22.11.2024

Формула трансформатора: теория и формулы, примеры, схемы, особенности

Содержание

формулы, фото и видео как рассчитать потери трансформатора

Автор Aluarius На чтение 6 мин. Просмотров 1.6k. Опубликовано

В основе сборки лежит расчет трансформатора, он же блок питания. Поэтому стоит поговорить именно о проводимых расчетах, то есть, разобраться с формулами и указать на нюансы.

Но проще и дешевле собрать его своими руками. К тому же сам процесс сборки достаточно интересный. Но как показывает практика, в основе сборки лежит расчет трансформатора, он же блок питания. Поэтому стоит поговорить именно о проводимых расчетах, то есть, разобраться с формулами и указать на нюансы.

Конструкция трансформатораКонструкция трансформатора.

Конструкция трансформатора

Если посмотреть на трансформатор с внешней стороны, то это Ш-образное устройство, состоящее из металлического сердечника, картонного или пластикового каркаса и обмотки из медной проволоки. Обмоток две.

Сердечник – это несколько стальных пластин, которые обработаны специальным лаком и соединены между собой. Лак наносится специально, чтобы между пластинами не проходило напряжение. Таким способом борются с так называемыми вихревыми токами (токами Фуко). Все дело в том, что токи Фуко просто будут нагревать сам сердечник. А это потери.

Именно с потерями связан и состав пластин сердечника. Трансформаторное железо (так чаще всего называют сталь для сердечника специалисты), если посмотреть ее в разрезе, состоит из больших кристаллов, которые, в свою очередь, изолированы друг от друга окисной пленкой.

Ток фуко

Назначение и функциональность

Итак, какие функции выполняет трансформатор?

  1. Это снижение напряжения до необходимых параметров.
  2. С его помощью снижается гальваническая развязка сети.

Что касается второй функции, то необходимо дать пояснения. Обе обмотки (первичная и вторичная) трансформатора тока между собой напрямую не соединены. Значит, сопротивление прибора, по сути, должно быть бесконечным. Правда, это идеальный вариант. Соединение же обмоток происходит через магнитное поле, создаваемой первичной обмоткой. Вот такой непростой функционал.

Расчет

Существует несколько видов расчетов, которыми пользуются профессионалы. Для новичков все они достаточно сложные, поэтому рекомендуем так называемый упрощенный вариант. В его основе лежат четыре формулы.

Трансформатор позволяет понизить напряжение до необходимых параметровТрансформатор позволяет понизить напряжение до необходимых параметров.

Формула закона трансформации

Итак, закон трансформации определяется нижеследующей формулой:

U1/U2=n1/n2, где:

  • U1 – напряжение на первичной обмотке,
  • U2 – на вторичной,
  • n1 – количество витков на первичной обмотке,
  • n2 – на вторичной.

Так как разбирается именно сетевой трансформатор, то напряжение на первичной обмотке у него будет 220 вольт. Напряжение же на вторичной обмотке – это необходимый для вас параметр. Для удобства расчета берем его равным 22 вольт. То есть, в данном случае коэффициент трансформации будет равен 10. Отсюда и количество витков. Если на первичной обмотке их будет 220, то на вторичной 22.

Представьте, что прибор, который будет подсоединен через трансформатор, потребляет нагрузку в 1 А. То есть, на вторичную обмотку действует именно этот параметр. Значит, на первичную будет действовать нагрузка 0,1 А, потому что напряжение и сила тока находятся в обратной пропорциональности.

А вот мощность, наоборот, в прямой зависимости. Поэтому на первичную обмотку будет действовать мощность: 220×0,1=22 Вт, на вторичную: 22×1=22 Вт. Получается, что на двух обмотках мощность одинаковая.

Закон трансформации

Внимание! Если в собираемом вами трансформаторе не одна вторичная обмотка, то мощность первичной состоит из суммы мощностей вторичных.

Что касается количества витков, то рассчитать их на один вольт не составит большого труда. В принципе, это можно сделать методом «тыка». К примеру, наматываете на первичную обмотку десять витков, проверяете на ней напряжение и полученный результат делите на десять. Если показатель совпадает с необходимым для вас напряжением на выходе, то, значит, вы попали в яблочко. Если напряжение снижено, значит, придется увеличить количество витков, и наоборот.

И еще один нюанс. Специалисты рекомендуют наматывать витки с небольшим запасом. Все дело в том, что на самих обмотках всегда присутствуют потери напряжения, которые необходимо компенсировать. К примеру, если вам нужно напряжение на выходе 12 вольт, то расчет количества витков проводится из расчета напряжения в 17-18 В. То есть, компенсируются потери.

Площадь сердечника

Как уже было сказано выше, мощность блока питания – это сумма мощностей всех его вторичных обмоток. Это основа выбора самого сердечника и его площади. Формула такая:

S=1,15 * √P

В этой формуле мощность устанавливается в ваттах, а площадь получается в сантиметрах квадратных. Если сам сердечник имеет Ш-образную конструкцию, то сечение берется среднего стержня.

Обратите внимание! Все полученные расчетным путем параметры имеют неокругленную цифру, поэтому округлять надо обязательно и всегда только в большую сторону. К примеру, расчетная мощность получилась 35,8 Вт, значит, округляем до 40 Вт.

Разновидности сердечников для трансформатораРазновидности сердечников для трансформатора.

Количество витков в первичной обмотке

Здесь используется следующая формула:

n=50*U1/S, понятно, что U1 равно 220 В.

Кстати, эмпирический коэффициент «50» может изменяться. К примеру, чтобы блок питания не входил в насыщение и тем самым не создавал лишних помех (электромагнитных), то лучше в расчете использовать коэффициент «60». Правда, это увеличит число витков обмотки, трансформатор станет немного больше в размерах, но при этом снизятся потери, а, значит, режим работы блока питания станет легче. Здесь важно, чтобы количество обмоток уместилось.

Сечение провода

И последняя четвертая формула касается сечения используемого медного провода в обмотках.

d=0,8*√I, где d – это диаметр провода, а «I» – сила тока в обмотке.

Расчетный диаметр необходимо также округлить до стандартной величины.

Итак, вот четыре формулы, по которым проводится подбор трансформатора тока. Здесь неважно покупаете ли вы готовый прибор или собираете его самостоятельно. Но учтите, что такой расчет подходит только для сетевого трансформатора, который будет работать от сети в 220 В и 50 Гц.

Обозначение трансформатора на схемеОбозначение трансформатора на схеме.

Для высокочастотных приборов используются совершенно другие формулы, где придется проводить расчет потерь трансформатора тока. Правда, формула коэффициента трансформации и у него точно такая же. Кстати, в этих устройствах устанавливается ферромагнитный сердечник.

Заключение по теме

В этой статье мы постарались ответить на вопрос, как рассчитать трансформатор сетевого типа? Данный принцип подбора является упрощенным. Но для практических целей он даже очень достаточный. Так что новичкам лучше использовать именно его, и не лезть в дебри математических выкладок с большим количеством составляющих. Конечно, в нем не учитываются все потери, но округления показателей компенсируют их.

Расчетные формулы основных параметров трансформаторов

Представляю вашему вниманию таблицу с расчетными формулами для определения основных параметров силовых трансформаторов, а также таблицу коэффициента изменения потерь kн.п. в трансформаторах.

Таблица 1 – Расчетные формулы для определения основных параметров трансформаторов

Наименование величинФормулыОбозначение
Токи обмоток

I1, I2 — токи первичной и вторичной обмоток, А;
U1, U2 — то же линейное напряжение, В;
Коэффициент трансформации

w1, w2 – числа витков одной фазы обмоток
Приведение величин вторичной обмотки к первичной

Приведенные величины обозначают штрихом
Сопротивление короткого замыкания

rк, хк, zк – активные, реактивные и полное сопротивления КЗ фазы трансформатора
Активные потери мощности в трансформаторе при нагрузке

∆Рх – активные потери холостого хода, кВт;
∆Рк – активные нагрузочные потери в обмотках при номинальном токе, кВт;
kз – коэффициент загрузки;
Sт.ном. – номинальная мощность трансформатора.
Приведенные активные потери мощности в трансформаторе при нагрузке

S – фактическая нагрузка трансформатора;
kи.п. – коэффициент изменения потерь, кВт/квар;
∆Qх – реактивные потери мощности холостого хода;
∆Qк – реактивные потери мощности КЗ;
Значения kи.п. даны ниже.
Напряжение КЗ

Uк – напряжение КЗ, В или %;
Uк.а, Uк.х – активная и реактивная составляющие напряжения КЗ, В или %.
Мощность и ток КЗ трансформатора

Sк –мощность КЗ, кВА
Число витков первичной обмотки

U1ф – фазное напряжение первичной обмотки, В
Ф – фазный поток;
Ф = Вст*Qст мкс;
Вст –индукция в стержне;
Вст = 13 – 14,5 103 Гс;
Qст – активное сечение стержня, см2
Активное и реактивное сопротивление двухобмоточного трансформатора, Ом

Падение напряжения в обмотках трансформатора при нагрузке

Если нагрузка смешанная (активная и индуктивная), то вторым членом можно пренебречь
Потери напряжения при пуске асинхронного короткозамкнутого двигателя (приближенно)

∆U – потеря напряжения, %;
Sдв. – номинальная мощность двигателя, кВА;
S2 – мощность других потребителей, присоединенных к шинам трансформаторов, кВА;
Ki – кратность пускового тока относительно номинального.
КПД трансформатора

Исходные данные, которые приводятся в паспорте (шильдике) на трансформатор:

  • Потери холостого хода ∆Рх, кВт;
  • Потери короткого замыкания ∆Pк, кВт;
  • Напряжения короткого замыкания Uк, %;
  • Ток холостого хода Iхх,%.

Таблица 2 – Коэффициент изменения потерь в трансформаторах

Литература:

1. Справочная книга электрика. В.И. Григорьева, 2004 г.

коэффициент трансформации, мощность и ток кз трансформатора, напряжение кз, сопротивление короткого замыкания

Поделиться в социальных сетях

Благодарность:

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Онлайн расчет трансформатора за 6 простых шагов

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

Содержание статьи

Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.

Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.

Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.

От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.

Как пользоваться онлайн калькулятором для расчета трансформатора пошагово

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

Их создают из других материалов сердечника и рассчитывают иными способами.

Шаг №4. Коэффициент полезного действия

У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.

Но, вы можете откорректировать его значение вручную.

Шаг №5. Магнитная индуктивность

Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Как рассчитать силовой трансформатор по формулам за 5 этапов

Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.

По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.

Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода

В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.

ŋ = S1 / S2

Потери мощности во вторичной обмотке оценивают по статистической таблице.

Мощность трансформатора, ватты Коэффициент полезного действия ŋ
15÷50 0,50÷0,80
50÷150 0,80÷0,90
150÷300 0,90÷0,93
300÷1000 0,93÷0,95
>1000 0.95÷0,98

Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.

Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:

  1. для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
  2. у сердечника из Ш-образных пластин Qc=0,7√S1.

Сердечники трансформаторов

Таким образом, первый этап расчета позволяет: зная необходимую величину первичной или вторичной мощности подобрать магнитопровод по форме и поперечному сечению сердечника;или по габаритам имеющегося магнитопровода оценить электрические мощности, которые сможет пропускать проектируемый трансформатор.

Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток

Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.

Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.

n = W1 / W2

Коэффициент трансформации трансформатора

На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.

Этап №3. Как вычислить диаметры медного провода для каждой обмотки

При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.

Расчет диаметра провода

Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.

Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.

Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.

Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.

При выборе диаметра провода добиваются оптимального соотношения между его нагревом при эксплуатации и габаритами свободного пространства внутри сердечника, позволяющими разместить все обмотки.

Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты

Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.

Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.

Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).

ω’=45/Qc (виток/вольт)

Расчет числа витков трансформатора

В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.

Этап №5. Учет свободного места внутри окна магнитопровода

На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.

Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.

Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.

Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.

Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.

4 практических совета по наладке и сборке трансформатора: личный опыт

Сборка магнитопровода

Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.

Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.

Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

Расчет провода по плотности тока

Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.

Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.

Способы намотки витков

Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.

Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

Замер тока на холостом ходу трансформатора

Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.

Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Чтобы их избежать рекомендую посмотреть видеоролик владельца Юность Ru. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим.

правила расчета для разных типов

При необходимости самостоятельно изготовить устройство питания электронной аппаратуры вопрос, как самостоятельно рассчитать количество витков трансформатора и как определить данные для проводов первичной и вторичных обмоток, стоит наиболее часто.

Правильный расчет возможен при наличии исходных данных по характеристикам мощности потребителей, напряжений входа и выхода. показатели массы и габаритов устройства, также могут накладывать ограничения.

На что влияет количество витков в трансформаторе

Если говорить о вторичных обмотках трансформатора, то значение числа витков в них в основном влияет на выходное напряжение. Сложнее все обстоит с первичной обмоткой, поскольку напряжение на ней задано питающей сетью. Параметры первичная обмотка  оказывают влияние на ток холостого хода, а, следовательно, на коэффициент полезного действия. При изменении параметров первичной обмотки потребуется перерасчет всех вторичных обмоток.

И стоит заметить, что лучше не размыкать вторичную обмотку ТТ.

витки в трансформаторе

Методика расчета

Полный расчет трансформатора довольно сложен и учитывает такие параметры:

  • напряжение и частоту питающей сети;
  • число вторичных обмоток;
  • ток потребления каждой вторичной обмотки;
  • тип материала сердечника;
  • массогабаритные показатели.

На бытовом уровне для изготовления устройств с питанием от стандартной сети 220В 50Гц, проектирование можно значительно упростить.

Методика не требует особенных знаний сложности, и при наличии опыта занимает немного времени.

Для расчета требуются следующие данные:

  1. Количество выходов.
  2. Напряжение и потребляемый ток каждой обмотки.

расчет обмоток трансформатора

В основе конструирования любого трансформатора лежит суммарная мощность всех вторичных нагрузок:

Pс=I1∙U1+ I2∙U2+… In∙Un

Для учета потерь введено понятие габаритной мощности, для вычисления которой применяется несложная  формула:

P=1.25∙ Pс

Зная мощность, можно определить сечение сердечника:

S=√P

Полученное значение сечения будет выражено в квадратных сантиметрах!

Дальнейшие расчеты зависят от типа и материала выбранного сердечника. Магнитопроводы бывают следующих типов:

  • броневые;
  • стержневые;
  • О-образные.

Также различаются и способы изготовления магнитопроводов:

  • наборные – из отдельных пластин;
  • витые, разрезные или сплошные.

Разрезными обычно бывают броневые или стержневые магнитопроводы, а О-образные конструктивно выполняются исключительно цельные. В этом отношении они ничем не отличаются от не разрезных стержневых сердечников.

броневой магнитопровод

Для определения числа витков используют следующее соотношение, показывающее, сколько необходимо витков на 1 вольт напряжения:

W=K/S,

где К – коэффициент, который зависит от материала и типа сердечника.

Для упрощения вычислений приняты следующие значения коэффициента:

  1. Для наборных магнитопроводов из Ш-или П-образных пластин К=60.
  2. Для разрезных магнитопроводов К=50.
  3. Для О-образных сердечников К=40.

Как видно, наименьшая длина обмоточного провода, а следовательно, и наилучшие массогабаритные показатели будут у О-образных сердечников. Кроме этого, конструкции с такими сердечниками имеют малое поле паразитного магнитного рассеивания и максимальный КПД. Их редко применяют только потому, что намотать обмотку на замкнутый сердечник трудно технически.

Зная параметр W, легко определить количество витков для каждой из обмоток:

n=U∙W

Для учета падения напряжения на первичной обмотке, намотанной большим количеством тонкого провода, следует увеличить количество витков в ней на 5%. Особенно это касается малогабаритных конструкций малой мощности.

Можно снизить ток холостого хода, увеличив значение W для каждой из обмоток, но следует знать, что чрезмерное увеличение может привести к  насыщению магнитопровода, что приведет к резкому увеличению тока холостого хода и снижению напряжения на выходе.

Ш сердечник трансформатора

На заключительном этапе определяют диаметр проводников каждой обмотки. Формула расчета имеет следующий вид:

d=0.7√I

Определение диаметра обмоточного провода выполняют для всех без исключения обмоток.

Полученные значения округляют до ближайшего большего значения из стандартных диаметров проводов.

Альтернативный метод по габаритам

Ориентировочные параметры трансформатора, исходя из имеющегося в наличии сердечника, допускается определить иным путем., а затем сделать выводы о возможности дальнейшего использования.

Зная площадь сечения магнитопровода в квадратных сантиметрах, можно оценить максимальную мощность, которую способен обеспечить данный преобразователь:

PГ=S2

Следует иметь в виду, что данная мощность является габаритной, а реальная будет иметь меньшее значение:

P=0.8 PГ

Обычно, при условии соответствия расчетной мощности и требуемой, первичную обмотку, подключаемую в сеть 220 В, можно оставить нетронутой, заново рассчитав только параметры на выходах.

параметры трансформатора

Использование мультиметра

Используя мультиметр, можно найти данные для пересчета обмоток имеющегося трансформатора. Для этого необходимо выполнить дополнительную катушку из любого имеющегося в наличии провода. После подключения устройства в сеть необходимо измерить напряжение на дополнительной катушке. Теперь можно легко подсчитать необходимое число витков на вольт и выполнить перерасчет трансформатора под нужные требования.

Мультиметр

Таблица количества вольт на виток

Для того, чтобы постоянно не выполнять расчеты, можно воспользоваться таблицей, в которой приведены усредненные данные обмоток в зависимости от мощности:

Мощность, PСечение в см2, SКоличество вит. /В, WМощность, PСечение в см2, SКоличество вит. /В, W
11.432509.05.0
22.121609.84.6
53.6137010.34.3
104.69.88011.04.1
155.58.49011.73.9
206.27.310012.33.7
256.66.712013.43.4
307.36.215015.03.0
408.35.420017.32.6

Примеры реальных расчетов

В качестве примера рассчитаем трансформатор питания для зарядного устройства. Исходные данные:

  • напряжение сети – 220В;
  • выходное напряжение – 14В;
  • ток вторичной обмотки – 10А;

Используя выходные параметры, определяем мощность вторичной обмотки: P=14∙10=140 Вт

Габаритная мощность: P=1.25∙ 140=175 Вт.

Площадь сечения магнитопровода сердечника составит: S=√175=13.3 см2

Наилучшими параметрами обладают конструкции, у которых сечение сердечника приближается к квадратному. Таким образом выбираем ленточный бронепровод с размерами сердечника 3.5х4 см. Его площадь равняется 14 см2.

Для данного сердечника К=50. Таким образом: W=50/14=3.6 вит/вольт

Для обмоток общее количество витков равняется:

  • первичная обмотка n1=220∙3.6= 792 витка;
  • вторичная обмотка n2=14∙3.6=50 витков.

Поскольку трансформатор мощный, то падение напряжения на первичной обмотке можно не учитывать.

Определяем диаметр обмоточных проводов: d2=0.7√10=2.2 мм.

Ближайшее стандартное значение – 2.4 мм.

Для нахождения диаметра провода первичной обмотки найдем ток через нее: I=P/U=175/220=0.8А.

Данному току соответствует диаметр: d1=0.7√0.8=0.63 мм.

Ближайшее стандартное значение имеет как раз такое значение.

Более углубленный расчет предполагает оценку коэффициента заполнения свободного окна магнитопровода. Большое значение числа вторичных обмоток может не поместиться в свободном окне, тогда необходимо будет выбрать более мощный сердечник. При слишком свободном размещении обмоток ухудшается КПД устройства, увеличивается магнитное поле рассеивания. Однако, как показывает практика, при правильном выборе сечения сердечника подобные расчеты становятся излишними.

формула для нахождения сечения магнитопровода, как рассчитать обмотки

Расчет трансформатора В быту и технике широко применяется низковольтная аппаратура. Этот факт требует использования устройств, понижающих стандартное напряжение до необходимого уровня. Нужно создать прибор, который соответствует предъявляемым нормам. Перед электриком встаёт задача, как определить мощность трансформатора. Знание элементарных физических законов помогает решить проблему.

Теория и история

Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.

Как определить мощность трансформатораПервичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.

После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.

Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:

  • Электродвижущая сила e, исчисляемая в вольтах.
  • Количество витков n в индукторе.
  • Магнитный поток Ф, единица измерения которого называется вебером.
  • Время t, необходимое для одной фазы изменения магнитного поля.

Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:

K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.

Расчет обмоток трансформатора

Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:

K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.

Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.

Трансформатор предназначен для работы в цепи переменного напряжения. Постоянный ток не индуцирует ЭДС в магнитопроводе, и электрическая энергия не передаётся в другую обмотку.

Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.

ФарадейСуть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.

Работу Майкла Фарадея высоко оценило научное сообщество Великобритании. В 1832 году физик удостоился престижной награды. За выдающиеся работы в области электромагнетизма учёный награждён медалью Копли.

Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора — «свечу Яблочкова».

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Расчет силового трансформатораЖелательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Как рассчитать трансформаторВо время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:

P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.

S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49

Поперечное сечение сердечника должно иметь площадь не менее 8‚49 см².

Расчёт количества витков

Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:

n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.

Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.

Мощность трансформатора по сечению магнитопровода

Токи в обмотках

Следующий этап — нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.

В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.

Диаметр провода

Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:

d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.

Для намотки выходной обмотки потребуется провод с диаметром:

d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.

Размеры определены в миллиметрах. После округления получается, что первичная катушка наматывается проволокой толщиной 0‚5 мм, а на вторичную обмотку подойдёт провод в 1 мм.

Виды и применение трансформаторов

Области использования трансформаторов разнообразны. Устройства, повышающие напряжение, эксплуатируются в промышленных целях для транспортировки электроэнергии на значительные расстояния. Понижающие трансформаторы используются в радиоэлектронике и для подсоединения бытовой техники.

Некоторые народные умельцы, недовольные пониженным напряжением в сети, рискуют включать бытовые приборы через повышающий трансформатор. Спонтанный скачок напряжения может привести к тому, что яркий комнатный свет заменит очень яркое пламя пожара.

По задачам, которые решает трансформатор, приборы делятся на основные виды:

  • Расчет мощности трансформатораАвтотрансформатор имеет один магнитопровод, на котором собран индуктор. Часть витков выполняет функции первичной обмотки, а остальные витки действуют как вторичные катушки.
  • Преобразователи напряжения работают в измерительных приборах и в цепях релейной защиты.
  • Преобразователи тока предназначены для гальванической развязки в сетях сигнализации и управления.
  • Импульсные трансформаторы применяются в вычислительной технике, автоматике, системах связи.
  • Силовые устройства работают с напряжением до 750 киловольт.

Любое изменение параметров электричества в цепи связано с трансформатором. Специалисту, проектирующему электронные схемы, необходимо знание природы электромагнетизма. Технология расчёта обмоток трансформатора основана на базовых формулах физики.

Электротехнику, занятому рутинным делом намотки трансформатора, стоит помянуть добрым словом дядюшку Фарадея, который открыл замечательный закон электромагнитной индукции. Глядя на готовое устройство, следует также вспомнить великого соотечественника, русского изобретателя Павла Николаевича Яблочкова.

что это такое, виды, принцип работы, устройство, назначение

Одно из важнейших открытий человечества – это электричество. Данная форма энергии стала настоящим прорывом и колоссальным потенциалом для научно-технического прогресса. Было разработано множество приборов для преобразования и измерения этого ресурса. Наиболее ярким примером являются трансформаторы тока, которые широко применяются в самых различных сферах.

Зачастую, простые обыватели считают идентичными устройства тока и напряжения, что в корне неправильно. Назначение, конструкция и принцип действия у них, совершенно различные. Разобраться в отличиях будет проще, зная основные понятия и функции преобразователей. А так же, виды, применение и модификации аппаратов.

Описание и назначение устройств

Электроустановки высокой мощности работают с питанием, достигающим несколько сот Вт, при силе тока, превышающей десятки кА. Логично, что произвести измерения величин подобного порядка, обычными приборами, попросту невозможно. Для этого используют трансформаторы тока, выполняющие одновременно несколько функций. Благодаря появлению преобразователей, значительно расширился потенциал измерительных приборов. И открылась возможность передачи энергии по гальванической развязке.

Трансформатор тока

Конструкция аппаратов является их дополнительным преимуществом. К примеру, если бы существовали типовые устройства для измерения напряжения высоковольтных сетей переменного тока, они были бы очень габаритными и дорогостоящими. В отличие от трансформаторов, которые выглядят, относительно, компактно и имеют защиту от неблагоприятных внешних факторов и механических повреждений.

Основная задача трансформаторов тока – преобразовать первичную величину (подаваемого напряжения) до уровня, позволяющего подключить измерительные приборы и системы защиты. Дополнительная функция – обеспечить гальваническую развязку между потребителями низкого и высокого питания, устраняя риски для обслуживающего персонала.

Проще говоря, цель приборов – моделирование определенных условий и процессов в электроустановках для безопасного снятия показаний.

Трансформатор

Принцип работы и описание процессов

Главным элементом трансформатора тока является сердечник, состоящий из двух тонких пластин электротехнической стали, первичной и вторичной обмотки. Первичная служит для подключения цепи контролируемого напряжения. К вторичной подключают измерительные приборы и различные реле. Принцип работы устройства основан на законе об электромагнитной индукции, объясняющем действие магнитных и электрических полей, работающих по принципу гармоник переменных синусоид (величин переменного тока).

Трансформатор тока

Прежде чем вникать в подробности работы аппарата, стоит детальнее рассмотреть свойства элементов. Особенно, понятие сопротивления. Начать стоит с того, что трансформаторы тока классифицируются по определенным характеристикам, в том числе и типу конструкции. Наиболее распространенной является обмотка в виде катушек.

Сопротивление

Теперь о главном, – от сечения и металлов зависит уровень сопротивления. В свою очередь, чем выше показатель сопротивления, тем больше выделяется тепла, при «прохождении» напряжения по металлу, а значит, есть риск перегрева. Поэтому, для обмотки выбирают, в большинстве случаев, медную проволоку, как металл, характеризующийся высокой электропроводимость и низким сопротивлением. К тому же, медь обладает высокой эластичностью, устойчивостью к коррозиям и повышенным эксплуатационным нагрузкам, что важно для создания обмотки.

Однако, помимо преимуществ, у меди есть и существенный недостаток – высокая стоимость. В целях экономии, для катушек используют алюминий, но только, для аппаратов низкой и средней мощности. А, так же, при изготовлении устройств, оптимально выбирается площадь поперечного сечения, исключающая возможность перегрева. Для защиты используются масляные смазочные материалы.

Итак, к работе… Ток, поступающий на первичную обмотку, имеющую определенное количество витков, преодолевает ее сопротивление и формирует магнитное поле (направленный поток), направляющееся магнитопроводом, имеющим расположение перпендикулярно направлению вектора. Такая конструкция обеспечивает минимальные потери электроэнергии во время ее преобразования.

Как говорилось ранее, пересекающий первичную обмотку ток формирует в ней электромагнитную энергию, которая воздействует и включает в работу вторичную обмотку. Направленный поток, проходит через нее и «теряет заряд» на ее зажимах. А вот, соотношение векторов носит название – коэффициент трансформации, позволяющий измерить подаваемое  напряжение по формуле.

Трансформатор

Основная классификация

По назначению

  • Измерительные – для подключения измерительных приборов.
  • Защитные – для подключения релейных устройств или для гальванической развязки.
  • Промежуточные – для выравнивания силовой нагрузки и подключения релейных устройств.
  • Лабораторные – служат для подключения измерительных приборов высокой точности.

 По типу установки

  • Наружного подключения – для открытых распределительных устройств.
  • Закрытого подключения.
  • Встроенные в различные приборы и аппараты.
  • Накладные – «одеваются» сверху на проходной изолятор.
  • Переносные – для контрольных и аналитических измерений.

Наружного подключения трансформатор

По конструкциям первичных обмоток

  • Многовитковые.
  • Одновитковые.
  • Шинные.

Многовитковые трансформаторы тока

По способу монтажа

  • Проходные.
  • Опорные.

По типу изоляции

  • Сухая, к которой относится группа материалов – литая, эпоксидная, фосфорная, бакелитовая и т.д.
  • Бумажно-масляная.
  • Конденсаторная бумажно-масляная.
  • Газонаполнительная.
  • Заливочная – с компаундом.

Конденсаторная бумажно-масляная

По количеству ступеней трансформации

  • Одноступенчатые.
  • Двухступенчатые.

По номиналу рабочего напряжения

  • До 1 000В.
  • Более 1 000В.

Главные параметры и характеристики

У каждого устройства есть рабочие показатели, включающие такие аспекты, как – максимальная нагрузка, погрешности, предел мощности и другие. Имеют свои индивидуальные характеристики и трансформаторы тока. К ним относятся:

Тока трансформатор

Номинальный ток

Это предельная величина напряжения при которой, может работать устройство. Подразумевается допустимый номинал первичного тока, проходящего по первичной обмотке. Данный показатель указывается в паспорте, обязательно прилагающемся в базовой комплектации. Выделяют стандартный ряд, отображающийся, так же, в маркировке аппаратов.

Стоит отметить, что чем выше величина, тем габаритнее будет устройство.

Существует еще одно понятие – номинал вторичного тока. Зачастую от стандартный – двух величин 1А или 5А. Однако, некоторые производители предлагают выпуск устройств по индивидуальным характеристикам. Но и в этом случае, выбор будет не велик и ограничится двумя показателями 2А или 2.5А.

Коэффициент трансформации

Это соотношение, позволяющее определить, во сколько раз понижается подаваемое напряжение на первичную обмотку, проходящее через обе обмотки, в сравнении с выходящим. Определяется таким образом – показатель тока, поступающего на первичную обмотку, делится на величину, измеренную во вторичной, получают Кт. При этом, первичную обмотку необходимо закоротить – прервать передачу напряжения по цепи. Рассчитывается коэффициент на производстве. Серийный выпуск устройств производится по аналогии. Все показатели указываются в паспорте или в маркировке.

Коэффициент трансформации

Токовая погрешность

Это процентное соотношение математической разности величин вторичного тока и первичного, к показателю приведенного тока ко вторичной цепи. Включает в себя два понятия – угловая и относительная погрешности. В соответствии с вышеупомянутым законом об электромагнитной индукции, направленные колебания или векторы образуют угол между первичными и вторичными потоками. Рассчитывает показатель по формуле и выражается в минутах.

Относительная погрешность – это математическая разница между величинами первичного и вторичного тока к реальной величине, приведенного тока ко вторичной цепи. Выделяют дополнительное понятие – относительно полной погрешности. Данный показатель подразумевает соотношение геометрической разности, тех же величин, только, в соответствии с мгновенным значением, т.е. замеренным в определенный интервал времени.

Номинальная предельная кратность

Показатель максимального значения кратности первичного тока, при условии, что полная погрешность на вторичной нагрузке не превысит 10%.

Максимальная кратность вторичного тока

Соотношение наибольшего показателя вторичного тока к его номинальной величине, при номинальном значении вторичной нагрузки. Данный показатель формируется насыщением самого магнитопровода, при условии, что дальнейшее возрастание не приводит к увеличению потока.

Номинальная предельная кратность трансформатора тока

Классы точности

Один из важнейших показателей. Регламентирован и контролируется нормативной документацией. Согласно ГОСТу – рассчитывается для каждого типа устройств и должен строго соответствовать установленным нормам. Различают 9 основных классов точности для измерительных приборов и два для защитных. В стандарте предусмотрена таблица с точной нормировкой и условными обозначениями. От класса точности устройства будет зависеть, насколько точны будут показатели измерительных устройств.

Расшифровка маркировки и обозначений

Все специализированные, да и бытовые устройства, маркируются, в обязательном порядке. И если для продавца, большую роль играет штрих- или QR-код, то для потребителя, основным является буквенно-числовой индекс, отражающий характеристики и основную информацию о приобретении. Маркировка трансформаторов тока содержит такие основные показатели:

  • Первая заглавная буква «Т» – обозначает наименование продукта – трансформатор тока.
  • Вторая указывает тип конструкции – «П» проходной, «О» опорный, «Ф» фарфоровая покрышка.
  • Третья обозначает тип изоляции – «М» масляная и «Л» литая.
  • Число после сочетания букв – это класс изоляции. Указывается просто цифрой подразумевает величину в кВ.

Трансформатор

  • Буквы «У» и «Х» означают возможность эксплуатации в умеренном и холодном климате. В большинстве моделей «УХ».
  • За ним идет число указывающее категорию устройства.
  • В конце индекса указывается коэффициент трансформации через «/» – первичной и вторичной обмотки.

Схемы подключения и вариации цепи

Подключение трансформатора тока, стандартно, рассматривается на примере электросчетчика. Более простая, доступная и понятная схема имеет два основных варианта и включает ряд ограничений. Категорически запрещено подключать трансформатор тока к приборам, питающимся напрямую от электросети. На примере трехфазного счетчика:

  • Внимательно изучите техническую схему расположения контактов. В большинстве устройств их местоположение идентичное, т.к. и принцип работы. Клеммы будут размещаться на тех же местах в прибор различной модификации. Но, все же, будьте внимательны.
  • Контакт обозначающийся К1 – это питание трансформатора. К2- подключение цепи напряжения. К3 – выходной контакт трансформатора.
  • По аналогии подключаются остальные две фазы. Имеющие, так же, по три значения с буквой К и последовательным числом.

Схема подключения трансформатора тока

Наиболее распространенной считается схема раздельного подключения вторичных потоков цепи. На фазный зажим от входного автомата необходимо подать фазовый ток. Для упрощения процесса, к этому же контакту производится подключение второй клеммы катушки напряжения (фаза счетчика). Окончание первичной обмотки трансформатора – это выход фазы, которая подключается к нагрузке распределительного щита. Выход вторичной обмотки трансформатора подсоединяют к концу токовой обмотки учетного прибора. И дальше, по аналогии.

Существует и другой вариант, по схеме совмещенных цепей тока. Подобное явление встречается очень редко, по большей части являясь исключением, если нет других вариантов. При такой последовательности возникают существенные погрешности в измерениях и отсутствует возможность своевременно выявить «пробой». Конечно, вариации есть, однако, данный пример считается наиболее оптимальным и рабочим.

Схема трансформатора тока

Возможные неисправности и признаки нарушений работоспособности

Трансформаторы сталкиваются с различными негативными факторами в процессе работы. Это и высокие непрерывные нагрузки. Механические повреждения. Окружающие неблагоприятные воздействия. Короткие замыкания. Перегрузы, перегрев устройства и многое другое. Для работы трансформаторов, так же, требуется создавать определенные условия в помещениях, где они располагаются. Регулярно анализировать рабочие процессы, проводить диагностику и своевременно устранять нарушения, предотвращая поломки. Не допускается:

  • Высокая температура и влажность в помещении.
  • Отсутствие оптимального уровня масла.
  • Работа при внутренних повреждениях.

Выявить отклонения на ранних стадиях помогут:

  • Проверки нагрузки.
  • Ведение «журнала» обслуживания.
  • Изменение звука рабочих процессов.
  • Температура.
  • Высокие вибрации.
  • Осмотр обмотки.

Сферы применения

Трансформаторы тока, в тех или иных целях, всегда, активно применяются во всех сферах – промышленной, коммерческой, бытовой и других, где предусмотрена эксплуатация электросети, в частности, высокого напряжения. В тех случаях, когда необходимо преобразование тока, по принципу магнитной индукции, от первичной схемы переменного тока в другую – вторичную. При этом, отличия одной от другой, могут быть самые разнообразные – напряжение, количество фаз, частота и т.д.

В дополнение, защитные устройства, позволяющие подключать приборы и аппараты по гальванической развязке, предотвращают риски, как для потребителя, так и обслуживающего персонала или пользователя. Незаменимы трансформаторы тока для измерения показателей, особенно регулярных или непрерывных.

Трансформатор тока

Методики расчета

Алгоритм расчета при выборе устройств достаточно прост и основывается на характеристиках самих трансформаторов тока. Каждый показатель играет роль. Определяется оптимальная величина напряжения, коэффициент трансформации, уровень погрешности, конструкция устройств и т.д. Все расчеты производятся по формулам. Коэффициент трансформации, к примеру, необходимо определять согласно минимальным и максимальным величинам первичного тока. С учетом данных о присоединяемом устройстве и установленной мощности силовых трансформаторов. Наиболее популярным является метод упрощенного расчета. Берется:

  • Напряжение первичной обмотки.
  • Вторичной.
  • Ток вторичной обмотки.
  • И ее мощность.

При условии, что обмоток будет несколько – за расчетное берется суммарное значение. Результат выводится по формуле.

Все данные, обозначения и формулы указываются в нормативной документации. К тому же, главная рекомендация: обращайте внимание на технические аспекты, а не стоимость. Это всегда помогает при любом выборе.

что это такое, как определить, формула

Трансформатор — электронное устройство, способное менять рабочие величины, измеряется коэффициентом трансформации, k. Это число указывает на изменение, масштабирование какого-либо параметра, например напряжения, тока, сопротивления или мощности.

Что такое коэффициент трансформации

Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.

Что такое коэффициент трансформации трансформатора?

В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.

Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:

  • первичной;
  • вторичной.

Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.

Что такое коэффициент трансформации трансформатора?

Коэффициент трансформации трансформатора

По специальной формуле определяется число проводов в обмотке, учитываются все особенности используемого сердечника. Поэтому в разных приборах в первичных катушках число витков будет разным, несмотря на то что подключаются к одному и тому же источнику питания. Витки рассчитываются относительно напряжения, если к трансформатору необходимо подключить несколько нагрузок с разным напряжением питания, то количество вторичных обмоток будет соответствовать количеству подключаемых нагрузок.

Зная число витков провода в первичной и вторичной обмотке, можно рассчитать k устройства. Согласно определения из ГОСТ 17596-72 «Коэффициент трансформации — отношение числа витков вторичной обмотки к числу витков первичной или отношение напряжения на вторичной обмотке к напряжению на первичной обмотке в режиме холостого хода без учета падения напряжения на трансформаторе.» Если этот коэффициент k больше 1, то прибор понижающий, если меньше — повышающий. В ГОСТе такого различия нет, поэтому большее число делят на меньшее и k всегда больше 1.

Что такое коэффициент трансформации трансформатора?

В электроснабжении преобразователи помогают снизить потери при передаче электроэнергии. Для этого напряжение, вырабатываемое электростанцией, увеличивается до нескольких сотен тысяч вольт. Затем этими же устройствами напряжение понижается до требуемого значения.

На тяговых подстанциях, обеспечивающих производственный и жилой комплекс электроэнергией, установлены трансформаторы с регулятором напряжения. От вторичной катушки отводятся дополнительные выводы, подключение к которым позволяет менять напряжение в небольшом интервале. Это делается болтовым соединением или рукояткой. В этом случае коэффициент трансформации силового трансформатора указывается в его паспорте.

Что такое коэффициент трансформации трансформатора?

Определение и формула коэффициента трансформации трансформатора

Получается, что коэффициент — это постоянная величина, показывающая масштабирование электрических параметров, она полностью зависит от конструкторских особенностей устройства. Для разных параметров расчет k производится по-разному. Существуют следующие категории трансформаторов:

  • по напряжению;
  • по току;
  • по сопротивлению.

Перед определением коэффициента необходимо замерить напряжение на катушках. ГОСТ указано, что производить такое измерение нужно при холостом ходе. Это когда к преобразователю не подключена нагрузка, показания могут быть отображены на паспортной табличке этого устройства.

Затем показания первичной обмотки делят на показания вторичной, это и будет коэффициентом. При наличии сведений о количестве витков в каждой катушке производят дробление числа витков первичной обмотки на число витков вторичной. При этом расчете пренебрегают активным сопротивлением катушек. Если вторичных обмоток несколько, для каждой находят свой k.

Трансформаторы тока имеют свою особенность, их первичная обмотка включается последовательно нагрузке. Перед вычислением показателя k измеряют ток первичной и вторичной цепи. Производят разложение значения первичного тока на ток вторичной цепи. При наличии паспортных данных о количестве витков допускается произвести вычисление k путем деления числа оборотов провода вторичной обмотки на число оборотов провода первичной.

Что такое коэффициент трансформации трансформатора?

При расчете коэффициента для трансформатора сопротивления, его еще называют согласующим, сначала находят входное и выходное сопротивление. Для этого вычисляют мощность, которая равняется произведению напряжения и тока. Затем мощность делят на квадрат напряжения и получают сопротивление. Дробление входного сопротивления трансформатора и нагрузки по отношению к его первичной цепи и входного сопротивления нагрузки во вторичной цепи даст k прибора.

Что такое коэффициент трансформации трансформатора?

Есть другой способ вычисления. Необходимо найти коэффициент k по напряжению и возвести его в квадрат, результат будет аналогичным.

Разные виды трансформаторов и их коэффициенты

Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

  • силовой;
  • автотрансформатор;
  • импульсный;
  • сварочный;
  • разделительный;
  • согласующий;
  • пик-трансформатор;
  • сдвоенный дроссель;
  • трансфлюксор;
  • вращающийся;
  • воздушный и масляный;
  • трехфазный.

Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

Что такое коэффициент трансформации трансформатора?

Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель — это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:

  • стержневой;
  • броневой.

В броневом сердечнике магнитные поля оказывают большее влияние на масштабирование.

Transformer Formula

Трансформатор — это электрическое устройство, которое позволяет увеличивать или уменьшать напряжение в электрической цепи переменного тока, сохраняя мощность. Мощность, которая поступает в оборудование, в случае идеального трансформатора равна мощности, получаемой на выходе. Реальные машины имеют небольшой процент потерь. Это устройство, которое преобразует переменную электрическую энергию определенного уровня напряжения в переменную энергию другого уровня напряжения на основе явления электромагнитной индукции.Он состоит из двух катушек из проводящего материала, намотанных на замкнутое ядро ​​из ферромагнитного материала, но электрически изолированных друг от друга. Единственная связь между катушками — это общий магнитный поток, установленный в сердечнике. Катушки называются первичными и вторичными в соответствии с входом или выходом рассматриваемой системы соответственно.

Значение мощности для электрической цепи — это значение напряжения, равное значению силы тока. Как и в случае с трансформатором, значение мощности первичной обмотки такое же, как и мощность вторичной обмотки:

входное напряжение первичной катушки * входной ток первичной катушки = выходное напряжение вторичной катушки * выходной ток вторичной катушки.

Уравнение записано

Мы также можем рассчитать выходное напряжение трансформатора, если мы знаем входное напряжение и количество витков (катушек) на первичной и вторичной катушках, используя уравнение ниже;

входное напряжение на первичной катушке / выходное напряжение на вторичной катушке = количество витков провода на первичной катушке / количество витков провода на вторичной катушке

Уравнение записано

имеем:

В p = входное напряжение на первичной катушке.

В с = входное напряжение на вторичной катушке.

I p = входной ток первичной обмотки.

I с = входной ток вторичной обмотки.

n p = количество витков провода на первичной обмотке.

n с = количество витков провода на вторичной катушке.

Trasnformer Вопросы:

1) У нас есть трансформатор с током в первичной катушке 10 А и входным напряжением в первичной катушке 120 В, если напряжение на выходе вторичной катушки 50 В, рассчитайте ток на выходе вторичная обмотка.

Ответ: Поскольку мы хотим определить выходной ток во вторичной катушке, мы используем первое уравнение

, → ,

= 2,4 * 10 А = 24 А.

I с = 24 А.

2) Имеем трансформатор с выходным током на вторичной катушке 30 А и входным током на первичной катушке 2000 витков 6 А, определяем количество витков на вторичной катушке.

Ответ: Мы будем использовать два уравнения: первое уравнение для определения выходного напряжения на вторичной катушке и второе уравнение для определения количества витков на вторичной катушке.

, → ,

, → ,

Замещающий,

n с = 400

.Основы силовых трансформаторов

| Типы и конструктивные формулы трансформаторов

Трансформатор передает электроэнергию из одной цепи в другую без изменения частоты. Он содержит первичную и вторичную обмотки. Первичная обмотка подключается к основному источнику питания, а вторичная — к требуемой цепи. В нашей проектной схеме мы взяли конструкцию однофазного силового трансформатора 50 Гц малой мощности (10 кВА) в соответствии с нашими требованиями в проекте.

Трансформатор в основном бывает трех типов:

  1. Тип сердечника
  2. Тип оболочки
  3. Тороидальный

В сердечнике тип обмотки окружает часть сердечника, тогда как сердечник типа оболочки окружает обмотки.В типе Core есть два основных типа, а именно тип E-I и тип U-T. В этой конструкции трансформатора мы использовали сердечник типа E-I. Мы выбрали сердечник E-I, так как обмотка намного проще по сравнению с тороидальной, но КПД очень высок (95% -96%). Причина в том, что в тороидальных сердечниках потери магнитного потока намного меньше.

Трансформаторы, используемые в проекте:

  1. Трансформатор серии: Для обеспечения необходимого повышающего или понижающего напряжения и
  2. Управляющий трансформатор: Для измерения выходного напряжения и для подачи питания.
Расчетные формулы:

Здесь мы берем ссылку на данные обмотки в таблице эмалированных медных проводов и размеры таблицы штамповки трансформатора для выбора входных и выходных обмоток SWG и сердечника трансформатора для заданных спецификаций.

Процедура проектирования выполняется при условии, что даны следующие спецификации трансформатора: —

PCBWay PCBWay

  • Вторичное напряжение (Vs)
  • Вторичный ток (Is)
  • Коэффициент трансформации (n2 / n1)

От По этим данным мы вычисляем ширину языка, высоту стопки, тип сердечника, площадь окна следующим образом: —

  • Вторичный вольт-ампер (SVA) = вторичное напряжение (Vs) * вторичный ток (Is)
  • Первичный вольт-ампер (PVA) ) = Вторичный вольт-ампер (SVA) / 0.9 (при КПД трансформатора 90%)
  • Первичное напряжение (Vp) = вторичное напряжение (Vs) / соотношение витков (n2 / n1)
  • Первичный ток (Ip) = первичный вольт-ампер (PVA) / первичное напряжение (Vp)
  • Требуемая площадь поперечного сечения жилы определяется по формуле: — Площадь жилы (CA) = 1,15 * sqrt (первичные вольт-амперы (PVA))
  • Общая площадь жилы (GCA) = Площадь сердечника (CA) ) * 1.1
  • Число витков обмотки определяется соотношением, которое определяется как: — Число витков на вольт (Tpv) = 1 / (4.44 * 10-4 * площадь жилы * частота * плотность потока)

Данные обмотки эмалированного медного провода

(@ 200A / см²)

0,0131

Макс. Сила тока (А)

витков / кв. см

SWG

Макс. Сила тока (А)

витков / кв. см

SWG

0,001

81248

50

0.1874

711

29

0,0015

62134

49

0,2219

609

74

74

0,0026

39706

48

0,2726

504

27

0.0041

27546

47

0,3284

415

26

0,0059

20223

74

341

25

0,0079

14392

45

0.4906

286

24

0,0104

11457

44

0,5838

242

9337

43

0,7945

176

22

0.0162

7755

42

1.0377

137

21

0,0197

6543

106

20

0,0233

5595

40

1.622

87,4

19

0,0274

4838

39

2,335

60,8

0,0365

3507

38

3,178

45,4

17

0.0469

2800

37

4.151

35,2

16

0,0586

2286

74

36

26,8

15

0,0715

1902

35

6.487

21,5

14

0,0858

1608

34

8,579

16,1

13 996 0,1013

1308

33

10,961

12,8

12

0.1182

1137

32

13,638

10,4

11

0,1364

997

74

31

8,7

10

0,1588

881

30

Размеры штамповки трансформатора (таблица сердечника):

Типовой номер

Ширина языка (см)

Площадь окна (кв.см)

Типовой номер

Ширина языка (см)

Площадь окна (кв. см)

17

1,27

1,213

9

2,223

7,865

12A

1,588

1,897

9A

2.223

7,865

74

1,748

2,284

11A

1,905

9,072

9,072

1.905

2.723

4A

3.335

10.284

30

2

3

.905

10.891

1.588

3.329

16

3.81

10.891

71

10.891

71

3,703

3

3,81

12,704

10

1.588

4,439

4AX

2,383

13,039

15

2,54

4,839

14,117

33

2,8

5,88

75

2.54

15.324

1

1.667

6.555

4

2.54

15.865

2,54

6,555

7

5,08

18,969

11

1.905

7,259

6

3,81

19,356

34

1,588

7,529

7,529

39,316

3

3,175

7,562

8

5.08

49,803

Для работы от сети частота составляет 50 Гц, а плотность потока можно принять равной 1 Вт / см2. для штамповок из обычной стали и 1,3 Вт / кв. см для штамповок из CRGO, в зависимости от используемого типа.

Следовательно

  • Первичные витки (n1) = число витков на вольт (Tpv) * первичное напряжение (V1)
  • Число витков вторичной обмотки (n2) = число витков на вольт (Tpv) × вторичное напряжение (V2) * 1,03 (Предположим, что имеется составляет 3% падения в обмотках трансформатора)
  • Ширина язычка пластин приблизительно определяется по формуле: —

Ширина язычка (Tw) = Sqrt * (GCA)

Плотность тока

Это допустимая нагрузка по току провод на единицу площади поперечного сечения.Выражается в ампер / см². Вышеупомянутая таблица проводов рассчитана на продолжительную работу при плотности тока 200 А / см². Для прерывистого или прерывистого режима работы трансформатора можно выбрать более высокую плотность до 400 А / см², то есть удвоенную нормальную плотность, чтобы сэкономить на стоимости единицы. Это выбрано, поскольку повышение температуры для случаев прерывистой работы меньше для случаев непрерывной работы.

Итак, в зависимости от выбранной плотности тока, мы теперь вычисляем значения первичного и вторичного токов, которые необходимо искать в таблице проводов для выбора SWG: —

n1a = Первичный ток (Ip) вычислен / (плотность тока / 200)

n2a = Расчетный вторичный ток (Is) / (плотность тока / 200)

Для этих значений первичного и вторичного токов мы выбираем соответствующие SWG и число оборотов на кв. см из таблицы проводов.Затем мы приступаем к расчету следующим образом: —

  • Первичная площадь (Па) = Первичные витки (n1) / (Первичные витки на квадратный см)
  • Вторичная площадь (sa) = Вторичные витки (n2) / (Вторичные витки на квадратный см)
  • Общая площадь окна, необходимая для сердечника, определяется по формуле: —

Общая площадь (TA) = Основная площадь (pa) + Дополнительная площадь (sa)

  • Дополнительное пространство, необходимое для первой и изоляции, может быть принято как На 30% больше места, чем требуется для фактической площади намотки.Это значение является приблизительным и, возможно, его придется изменить в зависимости от фактического метода намотки.

Площадь окна (Wacal) = Общая площадь (TA) * 1,3

Для вычисленного выше значения ширины язычка мы выбираем номер сердечника и площадь окна из основной таблицы, гарантируя, что выбранная площадь окна больше или равна Общая площадь ядра. Если это условие не выполняется, мы выбираем шпонку большей ширины, обеспечивая такое же условие с соответствующим уменьшением высоты штабеля, чтобы поддерживать примерно постоянную общую площадь сердечника.

Таким образом, мы получаем доступную ширину язычка (Twavail) и площадь окна ((avail) (aWa)) из основной таблицы

  • Высота стека = Общая площадь сердечника / ширина язычка ((available) (atw)).

Для коммерческих целей прежнего размера мы приближаем отношение высоты стопки к ширине язычка к ближайшим следующим значениям 1,25, 1,5, 1,75. В худшем случае мы примем отношение равным 2. Однако можно взять любое отношение до 2, что потребовало бы создания собственного прежнего.

Если соотношение больше 2, мы выбираем большую ширину язычка (aTw), обеспечивая все условия, указанные выше.

  • Высота стопки (ht) / ширина язычка (aTw) = (некоторое соотношение)
  • Измененная высота стопки = ширина язычка (aTw) * Ближайшее значение стандартного отношения
  • Модифицированная общая площадь ядра = ширина язычка (aTw) * Измененная высота стопки.

Такая же процедура проектирования применяется к управляющему трансформатору, где нам нужно обеспечить, чтобы высота стопки была равна ширине язычка.

Таким образом, мы находим номер ядра и высоту стека для заданных спецификаций.

Проектирование трансформатора на примере:
  • Приведены следующие данные: —
  • п.напряжение (Vs) = 60V

sec ток (Is) = 4.44A

  • оборотов на соотношение (n2 / n1) = 0,5

Теперь нам нужно произвести следующие вычисления: —

  • Sec.Volt-Amps (SVA) = Vs * Is = 60 * 4,44 = 266,4 ВА
  • Первичное напряжение-ампер (PVA) = SVA / 0,9 = 296,00 ВА
  • Первичное напряжение (Vp) = V2 / (n2 / n1) = 60 / 0,5 = 120 В
  • Первичный ток (Ip) = PVA / Vp = 296,0 / 120 = 2,467 A
  • Площадь ядра (CA) = 1,15 * sqrt (PVA) = 1,15 * sqrt (296) = 19,785 см²
  • Общая площадь ядра площадь (GCA) = CA * 1.1 = 19,785 * 1,1 = 21,76 см²
  • витков на вольт (Tpv) = 1 / (4,44 * 10-4 * CA * частота * плотность потока) = 1 / (4,44 * 10-4 * 19,785 * 50 * 1) = 2,272 оборота на вольт
  • Обороты первичного оборота (N1) = Tpv * Vp = 2,276 * 120 = 272,73 оборота
  • оборота секунд (N2) = Tpv * Vs * 1,03 = 2,276 * 60 * 1,03 = 140,46 оборота
  • Ширина язычка (TW) = Sqrt * (GCA) = 4,690 см
  • Мы выбираем плотность тока как 300 А / см², но плотность тока в таблице проводов указана для 200 А / см², затем
  • Значение поиска первичного тока = Ip / (плотность тока / 200) = 2.467 / (300/200) = 1.644A
  • Значение поиска вторичного тока = Is / (плотность тока / 200) = 4.44 / (300/200) = 2.96A

Для этих значений первичного и вторичного токов мы выбираем соответствующие SWG и число оборотов на квадратный см от таблицы проводов.

SWG1 = 19 SWG2 = 18

Оборотов на кв. См первичной = 87,4 см² витков на кв. См вторичной обмотки = 60,8 см²

  • Площадь первичной обмотки (Па) = n1 / витков на кв. См (первичной) = 272.73 / 87,4 = 3,120 см²
  • Вторичная площадь (sa) = n2 / витков на кв. См (вторичная) = 140,46 / 60,8 = 2,310 см²
  • Общая площадь (at) = pa + sa = 3,120 + 2,310 = 5,430 см²
  • Окно площадь (Wa) = общая площадь * 1,3 = 5,430 * 1,3 = 7,059 см²

Для вычисленного выше значения ширины язычка мы выбираем номер сердечника и площадь окна из основной таблицы, гарантируя, что выбранная площадь окна больше или равна к общей основной площади. Если это условие не выполняется, мы выбираем шпонку большей ширины, обеспечивая такое же условие с соответствующим уменьшением высоты штабеля, чтобы поддерживать примерно постоянную общую площадь сердечника.

Таким образом, мы получаем доступную ширину язычка (Twavail) и площадь окна ((avail) (aWa)) из основной таблицы:

  • Таким образом, доступная ширина язычка (atw) = 3,81 см
  • Доступная площадь окна (awa) = 10,891 см²
  • Номер ядра = 16
  • Высота стопки = gca / atw = 21,99 / 3,810 = 5,774 см

Из соображений производительности мы приблизили отношение высоты стопки к ширине язычка (aTw) к ближайшим следующим значениям: 1,25, 1,5, и 1,75. В худшем случае принимаем отношение равным 2.

Если соотношение больше 2, мы выбираем большую ширину язычка, обеспечивая все условия, указанные выше.

  • Высота стопки (ht) / ширина язычка (aTw) = 5,774 / 3,81 = 1,516
  • Измененная высота стопки = ширина язычка (aTw) * Ближайшее значение стандартного соотношения = 3,810 * 1,516 = 5,715 см
  • Измененная общая площадь ядра = Ширина язычка (aTw) * Измененная высота стопки = 3,810 * 5,715 = 21,774 см²

Таким образом, мы находим номер сердечника и высоту стопки для заданных спецификаций.

Конструкция малогабаритного трансформатора управления на примере:

Приведены следующие детали: —

  • п. напряжение (Vs) = 18V
  • sec, ток (Is) = 0.3A
  • оборотов на соотношение (n2 / n1) = 1

Теперь нам нужно произвести следующие расчеты: —

  • sec. ) = Vs * Is = 18 * 0,3 = 5,4 ВА
  • Первичный вольт-ампер (PVA) = SVA / 0,9 = 5,4 / 0,9 = 6 ВА
  • Прим. Напряжение (Vp) = V2 / (n2 / n1) = 18/1 = 18V
  • Prim.ток (Ip) = PVA / Vp = 6/18 = 0,333A
  • Площадь ядра (CA) = 1,15 * sqrt (PVA) = 1,15 * sqrt (6) = 2,822 см²
  • Площадь поперечного ядра (GCA) = CA * 1,1 = 2,822 * 1,1 = 3,132 см²
  • витков на вольт (Tpv) = 1 / (4,44 * 10-4 * CA * частота * плотность потока) = 1 / (4,44 * 10-4 * 2,822 * 50 * 1) = 15,963 витков на вольт
  • Прим. Обороты (N1) = Tpv * Vp = 15,963 * 18 = 287,337 оборота
  • Оборотов (N2) = Tpv * Vs * 1,03 = 15,963 * 60 * 1,03 = 295,957 оборотов
  • Ширина языка (TW) = Sqrt * (GCA ) = Sqrt * (3.132) = 1,770 см

Мы выбираем плотность тока как 200 А / см², но плотность тока в таблице проводов указана для 200 А / см², затем

  • Значение поиска первичного тока = Ip / (плотность тока / 200 ) = 0,333 / (200/200) = 0,333 А
  • Значение поиска вторичного тока = Is / (плотность тока / 200) = 0,3 / (200/200) = 0,3 А

Для этих значений первичного и вторичного токов мы выберите соответствующий SWG и Turns per Sq. см от проволочного стола.

SWG1 = 26 SWG2 = 27

Поворотов на кв. см первичной обмотки = 415 витков Оборотов на кв. см вторичной обмотки = 504 витка

  • Первичная площадь (Па) = n1 / витков на кв. см (первичная) = 287,337 / 415 = 0,692 см²
  • Вторичная площадь (sa) = n2 / витков на квадратный см (вторичная) = 295,957 / 504 = 0,587 см²
  • Общая площадь (at) = pa + sa = 0,692 + 0,587 = 1,280 см²
  • Площадь окна (Wa) = общая площадь * 1.3 = 1,280 * 1,3 = 1,663 см²

Для рассчитанного выше значения ширины язычка мы выбираем номер сердечника и площадь окна из основной таблицы, гарантируя, что выбранная площадь окна больше или равна общей площади сердечника. Если это условие не выполняется, мы выбираем шпонку большей ширины, обеспечивая такое же условие с соответствующим уменьшением высоты штабеля, чтобы поддерживать примерно постоянную общую площадь сердечника.

Таким образом, мы получаем доступную ширину язычка (Twavail) и площадь окна ((avail) (aWa)) из базовой таблицы

  • Таким образом, доступная ширина язычка (atw) = 1.905 см
  • Доступная площадь окна (awa) = 18,969 см²
  • Число сердечников = 23
  • Высота стека = gca / atw = 3,132 / 1,905 = 1,905 см

Таким образом, был разработан трансформатор управления.

.

The Illustrated Transformer — Джей Аламмар — Визуализация машинного обучения по одной концепции за раз.

Обсуждения:
Hacker News (65 баллов, 4 комментария), Reddit r / MachineLearning (29 баллов, 3 комментария)

Переводы: Китайский (упрощенный), Корейский, Русский, Японский

Смотреть: лекция MIT по теме «Глубокое обучение», ссылка на которую имеется в этой публикации

В предыдущем посте мы рассмотрели «Внимание» — широко распространенный метод в современных моделях глубокого обучения. Внимание — это концепция, которая помогла повысить производительность приложений нейронного машинного перевода.В этом посте мы рассмотрим The Transformer — модель, которая привлекает внимание для увеличения скорости обучения этих моделей. Transformers превосходит модель нейронного машинного перевода Google в определенных задачах. Однако самое большое преимущество заключается в том, что The Transformer поддается распараллеливанию. Фактически, Google Cloud рекомендует использовать The Transformer в качестве эталонной модели для использования своего предложения Cloud TPU. Итак, давайте попробуем разбить модель на части и посмотрим, как она работает.

Трансформатор был предложен в статье «Внимание — это все, что вам нужно». Его реализация в TensorFlow доступна как часть пакета Tensor2Tensor. Группа НЛП из Гарварда создала руководство с комментариями к статье с использованием PyTorch. В этом посте мы попытаемся немного упростить вещи и представить концепции одну за другой, чтобы, надеюсь, облегчить понимание людям, не имеющим глубоких знаний по предмету.

Взгляд высокого уровня

Давайте начнем с рассмотрения модели как единого черного ящика.В приложении машинного перевода оно берет предложение на одном языке и выводит его перевод на другом.

Раскрывая эту доброту Оптимуса Прайма, мы видим компонент кодирования, компонент декодирования и связи между ними.

Компонент кодирования представляет собой стек кодировщиков (на бумаге шесть из них складываются друг на друга — в цифре шесть нет ничего волшебного, можно определенно экспериментировать с другим расположением). Компонент декодирования представляет собой стек декодеров с одинаковым числом.

Все кодировщики идентичны по структуре (но не имеют общих весов). Каждый из них разбит на два подслоя:

Входные данные кодировщика сначала проходят через слой самовнимания — слой, который помогает кодировщику смотреть на другие слова во входном предложении, когда он кодирует определенное слово. Мы более подробно рассмотрим самовнимание позже в этой статье.

Выходные данные слоя самовнимания передаются в нейронную сеть прямого распространения. Точно такая же сеть прямой связи независимо применяется к каждой позиции.

У декодера есть оба этих уровня, но между ними есть уровень внимания, который помогает декодеру сосредоточиться на соответствующих частях входного предложения (аналогично тому, что делает внимание в моделях seq2seq).

Использование тензоров в картине

Теперь, когда мы рассмотрели основные компоненты модели, давайте начнем смотреть на различные векторы / тензоры и то, как они перемещаются между этими компонентами, чтобы превратить входные данные обученной модели в выходные данные.

Как и в случае с приложениями НЛП в целом, мы начинаем с преобразования каждого входного слова в вектор с помощью алгоритма встраивания.


Каждое слово вложено в вектор размером 512. Мы представим эти векторы этими простыми прямоугольниками.

Встраивание происходит только в самый нижний кодировщик. Абстракция, которая является общей для всех кодировщиков, заключается в том, что они получают список векторов, каждый из которых имеет размер 512. В нижнем кодировщике это будет слово embeddings, но в других кодировщиках это будет выход кодировщика, который находится непосредственно под . Размер этого списка — это гиперпараметр, который мы можем установить — в основном это будет длина самого длинного предложения в нашем наборе обучающих данных.

После внедрения слов в нашу входную последовательность каждое из них проходит через каждый из двух уровней кодировщика.

Здесь мы начинаем видеть одно ключевое свойство преобразователя, а именно то, что слово в каждой позиции проходит свой собственный путь в кодировщике. Между этими путями на уровне самовнимания есть зависимости. Однако уровень прямой связи не имеет этих зависимостей, и, таким образом, различные пути могут выполняться параллельно при прохождении через слой прямой связи.

Затем мы заменим пример более коротким предложением и посмотрим, что происходит на каждом подуровне кодировщика.

Теперь мы кодируем!

Как мы уже упоминали, кодировщик получает на вход список векторов. Он обрабатывает этот список, передавая эти векторы в слой «самовнимания», затем в нейронную сеть с прямой связью, а затем отправляет выходные данные вверх следующему кодировщику.


Слово в каждой позиции проходит через процесс самовнимания.Затем каждый из них проходит через нейронную сеть с прямой связью — ту же самую сеть, и каждый вектор проходит через нее отдельно.

Самовнимание на высоком уровне

Не обманывайтесь, когда я использую слово «самовнимание», как будто это понятие должно быть знакомо каждому. Я лично никогда не сталкивался с этой концепцией, пока не прочитал статью «Все, что вам нужно». Давайте разберемся, как это работает.

Скажем, следующее предложение является вводным предложением, которое мы хотим перевести:

Животное не переходило улицу, потому что очень устало

Что означает «оно» в этом предложении? Относится ли это к улице или к животному? Это простой вопрос для человека, но не такой простой для алгоритма.

Когда модель обрабатывает слово «оно», самовнимание позволяет ей ассоциировать «это» с «животным».

По мере того как модель обрабатывает каждое слово (каждую позицию во входной последовательности), самовнимание позволяет ей смотреть на другие позиции во входной последовательности в поисках подсказок, которые могут помочь улучшить кодирование этого слова.

Если вы знакомы с RNN, подумайте, как поддержание скрытого состояния позволяет RNN включать свое представление предыдущих слов / векторов, которые она обработала, с текущим, обрабатываемым ею.Самовнимание — это метод, который Трансформер использует для «запекания» «понимания» других релевантных слов в словах, которые мы обрабатываем в настоящее время.


Поскольку мы кодируем слово «оно» в кодировщике №5 (верхний кодировщик в стеке), часть механизма внимания фокусировалась на «Животном» и запекла часть его представления в кодировке «оно».

Обязательно ознакомьтесь с записной книжкой Tensor2Tensor, где вы можете загрузить модель Transformer, и изучить ее с помощью этой интерактивной визуализации.

Самостоятельное внимание в деталях

Давайте сначала посмотрим, как вычислить самовнимание с помощью векторов, а затем перейдем к тому, как это на самом деле реализовано — с помощью матриц.

Первый шаг при вычислении самовнимания — создать три вектора из каждого входного вектора кодировщика (в данном случае — вложение каждого слова). Итак, для каждого слова мы создаем вектор запроса, вектор ключа и вектор значения. Эти векторы создаются путем умножения вложения на три матрицы, которые мы обучили в процессе обучения.

Обратите внимание, что эти новые векторы меньше по размерности, чем вектор внедрения. Их размерность составляет 64, в то время как векторы ввода-вывода встраивания и кодировщика имеют размерность 512. Они НЕ ДОЛЖНЫ быть меньше, это выбор архитектуры, позволяющий сделать вычисление многогранного внимания (в основном) постоянным.


Умножение x1 на весовую матрицу WQ дает q1, вектор «запроса», связанный с этим словом. В итоге мы создаем проекцию «запроса», «ключа» и «значения» для каждого слова во входном предложении.

Что такое векторы «запроса», «ключа» и «значения»?

Это абстракции, которые полезны для вычисления внимания и размышлений о нем. Когда вы перейдете к чтению того, как рассчитывается внимание ниже, вы будете знать почти все, что вам нужно знать о роли каждого из этих векторов.

Второй шаг в вычислении самовнимания — это подсчет баллов. Допустим, мы рассчитываем самовнимание для первого слова в этом примере — «мышление».Нам нужно сопоставить каждое слово входного предложения с этим словом. Оценка определяет, сколько внимания следует уделять другим частям входного предложения, когда мы кодируем слово в определенной позиции.

Оценка рассчитывается как скалярное произведение вектора запроса на ключевой вектор соответствующего слова, которое мы оцениваем. Итак, если мы обрабатываем самовнимание для слова в позиции №1, первая оценка будет скалярным произведением q1 и k1. Вторая оценка будет скалярным произведением q1 и k2.

Третий и четвертый шаги заключаются в том, чтобы разделить оценки на 8 (квадратный корень из размерности ключевых векторов, используемых в статье — 64. Это приводит к большему количеству ударов

.Калькулятор трансформатора

— Хорошие калькуляторы

С помощью этого калькулятора трансформатора можно быстро и легко рассчитать первичный и вторичный ток полной нагрузки трансформатора. Он также определяет коэффициент трансформации и тип трансформатора.

Инструкции по эксплуатации:

  1. Выберите количество фаз из раскрывающегося меню
  2. Введите номинал трансформатора и выберите соответствующий блок
  3. Введите первичные и вторичные напряжения трансформатора
  4. Нажмите кнопку «Рассчитать», чтобы получить результаты.

Формулы трансформатора

В калькуляторе трансформатора используются следующие формулы:

Ток полной нагрузки однофазного трансформатора (А) = кВА × 1000 / В

Ток полной нагрузки трехфазного трансформатора (А) = кВА × 1000 / (1,732 × В)

Где:

кВА = мощность трансформатора (киловольт-амперы),

В = напряжение (вольт).

Передаточное число = N 1 / N 2 = V 1 / V 2 = I 2 / I 1

Где:

N 1 = количество витков на первичной обмотке,

N 2 = количество витков на вторичной обмотке,

В 1 = первичное напряжение,

В 2 = вторичное напряжение,

I 1 = первичный ток,

I 2 = вторичный ток.

Пример: Однофазный трансформатор мощностью 50 кВА имеет первичную обмотку 4000 В и вторичную 400 В. Предполагая идеальный трансформатор, определите (а) первичный и вторичный токи полной нагрузки, (б) коэффициент трансформации трансформатора.

а) В 1 = 4000 В, В 2 = 400 В,

Мощность трансформатора = 50 кВА = В 1 × I 1 = В 2 × I 2

Первичный ток полной нагрузки, I 1 = (50 × 1000/4000) = 12.5 А

Вторичный ток полной нагрузки, I 2 = (50 × 1000/400) = 125 A

b) Передаточное число = N 1 / N 2 = V 1 / V 2 = (4000/400) = 10

Вас также могут заинтересовать наш Калькулятор делителя напряжения или Калькулятор FLA двигателя

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *