26.06.2024

Формула потери холостого хода трансформатора: что это такое, как определить, формулы и таблицы

Содержание

что это такое, как определить, формулы и таблицы

В результате энергопотерь происходит перерасход средств и материалов. Из-за этого электричество дорожает. Чтобы справиться с этой проблемой, стараются вовремя выявлять неполадки и предотвращать свои в работе. Негативно на работу устройства влияют потери на холостом ходу трансформатора. Для устранения данной проблемы постоянно разрабатываются новые методики.

Понятие холостого хода трансформатора

Когда у трансформатора наблюдается выделенное питание одной обмотки, а другие пребывают в разомкнутом состоянии. Этот процесс приводит к утечке энергии, что и называют потерями холостого хода. Его развитие происходит под влиянием ряда внешних и внутренних факторов.

Мощность трансформатора не используется в полной мере, а часть энергии утрачается по причине некоторых магнитных процессов, особенностями первичной обмотки и изоляционного слоя. Последний вариант влияет при использовании приборов, функционирующих на повышенной частоте.

Понятие холостого хода трансформатора

Какие факторы влияют на потери

Современные трансформаторы в условиях полной нагрузки достигают 99% КПД. Но устройства продолжают совершенствовать, пытаясь снизить утрату энергии, которая практически равны сумме потерь холостого хода, возникающих под влиянием разнообразных факторов.

Изоляция

Если на стягивающих шпильках установлена плохая изоляция или ее недостаточно, возникает замкнутый накоротко контур. Это один из главных факторов данной проблемы трансформатора. Поэтому процессу изоляции следует уделять больше внимания, используя для этих целей качественные специализированные материалы.

Изоляция трансформатор

Вихревые токи

Развитие вихревых токов связано с течением магнитного потока по магнитопроводу. Их особенность в перпендикулярном направлении по отношению к потоку. Чтобы их уменьшить, магнитопровод делают из отдельных элементов, предварительно изолированных. От толщины листа и зависит вероятность появления вихревых токов, чем она меньше, тем ниже риск их развития, приводящего к меньшим потерям мощности.

Чтобы уменьшить вихревые токи и увеличить электрическое сопротивление стали, в материал добавляют различные виды присадок.

Они улучшают свойства материала и позволяют снизить риск развития неблагоприятных процессов, плохо отражающихся на работе устройства.

Вихревые токи

Гистерезис

Как и переменный ток, магнитный поток также меняет свое направление. Это говорит о поочередном намагничивании и перемагничивании стали. Когда ток меняется от максимума до нуля, происходит размагничивание стали и уменьшение магнитной индукции, но с определенным опозданием.

При перемене направления тока кривая намагничивания формирует петлю гистерезиса. Она отличается в разных сортах стали и зависит от того, какие максимальные показатели магнитной индукции материал может выдержать. Петля охватывает мощность, которая постепенно перерасходуется на процесс намагничивания. При этом происходит нагревание стали, энергия, проводимая по трансформатору, превращается в тепловую и рассеивается в окружающую среду, то есть, она тратится зря, не принося никакой пользы всем пользователям.

Гистерезис

Характеристики электротехнической стали

Для трансформаторов используют преимущественно холоднокатаную сталь. Но показатель потерь в ней зависит от того, насколько качественно собрали устройство, соблюдались ли все правила в ходе производственного процесса.

Для уменьшения потерь можно также немного добавить сечения проводам на обмотке. Но это не выгодно с финансовой точки зрения, ведь придется использовать больше магнитопровода и других важных материалов. Поэтому размер обмоточных проводов меняют редко. Пытаются найти другой, более экономичный способ решения этой проблемы.

Характеристики электротехнической стали

Перегрев

В процессе работы трансформатора его элементы могут нагреваться. В этих условиях устройство не способно нормально выполнять свои функции. Все зависит от скорости этого процесса. Чем выше нагрев, тем быстрее прибор перестанет выполнять свои прямые функции и понадобится капитальный ремонт и замена определенных деталей.

В первичной обмотке

Если электрический ток по проводнику замыкается, то высокая вероятность утечки электрической энергии. Размер потерь зависит от величины тока в проводнике и его сопротивления, а также от показателя нагрузок, возлагаемых на прибор.

В первичной обмотке

Как определить потери

Этот процесс можно измерить, воспользовавшись мощной установкой. Формула включает такие действия: необходимо умножить показатели их мощности друг на друга. При использовании этого способа необходимо учитывать наличие определенных погрешностей. Искажение связано с тем, что коэффициент мощности учесть точно нельзя. Этот показатель называют конус игла. Он достаточно важен для работы устройства.

Таблица потерь силовых трансформаторов по справочным данным в зависимости от номинала

Чаще всего проблема утечки электроэнергии связана с движением вихревых токов и перемагничиванием. Под влиянием этих факторов нагревается магнитопровод, который обуславливает основную часть потерь холостого хода независимо от тока нагрузки. Развитие этого процесса происходит независимо от того, в каком режиме функционирует устройство.

 Постепенно, под влиянием определенных факторов могут меняться эти показатели в сторону значительного увеличения.

Таблица потерь ХХ

Мощность кВаНапряжение ВН/НН, кВПотери холостого хода Вт
25010/0,4730
31510/0,4360
40010/0,41000
50010/0,41150
63010/0,41400
80010/0,41800
100010/0,41950

Проверка устройства в режиме ХХ

Для этого выполняют такие действия:

  1. С использованием вольтметра проверяют напряжение, подающееся на катушку.
  2. Другим вольтметром исследуют напряжение на остальных выводах. Важно использовать устройство с достаточным сопротивлением, чтобы показатели были требуемого значения.
  3. Выполняют присоединение амперметра к цепи первичной обмотки. С его помощью можно добиться определения силы тока холостого хода. Также прибегают к применению ваттметра, с помощью которого стараются выполнить измерение уровня мощности.

После получения показаний всех приборов выполняют расчеты, которые помогут в вычислении. Чтобы получить нужные данные, необходимо показатели первой обмотки разделить на вторую. С применением данных опыта ХХ с результатами короткозамкнутого режима определяют, насколько полно устройство выполняет свои действия.

Проверка устройства в режиме ХХ

Особенности режима ХХ в трехфазном трансформаторе

На функционирование трехфазного трансформатора в таком режиме влияют отличия в подключении обмоток: первичная катушка в виде треугольника и вторичная в форме звезды. Ток способствует созданию собственного потока.

Трехфазный ток в виде группы однофазных имеет такие особенности: замыкание ТГС магнитного потока происходит в каждой фазе за счет сердечника. Если напряжение будет постепенно увеличиваться, то в изоляции возникнет пробой и электроустановка рано или поздно выйдет из строя.

Если в трансформаторе используется бронестержневая магнитная система, то в нем можно наблюдать развитие похожих процессов.

Особенности режима ХХ в трехфазном трансформаторе

Примеры определения потерь ХХ на реальных моделях

Чтобы определить показатель потерь в течение года на трансформаторе типа ТНД мощностью в 16МВА, необходимо воспользоваться эмпирической формулой:

Формула

где:

  • n – сколько электротехнических устройств используется;
  • β – коэффициент загрузки трансформатора, представляющий собой отношение расчетной мощности к номинальной (β = Sp/Sн).

Вывод

Энергопотери в условиях холостого хода трансформатора связаны с магнитными потерями, потерями в первичной обмотке и изоляционном слое. Для снижения этого показателя до сих пор ведутся работы, несмотря на то, что КПД современных трансформаторов в условиях повышенной нагрузки составляет 99%.

Для снижения показателя утечки энергии необходимо снизить влияние провоцирующих факторов. Чтобы добиться этого, постоянно усовершенствуют технологию создания устройств, используют только прочные материалы, проверяя их экспериментальным путем.

Что такое холостой ход трансформатора: опыт и таблица потерь

Холостой ход трансформаторов может понадобиться тогда, когда требуется определить реальные параметры тока и напряжения, выводимыми во время трансформации. Ее обеспечивают специальные устройства, обеспечивающие понижение или повышение напряжения переменного электрического тока. С помощью холостого хода выясняются  фактические потери процесса работы устройства.

При режиме работы с разомкнутой вторичной обмоткой частота тока не изменяется. Остаются прежними и показатели мощности. Таким образом можно выяснить фактическую силу тока, электрическое сопротивление. Какого бы не был типа трансформатор, они имеют аналогичные характеристики. Наблюдение за работой холостого хода трансформатора необходимо при их эксплуатации и при проверки их работоспособности.

В данной статье будут описаны основные технические нюансы режима холостого хода и область его применения. К статье бонусом добавлен видеоролик с информацией о холостом ходе трансформатора и файл с учебным пособием Каганович Е.А. “Испытания трансформаторов”.

Режим холостого хода для трансформаторов

Трансформатор.

Передача и использование электрической энергии

Электрическая энергия, которая вырабатывается генераторами на электростанциях, передается к потребителям на большие расстояния. Трансформаторы в случае широко используются Линии, по которым электрическая энергия передается от электростанций к потребителям, называют линии электропередачи (ЛЭП).

При передаче электроэнергии на большие расстояния неизбежны ее потери, связанные с нагреванием проводов. Потери при нагревании электрических проводов прямо пропорционально I2 через проводник (согласно закону Джоуля — Ленца).  Работа любого трансформатора состоит из трех основных режимов:

  • Режим холостого хода трансформатора называется режим с разомкнутой вторичной обмоткой;
  • рабочим режимом (ходом) трансформатора называется режим, при котором в цепь его вторичной обмотки включена нагрузка с сопротивлением R = 0;
  • режимом короткого замыкания называется режим, при котором вторичная обмотка трансформатора замкнута без нагрузки. Данный режим опасен для трансформатора, т.к. в этом случае ток во вторичной обмотке максимален и происходит электрическая и тепловая перегрузка системы.

Режим холостого хода для трансформаторов

Один из самых основных режимов – это холостой ход. На основании характеристик холостого хода происходит анализ всех режимов работы трансформатора.

трансформатор Чтобы уменьшить потери энергии, необходимо уменьшить силу тока в линии передачи. При данной мощности уменьшение силы тока возможно лишь при увеличении напряжения (P=UI).

Для этого между генератором и линией электропередачи включают повышающий трансформатор, а понижающий трансформатор — между ЛЭП и потребителем электроэнергии. В бытовых электроприборах (по технике безопасности) используются небольшие напряжения 220 и 380 В. У современных трансформаторов высокий КПД — свыше 99%.

Режим холостого хода трансформатора

Режимом холостого хода трансформатора называют режим работы при питании одной из обмоток трансформатора от источника с переменным напряжением и при разомкнутых цепях других обмоток. Такой режим работы может быть у реального трансформатоpa, когда он подключен к сети, а нагрузка, питаемая от его вторичной обмотки, еще не включена.

По первичной обмотке трансформатора проходит ток I, в то же время во вторичной обмотке тока нет, так как цепь ее разомкнута. Ток I, проходя по первичной обмотке, создает в магнитопроводе синусоидально изменяющийся лоток Ф, который из-за магнитных потерь отстает по фазе от тока на угол потерь δ.

Очевидно, что переменный магнитный поток Ф пересекает обе обмотки трансформатора. В каждой из них возникают эдс: в первичной обмотке — эдс самоиндукции Е1, во вторичной обмотке — эдс взаимоиндукции Е2. Действующие значения этих эдс зависят от числа витков в обмотках, магнитного потока Ф и частоты его изменения f. Величины эдс определяют по формулам:

Е1 = 4,44fω1Ф0 макс10-8В,

Е2 = 4,44fω2Ф2 макс10-8В,

где ω1 и ω2 — числа витков в обмотках;

f — частота, Гц;

Ф0 макс — максимальное значение магнитного потока, Вб.

Разделив Е1 на Е2, получим

Е1 / Е2 = ω1 / ω2.

режим холостого хода трансформатора Это соотношение характеризует одно из основных свойств трансформатора: эдс в обмотках трансформатора пропорциональны количеству витков. Отношение числа витков ω1 / ω2 = k называют коэффициентом трансформации.

Таким образом, если мы хотим повысить полученное от генератора напряжение в 10, 100 или 1000 раз, то необходимо так подобрать обмотки трансформатора, чтобы число витков ω2 вторичной обмотки было больше числа витков ω1 первичной обмотки соответственно в 10, 100 или 1000 раз.

Тогда вторичная обмотка оказывается обмоткой высшего напряжения (ВН), а первичная — обмоткой низшего напряжения (НН). Наоборот, если необходимо снизить напряжение в линии, первичное напряжение подводят к обмотке ВН, а к обмотке НН подключают приемники электрической энергии.

Итак, любой трансформатор может работать как повышающий и как понижающий. Все зависит от того, к какой из его обмоток будет подведено напряжение для преобразования. Обмотка трансформатора, к которой подводится энергия преобразуемого переменного тока, называется первичной (независимо от того, будет ли эта обмотка высшего или низшего напряжения). Обмотка трансформатора, от которой отводится энергия преобразованного переменного тока, называется вторичной.

Мы рассмотрели действие только рабочего, или основного, магнитного потока Ф. Однако в трансформаторе кроме рабочего существует еще магнитный поток рассеяния Фр1. Этот магнитный поток образуется силовыми линиями, которые ответвляются от основного потока в сердечнике и замыкаются по воздуху вокруг витков обмотки ω1.

Поскольку поток рассеяния замыкается по воздуху, его величина пропорциональна току, в нашем случае — току холостого хода I. Следовательно, поток рассеяния Фр1 является, как и ток I, переменным и, пересекая витки первичной обмотки, создает в ней эдс самоиндукции Ер1. В первичной обмотке трансформатора создаются две эдс самоиндукции: одна E1 — рабочим магнитным потоком Ф, другая Ер1 — магнитным потоком рассеяния.

Интересный материал для ознакомления: полезная информация о трансформаторах тока.

Мы знаем, что эдс самоиндукции всегда направлена против приложенного напряжения и ее действие на ток в цепи равносильно добавочному сопротивлению, которое называют индуктивным и обозначают х. Для поддержания неизменным тока холостого хода подводимое напряжение U1 должно расходоваться не только на преодоление активного сопротивления r1 обмотки, но и на создание эдс самоиндукции.

Другими словами, приложенное напряжение U1 складывается из нескольких частей: первая часть равна эдс самоиндукции E1 от потока Ф, вторая — эдс самоиндукции Ер1 от потока рассеяния Фр1, третья — активному падению напряжения Ir1.

трансформатор

Режимы работы трансформатора.

Холостой ход тpexфaзного устройства

Характер работы З-фaзного устройства в режиме XX зависит от магнитной системы и схемы подключения обмоток:

  • первичная катушка — «треугольником»;
  • вторичная — «звездой» (D/Y): имеет место свободное замыкание TГC тока I1 по обмоткам устройства. Поэтому магнитный поток и ЭДC являются синусоидальными и нежелательные процессы, описанные выше, не происходят; схема Y/D: TГC магнитного потока появляется, но ток от наведённой им дополнительной ЭДC свободно течет по замкнутым в «треугольник» вторичным катушкам.

схема работы трансформатора Этот ток создаёт свой поток вектора магнитной индукции, который гасит вызывающую его третью ГC основного MП. B результате магнитный поток и ЭДC, имеют почти синусоидальную форму, соединение первичной и вторичной катушек «звездой» (Y/Y).

B последней схеме TГC тока I1 отсутствует, поскольку для нее нет пути: третьи гармонии каждой из фаз в любой момент времени направлены к нулевой точке или от неё. Из-за этого искажается магнитный поток.

Дальнейшее определяется магнитной системой: З-фазный трансформатор в виде группы 1-фaзныx: TГC магнитного потока замыкается в каждой фазе по собственному сердечнику и из-за малого магнитного сопротивления последнего, достигает амплитуды в 15% – 20% рабочего магнитного потока.

Она созидает дополнительную ЭДC, амплитуда которой может достигать уже 45% – 60% от основной ЭДC. Такой рост напряжения может привести к пробою изоляции c последующей поломкой электроустановок. Трансформаторы c бронестержневой магнитной системой имеют место такие же явления (третьи гармонические магнитного потока замыкаются по боковым ярмам мaгнитопpоводa).

Тpexcтepжнeвaя магнитная система: TГC пути по мaгнитопpоводa не имеет и замыкается по среде c малой магнитной проницаемостью — воздух, масло, стенки бака. Поэтому она имеет малую величину и значительной дополнительной ЭДC не наводит.

Как определить коэффициент трансформации

Что такое «холостой ход трансформатора»? По сути, это особый режим работы устройства, условием которого является разомкнутость вторичной обмотки, а первичная обмотка имеет номинальное напряжение. В таком состоянии, при проведении ряда расчетов, можно определить точные параметры целого ряда показателей, например, для трансформаторных устройств распространенного однофазного типа так рассчитываются:

  • коэффициент трансформации;
  • активное, полное, индуктивное сопротивление ветви намагничивания;
  • коэффициент мощности, процентное значение тока и измерения холостого хода.

Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

Алгоритм проведения измерений холостого хода выглядит так:

  • Измеряется ток, который был приложен к первичной обмотке, посредством измерительных приборов, которые включены в общую цепь.
  • Замыкается вторичная обмотка на вольтметре. Сопротивление должно быть такой величины, чтобы значение тока вторичной обмотки приближалось к минимальной отметке.
  • Величина тока холостого хода в первичной обмотке минимальна относительно значения номинала, если сравнивать с прикладываемым напряжением, которое приводит в равновесие электродвижущая сила первичной обмотки. И оба этих показателя отличаются незначительно, а значит значение хода электродвижущей силы в первичной обмотке можно определить по данным вольтметра.

Наиболее точны

Режим холостого хода для трансформаторов

е искомые значения можно получить, используя обмотки различного напряжения – низкого и высокого. Точность таких измерений будет определяться разницей номиналов между ни

ми. схема потерь электроэнергии

Схема потерь электроэнергии.

Причины и следствия потерь холостого хода трансформатора

Потери холостого хода трансформаторных устройств любого типа — это следствие износа устройств. Со временем их магнитная система и структура используемого металла стареет и меняется, межлистовая изоляция становится хуже, а прессовка сердечника ослабляется. Естественно, вы это негативно сказывается на уровне потерь электроэнергии.

Практика показывает, что вопреки установленных нормам, согласно которым потери могут отличаться от заводских показателей не более, чем на пять процентов, во многих случаях они превышают порог в пятьдесят процентов. Особенно это касается трансформаторов силового типа. Данные измерений такого типа устройств позволяют довольно точно прогнозировать потери энергии в каждом отдельном муниципалитете. Таблица допустимых потерь при холостом ходу трансформатора приведена ниже.

Таблица допустимых потерь при холостом ходу трансформатора

Таблица допустимых потерь при холостом ходу трансформатора.

Как измерить потери холостого хода трансформатора

Основные принципы измерений потерь холостого хода всех видов трансформаторных приборов прописаны в ГОСТах. Главной причиной ошибочных результатов, полученных во время проведения измерений, можно назвать низкую точность измерительных устройств и неверные действия замерщиков, а также несоответствие необходимым условий проведения измерений. Чтобы избежать отклонений, влияющих на прогнозы и корректировку условий и интенсивности эксплуатации приборов, стоит предварительно разработать, согласовать с изготовителем и утвердить методику измерения потерь в данном режиме.

схема потерь на холостом ходу

Эффективность действия устройства напрямую зависит от такого явления, как электромагнитная индукция. Что такое режим холостого хода сварочного трансформатора? Напомним, что такой режим устанавливается при разомкнутой вторичной обмотке в тот момент, когда подключается первичная обмотка с током I1. Напряжение сети переменного тока в данном случае равно U1.

Ток, идущий по первичной обмотке, моделирует магнитный поток с переменными характеристиками, индуцирующий переменное напряжение U2, возникающее во вторичной обмотке. А так как ее цепь находится в разомкнутом состоянии, соответственно ток I2 имеет нулевое значение.

То есть во вторичной цепи нет никаких затрат электроэнергии. В этих условиях вторичное напряжение, которое возникает в комментируемом режиме, достигает пиковых значений. Такая величина является напряжением холостого хода.

Принцип действия таких устройств базируется на преобразовании стандартного сетевого напряжения. Этот стандарт преобразуется в напряжение холостого хода, имеющее приблизительный диапазон от 60 до 80 В.

Режим холостого хода для трансформаторов

Все параметры и их соотношение влияют на уровень и плавность регулировки. Делать это можно двумя путями: меняя значение либо индуктивного сопротивления, либо напряжения холостого хода.

В первом случае, который является более частотным и популярным, регулировка сварочного тока происходит более плавно. Вторым предпочитают пользоваться, как альтернативным.

Плавность двухдиапазонного регулирования мощности тока в процессе работы трансформатора сварочного типа играет важную роль, так как дает возможность значительно снизить показатели массы, а также ощутимо уменьшить размеры устройства. Получить широкий диапазон больших токов можно, включая попарно параллельно катушки как первичной, так и вторичной обмоток, а чтобы получить диапазон токов малой мощности, их необходимо включать в последовательном режиме.

Заключение

Более подробно о проверке трансформаторов на холостом ходу можно почитать в файле с учебным материалом Кагановича Е.А. “Испытания трансформаторов”. Если у вас остались вопросы, можно задать их в комментариях на сайте.

Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.forca.com.ua
www.energiatrend.ru
www.ets.ifmo.ru
www.proprovoda.ru
www.kaplio.ru

Предыдущая

ТрансформаторыНеобходимые условия для выполнения параллельной работы трансформаторов

Следующая

ТрансформаторыЧем отличаются трансформаторы напряжения от трансформаторов тока

что это за режим, схема замещения, меры снижения тока

Трансформатор электрического тока является устройством преобразования энергии. Ток холостого хода трансформатора характеризует потери при отсутствии подключенной нагрузки. Величина данного параметра зависит от нескольких факторов:

  1. Конструктивного исполнения.
  2. Материала сердечника.
  3. Качества намотки.

При изготовлении преобразователей стремятся к максимально возможному снижению потерь холостого хода с целью повышения КПД, снижения нагрева,  а также уменьшения паразитного поля магнитного рассеивания.

Общая конструкция и принцип работы трансформатора

Конструктивно трансформатор состоит из следующих основных частей:

  1. Замкнутый сердечник из ферромагнитного материала.
  2. Обмотки.

Обмотки могут быть намотаны на жестком каркасе или иметь бескаркасное исполнение. В качестве сердечников трансформаторов напряжения промышленной частоты используется специальным образом обработанная сталь. В некоторых случаях встречаются устройства без сердечника, но они используются только в области высокочастотной схемотехники и в рамках данной темы рассматриваться не будут.

Конструкция трансформаторов

Принцип действия рассматриваемой конструкции заключается в следующем:

  1. При подключении первичной обмотки к источнику переменного напряжения она формирует переменное электромагнитное поле.
  2. Под воздействием данного поля в сердечнике формируется магнитное поля.
  3. Магнитное поле сердечника, в силу электромагнитной индукции, создает во всех обмотках ЭДС индукции.

ЭДС индукции создается, в том числе, в первичной обмотке. Ее направление противоположно подключенному напряжению, поэтому они взаимно компенсируются и ток через обмотку при отсутствии нагрузки равен нулю. Соответственно, потребляемая мощность при отсутствии нагрузки равна нулю.

трансформатор электрического тока

Понятие холостого хода

Приведенные выше рассуждения справедливы для идеального трансформатора. Реальные конструкции обладают следующими потерями (недостатками) на:

  • намагничивание сердечника;
  • магнитное поле рассеивания сердечника;
  • электромагнитное рассеивание обмотки;
  • междувитковую емкость проводов обмотки.

В результате, в реальных конструкциях трансформатора наводимая ЭДС индукции отличается от номинального напряжения первичной обмотки и не в состоянии его полностью скомпенсировать. В обмотке возникает некоторый ток холостого хода.  При подключении нагрузки данное значение суммируется с номинальным током и характеризует общие потери в электрической цепи.

Потери снижают общий КПД трансформатора, в результате чего растет потребление мощности.

Меры по снижению тока холостого хода

Основным источником возникновения тока холостого хода является конструкция магнитопровода.  В ферромагнитном материале, помещенном в переменное электрическое поле, наводятся вихревые токи электромагнитной индукции – токи Фуко, которые нагревают материал сердечника.

Для снижения вихревых потерь материал сердечника изготавливают из тонких пластин, отделенных друг от друга изолирующим слоем, которую выполняет оксидная пленка на поверхности. Сам материал производится по специальной технологии, с целью улучшения магнитных свойств (увеличения значения магнитного насыщения, магнитной проницаемости, снижения потерь на гистерезис).

Обратная сторона использования большого количества пластин состоит в том, что в местах стыков происходит разрыв магнитного потока, в результате чего возникает поле рассеивания. Поэтому для наборных сердечников важна тщательная подгонка отдельных пластин друг к другу. В ленточных разрезных магнитопроводах отдельные части подгоняются друг к другу при помощи шлифовки, поэтому при сборке конструкции нельзя менять местами части сердечника.

От указанных недостатков свободны О-образные магнитопроводы. Магнитное поле рассеивания у них стремится к нулю.

Поле рассеивания обмотки и междувитковую емкость снижают путем изменения конструкции обмоток и пространственного размещения их частей относительно друг друга.

Снижение потерь также достигается при возможно более полном заполнении свободного окна сердечника. При этом масса и габариты устройства стремятся к оптимальным показателям.

Холостой ход

Как проводится опыт холостого хода

Опыт холостого хода подразумевает подачу напряжения на первичную обмотку при отсутствии нагрузки. При помощи подключенных измерительных приборов измеряются электрические параметры конструкции.

Для проведения опыта холостого хода первичную обмотку включают в сеть последовательно с прибором для измерения тока- амперметром. Параллельно зажимам подключается вольтметр.

Следует иметь в виду, что предел измерения вольтметра должен соответствовать подаваемому напряжению, а при выборе амперметра нужно учитывать ориентировочные значения измеряемой величины, которые зависят от мощности трансформатора.

Опыт холостого хода

Коэффициент трансформации

Наиболее просто определяется коэффициент трансформации. Для этого сравнивается входное и выходное напряжение. Расчет производится по следующей формуле:

n=U1/U2

Данное отношение справедливо для всех обмоток трансформатора.

характеристики трансформаторов

Однофазные трансформаторы

В однофазных трансформаторах показания амперметра характеризуют потребляемый ток при отсутствии нагрузки. Данные показания являются конечными и нет необходимости в дальнейших вычислениях.

Трехфазные

Чтобы проверить трехфазный трансформатор, требуется усложнение схемы подключения. Необходимо наличие следующих приборов:

  • амперметры для измерения тока в каждой фазе;
  • вольтметры для измерения междуфазных напряжений первичной обмотки;
  • вольтметры для измерения междуфазных напряжений вторичной обмотки.

При проведении опыта холостого хода производятся следующие вычисления:

  • рассчитывается среднее значение тока по показаниям амперметра;
  • среднее значение напряжения первичной и вторичной обмоток.

Коэффициент трансформации вычисляется по полученным значениям напряжения аналогично однофазной системе.

Трехфазный трансформатор

Измерение тока

При измерении тока можно определить только величину электрических потерь.  Более полно определить параметры конструкции позволяет более сложная схема измерений.

Применение ваттметра

Подключив в первичную цепь ваттметр,  можно определить мощность потерь трансформатора в режиме холостого хода. Суммируясь с мощностью нагрузки, найденная величина определяет габаритную мощность трансформатора.

Измерение потерь

При измерениях тока холостого хода и мощности потребления, можно сделать выводы о общих потерях холостого хода, которые приводят к следующему:

  1. Нагрев проводов обмоток.
  2. Нагрев сердечника.
  3. Снижение КПД.
  4. Появление магнитного поля рассеивания.

Ваттметр

Схема замещения в режиме трансформатора

Прямой электрический расчет трансформатора сложен по той причине, что он представляет собой две электрических цепи, связанных между собой магнитной цепью.

Для упрощения расчетов удобнее пользоваться упрощенной эквивалентной схемой. В схеме замещения вместо обмоток используются комплексные сопротивления:

  • для первичной обмотки комплексное сопротивление включается последовательно в цепь;
  • для вторичной обмотки параллельно нагрузке.

Каждое комплексное сопротивление состоит из последовательно соединенного активного сопротивления и индуктивности.

Активное сопротивление – это сопротивление проводов обмотки.

Схема замещения в режиме трансформатора

От чего зависит магнитный поток взаимоиндукции в режиме ХХ

Магнитный поток взаимоиндукции в трансформаторе зависит от способа размещения обмоток на сердечнике и их конструктивного исполнения.

Важную роль играет коэффициент заполнения окна магнитопровода, который показывает отношение общего пространства, к месту, занятому обмоткой.

Чем ближе данный коэффициент к единице, тем выше будет взаимоиндукция обмоток и меньше потери в трансформаторе.

Трансформатор

Примеры расчетов и измерений в режиме ХХ

Измеряя ток, напряжение и мощность трансформатора в опыте холостого хода, можно рассчитать следующие дополнительные данные:

  • активное сопротивление первичной цепи r1=Pхх/U2;
  • полное сопротивление первичной цепи z1=U/Iхх;
  • индуктивное сопротивлении е x1=√(z2-r2).

Найти ток холостого хода без применения амперметра можно по показаниям вольтметра и ваттметра:

Iхх=Pхх/U.

Измерение тока и потерь холостого хода / Справка / Energoboard

В соответствии с требованиями ПУЭ производится одно из измерений:

а) при номинальном напряжении. Измеряется ток холостого хода. Значение тока не нормируется;

 


б) при малом напряжении. Измерение производится с приведением потерь к номинальному напряжению или без приведения (метод сравнения).

Опытом холостого хода трансформатора называется включение одной из его обмоток (обычно низкого напряжения) под номинальное напряжение. Потребляемый при этом ток называют током холостого хода Iхх (обычно выражают в % от Iном).

Таблица 2.10. Векторные диаграммы и расчетные формулы для определения группы соединения силовых трансформаторов






Группа

соединения
Угловое смещение

ЭДС, 0
Возможное соединение обмоток и векторная диаграмма линейных ЭДСUb-B(Ux-X)Ub-CUc-B
Номер формулы
00

ΥΥ; ΔΔ; ΔΖ

122
130

ΥΔ; ΥΔ; ΔΖ

334
11330

ΥΔ; ΔΥ; ΥΖ

343

Примечание: Формулы табл. 2.10



где U2 > и Кл соответственно линейное напряжение на зажимах обмотки низшего напряжения и линейный коэффициент трансформации.

Потребляемую при этом активную мощность называют потерями холостого хода Рхх (кВт). Эта мощность расходуется, в основном, на перемагничивание электротехнической стали (потери на гистерезисе) и на вихревые токи. Ток и потери холостого хода являются паспортными данными силовых трансформаторов.

Потери холостого хода трансформаторов Рхх, измеренные при нормальной частоте и весьма малом возбуждении (порядка нескольких процентов от номинального напряжения трансформатора), можно пересчитать к потерям холостого хода при номинальном напряжении по формуле

 

где Р’хх= Ризм – Рпр потери, измеренные при подводимом при измерении напряжении (возбуждении) U;

Рпр и Ризм — соответственно мощность, потребляемая приборами и суммарные потери в трансформаторе и приборах.

n — показатель степени, равный для горячекатаной стали 1,8; для холоднокатаной стали — 1,9.

Заводы-изготовители производят измерения потерь холостого хода при номинальном напряжении и при малом (обычно 380 В) напряжении.

Измерение потерь холостого хода может быть произведено также при напряжении, равном 5 — 10% номинального. Отличие полученных значений потерь от заводских данных должно быть не более 10% для однофазных и не более 5% для трехфазных.

Измерение потерь холостого хода производится при напряжении и по схемам, указанным в протоколе испытания завода-изготовителя.

Если завод-изготовитель производил измерения потерь холостого хода только при номинальном напряжении трансформатора, то следует измерение потерь холостого хода произвести при напряжении 380 В и выполнить пересчет их к номинальному напряжению по формуле, указанной выше.

В дальнейшем измерение потерь холостого хода следует производить при напряжениях 380 В. У исправных трехфазных трехстержневых трансформаторов соотношение потерь, как правило, не отличается от соотношений, полученных на заводе-изготовителе, более, чем на 5%.

Для трансформаторов, имеющих переключающее устройство с токоограничивающим реактором, дополнительно производится опыт холостого хода на промежуточном положении «Мост».

Измерение потерь холостого хода при напряжении 380 В следует производить до измерения сопротивления обмоток постоянному току и прогрева трансформатора постоянным током.

При измерении потерь и тока холостого хода следует применять измерительные приборы класса точности 0,5. Для измерений могут использоваться переносные измерительные комплекты типа К-50 (К-51).

При измерении потерь и тока холостого хода при номинальном напряжении обмоток выше 0,4 кВ рекомендуется применять измерительные трансформаторы класса точности 0,2.

Потери холостого хода трехфазных трехстержневых трансформаторов измеряют при трехфазном или однофазном возбуждении.

При трехфазном возбуждении измерения производят двумя однофазными ваттметрами или одним трехфазным ваттметром (см. рис. 2.9).

Измеренные потери определяются как алгебраическая сумма потерь, измеренных каждым ваттметром. Потери в трансформаторе определяют как разность измеренных суммарных потерь и потерь в приборах (см. рис. 2.10), поскольку потери в приборах могут быть соизмеримы с потерями холостого хода.

 

 

 


Ток холостого хода трансформатора определяют как среднеарифметическое значение токов трех фаз.

При измерении потерь холостого хода при однофазном возбуждении напряжением 380 В проводят три опыта с приведением трехфазного трансформатора к однофазному путем поочередного замыкания накоротко одной из его фаз и возбуждении двух других фаз.

Первый опыт — замыкают накоротко обмотку фазы А, возбуждают фазы В и С трансформатора и измеряют потери.

Второй опыт — замыкают накоротко обмотку фазы В, возбуждают фазы А и С трансформатора и измеряют потери.

 

Соединение первичной обмотки в треугольник

Соединение первичной обмотки в звезду с выведенной нулевой точкой

Третий опыт — замыкают накоротко обмотку фазы С, возбуждают фазы А и В трансформатора и измеряют потери.

 




 

Группа соединения Y/Δ

 


Обмотки любой фазы замыкают накоротко на соответствующих выводах одной из обмоток трансформатора. Схемы однофазного возбуждения трехфазного трансформатора для измерения потерь при малом напряжении для различных групп соединений приведены на рис. 2.11.

Потери в трансформаторе при напряжении U’

 

где U’ — приложенное напряжение при замерах потерь холостого хода;

P’0АВ, Р’0ВС, Р’0АС — потери, определенные при указанных выше опытах (за вычетом потерь в приборах) при одинаковом значении подводимого напряжения.

Приведенные к номинальному напряжению потери трансформатора измеренные при некотором малом напряжении U’ определяются

где n — зависит от сорта трансформаторной стали: для горячекатаной 1,8; для холоднокатаной 1,9.

При отсутствии дефектов и одинаковых значениях подведенного напряжения, приближенные соотношения между значениями фазовых потерь будут следующими:

  • при соединении возбуждаемой обмотки в звезду (с доступной нейтралью) или треугольник потери, измеренные при подведении питания к выводам обмоток фазы «А» и «С» практически одинаковы и, как правило, не менее, чем на 25% больше потерь, измеренных при подведении питания к выводам обмотки средней фазы «В»;
  • при соединении возбуждаемой обмотки в звезду без доступной нейтрали потери, измеренные при подведении питания к выводам «АВ» и «ВС», практически одинаковы, а потери, измеренные при подведении питания к выводам «АС» на 25% больше потерь, измеренных при подведении питания к выводам «АВ» и «ВС».

Необходимо иметь ввиду, что если измеряют потери у нескольких одинаковых трансформаторов (одинаковая трансформаторная сталь и одинаковая величина подводимого напряжения), то у сравниваемых трансформаторов одинаковым значениям потерь холостого хода при номинальном напряжении (указанным заводом-изготовителем), должны соответствовать приблизительно одинаковые значения потерь при малом напряжении. Кроме того, у одинаковых трансформаторов соотношения фазовых потерь должны быть приблизительно равными.

 

Холдинг «Энергия» — мини-расчет потерь

  • Клиентам
    • Техприсоединение
      • Присоединение мощности
        • тарифы на техприсоединение Московская область 2014
        • Тарифы техприс. Мособласть до 2013 г.
      • Документы к заявке ТП
      • Мониторинг доступности электросетей
      • Расчет техприсоединения
      • Биржа мощности
      • Обсудить в FB
      • Документы к заявке ТП
      • Уведомительный порядок
      • Сроки по ТУ
    • Энергоаудит и консалтинг
      • Расчет тарифа на тепло
        • Расчет теплопотерь
          • Документы
          • Экспертиза
        • Экспертиза тарифа на тепло
        • Расчет НУР котельной
          • Документы
      • Потери электроэнергии
        • Цена расчёта потерь
          • Письмо Минфина по потерям
          • Письмо ФСТ №ЕП-6992/12
          • НДС и потери электроэнергии
        • Мини-расчет потерь
          • Потери на Собственные Нужды
          • Потери до ГБП
        • Норматив электропотерь 2015
        • Данные для расчета потерь
        • Адмрегламент по потерям
        • Потери в Реакторах
        • Бенчмаркинг потерь
        • Потери электроэнергии с 2015
        • Приказ по расчету потерь
          • Инструкция по расчету потерь электроэнергии
        • Инф.письмо МЭ,ФСТ потери с 2015
      • Энергоаудит
        • Исходные данные
        • Экспресс-энергоаудит
        • Энергопаспорт для ТСО
      • Оформление мощностей
      • Инвестрпрограммы
      • Расчет тарифа на передачу ээ
      • Программа энергосбережения
      • Расчет НУР ТЭС
      • Расчет техприсоединения
      • Сертификация
        • Сертификация в энергетической отрасли
      • Оценочная деятельность
        • Оценка сооружений
        • Оценка зданий
        • Оценка помещений
        • Оценка незавершёнки
        • Оценка земельных участков
        • Оценка сервитутов
          • Охранные зоны ЛЭП
        • Оценка промоборудования
        • Оценка офисного оборудования
        • Оценка бизнеса предприятия
        • Оценка акций
        • Нормативы оценки
      • Вступление в СРО
        • СРО в строительстве
      • Расчет НЗТ
    • Сетевая деятельность
      • Сетевое сопровождение
        • Инвестпрограммы
        • Сопровождение по ф.46
        • отчетность по приказу 340
      • Аренда электросетей
        • Электросети СНТ
          • Безвозмездное пользование электросетевым имуществом
        • Опросный лист
        • Регистрация Лизинга
      • Средние ЗП элетросетей
      • Электросетевые тарифы
        • Техприс Мособласть
          • Тарифы техпрес Мособл 2014
        • Тарифы на передачу ФСК
        • Индивидуалка Москва
        • Индивидуальные
          • Индивидуальные
          • Индивидуальные
        • Техприс Якутия
        • Тарифы Ростов
        • Индивидуалка на передачу Казань
        • Проблемы с тарифом
        • Альтернативное регулирование
        • Техприс Архангельск
        • Техприс Алайский край
      • Замерный день в энергетике
      • Критерии ТСО
        • Применение критериев ТСО
      • Бесплатное техприсоединение
      • Электросетевое имущество
        • Оформление прав собственности
        • госпошлина
          • Размеры госпошлины
        • Госрегистрация Доверительного управления
          • Налоги
        • Налог на сети
      • Отчетность Росстат
      • ТСО Мособласти
      • расчет пропускной способности
      • Монопотребитель
      • Срок поверки учета
    • Энергосбыт
      • Стандарт раскрытия информации филиал МО
        • 40б
        • 40в(20в)
        • 20к
        • шкафы-купе
    • Технические услуги
      • Эксплуатация электросетей
        • Расчет у.е.
      • Прайс монтаж КЛ
      • Прайс на внутренний электромонтаж
      • Монтаж ВЛЭП
      • Монтаж климат-систем
      • АИИСКУЭЭ-light
      • Аренда нагрузочных модулей
      • Энерголизинг Энергосервисные контракты
      • Расчет МТР для МТП
    • Электротехническая продукция
      • ММПС 110/10(6) кВ
      • ПКУ
        • GCHVM-W
        • РиМ-высоковольтный учет
      • КТП, БКТП, Тр, КСО, КРУ
        • МТП
      • РЩ
      • птицезащитные устройства
      • отпугиватели
      • Кабельная арматура
      • Спецтехника
        • БКМ
        • ЭТЛ-10
          • Регистрация ЭТЛ
        • УИГ
      • Светодиодные светильники
      • Двери по ГОСТ 30247.2-97
      • Опоры ж/б СВ 95, 105, 110
        • Деревянные опоры ЛЭП
    • IT-услуги
      • Создание и поддержка сайтов
      • Электронная подпись
        • Электронные торги
        • Электронный документооборот
        • Работа на портале Госуслуг
        • Работа на портале Росреестра
        • Электронная отчетность
        • Отчетность в ФСТ
        • Работа в СМЭВ
        • Закупки по 223-ФЗ
      • Программы по теплу
      • АРМ «E-pass»
      • ПК по расчету потерь эл.эн. РТП3
      • Облачный учет энергоресурсов
      • 1C: Строительство
      • Прогрес++
      • Автокадонлайн
    • Электро-курилка
      • День энергетика. ГОЭЛРО
        • День кабельщика
        • Поздравления ко дню энергетика
          • Светить — и никаких гвоздей!
          • С Днем Энергетика! Присоединяйтесь к празднику!
          • Голро-2. Только плюсы. С днем Энергетика!
          • Вместе всегда тепло!
          • Да будет Свет! Чубайс
          • Свет и радость мы приносим Людям!
          • Спасибо за электрофикацию!
          • Конца света не будет!
          • Спасибо за Питание!
          • Сопротивление бесполезно!
          • Клип_Виагры
      • Юмор энергетика
      • Афоризмы энергетиков
        • Шарады
          • Зарядить смартфон!
          • Ответ по смартфонам
      • Истории из жизни энергетиков
      • Диалоги и реплики энергетиков
      • Форум
      • Удобные сервисы
        • Поиск дров
        • Гарант-онлайн
      • Игра Энергосеть
        • Правила
        • Фридман Фриз
        • Стать энергомагнатом
        • Русификация Power Grid
        • Компоненты
      • Energy-films
        • Видео-Energy
          • Птичку жалко!
          • Энерготреш
        • Покушение на ГОЭЛРО
        • Свободная энергия Теслы
        • Крутая энергетика
        • НИКОЛA ТЕСЛА: ЛУЧ СМЕРТИ
      • галерея ТП
      • Energy-traval
      • energyfm
      • Энергетика детям
        • Энерготовары для детей
    • Питающие центры
      • Питающие центры Ленобласти
      • СПб
    • Проверь контрагента!
  • Электроэнергетика России
    • Doingbusiness энергетика
      • doingbusiness методика по ТП
      • doing business 2014 Россия
      • doingbusiness-2018
      • doingbusiness-2018
    • Стоимость электроэнергии
      • Котловые тарифы
        • Предельники
        • Котел Москва
        • Котел Мособласть
        • Котел Алтай
        • Амур
        • Котел Ленобласти
        • Котел Башкоркостан
        • Белгород
        • Брянск
        • Владимир
        • Котел Волгоград
        • Череповец
        • Воронеж
        • Биробиджан
        • Иркутск
        • Котел Казань
        • Калуга
        • Курган
        • Котел Калининград
        • Кемерово
        • Иваново
        • Иркутск
        • Нижний Новгород
        • Мурманск
        • Котел Ростов
        • Свердловск
        • Ижевск
        • Тамбов
        • Томск
        • Котлы Томской области
        • Тверь
        • Саратов
        • Смоленск
        • Ставрополь
        • Рязань
        • Ростов
        • Республика Тыва
        • Республика Марий Эл
        • Сыктывкар
        • Республика Карелия
        • Республика Калмыкия
        • Котел Липецк
        • Республика Мордовия
        • Республика Бурятия
        • Республика Северная Осетия
        • Республика Ингушетия
        • Псков
        • Приморский край
        • Пермский край
        • Пенза
        • Орел
        • Оренбург
        • Омск
        • Новосибирск
        • Новгородская область
        • Курск
        • Красноярск
        • Адыгея
        • Краснодар
        • Кострома
        • Черкесск
        • Нальчик
        • Челябинск
        • Котел Хакасия
        • Котловые тарифы Якутия
        • Кировская область
        • Котел Санкт-Петербург
      • Рейтинг стран по цене
      • Оптовый рынок
      • Сбытовые надбавки
        • Мособласть
        • Сбытовые надбавки Москва
      • ФСК — тарифы на передачу
      • Цена эл.энергии в Европе
        • в евро
      • Тарифы население
        • Рейтинг стран по стоимости электроэнергии 2014 население
        • Рейтинг стран по стоимости электроэнергии 2015 население
      • Анализ по ЧЧИ
        • Биробиджан
      • Котлообразование
      • Тарифы население
      • Ответственность за бездоговорку
    • Тесты
    • ЕНЭС
      • ФСК
        • Инвестпрограмма ФСК на 2014 — 2018 годы
      • МРСК
      • Энергосбыты
      • ОЭС Центра
      • Котлодержатели
      • Центры Питания
        • Карта Питающих центров Мосрег
          • Карта ПЦ ФСК
        • карта ПС Кубаньэнерго
      • Стандарт обслуживания ТСО
      • тендеры 94&223 ФЗ
    • Твой ТЭК
      • Структура мощности
        • Установленная мощность
        • Вводы генерирующих мощностей
        • Вводы электросетевых объектов
        • Баланс ээ 2012
        • баланс эл.энергии 2013
      • Потребление электроэнергии
    • Новости Энергетики
      • Методика техприсоединения

Расчет потери мощности в трансформаторе

Определить потери активной и реактивной мощности в трансформаторе типа ТДН 40000/110 мощностью Sн = 40 МВА, напряжением 110/10 кВ при его расчетной нагрузке в Sр = 32 МВА.

Решение.

1. Исходные данные по трансформатору принимаем по таблице 6 ГОСТ 12965-85, либо принимаются по паспорту на трансформатор:

  • ∆Рк = 170 кВт – потери короткого замыкания;
  • ∆Рх.х = 34 кВт – потери холостого хода;
  • I0 = 0,55% – ток холостого хода;
  • Uк = 10,5% – напряжение короткого замыкания для обмоток ВН-НН;

2. Определяем коэффициент загрузки трансформатора:

β = Sp/Sн = 32/40 = 0,8

3. Определяем суммарные потери активной мощности в трансформаторе по формуле 5.26 [Л1. с. 106]:

4. Определяем суммарные потери реактивной мощности в трансформаторе по формуле 5.27 [Л1. с. 106]:

Литература:

1. Электроснабжение промышленных и гражданских зданий. Ю.Д.Сибикин. 2006 г.

потери активной мощности в трансформаторе, потери реактивной мощности в трансформаторе

Поделиться в социальных сетях

Благодарность:

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Определение потерь мощности и электроэнергии в линии и в трансформаторе

При передаче электрической энергии от генераторов электростанций до потребителя около 12-18% всей вырабатываемой электроэнергии теряется в проводниках воздушных и кабельных линий, а также в обмотках и стальных сердечниках силовых трансформаторов.

При проектировании нужно стремиться к уменьшению потерь электроэнергии на всех участках энергосистемы, поскольку потери электроэнергии ведут к увеличению мощности электростанций, что в свою очередь влияет на стоимость электроэнергии.

В сетях до 10кВ потери мощности в основном обусловлены нагревом проводов от действия тока.

Потери мощности в линии.

Потери активной мощности (кВт) и потери реактивной мощности  (кВАр) можно найти по следующим формулам:

Формулы для расчета потери мощности в линии

где Iрасч – расчетный ток данного участка линии, А;

Rл – активное сопротивление линии, Ом.

Потери мощности в трансформаторах.

Потери мощности в силовых трансформаторах состоят из потерь, не зависящих и зависящих от нагрузки. Потери активной мощности (кВт) в трансформаторе можно определить по следующей формуле:

Потери активной мощности в трансформаторе

где ?Рст – потери активной мощности в стали трансформатора при номинальном напряжении. Зависят только от мощности трансформатора и приложенного к первичной обмотке трансформатора напряжения. ?Рст приравнивают  ?Рх;

?Рх— потери холостого хода трансформатора;

?Роб – потери в обмотках при номинальной нагрузке трансформатора, кВт; ?Роб приравнивают  ?Рк.

?Рк– потери короткого замыкания;

?=S/Sном – коэффициент загрузки трансформатора равен отношению фактической нагрузки трансформатора к его номинальной мощности;

Потери реактивной мощности трансформатора (кВАр) можно определить по следующей формуле:

Потери реактивной мощности в трансформаторе

где ?Qст – потери реактивной мощности на намагничивание, кВАр. ?Qст приравнивают ?.

? – намагничивающая мощность холостого хода трансформатора;

?Qрас – потери реактивной мощности рассеяния в трансформаторе при номинальной нагрузке.

Значения ?Рст(?Рх) и ?Роб(?Рк) приведения в каталогах производителей силовых трансформаторов. Значения ?Qст(?Qх) и ?Qрас  определяют по данным каталогов из следующих выражений:

Формулы для расчета потери реактивной мощности

где  – ток холостого хода трансформатора, %;

– напряжение короткого замыкания, %;

Iном – номинальный ток трансформатора, А;

Xтр – реактивное сопротивление трансформатора;

Sном – номинальная мощность трансформатора, кВА.

Потери электроэнергии.

На основании потерь мощности можно посчитать потери электроэнергии. Здесь следует быть внимательными. Нельзя посчитать потери электроэнергии умножив потери мощности при какой либо определенной нагрузке на число часов работы линии. Этого делать не стоит, т.к в течение суток или сезона потребляемая нагрузка изменяется и таким образом мы получим необоснованно завышенное значение.

Чтобы правильно посчитать потери электроэнергии используют метод, основанный на понятиях времени использования потерь и времени использовании максимума нагрузки.

Время максимальных потерь – условное число часов, в течение которых максимальный ток, протекающий в линии, создает потери энергии, равные действительным потерям энергии в год.

Временем использования максимальной нагрузки или временем использования максимума Тмах называют условное число часов, в течение которых линия, работая с  максимальной нагрузкой, могла бы передать потребителю за год столько энергии, сколько при работе по действительному переменному графику. Пусть W(кВт*ч) – энергия  переданная по линии за некоторый промежуток времени,  Рмах(кВт) -максимальная нагрузка, тогда время использования  максимальной нагрузки:

Тмах=W/Рмах

На основании статистических данных для отдельных групп электроприемников были получены следующие значения Тмах:

  • Для внутреннего освещения – 1500—2000 ч;
  • Наружного освещения – 2000—3000 ч;
  • Промышленного предприятия односменного – 2000—2500 ч;
  • Двухсменного – 3000—4500 ч;
  • Трехсменного   – 3000—7000 ч;

Время потерь можно найти по графику, зная Тмах и коэффициент мощности.

Зависимость времени максимальных потерь от продолжительности использования максимума нагрузки

Теперь зная ? можно посчитать потери электроэнергии в линии и в трансформаторе.

Потери энергии в линии:

Потери энергии в линии

Потери энергии в трансформаторе:

Потери энергии в трансформаторе

где ?Wатр –общая потеря активной энергии (кВт*ч) в трансформаторе;

?Wртр –общая потеря реактивной энергии (кВАр*ч) в трансформаторе.

Советую почитать:

Electric: Energy Efficiency — Introduction to Transformer Loses

Эта статья является выдержкой из книги «Двигатели и трансформаторы с повышенным КПД», компакт-диск доступен в CDA через Список публикаций.

Потери в трансформаторе возникают из-за протекания электрического тока в катушках и переменного магнитного поля в сердечнике. Потери, связанные с катушками, называются потерями нагрузки, а потери в сердечнике называются потерями холостого хода.

Что такое потери нагрузки?

Потери нагрузки зависят от нагрузки на трансформатор. К ним относятся тепловые потери и вихревые токи в первичных и вторичных проводниках трансформатора.

Тепловые потери, или I 2 R потери в материалах обмоток составляют наибольшую часть потерь нагрузки. Они создаются сопротивлением проводника потоку тока или электронов. Движение электронов заставляет молекулы проводника двигаться и производить трение и тепло.Энергию, генерируемую этим движением, можно рассчитать по формуле:

Вт = (вольт) (амперы) или VI.

Согласно закону Ома, В = RI , или падение напряжения на резисторе равно величине сопротивления в резисторе R, умноженной на ток I, протекающий в резисторе. Следовательно, тепловые потери равны (I) (RI) или I 2 R.

Разработчики трансформатора не могут изменить I или текущую часть потерь I 2 R, которые определяются требованиями нагрузки.Они могут изменить только сопротивление или R-часть I 2 R, используя материал с низким сопротивлением на площадь поперечного сечения без значительного увеличения стоимости трансформатора. Большинство разработчиков трансформаторов считают медь лучшим проводником, учитывая вес, размер, стоимость и сопротивление проводника. Также конструкторы могут снизить сопротивление проводника за счет увеличения площади поперечного сечения проводника.

Что такое потери без нагрузки?

Потери холостого хода вызваны током намагничивания, необходимым для питания сердечника трансформатора, и не меняются в зависимости от нагрузки на трансформаторе.Они постоянны и происходят 24 часа в сутки, 365 дней в году, независимо от нагрузки, отсюда и термин «потери холостого хода». Их можно разделить на пять компонентов: потери на гистерезис в слоях сердечника, потери на вихревые токи в слоях сердечника, потери I 2 R из-за тока холостого хода, потери на паразитные вихревые токи в зажимах сердечника, болтах и ​​других компонентах сердечника, и диэлектрические потери. Гистерезисные потери и потери на вихревые токи составляют более 99% потерь холостого хода, в то время как потери на паразитные вихревые токи, диэлектрические потери и потери I 2 R из-за тока холостого хода малы, и, следовательно, ими часто пренебрегают.Более тонкое ламинирование сердечника снижает потери на вихревые токи.

Наибольший вклад в потери холостого хода вносят гистерезисные потери. Гистерезисные потери происходят из-за того, что молекулы в слоях сердечника сопротивляются намагничиванию и размагничиванию переменным магнитным полем. Это сопротивление молекул вызывает трение, которое приводит к нагреву. Греческое слово гистерезис означает «отставать» и относится к тому факту, что магнитный поток отстает от магнитной силы. Выбор размера и типа материала сердечника снижает гистерезисные потери.

Значения потерь трансформатора (значения A и B)

Значения потерь в трансформаторе важны для покупателя трансформатора, который хочет выбрать наиболее экономичный трансформатор для своего применения. Использование коэффициентов A и B — это метод, применяемый большинством электроэнергетических компаний и многими крупными промышленными потребителями для капитализации будущей стоимости потерь холостого хода (которые относятся к затратам на обеспечение мощности системы) и потерь нагрузки (которые относятся к затратам). дополнительной энергии).Другими словами, значения A обеспечивают оценку эквивалентной текущей стоимости будущих потерь без нагрузки, а значения B обеспечивают оценку эквивалентной текущей стоимости будущих потерь нагрузки. Большинство коммунальных предприятий регулярно обновляют свои предотвращенные затраты на мощность и энергию (обычно на ежегодной основе) и используют значения A и B при выборе трансформатора. Большинство мелких конечных пользователей обычно используют методы оценки стоимости жизненного цикла, которые обсуждаются в другой статье на этом веб-сайте.

При оценке различных конструкций трансформатора предполагаемое значение потерь трансформатора (значения A и B) будет способствовать определению эффективности приобретаемого трансформатора.Предположение о высоком значении потерь в трансформаторе обычно приводит к покупке более эффективного блока; допуская меньшее значение потерь, вы приобретете менее эффективную установку. Какую величину потерь следует принять?

Метод общей стоимости владения (TOC) обеспечивает эффективный способ оценки различных начальных закупочных цен трансформаторов и стоимости потерь. Цель состоит в том, чтобы выбрать трансформатор, который соответствует техническим требованиям и одновременно имеет самый низкий TOC. Значения A и B включают стоимость холостого хода и потери нагрузки в формуле TOC:

ТОС = NLL x A + LL x B + C

Где,

TOC = капитализированная общая стоимость владения,
NLL = потери холостого хода в ваттах,
A = капитализированные затраты на номинальный ватт NLL (значение A),
LL = потери нагрузки в ваттах при номинальной нагрузке трансформатора,
B = капитализированная стоимость номинального ватта LL (значение B),
C = начальная стоимость трансформатора, включая транспортировку, налог с продаж и другие затраты на его подготовку к обслуживанию.

Что такое стоимость?

Значение A — это оценка приведенной стоимости будущих капитальных затрат (не зависящих от нагрузки) в данный момент времени. Она может меняться со временем, поскольку коммунальные предприятия периодически пересматривают свои затраты. (Другими словами, значение A является ответом на вопрос, сколько ватт потерь холостого хода за срок службы трансформатора мне сегодня стоит?) Даже если нет нагрузки, есть капитал, который тратится на фиксированная мощность для выработки, передачи и распределения электроэнергии, которые вносят свой вклад в значение A.Нагрузка, которая может меняться ежедневно на трансформаторе, не влияет на значение потерь холостого хода. Он рассчитывается по следующей формуле:

A = [SC + (EC x 8760)] x 0,001 / [FC]
= Стоимость потерь холостого хода в долл. США / ватт

Где,

SC = Годовая стоимость мощности системы в долл. США / кВт-год (SC — приведенная годовая стоимость выработки, передачи и первичной распределительной мощности, необходимой для подачи одного ватта нагрузки на распределительный трансформатор, совпадающей с пиковой нагрузкой) .

EC = Затраты на энергию (EC — это приведенные годовые затраты на киловатт-час топлива, включая инфляцию, эскалацию и любые другие связанные с топливом компоненты эксплуатационных или эксплуатационных затрат, которые пропорциональны выработке энергии генерирующими установками).

8,760 = часов в год

FC = Фиксированные отчисления на капитал в год (FC — это нормированный годовой доход, необходимый для выполнения и погашения обязательства по инвестициям в трансформатор и уплаты соответствующих налогов, все выражено в единицах исходного количества) .

0,001 = преобразование из киловатт в ватты.

Что такое значение B?

Подобно тому, как определяется значение A, значение B представляет собой оценку текущего значения будущих переменных или статей затрат, зависящих от нагрузки, в данный момент времени. (Другими словами, значение B является ответом на вопрос, сколько ватт потерь нагрузки за срок службы трансформатора мне сегодня стоит?) Значение B также может меняться со временем, поскольку коммунальные предприятия периодически пересматривают свои затраты. основанием, но после определения это постоянная величина для данной покупки трансформатора.Стоимость потерь нагрузки, или значение B, рассчитывается по следующей формуле:

B = [(SC x RF) + (EC x 8,760 x LF)] (PL) 2 (0,001) / (FC)
= Стоимость потери нагрузки $ / ватт

Где,

RF = коэффициент ответственности за пиковые потери (RF — это совокупный коэффициент ответственности, который снижает требования к пропускной способности системы для потерь нагрузки, поскольку пиковые потери трансформатора не обязательно возникают в пиковое время).

LF = Годовой коэффициент потерь (LF — это отношение среднегодовых потерь нагрузки к пиковому значению потерь нагрузки в трансформаторе).

PL = Равномерная эквивалентная годовая пиковая нагрузка (PL — это нормированная пиковая нагрузка в год в течение срока службы трансформатора. Жизненный цикл трансформатора определяется как срок полезного использования актива и обычно составляет 30-35 лет).

Указание значений A и B

Для трансформаторов, разработанных по индивидуальному заказу, производители оптимизируют конструкцию блока до указанных значений A и B, в результате чего трансформатор рассчитан на наименьшую общую стоимость владения, а не рассчитан на самые низкие первоначальные затраты.

В ситуациях, когда значения A и B не определены (или конечный пользователь не использует или не указывает их), например, в коммерческих или небольших промышленных приложениях, предлагаемый метод максимизации эффективности трансформатора заключается в получении холостого хода и полной -значения потерь нагрузки конкретного трансформатора в ваттах. Этот метод обсуждается в статье «Стоимость жизненного цикла трансформатора» в другом месте на этом веб-сайте.

.

КПД трансформатора, КПД в течение всего дня и максимальный КПД

КПД трансформатора, КПД в течение всего дня и условия для максимального КПД

КПД трансформатора

Трансформатор КПД можно определить как соотношение между выходом и входом.

КПД трансформатора = выход / вход

При указанном коэффициенте мощности и нагрузке КПД трансформатора можно найти, разделив его выход на вход (аналогично другим электрическим машинам i.е. двигатели, генераторы и т. д.). Но значения Input и Output должны быть одинаковыми в единицах измерения (т.е. в ваттах, киловаттах, мегаваттах и ​​т. Д.).

Но обратите внимание, что трансформатор имеет очень высокий КПД, потому что потери в трансформаторе очень низкие. Поскольку вход и выход практически равны, поэтому измерение входа и выхода практически невозможно. Лучший способ определить КПД трансформатора — сначала определить потери в трансформаторе, а затем рассчитать КПД трансформатора с помощью расчета этих потерь.

Transformer Efficiency, All day Efficiency & Condition for maximum Efficiency Transformer Efficiency, All day Efficiency & Condition for maximum Efficiency

Формулы для КПД трансформатора

КПД = η = выход / вход

КПД = η = выход / (выход + потери) … .. (вход = выход + потери)

КПД = η = выход / (выход + потери меди + потери в железе)

КПД можно также найти по следующей формуле

КПД = η = выход / вход

КПД = η = (вход — Убытки) / Ввод ….. (Как Выход = Вход — Потери)

Принимая LCM

Эффективность = η = 1 — (Потери / Вход)

Как мы знаем, рейтинг преобразования выражается в кВА, а не в кВт. Но КПД не зависит от ВА, т.е. он выражается в мощности в ваттах (кВт), а не в кВА. Хотя потери прямо пропорциональны ВА (вольт-ампер), таким образом, эффективность зависит от коэффициента мощности для каждого вида ВА нагрузки. И КПД был бы максимальным на единице (1) Коэффициент мощности.

Полезно знать

Мы также можем определить КПД трансформатора, определив:

  • Потери в сердечнике при испытании на обрыв цепи или испытании без нагрузки, и
  • Потери в меди при испытании на короткое замыкание.

Условие максимального КПД трансформатора

Мы знаем, что

Потери меди = W C = I 1 2 x R 1 или I 2 2 x R 2

Потери в железе = W I = Потери гистерезиса + Потери на вихревые токи = W I = W H + W E

Предположим, что на первичной стороне трансформатор…

Первичный вход = P 1 = В 1 x I 1 Cosθ 1

КПД = η = Выход / вход

КПД = η = (Вход — потери) / ввод….. (Как Выход = Вход — Потери)

Эффективность = η = (Вход — Потери в меди — Потери в железе) / Вход

Эффективность = η = (P 1 — W C — W I ) / P 1

КПД = η = (V 1 x I 1 Cosθ 1 — I 1 2 x R 1 — W I ) / V 1 x I 1 Cosθ 1

Принимая LCM

Эффективность = η = 1- (I 1 2 x R 1 / V 1 I 1 Cosθ 1 ) — (Вт I / V 1 x I 1 Cosθ 1 )

Или

КПД = η = 1- (I 1 x R 1 / V 1 Cosθ 1 ) — (W I / V 1 x I 1 Cosθ 1 )

Различить обе стороны относительно I 1

900 10 Dη / dI 1 = 0 — (R 1 / V 1 Cosθ 1 ) + (W I / V 1 x I 1 2 Cosθ 1 )

Dη / dI 1 = — (R 1 / V 1 Cosθ 1 ) + (W I / V 1 x I 1 2 Cosθ 1 )

Для максимальной эффективности значение ( Dη / dI 1 ) должно быть минимальным i.е.

Dη / dI 1 = 0

Вышеприведенное уравнение можно записать как

R 1 / (V 1 Cosθ 1 ) = (W I / V 1 x I 1 2 Cosθ 1 )

Или

W I = I 1 2 x R 1 или I 2 2 x R 2

Потери в железе = Потери в меди

Значение выходного тока (I 2 ), при котором может быть достигнут максимальный КПД

I 2 = √ (W I / R 2 )

Значение выходного тока (I 2 ) — это фактор, который равен значению потерь в меди и потерь в стали (т. Е.е. Потери меди = Потери железа)

Таким образом можно добиться максимальной эффективности. Следовательно, при правильном проектировании максимальная эффективность может быть достигнута при любой желаемой нагрузке , т.е. потери в меди и потери в железе могут быть равны.

Полезно знать

  • Эффективность обычно меньше 1 и часто выражается в процентах (%).
  • Идеальный трансформатор имеет 100% -ный КПД, т.е. КПД идеального трансформатора составляет 1.
  • Практический КПД трансформатора, как правило, довольно высок при сжатии других электрических машин и электронных устройств (т.е.е. двигатели, генераторы и др.) на сумму от 90 до 98%.

КПД трансформатора в течение всего дня

Как мы знаем, коммерческий КПД или типичный КПД трансформатора — это соотношение выходной и входной мощности в ваттах.

КПД = выходная мощность (в ваттах) / входная мощность (в ваттах)

Но есть ряд трансформаторов, производительность которых нельзя контролировать в соответствии с приведенной выше общей формулой эффективности.

Те распределительные трансформаторы, которые подают электроэнергию в освещение и другие общие цепи, их первичная обмотка запитывается в течение 24 часов, но вторичные обмотки не запитываются все время сразу.Другими словами, вторичные обмотки получают питание только в ночное время, когда они подают электроэнергию в цепи освещения. Т.е. вторичные обмотки обеспечивают эклектическую мощность при очень малой нагрузке или без нагрузки в течение максимального времени в 24 часа. Это означает, что потери в сердечнике происходят в течение 24 часов регулярно , а потери меди происходят только тогда, когда трансформатор находится под нагрузкой .

Таким образом, понимается необходимость создания трансформатора, в котором потери в сердечнике должны быть низкими. Поскольку потери в меди зависят от нагрузки , ими следует пренебречь.В трансформаторах этого типа мы можем отследить их производительность только по КПД за весь день .

Эффективность в течение всего дня можно также назвать « Оперативная эффективность ». На основе полезной энергии мы оцениваем эффективность в течение всего дня для определенного времени (в течение 24 часов = один день). И мы можем найти его по следующей формуле:

Эффективность в течение всего дня = Мощность (в кВтч) / Потребляемая мощность (в кВтч)

Чтобы понять эффективность в течение всего дня, мы должны знать цикл нагрузки i.е. какая нагрузка подключена за сколько времени (в 24 часа).

Вы также можете прочитать:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *