сделать, поясняет изображение двух треугольников, показанное далее.

Треугольники мощности и напряжения

Для измерения мощности применяются специальные приборы. Причем их многофункциональных моделей совсем мало.

Это связано с тем, что для постоянного электротока, а также в зависимости от частоты используется соответствующий конструктивный принцип измерителя мощности.

По этой причине прибор, предназначенный для измерения мощности в цепях переменного электротока промышленной частоты, на постоянном электротоке или на повышенной частоте будет показывать результат с неприемлемой погрешностью.

Лабораторный ваттметрЩитовой ваттметр

У большинства наших читателей выполнение того или иного вычисления с использованием величины мощности скорее всего происходит не с измеренным значением, а по паспортным данным соответствующего электроприбора.

При этом можно легко рассчитать ток для определения, например, параметров электропроводки или соединительного шнура. Если U известно, а оно в основном соответствует параметрам электросети, расчет тока по мощности сводится к получению частного от деления мощности и U.

Полученный таким способом расчетный ток определит сечение проводов и тепловые процессы в электрической цепи с электроприбором.  

Обратите внимание

Но вполне закономерен вопрос, как рассчитать ток нагрузки при отсутствии каких-либо сведений о ней? Ответ следующий. Правильный и полный расчет тока нагрузки, запитанной переменным U, возможен на основании измеренных данных.

Они должны быть получены с применением прибора, который замеряет фазовый сдвиг между U и электротоком в цепи. Это фазометр. Полный расчет мощности тока даст активную и реактивную составляющие.

Они обусловлены углом φ, который показан выше на изображениях треугольников.

Лабораторный фазометрЩитовой фазометр

Используем формулы

Этот угол и характеризует фазовый сдвиг в цепях переменного U, содержащих индуктивные и емкостные элементы. Чтобы рассчитывать активные и реактивные составляющие, используются тригонометрические функции, применяющиеся в формулах. Перед тем как посчитать результат по этим формулам, надо, используя калькуляторы или таблицы Брадиса, определить sin φ и cos φ. После этого по формулам

я вычислю искомый параметр электрической цепи.

Но следует учесть то, что каждый из параметров, рассчитанный по этим формулам, из-за U, постоянно изменяющегося по законам гармонических колебаний, может принимать либо мгновенное, либо среднеквадратичное, либо промежуточное значение.

Три формулы, показанные выше, справедливы при среднеквадратичных значениях силы электротока и U. Каждое из двух остальных значений является результатом расчетной процедуры с использованием другой формулы, учитывающей ход времени t:

Но и это еще не все нюансы. Например, для линий электропередачи применяются формулы, в которых фигурируют волновые процессы. И выглядят они по-другому. Но это уже совсем другая история…  

Источник: https://domelectrik.ru/elektrosnabzhenie/bezopasnost/raschet-moshchnosti

Формула мощности электрического тока, расчет по мощности и напряжению

Для того, чтобы обеспечить безопасность при эксплуатации промышленных и бытовых электрических приборов, необходимо правильно вычислить сечение питающей проводки и кабеля. Ошибочный выбор сечения жил кабеля может привести из-за короткого замыкания к возгоранию проводки и к возникновению пожара в здании.

Что такое мощность (Р) электротока

Электрическая мощность является физической величиной, характеризующей скорость преобразования или передачи электрической энергии. Единицей измерения по Международной системе единиц (СИ) является ватт, в нашей стране обозначается Вт, международное обозначение — W.

Что влияет на мощность тока

На мощность (Р) влияет величина силы тока и величина приложенного напряжения. Расчет параметров электроэнергии выполняется еще на стадии проектирования электрических сетей объекта.

Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы электротока используется значения напряжения сети и полной нагрузки электрических приборов.

В соответствии с величиной силы электротока выбирается сечение жил кабелей и проводов.

Отличия мощности при постоянном и переменном напряжении

Ведем обозначения электрических величин, которые приняты в нашей стране:

  • Р − активная мощность, измеряется в ваттах, обозначается Вт;
  • Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
  • S − полная мощность, измеряется в вольт амперах, обозначается ВА;
  • U − напряжение, измеряется в вольтах, обозначается ВА;
  • I − ток, измеряется в амперах, обозначается А;
  • R − сопротивление, измеряется в омах, обозначается Ом.

Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.

Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.

По какой формуле вычисляется

Расчет силы тока по мощности и напряжению в сети постоянного тока

Для расчета силы I (тока), надо величину U (напряжения) разделить на величину сопротивления.

Расчет силы тока по мощности и напряжению:

I = U ÷ R

Измеряется в амперах.

Для такого случая электрическую Р (активную мощность) можно посчитать как произведение силы электрического I на величину U.

Формула расчета мощности по току и напряжению:

P = U × I

Все компоненты в этих двух формулах характерны для постоянного электротока и их называют активными.

Исходя из этих двух формул, можно вывести также еще две формулы, по которым можно узнавать P:

P = I2 × R

P = U2 ÷ R

Однофазные нагрузки

В однофазных сетях переменного электротока требуется произвести вычисление отдельно для Р и Q нагрузки, затем надо при помощи векторного исчисления их сложить.

В скалярном виде это будет выглядеть так:

S = √P2 + Q2

В результате расчет P, Q, S имеет вид прямоугольного треугольника. Два катета этого треугольника представляют собой P и Q составляющие, а гипотенуза — их алгебраическую сумму.

S измеряется в вольт-амперах (ВА), Q измеряется в вольт-амперах-реактивных (ВАр), Р измеряется в ваттах (Вт).

Зная величины катетов для треугольников, можно рассчитать коэффициент мощности (cos φ). Как это сделать, показано на изображении треугольника.

Расчет в трехфазной сети

Переменный I (ток) отличается от постоянного по всем параметрам, особенно наличием нескольких фаз. Расчет P в трехфазной нагрузке необходим для правильного определения характеристик подключаемой нагрузки. Трехфазные сети широко применяются в связи с удобством эксплуатации и малыми материальными затратами.

Трехфазные цепи могут соединяться двумя способами – звездой и треугольником. На всех схемах фазы обозначают символами А, В, С. Нейтральный провод обозначают символом N.

При соединении звездой различают два вида U (напряжения) – фазное и линейное. Фазное U определяется как U между фазой и нейтральным проводом. Линейное U определяется как U между двумя фазами.

Эти два U связаны между собой соотношением:

UЛ = UФ × √3

Линейные и фазные электротоки при соединении звездой равны друг другу: IЛ = IФ

Форма расчета S при соединении звездой:

S = SA + SB + SC = 3 × U × I

Активная P:

Р = 3 × Uф × Iф × cosφ

Реактивная Q:

Q = √3 × Uф × Iф × sinφ.

При соединении треугольником фазное и линейное U равны друг другу: UЛ = UФ

Линейный I при соединении треугольником определяется по формуле:

IЛ = IФ × √3

Формулы мощности электрического тока при соединении треугольником:

  • S = 3 × Sф = √3 × Uф × Iф;
  • Р = √3 × Uф × Iф × cosφ;
  • Q = √3 × Uф × Iф × sinφ.

Средняя P в активной нагрузке

В электрических сетях P измеряют при помощи специального прибора – ваттметра. Схемы подключения находятся в зависимости от способа подключения нагрузки.

При симметричной нагрузке P измеряется в одной фазе, а полученный результат умножают на три. В случае несимметричной нагрузки для измерения потребуется три прибора.

Параметры P электросети или установки являются важными данными электрического прибора. Данные по потреблению P активного типа передаются за определенный период времени, то есть передается средняя потребляемая P за расчетный период времени.

Подбор номинала автоматического выключателя

Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.

При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.

Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.

Важно

У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.

Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.

Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.

Видео о законах электротехники

Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.

Источник: https://vdome.club/materialy/raschety/formula-moschnosti.html

Расчет мощности

Главная > Теория > Расчет мощности

Современная структура общества такова, что на бытовом и промышленном уровне повсеместно используется электроэнергия. Генераторные установки, вырабатывающие электроэнергию, преобразующие подстанции работают для того, чтобы передать ее потребителям на бытовые электрические приборы и промышленные электроустановки.

Общая схема передачи электроэнергии потребителям с учетом мощностей

Что такое мощность электроэнергии

В электросетях, по которым передается энергия, существует ряд основных параметров, которые обязательно учитываются при проектировании и эксплуатации электроустановок.

Одним из таких показателей является электрическая мощность, под этим подразумевается способность электроустановки генерировать, передавать или преобразовывать определенную величину электроэнергии за определенный период времени.

Преобразованием считается процесс изменения электрической энергии в тепло, механические движения или другой вид энергии. Чтобы сделать расчет мощности, надо знать, как минимум, величины тока, напряжения и ряда других параметров.

Расчет тока и напряжения, мощности иногда не делают, а измеряют параметры на месте. Но такая возможность не всегда предоставляется.

Надо знать, как рассчитать мощность, когда цепь обесточена, при проектировании электроустановок, уметь пользоваться таблицей законов Ома и рассчитать силу тока по известным значениям параметров.

Рассчитывать мощность нагрузки и ток нагрузки приходится для того, чтобы правильно выбрать сечение проводов в цепи, величину тока срабатывания для защитных автоматов и других нужд.

Законы Ома наглядно показывают, как посчитать ток по мощности и напряжению

Совет

Физический смысл электрической мощности в цепях переменного и постоянного тока одинаковый, но от условий нагрузки в цепи мощность может выражаться разными соотношениями. Для стандартизации закономерности явлений вводится понятие мгновенное значение, что указывает на зависимость скорости преобразований электроэнергии от фактора времени.

Электрическая мощность – это величина, выражающая скорость преобразования энергии электричества в другой вид энергии, обозначается буквой «Р».

Мгновенное значение электрической мощности

Определение – электрическая мощность тесно связана с другими параметрами цепи, током и напряжением, при изменении величины одного из них изменяются другие. Поэтому показания мощности фиксируются в короткий промежуток времени – ∆t.

Расчет мощности трехфазной сети

Напряжение в данном случае обозначают буквой «U» – это выражает разность потенциалов зарядов, перемещенных электрическим полем из одной точки в другую за промежуток времени ∆t.

Сила тока обозначается буквой «I» – это поток, переносимый магнитным полем зарядов, другими словами заряд, перенесенный во временной интервал ∆t.

Исходя из этих определений, просматривается пропорциональная зависимость между этими параметрами:

Р = UxI.

При расчетах можно учитывать зависимость мощности от сопротивления нагрузки «R». По законам Ома для участка цепи с постоянным током мощность выражается как:

Р = I2xR или P = U2|R.

Если поставить в схему питания амперметр и вольтметр, то не придется думать, как вычислить силу тока.

Обратите внимание! Амперметр ставится последовательно в цепь по отношению к сопротивлению нагрузки, а вольтметр – параллельно.

В качестве источника питания используется аккумулятор, как нагрузка установлен прожектор. В данном случае не делается расчет силы тока, параллельно нагрузке подключен вольтметр, для измерения напряжения в Вольтах. Амперметр подключается последовательно для измерения тока в Амперах. Зная показания напряжения и тока по формулам, показанным выше, легко рассчитывается мощность.

Для участков цепи с переменным током формулы расчетов сложнее – необходимо учитывать характер нагрузки.

Расчеты мощности для электроцепей переменного тока

Переменный ток и напряжение имеют синусоидальный вид, при различных нагрузках происходит смещение фазы между ними на определенный угол. По этой причине направление тока иногда может быть противоположным, от нагрузки к источнику питания.

Это бывает в электродвигателях, когда обмотка начинает генерировать энергию, это негативно сказывается на эффективности работы оборудования, снижается мощность.

При большом количестве потребителей в электросети характер нагрузки имеет смешанный вид, в идеале выделяют три типа нагрузки:

  • Активная нагрузка, ее представляют такие электроприборы, как лампы накаливания, нагревательные тэны, спиральные электроплиты;
  • Емкостная нагрузка – это конденсаторы в оборудовании различного назначения;
  • Индуктивная нагрузка представлена катушками в электродвигателях, обмотках электромагнитов, дросселями и трансформаторами, другими приборами, где ток протекает через обмотки.

Емкостные и индуктивные виды выделяют как реактивную энергию в электросетях. Зная вид нагрузки, расчет потребляемой мощности делается точнее.

Расчет мощности в цепи с активной нагрузкой

Это классический случай в однофазной сети 220 В, в качестве нагрузки можно использовать обычные резисторы. Мощность рассчитывается как произведение действующих значений тока и напряжения, умноженное на соsϕ. В данном случае ϕ – угол смещения между фазами тока и напряжения.

Р = UI cos ϕ

График зависимости мощности по току и напряжению при активной нагрузке

Из графика можно узнать, что колебания тока и напряжения одинаковы по частоте и фазе, мощность всегда положительная с частотой в два раза больше.

Активная электрическая мощность характеризует процесс преобразования в сетях с переменным током энергии в тепло, механические движения, излучение света, в любой вид другой энергии. Измеряется активная нагрузка в Вт, кВт.

Расчет реактивной мощности

Как найти мощность в цепях с индуктивной и емкостной нагрузками? Это делается аналогичным образом. Расчет потребляемой мощности, как и в случае с активной нагрузкой, означает, что действующие напряжение и ток перемножаются, и результат умножается на sin ϕ. Где ϕ – угол сдвига фаз тока и напряжения.

Р = UI sin ϕ

Диаграмма, показывающая взаимосвязь параметров цепи при индуктивной нагрузке

График показывает, что мощность может принимать отрицательные значения, в этот момент энергия отдается в сторону источника питания, фактически она бесполезна и расходуется на нагрев.

Реактивная составляющая энергии характеризует работу нагрузки в виде электронного оборудования, электротехнических схем, моторов с наличием емкостной и индуктивной нагрузки. Единица измерения реактивной мощности при подсчете измеряется в Вар, это (Вольт-Ампер реактивный), обозначается буквой «Q».

Треугольник, отображающий отношение мощностей в сети

Зависимость мощности в цепи переменного тока от реактивной и активной составляющих с учетом угла сдвига фаз хорошо отображается на диаграмме, которую называют треугольником мощностей.

Формула расчета полной мощности обозначается буквой «S»

В этом случае учитывается полный импеданс рассчитываемой мощности электрического тока (комплексное сопротивление нагрузки).

Обратите внимание

Тем, кому вычислением заниматься сложно даже на калькуляторе, можно воспользоваться онлайн калькуляторами на сайте https://www.fxyz.ru с вычислением мощности в цепях с различной нагрузкой.

Вычисляется все мгновенно, достаточно заполнить таблицу с исходными параметрами. Когда такой калькулятор под рукой, я вычислю быстро нужные мне параметры.

Видео

Источник: https://elquanta.ru/teoriya/raschet-moshhnosti.html

Расчет мощности по току и напряжению, схема и таблицы

Чтобы обезопасить себя при работе с бытовыми электроприборами, необходимо в первую очередь правильно вычислить сечение кабеля и проводки. Потому-что если будет неправильно выбран кабель, это может привести к короткому замыканию, из за чего может произойти возгорание в здание, последствия могут быть катастрофическими.

Это правило относиться и к выбору кабеля для электродвигателей.

Расчёт мощности по току и напряжению

Данный расчет происходит по факту мощности, проделывать его необходимо еще до начала проектирование своего жилища (дома, квартиры).

  • Из этого значение  зависят кабеля питающие приборы которые подключены к электросети.
  • По формуле можно вычислить силу тока, для этого понадобиться взять точное напряжение сети и нагрузку питающихся приборов. Ее величина дает нам понять площадь сечение жил.

Если вам известны все электроприборы, которые в будущем должны питаться от сети, тогда можно легко сделать расчеты для схемы электроснабжение. Эти же расчеты можно выполнять и для производственных целей.

Однофазная сеть напряжением 220 вольт

Формула силы тока I (A — амперы):

I=P/U

Где P — это электрическая полная нагрузка (ее обозначение обязательно указывается в техническом паспорте данного устройства), Вт — ватт;

U — напряжение электросети, В (вольт).

В таблице представлены стандартные нагрузки электроприборов и потребляемый ими ток (220 В).

На рисунке вы можете видет схему устройства электроснабжение дома при однофазном подключении к сети 220 вольт.

Схема приборов при однофазном напряжении

Как и показано на рисунке, все потребители должны быть подключены к соответствующим автоматам и счетчику, далее к общему автомату который будет выдерживать общею нагрузку дома. Кабель который будет доводит ток, должен выдерживать нагрузку всех подключенных бытовых приборов.

В таблице ниже показана скрытая проводка при однофазной схеме подключение жилища для подбора кабеля при напряжении 220 вольт.

Как и показано в таблице, сечение жил зависит и от материала из которого изготовлен.

Трёхфазная сеть напряжением 380 В

В трехфазном электроснабжении сила тока рассчитывается по следующей формуле:

I = P /1,73 U

P — потребляемая мощность в ватах;

U — напряжение сети в вольтах.

В техфазной схеме элетропитания 380 В, формула имеет следующий вид:

I = P /657, 4

Если к дому будет проводиться трехфазная сеть 380 В, то схема подключения будет иметь следующий вид.

В таблице ниже представлена схема сечения жил в питающем кабеле при различной нагрузке при трехфазном напряжении 380 В для скрытой проводки.

Для дальнейшего расчета питания в цепях нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электродвигатели;
  • индукционные печи;
  • дроссели приборов освещения;
  • сварочные трансформаторы.

Это явление в обязательном порядке необходимо учитывать при дальнейших расчетах. В более мощных электроприборах нагрузка идет гораздо больше, поэтому в расчетах коэффициент мощности принимают 0,8.

При подсчете нагрузки на бытовые приборы запас мощности нужно брать 5%. Для электросети этот процент становит 20%.

Источник: https://DomStrouSam.ru/raschet-moshhnosti-po-toku-i-napryazheniyu-shema-i-tablitsyi/

Расчет тока по мощности и напряжению

Источник: https://electric-220.ru/news/raschet_toka_po_moshhnosti_i_naprjazheniju/2016-09-29-1074

Расчет мощности электрического тока — формула

Подключение к бытовой или промышленной электрической сети потребителя, мощность которого больше той, на которую рассчитан кабель или провод чревато самыми неприятными, а порой и катастрофическими, последствиями. При правильной организации электропроводки внутри жилого помещения будут постоянно срабатывать автоматические выключатели или перегорать плавкие предохранители (пробки).

Если защита выполнена неправильно или вообще отсутствует, это может привести:

  • к перегоранию питающего провода или кабеля;
  • оплавлению изоляции и короткому замыканию между проводами;
  • перегреву медных или алюминиевых кабельных жил провода и пожару.

Поэтому перед подключение потребителя к электросети желательно знать не только его паспортную электрическую мощность, но и потребляемый от сети ток.

Расчет потребляемой мощности

Формула расчета мощности по току и напряжению знакома еще из школьного курса физики. Расчет мощности электрического тока (в ваттах) для однофазной сети проводится по выражению:

  • в котором U – напряжение в вольтах
  • I – ток в амперах;
  • Cosφ – коэффициент мощности, зависящий от характера нагрузки.

Может возникнуть вопрос – а зачем нужна формула расчета мощности по току, когда ее можно узнать из паспорта подключаемого устройства? Определение электрических параметров, включая мощность и потребляемый ток необходим на стадии проектирования электропроводки. По максимальному току, протекающему в сети определяется сечение провода или кабеля. Для расчета тока по мощности можно использовать преобразованную формулу:

Коэффициент мощности зависит от типа нагрузки (активная или реактивная). При бытовых расчетах его величину рекомендуется принимать равной 0,90…0,95. Однако при подключении электроплит, обогревателей, ламп накаливания, нагрузка которых считается активной этот коэффициент можно считать равным 1.

Вышеприведенные формулы расчета мощности по току и напряжению можно использовать для однофазной сети напряжением 220,0 вольт. Для трехфазной сети они имеют несколько модифицированный вид.

Расчет мощности трехфазных потребителей

Определение потребляемой мощности для трехфазной сети имеет свою специфику. Формула расчёта мощности электрического тока трехфазных бытовых потребителей имеет вид:

а величину тока можно рассчитать по выражению:

Особенности расчета

Вышеприведенные формулы предназначены для упрощенных бытовых расчетов. При определении действующих параметров необходимо учитывать реальное подключение.

Характерный пример – расчет потребляемой мощности от аккумулятора. Так как ток в цепи протекает постоянный, то коэффициент мощности не учитывается, так как характер нагрузки не влияет на потребляемую мощность.

И для активных и реактивных потребителей его значение принимают равным 1,0.

Вторым нюансом, который следует учитывать пи проведении бытовых электрических расчетов – реальное значение напряжения. Не секрет, что в сельской местности сетевое напряжение может колебаться в достаточно широких пределах. Поэтому пи использовании расчетных формул в них необходимо подставлять реальные значения параметров.

Еще сложнее задача расчета трехфазных потребителей. При определении протекающего тока в сети необходимо дополнительно учитывать вид подключения — «звезда» или «треугольник».

Расчет силы тока онлайн калькулятор

(Не целые числа вводим через точку. Например: 0.5)

Источник: https://mydesigninfo.ru/raschet-moshhnosti-elektricheskogo-toka/

Как рассчитать силу тока – практические советы для домашнего электрика

Проводка

10.04.2017

15.7 тыс.

10.5 тыс.

5 мин.

Для подбора кабеля, сечения проводов, выключателей защиты, следует вычислить силу тока. Проводка, автоматы с неверно подобранными показателями опасны: может случиться замыкание и пожар.

Говоря об электроприборах, сети, прежде всего упоминают о напряжении. Его величина указывается в вольтах (В), обозначается U. Показатель напряжения зависит от нескольких факторов:

  • материала проводки;
  • сопротивления прибора;
  • температуры.

Один из главных показателей электричества — напряжение

Различают виды напряжения – постоянное и переменное. Постоянное, если на один конец цепи поступает отрицательный потенциал, на другой – положительный. Самый доступный пример постоянного напряжения – батарейка. Нагрузку подключают, соблюдая полярность, иначе можно повредить устройство. Постоянный ток невозможно без потерь передать на значительные расстояния.

Переменный ток возникает, когда постоянно меняется его полярность. Количество изменений называют частотой, измеряется в герцах. Переменные напряжения возможно передавать очень далеко.

Используют экономически выгодные трехфазные сети: в них минимальные потери электроэнергии. Они выполнены четырьмя проводами: три фазных и нулевой. Если посмотреть на линию электропередач, увидим 4 провода между столбами.

От них к дому подводят два – фазный ток 220 В. Если подключить 4 провода, потребитель получит линейный ток 380 В.

Характеристика электричества не ограничивается напряжением. Важна сила тока в амперах (А), обозначение – латинская I.  В любом месте цепи она одинакова. Для измерения служат амперметр, миллиамперметр, мультиметр. Ток бывает очень большой, тысячи ампер, и маленький – миллионные части ампер. Малую силу измеряют миллиамперами.

Амперметр служит для измерения силы тока

Движение электричества по любому материалу вызывает сопротивление. Оно выражается омами (Ом), обозначается R или r. Сопротивление зависимо от сечения и материала проводника.

Чтобы охарактеризовать сопротивление разных материалов, употребляется термин удельное сопротивление. Медь характеризуется меньшим сопротивлением, чем алюминий: 0,017 и 0,03 Ом соответственно.

Совет

У короткого провода сопротивление меньше, чем у длинного. Толстый провод отличается от толстого меньшим сопротивлением.

Характеристика любого прибора содержит указания мощности (ватты (В) или киловатты (кВт). Мощность обозначают P, зависит от напряжения и тока. Из-за сопротивления проводки энергия частично теряется – от источника требуется ток больше необходимого.

При двух известных величинах всегда можно найти третью. Для вычислений наиболее часто пользуются законом Ома с тремя величинами: силой тока, напряженим, сопротивлением: I=U/R.

Он применяется для цепи с нагрузкой из ТЭНов, лампочек, резисторов, имеющих активное сопротивление.

Если  имеются катушки, конденсаторы, это уже реактивное сопротивление, обозначают X.  Катушки создают индуктивное (XL), конденсаторы – емкостное сопротивление (XC). Сила тока рассчитывается с применением формулы, в основе которой также закон Ома: I=U/X.

Прежде определяют индуктивное и емкостное сопротивления, они вместе составляют реактивное сопротивление (C+L).

Индуктивное вычисляется: XC=1/2πfC. Для расчета емкостного используем формулу XL=2πfL.

Формулы содержат обозначения, требующие объяснения: π=3,14, f – это частота. По ним вычисляется ток, если имеется катушка или конденсатор.

Прокладывая электропроводку, предварительно следует узнать силу тока. Ошибки чреваты неприятностями – проводка, розетки плавятся. Если он фактически превышает расчетный, проводка нагревается, плавится, происходит обрыв или замыкание. Ее приходится менять, но это не самое неприятное – возможен и пожар.

При монтаже проводки необходимо знать силу тока

Обратите внимание

Ток сети для практических потребностей находят, зная мощность приборов: I=P/U, где P – мощность потребителя. В реальности учитывается коэффициент мощности – cos φ. Для однофазной сети: I = P/(U∙cos φ),

трехфазной – I = P/(1,73∙U∙cos φ).

Для одной фазы U принимают 220, для трех – 380. Коэффициент большинства приборов 0,95. Если подключают электродвигатель, сварку, дроссель, коэффициент 0,8. Подставляя 0,95, для однофазной сети выходит:

I = P/209, трехфазной – I = P/624. Если коэффициент 0,8, для двух проводов: I = P/176, для четырех: I = P/526.

Трехфазный ток меньше втрое, нагрузка распределяется поровну между фазами. Подсчитывая нагрузку, предусматривают запас 5%, для двигателей, сварочных агрегатов – 20%.

Приборы иногда используют одновременно. Чтобы вычислить нагрузку, суммируют токи устройств. Подход возможен, если они имеют схожий коэффициент мощности. Для потребителей с разными коэффициентами используют средний показатель. Иногда к трехфазной  системе подключают однофазные и трехфазные изделия. Вычисляя ток, складывают все нагрузки.

Ток, протекающий по проводке, нагревает ее. Степень нагрева зависит от его силы и сечения проводки. Правильно подобранный греется несильно. Если ток имеет большую силу, проводка недостаточное сечение, она сильно нагревается, изоляция плавится, возможен пожар. Для правильного подбора сечения пользуются таблицами ПУЭ.

Сечение провода и сила тока определяют степень нагрева проводки

Предположим, требуется подключить электрокотел 5 кВт. Используем медный трехжильный кабель в рукаве. Проводим вычисления: 5000/220 = 22,7. Подходящее значение в таблице 27 А, сечение 4 мм2, диаметр – 2,3 мм. Сечение всегда выбирают с небольшим запасом для полной гарантии. Теперь есть уверенность, что провода не перегреются, не загорятся.

Для защиты сети пользуются плавкими предохранителями. Они работают так, что при некоторой силе тока предохранитель плавится и разрывает цепь. Поэтому гвоздь или первый попавшийся медный провод вместо предохранителя использовать нельзя, когда-нибудь это приведет к серьезным проблемам. Если нужного предохранителя нет, используют медный провод подходящего диаметра, пользуясь таблицей.

Важно

Плавкие предохранители постепенно уходят, им на смену пришли автоматические выключатели. Выбрать их не так просто, как кажется. Допустим, проводка рассчитана на 22 А, ближайший автомат на 25 А.

Значит, ставить его? Оказывается, нет. Обозначение С25 вовсе не значит, что при 26 амперах он разорвет цепь. Даже если нагрузка превысит значение в полтора раза, он моментально не отключит сеть.

Нагреется и сработает минуты через две.

Ставить нужно автомат меньшего номинала. Ближайший – С16. Он может отключить сеть при 17 А и при 24, и никто не скажет, сколько времени пройдет. На срабатывание влияет много факторов. Устройство имеет две защиты – электромагнитную и тепловую. Электромагнитная защита отключает сеть за 0,2 секунды при значительной перегрузке.

Еще один вид устройств отключения – УЗО. Он лишен тепловой и электромагнитной защиты. Указанный номинал служит, чтобы определять ток, который выдержит УЗО без повреждений. Так что логично после УЗО поставить автомат на максимальный ток. Существуют приборы защиты, представляющие симбиоз автомата с УЗО – дифавтоматы.

Источник: http://obustroen.ru/inghenernye-sistemy/elektrichestvo/provodka/kak-rasschitat-silu-toka.html

Содержание:

Включение потребителей в бытовые или промышленные электрические сети с использованием кабеля меньшей мощности, чем это необходимо, может вызвать серьезные негативные последствия. В первую очередь это приведет к постоянному срабатыванию автоматических выключателей или перегоранию плавких предохранителей.

При отсутствии защиты питающий провод или кабель может перегореть. В результате перегрева изоляция оплавляется, а между проводами возникает короткое замыкание.

Чтобы избежать подобных ситуаций, необходимо заранее выполнить расчет тока по мощности и напряжению, в зависимости от имеющейся однофазной или трехфазной электрической сети.

Для чего нужен расчет тока

Расчет величины тока по мощности и напряжению выполняется еще на стадии проектирования электрических сетей объекта.

Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители.

Важно

Для расчетов силы тока используется значение напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы тока выбирается сечение жил кабелей и проводов.

Если все потребители в доме или квартире известны заранее, то выполнение расчетов не представляет особой сложности. В дальнейшем проведение электромонтажных работ значительно упрощается. Таким же образом проводятся расчеты для кабелей, питающих промышленное оборудование, преимущественно электрические двигатели и другие механизмы.

Расчет тока для однофазной сети

Измерение силы тока производится в амперах. Для расчета мощности и напряжения используется формула I = P/U, в которой P является мощностью или полной электрической нагрузкой, измеряемой в ваттах. Данный параметр обязательно заносится в технический паспорт устройства. U – представляет собой напряжение рассчитываемой сети, измеряемое в вольтах.

Взаимосвязь силы тока и напряжения хорошо просматривается в таблице:

Электрические приборы и оборудованиеПотребляемая мощность (кВт)Сила тока (А)
Стиральные машины2,0 – 2,59,0 – 11,4
Электрические плиты стационарные4,5 – 8,520,5 – 38,6
Микроволновые печи0,9 – 1,34,1 – 5,9
Посудомоечные машины2,0 – 2,59,0 – 11,4
Холодильники, морозильные камеры0,14 – 0,30,6 – 1,4
Электрический подогрев полов0,8 – 1,43,6 – 6,4
Мясорубка электрическая1,1 – 1,25,0 – 5,5
Чайник электрический1,8 – 2,08,4 – 9,0

Таким образом, взаимосвязь мощности и силы тока дает возможность выполнить предварительные расчеты нагрузок в однофазной сети. Таблица расчета поможет подобрать необходимое сечение провода, в зависимости от параметров.

Диаметры жил проводников (мм)Сечение жил проводников (мм2)Медные жилыАлюминиевые жилы
Сила тока (А)Мощность (кВт)Сила (А)Мощность (кВт)
0,80,561,3
0,980,75102,2
1,131,0143,1
1,381,5153,3102,2
1,62,0194,2143,1
1,782,5214.6163,5
2,264,0275,9214,6
2,766,0347,5265,7
3,5710,05011,0388,4
4,5116,08017,65512,1
5,6425,010022,06514,3

Расчет тока для трехфазной сети

В случае использования трехфазного электроснабжения вычисление силы тока производится по формуле: I = P/1,73U, в которой P означает потребляемую мощность, а U – напряжение в трехфазной сети. 1,73 является специальным коэффициентом, применяемым для трехфазных сетей.

Так как напряжение в этом случае составляет 380 вольт, то вся формула будет иметь вид: I = P/657,4.

Точно так же, как и в однофазной сети, диаметр и сечение проводников можно определить с помощью таблицы, отражающей зависимости этих параметров от различных нагрузок.

Диаметры жил проводников (мм)Сечение жил проводников (мм2)Медные жилыАлюминиевые жилы
Сила тока (А)Мощность (кВт)Сила (А)Мощность (кВт)
0,80,562,25
0,980,75103,8
1,131,0145,3
1,381,5155,7103,8
1,62,0197,2145,3
1,782,5217,9166,0
2,264,02710,0217,9
2,766,03412,0269,8
3,5710,05019,03814,0
4,5116,08030,05520,0
5,6425,010038,06524,0

В некоторых случаях расчет тока по напряжению и мощности следует проводить с учетом полной реактивной мощности, присутствующей в электродвигателях, сварочном и другом оборудовании. Для таких устройств коэффициент мощности будет равен 0,8.

Как рассчитать мощность тока

Трехфазная мощность, значения напряжения и тока

Трехфазное соединение треугольником: линия, фазный ток, напряжения и мощность в конфигурации Δ

Что такое соединение треугольником (Δ)?

Delta or Mesh Connection ( Δ ) Система также известна как Трехфазная трехпроводная система ( 3-фазная 3-проводная ) и является наиболее предпочтительной системой для передачи электроэнергии переменного тока при распределении, Обычно используется соединение звездой.

В системе соединения Delta (также обозначаемой Δ ) начальные концы трех фаз или катушек соединены с конечными концами катушки. Или начальный конец первой катушки соединен с конечным концом второй катушки и так далее (для всех трех катушек), и это выглядит как замкнутая сетка или цепь, как показано на рис. (1).

Проще говоря, все три катушки соединены последовательно, образуя тесную сеть или цепь. Из трех переходов вынуты три провода, и все токи, исходящие из перехода, считаются положительными.

В соединении треугольником соединение трех обмоток выглядит как короткое замыкание, но это не так, , если система сбалансирована, то значение алгебраической суммы всех напряжений вокруг сетки равно нулю в соединении треугольником .

Когда клемма разомкнута в Δ, то нет возможности протекать токи с базовой частотой вокруг замкнутой ячейки.

Также Читайте:

На заметку: В конфигурации Дельта, в любой момент, значение ЭДС одной фазы равно результирующей величине ЭДС двух других фаз, но в противоположном направлении.

Рис (1). Трехфазная мощность, значения напряжения и тока при соединении треугольником (Δ)

Значения напряжения, тока и мощности при соединении треугольником (Δ)

Теперь мы найдем значения линейного тока, линейного напряжения, фазного тока, фазных напряжений и Питание в трехфазной системе переменного тока треугольником.

Линейные напряжения (V L ) и фазные напряжения (V Ph ) при соединении треугольником

На рис.2 видно, что между двумя клеммами имеется только одна фазная обмотка (т.е.е. между двумя проводами имеется одна фазная обмотка). Следовательно, в Delta Connection, напряжение между (любой парой) двух линий равно фазному напряжению фазной обмотки , которая подключена между двумя линиями.

Поскольку последовательность фаз R → Y → B, следовательно, направление напряжения от фазы R к фазе Y положительное (+), а напряжение фазы R опережает напряжение фазы Y на 120 °. Аналогично, напряжение фазы Y опережает фазное напряжение B на 120 °, а его направление положительно от Y к B.

Если линейное напряжение между;

  • Строка 1 и Строка 2 = V RY
  • Строка 2 и Строка 3 = V YB
  • Строка 3 и Строка 1 = V BR

Затем мы видим, что V RY ведет V YB на 120 ° и V YB провода V BR на 120 ° .

Предположим,

V RY = V YB = V BR = V L …………… (Напряжение сети)

Тогда

V L = V PH

I.е. при соединении треугольником, линейное напряжение равно фазному напряжению .

Линейные токи (I L ) и фазные токи (I Ph ) при соединении треугольником

Как видно из нижеприведенного (рис. 2), общий ток каждой линии равен разность векторов между двумя фазными токами в соединении треугольником , протекающем по этой линии. т.е.

  • Ток в линии 1 = I 1 = I R — I B
  • Ток в линии 2 = I 2 = I Y — I R
  • Ток в линии 3 = I 3 = I B — I Y

{Векторная разность}

Рис. (2).Линейный и фазовый ток и линейное и фазовое напряжение в соединении треугольником (Δ)

Ток в линии 1 можно найти, определив разность векторов между I R и I B , и мы можем сделать это, увеличив I B. Вектор в обратном порядке, так что I R и I B образуют параллелограмм. Диагональ этого параллелограмма показывает разность векторов I R и I B , которая равна току в строке 1 = I 1 .Более того, изменяя вектор I B на противоположное, он может указывать как (-I B ), следовательно, угол между I R и -I B (I B , при обратном изменении = -I B ) составляет 60 °. Если,

I R = I Y = I B = I PH …. Фазные токи

Тогда;

Ток, текущий в строке 1, будет;

I L или I 1 = 2 x I PH x Cos (60 ° / 2)

= 2 x I PH x Cos 30 °

= 2 x I PH x ( √3 / 2) …… Так как Cos 30 ° = √3 / 2

I L = √3 I PH

i.е. При соединении по схеме треугольник линейный ток в √3 раза больше фазного тока.

Точно так же мы можем найти токи расширения двух линий, как указано выше. т.е.

I 2 = I Y — I R … Векторная разность = √3 I PH

I 3 = I B — I Y … Разность векторов = √3 I PH

As, все токи в линии равны по величине, т.е.

I 1 = I 2 = I 3 = I L

Следовательно,

IL = √3 I PH

Это видно на рисунке выше;

  • Линейные токи отстоят друг от друга на 120 °
  • Линейные токи отстают на 30 ° от соответствующих фазных токов
  • Угол Ф между линейными токами и соответствующими линейными напряжениями составляет (30 ° + Ф), т.е.е. каждый линейный ток отстает на (30 ° + Ф) от соответствующего линейного напряжения.

Связанное сообщение: Нагрузки освещения, соединенные звездой и треугольником

Питание в соединении треугольником

Мы знаем, что мощность каждой фазы;

Мощность / Фаза = В PH x I PH x CosФ

И суммарная мощность трех фаз;

Общая мощность = P = 3 x V PH x I PH x CosФ … .. (1)

Мы знаем, что значения фазного тока и фазного напряжения при соединении треугольником;

I PH = I L / √3….. (Из I L = √3 I PH )

V PH = V L

Ввод этих значений в уравнение мощности ……. (1)

P = 3 x V L x (I L / √3) x CosФ …… (I PH = I L / / √3)

P = √3 x√ 3 x V L x (I L / √3) x CosФ… {3 = √3x√3}

P = √3 x V L x I L x CosФ

Следовательно доказано;

Питание в треугольнике ,

P = 3 x V PH x I PH x CosФ ….или

P = √3 x V L x I L x CosФ

Где Cos Φ = коэффициент мощности = фазовый угол между фазным напряжением и фазным током (а не между линейным током и линейным напряжением).

То же самое объясняется в MCQ трехфазной цепи с пояснительным ответом (MCQ № 1)

Полезно помнить:

При подключении как звездой, так и треугольником, общая мощность на сбалансированной нагрузке равна .

Т.е. Общая мощность в трехфазной системе = P = √3 x V L x I L x CosФ

Полезно знать:

Сбалансированная система — это система, в которой:

  • Напряжения всех трех фаз равны по величине.
  • Напряжения всех фаз совпадают по фазе друг с другом i.е. 360 ° / 3 = 120 °
  • Все трехфазные токи равны по величине
  • Все фазные токи синфазны друг другу, т.е. 360 ° / 3 = 120 °
  • Трехфазная сбалансированная нагрузка — это система, в которой нагрузка подключенные к трем фазам, идентичны.

Также читайте:

Объяснение трехфазного питания | Объяснение трехфазного питания

В этом видео подробно рассматривается трехфазное питание и объясняется, как оно работает. Трехфазную мощность можно определить как общий метод производства, передачи и распределения электроэнергии переменного тока.Это разновидность многофазной системы, которая является наиболее распространенным методом передачи электроэнергии в электрических сетях по всему миру.

Дополнительные ресурсы Raritan


Расшифровка стенограммы:
Добро пожаловать в это анимированное видео, которое быстро расскажет о трехфазном питании. Я также объясню загадку того, почему 3 линии электропередачи разнесены на 120 градусов, потому что это важный момент для понимания трехфазного питания.

Питание, которое поступает в центр обработки данных, обычно представляет собой трехфазное питание переменного тока, что означает трехфазное питание переменного тока.

Давайте посмотрим на упрощенный пример того, как генерируется трехфазная мощность.

Этот пример отличается от того, что я использовал бы для описания того, как трехфазный двигатель использует мощность. В видео с переменным током мы показали, как вращение магнита мимо одного провода заставляет ток течь вперед и назад. Теперь мы собираемся повернуть магнит мимо трех проводов и посмотреть, как он влияет на ток в каждом проводе.

В этом трехфазном примере северный положительный конец магнита направлен прямо вверх по линии один.

Чтобы облегчить объяснение концепции, давайте воспользуемся циферблатом и скажем, что первая линия находится в позиции двенадцати часов. Электроны в строке 1 будут течь к северному полюсу магнита. Что происходит, когда магнит теперь поворачивается на 90 градусов?

Как мы видели на видео с переменным током, поскольку магнит перпендикулярен линии 1, электроны в линии 1 перестанут двигаться. Затем, когда магнит поворачивается более чем на 90 градусов, южный полюс магнита приближается к линии один, и электроны меняют направление, что означает, что направление тока изменится на противоположное.Это было подробно описано в видео по переменному току. Если вы нажали на это видео, не понимая, что такое переменный ток, сначала просмотрите это видео.

Глядя на график, вы можете понять, почему я выбрал аналоговый циферблат. Круг составляет 360 градусов, и часы делят круг на 12 частей, так что каждый час покрывает 30 градусов круга. Переход от 12 к 3 составляет 90 градусов, а переход от 12 к 4 — 120 градусов.

При генерации 3-х фазного питания медные провода расположены на расстоянии 120 градусов друг от друга.Итак, когда вы находитесь в позиции «четыре часа» в нашем примере, это 120 градусов от линии один. А в положении «восемь часов» он находится на 120 градусах от обоих положений: «4 часа» и «12 часов». Три линии равномерно расположены по кругу.

Если северный полюс находится ближе к одному из 3-х проводов, электроны движутся в этом направлении. Чем ближе южный полюс подходит к каждому проводу, тем больше электроны удаляются от южного полюса. В каждой из трех этих линий, поскольку электроны движутся вперед и назад, они не всегда движутся в том же направлении или с той же скоростью, что и две другие линии.

Давайте еще раз посмотрим на пример. Когда магнит вращается, когда северный полюс находится в положении 1 часа, он становится перпендикулярным линии 2, поэтому, конечно, электроны перестают двигаться по линии 2. Но они все еще движутся по линии 1, привлеченные более близким северным полюсом, и они движутся по линии 3, которую отталкивает южный полюс. Когда северный полюс магнита смотрит на 2 часа, тогда на линии 1 и [линию] 2 воздействует северный полюс, но южный полюс находится прямо напротив линии 3, так что теперь у него пиковый ток.В 3 часа магнит перпендикулярен линии 1, поэтому электроны перестают двигаться, но на линию 2 влияет северный полюс, а на линию 3 — южный полюс, поэтому ток течет по линиям 2 и 3.

Надеюсь, , этот пример показывает вам, как в любое время ток всегда течет как минимум по 2 линиям. Он также показывает взаимосвязь между 3 линиями при вращении магнита по кругу. Когда магнит вращается вокруг циферблата, на каждую из 3 линий будет воздействовать либо северный, либо южный полюс, за исключением случаев, когда магнит перпендикулярен линии.

Давайте сосредоточимся на линии 1. Она находится на пике тока, когда северный полюс указывает на 12 и 6 часов. Это при нулевом токе, когда северный полюс указывает на 3 и 9 часов. Только 1 из 3 линий всегда находится на пике, но поскольку есть 3 линии, есть 3 положительных пика и 3 отрицательных пика для каждого цикла. В 6 различных положениях на циферблате одна из линий находится на пике. Позиции 12 и 6 — это чередующиеся пики линии 1, позиции 2 и 8 — чередующиеся пики линии 3, а позиции 4 и 10 — чередующиеся пики линии 2.

Теперь давайте объясним те запутанные формы сигналов, которые часто используются для изображения трех фаз. Если вы посмотрите на пример формы сигнала, вы увидите первую строку синего цвета, которая начинается с нуля. Это означает, что магнит перпендикулярен этой линии. По мере движения магнита вы можете видеть, как ток достигает своего пика. Затем, когда положительный полюс вращается мимо этого провода, ток начинает ослабевать, пока магнит снова не станет перпендикулярным, что приводит к нулевому току. Когда отрицательный полюс начинает приближаться, ток меняет направление и движется в другом направлении к другому пику, прежде чем вернуться к нулевому току.Это завершает 1 полный цикл для этой линии.

Для того, чтобы двухмерная диаграмма показывала взаимосвязь между линиями, теперь на ней показан промежуток, который означает время, за которое магнит вращается на 120 градусов. Это когда красная линия имеет нулевой ток. По мере того как магнит продолжает вращаться, красная линия будет двигаться в сторону своего пикового положительного тока, затем вернется к нулю, после чего ток изменит направление. График также показывает, что третья линия начнется при нулевом токе через 120 градусов после второй линии.Итак, если вы посмотрите на эти 3 линии, вы увидите, что, когда одна линия находится на пике, другие 2 линии все еще генерируют ток, но они не на полную мощность, то есть они не на пике. Таким образом, когда электроны текут от положительного пика к отрицательному, ток отображается как текущий от положительных значений к отрицательным. Помните, что положительные и отрицательные стороны не отменяют друг друга. Положительный и отрицательный оттенки используются только для описания чередования тока.

В трехфазной цепи вы обычно берете одну из трех токоведущих линий и подключаете ее к другой из трех токоведущих линий.Одно исключение из этого описано в видео «Дельта-звезда».

В качестве примера возьмем трехфазную линию на 208 В. Каждая из 3 линий будет передавать 120 вольт. Если вы посмотрите на диаграмму, вы легко увидите выходную мощность любых двух линий. Если одна линия на пике, другая линия не на пике. Вот почему в трехфазной цепи неправильно умножать 120 вольт на 2, чтобы получить 240 вольт.

Итак, если вам интересно, почему у вас дома есть 110/120 вольт для обычных розеток, но у вас также есть приборы на 220/240 вольт, что дает? Что ж, это не трехфазное питание.Фактически это 2 однофазные линии.

Так как же рассчитать мощность объединения двух линий в трехфазную цепь? Формула рассчитывается как умножение вольт на квадратный корень из 3, который округляется до 1,732. Для 2 линий, каждая на 120 вольт, вычисление для этого составляет 120 вольт, умноженное на 1,732, и результат округляется до 208 вольт.

Вот почему мы называем это трехфазной цепью на 208 вольт или трехфазной линией на 208 вольт. Трехфазная цепь на 400 вольт означает, что на каждую из трех линий подается 230 вольт.

Последняя тема, о которой я расскажу в этом видео: почему компании и центры обработки данных используют 3 фазы?

А сейчас позвольте дать вам простой обзор. Для трехфазного подключения вы подключаете линию 1 к линии 2 и получаете 208 вольт. В то же время вы [можете] подключить линию 2 к линии 3 и получить 208 вольт. И вы [можете] соединить линию 3 с линией 1 и получить 208 вольт. Если провод может выдавать 30 ампер, то передаваемая мощность составляет 208 вольт, умноженное на 30 ампер, умноженное на 1,732, при общей доступной мощности 10.8 кВА.

Для сравнения, для однофазной 30-амперной цепи с напряжением 208 вольт вы получите только 6,2 кВА. Обычно 3 фазы обеспечивают большую мощность.

Существуют и другие факторы, по которым гораздо лучше подавать трехфазное питание в стойку центра обработки данных, чем использовать однофазное питание, и эти факторы обсуждаются в видео в зависимости от напряжения и силы тока, а также в видео с напряжением 208 и 400 вольт.

Формула трехфазного напряжения

Используя вышеупомянутую формулу… V P = фазное напряжение V L = линейное напряжение I P = фазный ток I L = линейный ток R = R1 = R2 = R3 = сопротивление каждой ветви W = мощность, эквивалентная звездам и треугольникам W DELTA = 3 Вт WYE.Введите коэффициент мощности нагрузки. Таким образом, если угол зажигания равен нулю (cos (0) = 1), управляемый выпрямитель работает аналогично предыдущему трехфазному неуправляемому диодному выпрямителю со средними выходными напряжениями, такими же. Из этого поста вы узнаете, как рассчитать ток нагрузки трехфазного двигателя. Падения напряжения бывают междуфазными, для трехфазных, трехпроводных или трехфазных, четырехпроводных цепей 60 Гц. Большинство предыдущих ответов не ошибочны в отношении формул, но в большинстве из них не указывается, для какой конфигурации элемента (звезда или дельта) они действительны, или к какому напряжению или току (фазе или линии) они относятся. к.Если напряжения слишком сильно не сбалансированы, компоненты (например, двигатели и компрессоры) начнут перегреваться. Этот пост о объяснении формулы расчета тока трехфазного двигателя. Эти три напряжения должны быть почти, если не точно, равными друг другу. 4% от заявленного напряжения питания. Формула для расчета мощности, тока и напряжения в трехфазной проводке (несимметричная нагрузка, разные нагрузки на каждой из трех фаз): Pt = P1 + P2 + P3 P1 = V * I1 * cosφ1 I1 = P1 / (V * cosφ1) То же значение для каждой фазы… V = P1 / (I * cosφ1) Pt = общая мощность цепи в ваттах (Вт) P1, P2, P3 = мощность фазы 1, фазы 2 и фазы 3 в ваттах (Вт) 3-фазное питание 100 А / фаза TN-S в здание (Ze = 0.28 Ом), а новая распределительная цепь будет запитываться от новых хвостовиков счетчиков через выключатель-предохранитель TP + N с предохранителями BS88 63A на фазу. CM = Circular-Mils (калибр проводов) Примечания: • Национальный электротехнический кодекс рекомендует не более 3% падения напряжения для параллельных цепей. Однофазное напряжение обычно составляет 115 В или 120 В, а трехфазное напряжение обычно составляет 208 В, 230 В или 480 В. Код для добавления этой кальки на ваш сайт. Формула падения напряжения для трехфазных систем следующая: где: VD = падение напряжения в цепи в вольтах.Входное напряжение инвертора составляет 220 В постоянного тока, а частота основной составляющей выходного напряжения составляет 50 Гц. Используется, когда трехфазное питание недоступно, и позволяет вдвое превышать нормальное рабочее напряжение для мощных нагрузок. Его рейтинг — 100 кВА. Если питание однофазное при обычном уровне 240 В, это означает максимальное падение напряжения 4% от 240 В, что составляет 9,6 В, что дает (простыми словами) напряжение нагрузки всего 230,4 В. Для 415 V трехфазная система, допустимое падение напряжения будет 16.6 В при линейном напряжении нагрузки… Для двигателей рекомендуется умножить значение FLA на паспортной табличке на 1,25 для определения сечения провода. Также прочтите: Значения трехфазного тока в трехфазной системе; Питание в звездообразном соединении. Напряжение в сети или фазное напряжение выше 440 В можно измерить с помощью трансформатора напряжения. Основная формула для расчета полной мощности в одно- и трехфазных цепях EE. Полная мощность определяется как произведение текущего напряжения на время, проходящего через цепь переменного тока. Ли-онг Ип Ли-онг Ип.Я = Ампер. Фаза A начинается с 0 при фазовом угле 0 градусов, повышается до 1 при 90 градусах, обратно до 0 при 180, до -1 при 270 градусах и обратно до 1 при 360 градусах. Среднее значение выходного напряжения может быть получено путем усреднения по одному. Калькулятор трехфазной мощности рассчитывает ток активной и реактивной мощности по следующим параметрам: Напряжение (В): введите межфазное напряжение (\ (V_ {LL} \)) напряжение для трехфазной сети переменного тока в вольтах. Таким образом, если нагрузка однофазная, то можно взять одну фазу из трехфазной цепи, а нейтраль можно использовать в качестве заземления для завершения цепи.Каждая фаза представляет собой синусоидальную волну. Напряжение во всех трех каналах одинаковое. Если у вас сбалансированная трехфазная мощность, где все три фазных напряжения равны по величине и разнесены по фазе на 120 °, тогда: $$ V_ {LL} = \ sqrt {3} \ times V_ {LN} $$ Чтобы понять, почему рассмотрим векторную диаграмму: Применение базового триггера: share | улучшить этот ответ | следовать | Создан 06 дек. Создан 06 дек. Чтобы лучше понять трехфазное питание, человеку следует сначала изучить и понять принципы, применимые к однофазному питанию.11.4 (б). Математически дано как- Простая формула для расчета номинальной мощности трехфазных трансформаторов: KVA = (√3. Здесь формула однофазной мощности состоит только из колеблющихся членов, а значение мощности для полного цикла равно нулю. Следовательно, чтобы передавать 3-фазный ток 100 А на фазу по длине маршрута 150 м с общей формулой сбалансированной трехфазной мощности. Если у вас есть 3-фазный автоматический выключатель на 50 А, это 50 на фазу — при расчете падения напряжения с использованием таблиц вы рассчитываете при использовании 50A или 150A? Пиковое выходное напряжение = пиковое линейное напряжение = 3 × Vm 2.Где: V — напряжение (вольты), а I — ток (амперы). Амперы — введите максимальный ток в амперах, который будет протекать через цепь. Конфигурация «треугольник» чаще всего используется для питания трехфазных промышленных нагрузок большей мощности. Это требует, чтобы анализ проводился во временной области. Ib — расчетный ток в амперах. Уравнение однофазной мощности для чисто емкостной цепи. Электропитание в трехфазной системе является непрерывным, поскольку все три фазы участвуют в выработке общей мощности.Первоначально мы исследовали идею трехфазных систем питания, соединив три источника напряжения вместе в так называемой конфигурации «Y» (или «звезда»). Таким образом, единственное отличие от формулы, использованной выше для средней выходной мощности Напряжение трехфазного мостового выпрямителя выражено косинусоидальным углом cos (α) запускающего или запускающего импульса. Формулы разомкнутой 3-фазной цепи: Вт с разомкнутой треугольником = 2/3 Вт с треугольником, Вт с разомкнутой звездой = 1/2 Вт по схеме «звезда», Вт с разомкнутой четырехпроводной схемой = 2/3 Вт по схеме «звезда». Однако различные комбинации напряжений могут быть получены от одного трехфазного источника питания по схеме треугольник, путем выполнения соединений или «ответвлений» вдоль обмоток питающих трансформаторов.Например, сбалансированная двухфазная мощность может быть получена от трехфазной сети с помощью двух специально сконструированных трансформаторов с ответвлениями на 50% и 86,6% первичного напряжения. R = сопротивление проводника. Формула силы тока трехфазной нагрузки поясняется данными паспортной таблички асинхронного двигателя напряжения трехфазной нагрузки. Формула для расчета однофазных и трехфазных коротких замыканий трансформаторов (кА): ВА = Вольт-ампер или активная мощность. Напряжение — введите напряжение на источнике цепи.Теперь, если вы посмотрите на часть этого уравнения «1000 4 1,732 В», вы увидите, что, вставив соответствующее трехфазное напряжение для «В» и умножив его на 1,732, вы можете затем разделить это количество на «1000. », Чтобы получить конкретное число (или константу), которое можно использовать для умножения« кВт », чтобы получить ток, потребляемый этой трехфазной нагрузкой при соответствующем трехфазном напряжении. Опять же, предполагая равные номинальные мощности трех источников однофазного переменного тока, общая мощность, доступная для подключенной нагрузки трехфазного переменного тока, является произведением линейного напряжения трехфазного переменного тока, умноженного на 3-фазный линейный ток, умноженного на √ 3.Коэффициент мощности (cosΦ). В трехфазной сбалансированной системе напряжение на фазе по отношению к другой фазе всегда равно величине напряжения и фазового угла, а векторная сумма трех фаз всегда равна нулю. По формуле: вольт-амперы (ВА) = √3 × В ЛИНИЯ × ЛИНИЯ Трехфазное напряжение или соединение звездой обычно состоит из напряжения, протекающего по трем различным каналам, для простоты мы называем это Напряжение в красной линии (VR), Напряжение Желтой линией (VY), синей линией (VB) — напряжение.28 мая 2018 г. Основные формулы. Полная мощность определяется как произведение текущего напряжения на время, проходящего через цепь переменного тока. L = длина цепи от источника питания до нагрузки. Когда переменный ток проходит через конденсатор, он сначала заряжается до максимального значения, а затем разряжается. Предполагается, что распределительный кабель будет представлять собой 4-жильный кабель BS 6723 LSZH SWA сечением 16 мм2, использующий SWA в качестве CPC, и имеет длину 36 м, с четырьмя жилами TP + N. Трехфазное соединение звездой (Y). Такая конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника.V x I) / 1000. Для однофазного подключения напряжение может быть математически получено из приведенной ниже формулы. Для трехфазного подключения напряжение может быть математически получено из приведенной ниже формулы. Калькулятор тока также используется в электротехнике для измерения неизвестного тока двумя известными величинами, кВА и напряжения, приложенного к приведенные ниже формулы. При соединении треугольником стороны фаз соединяются циклически, чтобы образовать замкнутый контур, как показано на рисунке 1. Пример 11.3. В трехфазной цепи переменного тока полная истинная или активная мощность является суммой трехфазной мощности.Формула; Простой электрический калькулятор для расчета трех (3) фазной электрической мощности в цепи на основе напряжения и тока. % Импеданс = Импеданс трансформатора. В конце концов, трехфазная цепь — это, по сути, комбинация трех отдельных однофазных цепей, у которых есть пики и спады, разделенные периодом времени. Система трехфазного напряжения Системы трехфазного напряжения состоят из трех синусоидальных напряжений равной величины, одинаковой частоты, разделенных на 120 градусов.Двухфазные цепи могут быть соединены двумя парами проводов, или два провода могут быть объединены, что требует только трех проводов для цепи. то есть 10-миллиметровый кабель, пропускающий 3 фазы 50A на 30 м VD = 3,8x50x30 / 1000 = 5,7V или VD = 3,8x150x30 / 1000 = 17,1V Я думаю, это должен быть первый, но я немного запутался, нужно освежить некоторые 3 фазы теория я думаю. Падение напряжения на отрезке кабеля (ов) рассчитывается по следующей формуле: где: мВ / А / м — табличное значение в мВ / А / м, полученное из Приложения 4 к BS 7671.Форма волны выходного напряжения однофазного инвертора с синусоидальной широтно-импульсной модуляцией такая же, как на рисунке. Пример: на следующем рисунке представлена ​​паспортная табличка трехфазного трансформатора. Линейный и фазный токи связаны друг с другом следующим образом: I_line = square_root (3) * I_phase Это означает, что какой бы ток питания мы ни имели, нам нужно сечение провода, умноженное только на 1 / square_root (3) линейный ток. Формула: Трехфазная электрическая мощность = V * I * 1,732 * PF, где V = напряжение I = ток PF = коэффициент мощности (0.8) Расчет трехфазной электрической мощности упрощен с помощью этого онлайн-калькулятора. Спроектируйте выходной фильтр так, чтобы коэффициент нелинейных искажений не превышал 5%. L — длина кабеля в метрах. Последовательность трехфазного вектора напряжения Последовательность {1-2-3} и последовательность {3-2-1} Обозначение индекса: после определения последовательности фаз и определения соответствующих индексов, вычисления с использованием этих индексов вместе с соглашениями, принятыми для Версия закона Ома для переменного тока предотвратит угловые ошибки.Синусоидальные волны для трехфазной системы показаны ниже. Каждая из трех фаз может использоваться как однофазная. Это соединение Scott T создает настоящую двухфазную систему с разницей во времени между фазами 90 °. Фаза B начинается с 0 при 120 градусах, а фаза C начинается с 0 при 240 градусах. Двухфазная электроэнергия Использует два напряжения переменного тока с фазовым сдвигом между ними на 90 электрических градусов. На рисунке 1 показаны функции косинуса в реальном времени и соответствующие векторные обозначения для трехфазной системы линейного напряжения с линейным напряжением V12 в качестве опорного.Анализ трехфазного выпрямителя с резистивной нагрузкой: Обозначение: Пусть V m = Пиковое напряжение между фазой и нейтралью. Полезная формула интегрирования: 4 3 6 6 cos () 6 ∫ 2 = + — π ω ω π π td t 1. Или сумма мощность всех трех фаз — это полная активная или истинная мощность. Трехфазное питание состоит из 3 «горячих» проводов, каждый из которых имеет полное линейное напряжение относительно двух других. Вольт = Вольт трансформатора. Если Z Y = Z∠θ, фазные токи отстают от соответствующих фазных напряжений на θ. 3-фазная звезда (сбалансированная нагрузка) 3-фазная открытая звезда (без нейтрали) IP = ILVP = VL… Для нагрузки, подключенной по схеме Y, фазные напряжения равны (1), где коэффициент √2 необходим, потому что V p было определено как действующее значение фазного напряжения.Ссылка на таблицы падения напряжения указывает на то, что сечение кабеля с падением напряжения 0,7 / 1000 В / А / м (0,7 мВ / А / м) ИЛИ МЕНЬШЕ является медным проводником диаметром 70 мм. Нет необходимости в сложной формуле. Ток (I): введите ток в амперах (A).

Статистика распределения

Kde,
Объективный идеализм Гегеля,
Что означают маленькие часы в сообщении Facebook,
Рецепт Эпплджек с Everclear,
Emerson Prima Snugger 42,
Домашние аудиосистемы,
Уровни услуг в области психического здоровья,
Детали горелки Whirlpool Gas Range 5,
Непрерывное улучшение качества в сфере здравоохранения.

Еще раз о расчетах трехфазного переменного тока — Dataforth

Преамбула

Это примечание по применению является продолжением
Указания по применению AN109, которые содержат систему переменного тока
определения и основные правила расчетов с примерами.Читателю предлагается ознакомиться с AN109, Ссылки 3,
4 и 5 в качестве фона для данной инструкции по применению.

Трехфазная система напряжения

Системы трехфазного напряжения состоят из трех
синусоидальные напряжения равной величины, равной частоты
и разделены на 120 градусов.

На рисунке 1 показаны функции косинуса в реальном времени и
соответствующее обозначение вектора для трехфазного межфазного
система напряжения с линейным напряжением V12 в качестве эталона.

Обзор свойств системы трехфазного напряжения

Трехфазные питающие напряжения и системы нагрузки имеют два
базовые комплектации; 4-проводная звезда и 3-проводная
«Дельта». На рисунке 2 показан базовый трехфазный четырехпроводной звездой.
настроенная система напряжения с V1N в качестве эталона и
На рисунке 3 показана трехпроводная система напряжения, настроенная по схеме треугольника.
с V12 в качестве ссылки соответственно.

Важные определения, условные обозначения и правила расчета
как для 3-фазной 4-проводной схемы «звезда», так и для 3-проводной схемы «треугольник»
сконфигурированные системы напряжения описаны в следующих
список без «беспорядочной» векторной математики.

Ориентация фазора:

По определению, все синусоидальные векторы вращаются в
против часовой стрелки с {1-2-3} или {3-2-1}
последовательность и углы измеряются как положительные в
против часовой стрелки. 4-проводная 3-фазная система звезды
показан на рисунке 2 с V1N, выбранным в качестве эталона. В
линейные напряжения составляют V12, V23 и V32 с линейно-
нейтральные напряжения показаны как V1N, V2N и V3N.Фигура
3 показаны правильные линейные векторные напряжения для трехфазного
фаза 3-проводная конфигурация треугольника с выбранным вектором V12
в качестве ссылки. Примечание: любой вектор может быть выбран как
ссылка, выбор совершенно произвольный.

Чередование фаз:

Последовательность фаз определяет последовательную синхронизацию, по которой
каждый вектор линейного напряжения отстает друг от друга линейное напряжение
вектор против часовой стрелки.Рисунки 1, 2 и
3 показана последовательность фаз {1-2-3}. Последовательность {1-2-3}
означает, что V12 опережает V23 на 120 градусов, а V23 опережает
V31 на 120 градусов. Кроме того, V1N опережает V2N на 120
градусов, а V2N опережает V3N на 120 градусов. это
необходимо установить последовательность фаз перед выполнением
любые вычисления для того, чтобы вычисленный вектор вектора
углы могут быть правильно расположены друг относительно друга.

Есть только две допустимые последовательности фаз; {1-2-3}
последовательность и последовательность {3-2-1}. Обе эти фазы
последовательность определяется тем, как 3-фазный трансформатор
линии питания (L1, L2, L3) подключены и промаркированы.
На рисунке 4 показана последовательность {3-2-1} относительно
{1-2-3} последовательность. Примечание: последовательность фаз может быть
можно изменить, просто поменяв местами соединения любых двух
из трех (L1, L2, L3) линий питания; однако это
следует делать только в соответствии со всеми надлежащими
нормы и правила, а также одобрение заводского инжиниринга
персонал.

Индексы:

Соблюдение правильного порядка нижних индексов для всех векторов
количество — один из важнейших ключей к успеху
3-х фазные расчеты. На рисунке 4 показан правильный нижний индекс
порядок для каждой из двух различных последовательностей фаз. Для
последовательность {1-2-3}, правильный порядок индексов [12],
[23] и [31]; тогда как правильный порядок нижнего индекса для
последовательность {3-2-1} — это [32], [21] и [13].

Нижний индекс:

После определения последовательности фаз и правильного
индексы обозначены, расчеты по этим
индексы вместе с условными обозначениями, принятыми для
Версия закона Ома для переменного тока предотвратит угловые ошибки.

По соглашению, V12 — это падение векторного напряжения плюс (1) к
минус (2) в направлении тока, протекающего из точки
(1) к точке (2) и равен этому току, умноженному
импедансом переменного тока между точками (1) и (2).Для
пример в векторной записи;

Сложение / вычитание фазора:

Правильная запись в нижнем индексе устанавливает правильный метод
для векторного сложения / вычитания векторов. На рисунке 2
фазоры линейного напряжения в этой трехфазной {1-2-3}
Последовательная 4-проводная система «звезда» состоит из линейно-нейтральной
векторные напряжения следующим образом;

Если среднеквадратичные напряжения между фазой и нейтралью равны (стандартное
сбалансированной системы), то приведенные выше уравнения показывают, что все
линейные напряжения питания фазора — фаза-нейтраль.
напряжения, умноженные на 3, и подводят фазу к нейтрали
векторы напряжения на 30 градусов
.Например, стандартный
4-проводная 3-фазная система звезды с линейным напряжением
120 вольт и V1N, выбранный в качестве опорного вектора на
ноль градусов имеет линейное напряжение;

V12 = 208∠ 30 °; V23 = 208∠ -90 °; V31 = 208∠ 150 °.

Важная концепция: 3-фазный трехпроводной, настроенный по схеме треугольник
система уравновешивания напряжений фактически не имеет линейно-
нейтральные напряжения, такие как звездочка.Тем не менее
дельта-фазное напряжение, как показано на Рисунке 3, все еще может быть
построенный из теоретического набора сбалансированных 3-фазных
линейные напряжения, как показано выше. В
отношения с этими теоретическими напряжениями чрезвычайно
полезно для определения углов дельта-фазора.

Процедуры, инструкции и формулы расчетов

Следующий список процедур, рекомендаций и формул
проиллюстрируйте схему расчета трехфазного фазора
количества с использованием типовых данных паспортной таблички, взятых из
отдельные единицы нагрузки.

Расчеты производятся следующим образом;

  1. Идентифицируйте последовательность фаз; {1-2-3} или {3-2-1}
  2. Обозначить индексы; [12], [23], [31] или [32], [21], [13]
  3. Предположим, что линейные токи L1, L2, L3 текут к нагрузкам.
    и нейтральный (обратный) ток течет к источнику питания.
  4. Ток нагрузки и падение напряжения должны соответствовать
    подстрочные обозначения, как определено ранее.
  5. Используйте «Закон Ома для переменного тока» для расчета величин.
    и углы каждой отдельной однофазной нагрузки
    Текущий. Просмотрите AN109 компании Dataforth, ссылка 1.
  6. Важные понятия: линейные токи как для звезды, так и для
    3-фазные нагрузки, сбалансированные по схеме треугольника, рассчитываются
    следующие отношения;

    1. Входная мощность переменного тока = 3 x (Vline) x (Iline) x PF
    2. PF — косинус угла, на который прямая
      токи опережают или отстают от линейного напряжения.Фактическое трехфазное напряжение между фазой и нейтралью
      существуют в конфигурациях звезды; тогда как они
      теоретически в дельта-конфигурациях. Например,
      принять любую сбалансированную 3-фазную нагрузку на 10 ампер
      линейного тока и коэффициент мощности запаздывания 0,866 (30 °). Если
      системная последовательность {1-2-3} и V12 является справочным,
      тогда I1 = 10∠ -60 °; I2 = 10∠ 180 °; I3 = 10∠ 60 °.
  7. Определите количество треугольников мощности; Вт «P»
    и VAR «Q» для каждой нагрузки. Ссылка на обзор 1.
  8. Суммировать ранее рассчитанную индивидуальную нагрузку
    токи с использованием правильной записи индекса для определения
    каждая отдельная линия тока
  9. Наконец, просуммируйте все отдельные треугольники мощности нагрузки.
    количества (Вт «P» и VAR «Q») для определения
    количество треугольников мощности системы; P, Q и PF.Это
    этот последний шаг, который определяет, как загружается система
    население ведет себя.

Примеры расчетов

В следующих примерах предполагается типичное напряжение 208–120 вольт.
трехфазная конфигурация 4 звезды с чередованием фаз
из {1 2 3}, и V12 выбран в качестве справочного. Это звёздочка
система; однако нагрузки, подключенные между каждым из
три отдельные линии питания (L1, L2, L3) составляют
208-вольтная 3-проводная конфигурация, треугольник.Три категории
однофазные нагрузки предполагаются для следующих
расчеты. Эти категории идентичны тем
определено в Руководстве по применению AN109 (Ссылка 1) и
перечисленные ниже с необходимыми данными паспортной таблички.

  • Выходные киловатты; КВт, КПД (опция), PF = 1
  • Выходная мощность в лошадиных силах; HP, КПД, P
  • Входная кВА; КВА, ПФ, КПД 100%.

В таблице 1 приведены расчетные значения для предполагаемого
население этих нагрузок. Читатели должны проверить эти
расчеты. Dataforth предлагает интерактивный Excel
рабочая книга, аналогичная таблице 1, которая автоматически
рассчитывает все величины трехфазной системы. Видеть
Ссылка 2 для загрузки загрузите этот файл Excel.

Пример расчета нагрузок между фазой и нейтралью

Трехфазные звездообразные системы с нейтралью могут иметь одинаковые или
неравные отдельные однофазные нагрузки, подключенные между
любой из линий питания (L1, L2, L3) и нейтраль.Системы
сбалансированы, если все нагрузки между фазой и нейтралью идентичны.

На рисунке 5 показаны три группы однофазных линейно-нейтральных
нагрузки, подключенные по трехфазной системе «звезда».
Эта конфигурация однофазных нагрузок может быть
рассматривается как составная несбалансированная звездообразная нагрузка

На рисунке 6 показаны три группы однофазных межфазных
нагрузки, подключенные по трехфазной системе «звезда».Этот
конфигурацию однофазных нагрузок можно рассматривать как
композитная несбалансированная дельта-нагрузка

На рисунке 7 показаны группа уравновешенных нагрузок звездой и группа.
сбалансированных дельта-нагрузок, обе из которых (могут быть)
подключен по трехфазной системе звездой.

Таблица 1 представляет собой сводный набор расчетных результатов для
конфигурации, показанные на рисунках 5, 6 и 7.Эти
расчеты предполагают произвольную популяцию типа
загружает ранее определенные и использует все правила, процедуры и определения, как показано выше. В
Результаты системы из расчетов Таблицы 1 показаны ниже.
в таблицах 2 и 3.

Линейное напряжение V12 (208 при нулевом градусе) является эталонным для
указанные выше текущие углы.

Читателям предлагается проверить эти расчеты.

Как упоминалось выше, Dataforth предоставляет интерактивный
Файл Excel, предназначенный для увлеченного исследователя.
при расчете системных токов и сопутствующей мощности
уровни. Этот файл позволяет исследователю ввести паспортную табличку.
данные по всем системным нагрузкам; после этого все линии тока
векторов и мощности рассчитываются автоматически.
«Интерактивная рабочая тетрадь Excel для трех-
Расчет фаз переменного тока »можно загрузить с
Веб-сайт Dataforth, см. Ссылку 2.

Рисунок 8 — иллюстрация изолированной истины Датфорта.
Модуль ввода RMS, SCM5B33. Эта функция также
доступен в упаковке на DIN-рейку; DSCA33. Dataforth
имеет набор модулей преобразования сигналов, разработанных
специально для измерения переменного среднеквадратичного значения высокого напряжения
параметры с использованием встроенного затухания. Читатель
рекомендуется посетить ссылки 1, 6, 7 и 8.Ссылки на Dataforth

Читателю предлагается посетить веб-сайт Dataforth и
изучить их полную линейку изолированного преобразования сигнала
модули и соответствующие примечания по применению, см. ссылки
показано ниже.

  1. Dataforth Corp., http://www.dataforth.com
  2. Dataforth Corp., AN110 Excel
    Интерактивная работа
    Книга для расчетов трехфазного переменного тока
  3. Dataforth Corp., Примечание по применению AN109,
    Измерения однофазного переменного тока
  4. Dataforth Corp., AN109 Excel
    Интерактивная работа
    Книга для расчетов однофазного переменного тока
  5. Национальный электротехнический кодекс

  6. контролируется Национальной пожарной службой
    Агентство по охране, NFPA
  7. Dataforth Corp., Система аттенюатора напряжения SCMVAS,
  8. Dataforth Corp., серия модульных формирователей сигналов с истинным среднеквадратичным значением SCM5B33
  9. Dataforth Corp., серия DSCA33 формирователей сигналов True RMS для монтажа на DIN-рейку

Что такое коэффициент мощности? | Как рассчитать формулу коэффициента мощности

Как понять коэффициент мощности

Пиво — это активная мощность (кВт) — полезная мощность или жидкое пиво — это энергия, которая выполняет работу.Это то, что вам нужно.

Пена — это реактивная мощность (кВАр) — пена — это потраченная впустую или потерянная мощность. Это производимая энергия, которая не выполняет никакой работы, например, производство тепла или вибрации.

Кружка — кажущаяся мощность (кВА) — кружка — это потребляемая мощность или мощность, поставляемая коммунальным предприятием.

Если бы схема была эффективна на 100%, спрос равнялся бы доступной мощности. Когда спрос превышает имеющуюся мощность, на энергосистему оказывается нагрузка.Многие коммунальные предприятия добавляют плату за спрос к счетам крупных потребителей, чтобы компенсировать разницу между спросом и предложением (когда предложение ниже спроса). Для большинства коммунальных предприятий спрос рассчитывается на основе средней нагрузки, размещенной в течение 15–30 минут. Если требования к нагрузке нерегулярны, коммунальное предприятие должно иметь больше резервных мощностей, чем если бы требования к нагрузке оставались постоянными.

Пик спроса — это период наибольшего спроса. Перед коммунальными предприятиями стоит задача предоставить мощность, чтобы справиться с пиковыми потребностями каждого клиента.Использование электроэнергии в тот момент, когда она пользуется наибольшим спросом, может нарушить общее предложение, если не будет достаточно резервов. Таким образом, коммунальные услуги выставляют счет за пиковый спрос. Для некоторых крупных клиентов коммунальные предприятия могут даже взять самый большой пик и применить его в течение всего расчетного периода.

Коммунальные предприятия взимают надбавки с компаниями с более низким коэффициентом мощности. Издержки более низкой эффективности могут быть огромными — сродни вождению автомобиля, потребляющего много бензина. Чем ниже коэффициент мощности, тем менее эффективна схема и тем выше общие эксплуатационные расходы.Чем выше эксплуатационные расходы, тем выше вероятность того, что коммунальные предприятия накажут клиента за чрезмерную загрузку. В большинстве цепей переменного тока коэффициент мощности никогда не бывает равным единице, потому что на линиях электропередачи всегда присутствует некоторое сопротивление (помехи).

Как рассчитать коэффициент мощности

Для расчета коэффициента мощности вам понадобится анализатор качества электроэнергии или анализатор мощности, который измеряет как рабочую мощность (кВт), так и полную мощность (кВА), а также для расчета отношения кВт / кВА.

Формула коэффициента мощности может быть выражена другими способами:

PF = (Истинная мощность) / (Полная мощность)

OR

PF = W / VA

Где ватты измеряют полезную мощность, а VA измеряют подаваемую мощность.Отношение этих двух значений по существу представляет собой полезную мощность к подаваемой мощности, или:

Как показывает эта диаграмма, коэффициент мощности сравнивает реальную потребляемую мощность с полной мощностью или потребляемой нагрузкой. Мощность, доступная для выполнения работы, называется реальной мощностью. Вы можете избежать штрафов за коэффициент мощности, корректируя коэффициент мощности.

Низкий коэффициент мощности означает, что вы используете электроэнергию неэффективно. Это важно для компаний, поскольку может привести к:

  • Тепловому повреждению изоляции и других компонентов схемы
  • Уменьшению доступной полезной мощности
  • Требуемое увеличение размеров проводов и оборудования

Наконец, коэффициент мощности увеличивает общая стоимость системы распределения энергии, потому что более низкий коэффициент мощности требует более высокого тока для питания нагрузок.

Связанные ресурсы

Напряжение, ток и мощность при подключении 3-х фазной звездой

Напряжение, ток и мощность в трехфазном соединении звездой:

Трехфазное соединение звездой — На Рисунке 9.21 показана сбалансированная трехфазная система с Y-соединением. Напряжение, индуцированное в каждой обмотке, называется фазным напряжением (В ф. ). Аналогично, V RN , V YN и V BN представляют среднеквадратичные значения наведенных напряжений в каждой фазе.Напряжение, доступное между любой парой клемм, называется линейным напряжением L ). Аналогично, V RY , V YB и V BR известны как линейные напряжения . Обозначение с двойным нижним индексом специально используется для обозначения напряжений и токов в многофазных цепях. Таким образом, V RY указывает напряжение V между точками R и Y, причем R является положительным по отношению к точке Y во время ее положительного полупериода.

Аналогично, V YB означает, что Y положителен по отношению к точке B в течение своего положительного полупериода; это также означает, что V RY = -V YR .

Отношение напряжений:

Векторы, соответствующие фазным напряжениям, составляющим трехфазную систему, могут быть представлены векторной диаграммой, как показано на рис. 9.22.

Из рис. 9.22, учитывая линии R, Y и R, линейное напряжение V RY равно векторной сумме V RN и V NY , которая также равна разности векторов V RN. и V NY (V NY = -V YN ).Следовательно, V RY находится путем пересчета V RN и V YN в обратном порядке. Чтобы вычесть V YN из V RN , мы обращаем вектор V YN и находим его сумму векторов с V RN , как показано на рис. 9.22. Два вектора, V RN и -V YN , равны по длине и разнесены на 60 °.

Аналогично, линейное напряжение V YB равно разности векторов V YN и V BN и равно √3 V Ph. Линейное напряжение V BR равно разности векторов V BN и V RN и равно √3 V Ph . Следовательно, в сбалансированной трехфазной системе соединения звездой

  • Напряжение сети = √3 В Ф.
  • Все линейные напряжения равны по величине и смещены на 120 °, а
  • Все линейные напряжения на 30 ° опережают соответствующие фазные напряжения (из Рис. 9.22).

Текущие отношения:

Рисунок 9.24 (а) показана сбалансированная трехфазная система, соединенная звездой, с указанием фазных и линейных токов. Стрелки, расположенные рядом с токами I R , I Y и I B , протекающими в трех фазах, указывают направления токов, когда они предполагаются положительными, а не направления в данный конкретный момент. Векторная диаграмма фазных токов относительно их фазных напряжений показана на рис. 9.24 (b). Все фазные токи смещены на 120 ° друг относительно друга, ‘Φ’ — это фазовый угол между фазным напряжением и фазным током (предполагается запаздывающая нагрузка).Для сбалансированной нагрузки все фазные токи равны по величине. Из рис. 924 (а) видно, что каждый линейный провод соединен последовательно со своей отдельной фазной обмоткой. Следовательно, ток в линейном проводе такой же, как и в фазе, к которой подключен линейный провод.

Из рис. 9.24 (b) видно, что угол между линейным (фазным) током и соответствующим линейным напряжением составляет (30 + Φ) ° для отстающей нагрузки. Следовательно, если нагрузка является опережающей, то угол между линейным (фазным) током и соответствующим линейным напряжением будет (30 — Φ) °.

Питание в сети, соединенной звездой:

Полная активная мощность или истинная мощность трехфазной нагрузки — это сумма мощностей трех фаз. Для сбалансированной нагрузки мощность каждой нагрузки одинакова; следовательно, общая мощность = 3 x мощность в каждой фазе

Обычно трехфазную мощность выражают в линейных величинах следующим образом.

или √3 В L I L cos Φ — активная мощность в цепи.

Полная реактивная мощность соответствует

Полная полная мощность или вольт-амперы

N-фазная звездная система:

Следует отметить, что звезда и сетка — общие термины, применимые к любому количеству фаз; но звезда и треугольник являются частными случаями звезды и сетки, когда система является трехфазной. Рассмотрим n-фазную сбалансированную звездную систему с двумя соседними фазами, как показано на рис. 9.25 (a). Его векторная диаграмма представлена ​​на рис.9.25 (б).

Угол сдвига фаз между соседними фазными напряжениями составляет 360 ° / n. Пусть E Ph будет напряжением каждой фазы. Напряжение в сети, то есть напряжение между A и B, равно E AB = E L = E AO + E OB . Сложение векторов показано на рис. 9.25 (c). Очевидно, что линейный ток и фазный ток одинаковы.

Рассмотрим параллелограмм OABC.

Приведенное выше уравнение является общим уравнением для линейного напряжения, например, для трехфазной системы n = 3 E L = 2 E ph sin 60 ° = √3 E ph .

Расчет импеданса на единицу и базы

Расчет единичного и базового импеданса
Веб-страница не работает, так как JavaScript не включен.
Скорее всего, вы просматриваете с помощью веб-сайта Dropbox или другой ограниченной среды браузера.

Следующие ниже калькуляторы вычисляют различные базовые и единичные величины, обычно используемые инженерами энергосистем в системе анализа на единицу.

Calculator-1


Известные переменные: Базовая трехфазная мощность, базовое линейное напряжение

Формулы и переменные


Изменение базовой формулы

Расчет блока конденсаторов

Расчет двигателя

11

Где:

Z BASE = Базовое сопротивление
КВ LL = Базовое напряжение (Кило Вольт между фазами)
МВА = Базовая мощность
A BASE = Базовый ток
Z PU = Импеданс на единицу
Z PU ДАННЫЙ = Указанный на единицу импеданс
Z = Импеданс элемента схемы (т.е.е. Конденсатор, реактор, трансформатор, кабель и т. Д.)
X C = Импеданс блока конденсаторов (Ом)
X C-PU = Импеданс блока конденсаторов на единицу
MVAR = 3-фазный номинал конденсаторной батареи
X «= Субпереходное реактивное сопротивление двигателя
LRM = Множитель заторможенного ротора

Предпосылки


Система расчета на единицу — это метод, посредством которого системные импедансы и величины нормализуются по разным уровням напряжения к общей базе.Устранение влияния переменных напряжений упрощает необходимые расчеты.

Чтобы использовать метод на единицу, мы нормализуем все системные импедансы (и проводимости) в рассматриваемой сети к общей базе. Эти нормированные импедансы называются импедансами на единицу. Любой импеданс на единицу будет иметь одинаковое значение как на первичной, так и на вторичной обмотке трансформатора и не зависит от уровня напряжения.

Сеть с импедансом на единицу может быть затем решена с помощью стандартного сетевого анализа.

Существует четыре базовых величины: базовая МВА, базовая КВ, базовое сопротивление и базовый ампер. Когда любые два из четырех назначены, два других могут быть получены. Обычной практикой является присвоение базовых значений исследования MVA и KV. Затем вычисляются базовые амперы и базовые сопротивления для каждого из уровней напряжения в системе. Назначенный MVA может быть рейтингом MVA одного из преобладающих элементов системного оборудования или более удобным числом, например 10 МВА или 100 МВА. Выбор последнего имеет некоторое преимущество общности, когда проводится много исследований, в то время как первый выбор означает, что импеданс или реактивное сопротивление по крайней мере одного значимого компонента не нужно будет преобразовывать в новую базу.Номинальные линейные системные напряжения обычно используются в качестве базовых напряжений, а трехфазное питание используется в качестве базового питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *