20.07.2024

Измерение сопротивления методом вольтметра и амперметра: Измерение сопротивления постоянному току / Справка / Energoboard

Содержание

Измерение сопротивления постоянному току / Справка / Energoboard

Основными методами измерения сопротивления постоянному току являются:

  • косвенный метод;
  • метод непосредственной оценки;
  • мостовой метод.

 

 

 

 

Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности.

Наиболее универсальным из косвенных методов является метод амперметравольтметра.

Метод амперметра-вольтметра. Основан на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем. Применяют две схемы измерения: измерение больших сопротивлений (рис. 1.9,а) и измерение малых сопротивлений (рис. 1.9,б). По результатам измерения тока и напряжения определяют искомое сопротивление.

Для схемы рис. 1.9,а искомое сопротивление и относительная методическая погрешность измерения определяются

где RХ — измеряемое сопротивление; Rа — сопротивление амперметра.

Для схемы рис. 1.9,6 искомое сопротивление и относительная методическая погрешность измерения определяются

где Rв -сопротивление вольтметра.

Из определения относительных методических погрешностей следует, что измерение по схеме рис. 1.9,а обеспечивает меньшую погрешность при измерении больших сопротивлений, а измерение по схеме рис. 1.9,6 — при измерении малых сопротивлений.

Погрешность измерения по данному методу рассчитывается по выражению

 

где γв, γа, — классы точности вольтметра и амперметра; U„, I пределы измерения вольтметра и амперметра.

Используемые при измерении приборы должны иметь класс точности не более 0,2. Вольтметр подключают непосредственно к измеряемому сопротивлению. Ток при измерении должен быть таким, чтобы показания отсчитывались по второй половине шкалы. В соответствии с этим выбирается и шунт, применяемый для возможности измерения тока прибором класса 0,2. Во избежании нагрева сопротивления и, соответственно, снижения точности измерений, ток в схеме измерения не должен превышать 20% номинального.

Рекомендуется проводить 3 — 5 измерений при различных значениях тока. За результат, в данном случае, принимается среднее значение измеренных сопротивлений.

При измерениях сопротивления в цепях, обладающих большой индуктивностью, вольтметр следует подключать после того как ток в цепи установится, а отключать до разрыва цепи тока. Это необходимо делать для того, чтобы исключить возможность повреждения вольтметра от ЭДС самоиндукции цепи измерения.

Метод непосредственной оценки. Предполагает измерение сопротивления постоянному току с помощью омметра. Измерения омметром дают существенные неточности. По этой причине данный метод используют для приближенных предварительных измерений сопротивлений и для проверки цепей коммутации. На практике применяют омметры типа М57Д, М4125, Ф410 и др. Диапазон измеряемых сопротивлений данных приборов лежит в пределах от 0,1 Ом до 1000 кОм.

Для измерения малых сопротивлений, например сопротивление паек якорных обмоток машин постоянного тока, применяют микроомметры типа М246. Это приборы логометрического типа с оптическим указателем, снабженные специальными самозачищающими щупами.

Также для измерения малых сопротивлений, например переходных сопротивлений контактов выключателей, нашли применение контактомеры. Контактомеры Мосэнерго имеют пределы измерения 0 — 50000 мкОм с погрешностью менее 1,5%. Контактомеры КМС-68, КМС-63 позволяют производить измерения в пределах 500-2500 мкОм с погрешностью менее 5%.

Для измерения сопротивления обмоток силовых трансформаторов, генераторов с достаточно большой точностью применяют потенциометры постоянного тока типа ПП-63, КП-59. Данные приборы используют принцип компенсационного измерения, т. е. падение напряжения на измеряемом сопротивлении уравновешивается известным падением напряжения.

Мостовой метод. Применяют две схемы измерения — схема одинарного моста и схема двойного моста. Соответствующие схемы измерения представлены на рис. 1.10.

Для измерения сопротивлений в диапазоне от 1 Ом до 1 МОм применяют одинарные мосты постоянного тока типа ММВ, Р333, МО-62 и др. Погрешность измерений данными мостами достигает 15% (мост ММВ). В одинарных мостах результат измерения учитывает сопротивление соединительных проводов между мостом и измеряемым сопротивлением. Поэтому сопротивления меньше 1 Ом такими мостами измерить нельзя из-за существенной погрешности. Исключение составляет мост P333, с помощью которого можно производить измерение больших сопротивлений по двухзажимной схеме и малых сопротивлений (до 5 10 Ом) по четырехзажимной схеме. В последней почти исключается влияние сопротивления соединительных проводов, т. к. два из них входят в цепь гальванометра, а два других — в цепь сопротивления плеч моста, имеющих сравнительно большие сопротивления.

Плечи одинарных мостов выполняют из магазинов сопротивлений, а в ряде случаев (например, мост ММВ) плечи R2, R3 могут быть выполнены из калиброванной проволоки (реохорда), по которой перемещается движок, соединенный с гальванометром. Условие равновесия моста определяется выражением Rх = R3 (R1/R2). С помощью R1 устанавливают отношение R1/R2, обычно кратное 10, а с помощью R3 уравновешивают мост. В мостах с реохордом уравновешивания достигается плавным изменением отношения R3/R2 при фиксированных значениях R1.

В двойных мостах сопротивления соединительных проводов при измерениях неучитываются, что представляет возможность измерять сопротивления до 10-6 Ом. На практике применяют одинарно-двойные мосты типа P329, P3009, МОД-61 и др. с диапазоном измерений от 10-8 Ом до 104 МОм с погрешностью измерения 0,01 — 2%.

В этих мостах равновесие достигается изменением сопротивлений R1, R2, R3 и R4. При этом достигается равенства R1 = R3 и R2 = R4. Условие равновесия моста определяется выражением Rх= RN (R1/R2). Здесь сопротивление RN — образцовое сопротивление, составная часть моста. К измеряемому сопротивлению Rх подсоединяют четыре провода: провод 2 — продолжение цепи питания моста, его сопротивление не отражается на точности измерений; провода 3 и 4 включены последовательно с сопротивлениями R1 и R2 величиной больше 10 Ом, так что их влияние ограничено; провод 1 является составной частью моста и его следует выбирать как можно короче и толще.

При измерениях сопротивления в цепях, обладающих большой индуктивностью, во избежание ошибок и для предотвращения повреждений гальванометра необходимо производить измерения при установившемся токе, а отключение — до разрыва цепи тока.

Измерение сопротивления постоянному току независимо от метода измерения производят при установившемся тепловом режиме, при котором температура окружающей среды отличается от температуры измеряемого объекта не более чем на ±3°С. Для перевода измеренного сопротивления к другой температуре (например, с целью сравнения, к 15°С) применяют формулы пересчета.

 

§103. Измерение электрического сопротивления | Электротехника

Измерение методом амперметра и вольтметра.

Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 339, а через амперметр проходит не только измеряемый ток Ix, но и ток Iv, протекающий через вольтметр. Поэтому сопротивление

Rx = U / (I – U/Rv) (110)

где Rv — сопротивление вольтметра.

При включении приборов по схеме рис. 339, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра UA = IRА. Поэтому

Rx = U/I – RА (111)

где RА — сопротивление амперметра.

В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 339,а, а при измерении больших сопротивлений — схемой рис. 339, б. При этом погрешность измерений, определяемая в первой схеме током Iv, а во второй — падением напряжения UА, будет невелика по сравнению с током Ix и напряжением Ux.

Рис. 339. Схемы для измерения сопротивления методом амперметра и вольтметра

Измерение сопротивлений электрическими мостами.

Мостовая схема (рис. 340,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением Rx (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания — в другую (питающую).

Рис. 340. Мостовые схемы постоянного тока, применяемые для измерения сопротивлений

Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в таком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление

Rx = (R1/R2)R3 (112)

В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2.

Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление Rx (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 — гальванометр, а к зажимам 5 и 6 — источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В).

Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление Rx отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом.

При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 340,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением Rx и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом.

Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями Rx и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае

Rx = R0R1/R4 (113)

Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом.

Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления Rx.

Это позволяет проградуировать шкалу гальванометра в единицах сопротивления Rx или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами.

Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости.

Измерение омметром.

Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением Rx (рис. 341) и добавочным резистором RД в цепь постоянного тока.

Рис. 341. Схема включения омметра

При неизменных э. д. с. источника и сопротивления резистора RД ток в цепи зависит только от сопротивления Rx. Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности.

Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением Rx подключают к различным зажимам.

Измерение больших сопротивлений мегаомметрами.

Для измерения сопротивления изоляции чаще всего применяют мегаомметры магнитоэлектрической системы. В качестве измерительного механизма в них использован логометр 2 (рис. 342), показания кото-

Рис. 342. Устройство мегаомметра

рого не зависят от напряжения источника тока, питающего измерительные цепи. Катушки 1 и 3 прибора находятся в магнитном поле постоянного магнита и подключены к общему источнику питания 4.

Последовательно с одной катушкой включают добавочный резистор Rд, в цепь другой катушки — резистор сопротивлением Rx.

В качестве источника тока обычно используют небольшой генератор 4 постоянного тока, называемый индуктором; якорь генератора приводят во вращение рукояткой, соединенной с ним через редуктор. Индукторы имеют значительные напряжения от 250 до 2500 В, благодаря чему мегаомметром можно измерять большие сопротивления.

При взаимодействии протекающих по катушкам токов I1 и I2 с магнитным полем постоянного магнита создаются два противоположно направленных момента М1 и М2, под влиянием которых подвижная часть прибора и стрелка будут занимать определенное положение. Как было показано в § 100, положение подвижной

Рис. 343. Общий вид мегаомметра (а) и его упрощенная схема (б)

части логометра зависит от отношения I1/I2. Следовательно, при изменении Rx будет изменяться угол α отклонения стрелки. Шкала мегаомметра градуируется непосредственно в килоомах или мегаомах (рис. 343, а).

Чтобы измерить сопротивление изоляции между проводами, необходимо отключить их от источника тока (от сети) и присоединить один провод к зажиму Л (линия) (рис. 343,б), а другой — к зажиму 3 (земля). Затем, вращая рукоятку индуктора 1 мегаомметра, определяют по шкале логометра 2 сопротивление изоляции. Имеющийся в приборе переключатель 3 позволяет изменять пределы измерения. Напряжение индуктора, а следовательно, частота вращения его рукоятки теоретически не оказывают влияние на результаты измерений, но практически рекомендуется вращать ее более или менее равномерно.

При измерении сопротивления изоляции между обмотками электрической машины отсоединяют их друг от друга и соединяют одну из них с зажимом Л, а другую с зажимом 3, после чего, вращая рукоятку индуктора, определяют сопротивление изоляции. При измерении сопротивления изоляции обмотки относительно корпуса его соединяют с зажимом 3, а обмотку — с зажимом Л.

Измерение сопротивления методом амперметра вольтметра • Energy-Systems

На чем основан метод измерения амперметра-вольтметра

Для из

мерения уровня сопротивления в электрической сети могут быть использованы различные методики, наиболее популярными являются косвенный, мостовой и метод оценки. Выбор методики проведения исследования осуществляется на основе необходимой точности конечных результатов и предполагаемого уровня сопротивления.

Среди существующих косвенных методик измерение сопротивления методом амперметра-вольтметра можно назвать самым универсальным, подходящим для применения практически в любых условиях и разных электрических системах.

Данная методика измерения величины сопротивления электрическому току основывается на определении параметров тока, проходящего через сопротивление, а также на измерении снижения напряжения. Для измерения в проектах электроснабжения коттеджей или других объектов малых и больших сопротивлений должны использоваться различные схемы замеров.

Сопротивление для схем больших сопротивлений, а также возможная погрешность определяется по формуле:

Здесь:

Rx – величина сопротивления в измеряемой сети,

Ra – уровень сопротивления измерительного устройства.

Для схем малого сопротивления, сопротивление в сети определяется по формуле:

В которой,Rb – уровень сопротивления прибора.

Для измерения в схемах большого сопротивления используют амперметр, а для малых сопротивлений – вольтметр.

Данные формулы и схемы позволяют определить уровень сопротивления в различных сетях с минимальными погрешностями. Сам уровень погрешности по данной методике можно определить с помощью формулы:

В данной формуле, γв, γa, выражают уровень точности используемых измерительных устройств, а Uп, Iп – это допустимые пределы измерения устройствами.

Для измерения сопротивления по данной методике допускается использовать точные измерительные приборы. Для снятия показаний параметров сети вольтметр должен быть подключен к сети, уровень тока в которой должен достигать таких величин, чтобы конечные показания снимались с большей половины шкалы величин. С такими же условиями должен осуществляться выбор шунта, используемого для измерения тока. Чтобы исключить вероятность нагрева сопротивления и не допустить ощутимого снижения точности замеров, ток при измерении не должен сильно превышать номинальные параметры.

Чтобы получить максимально точный результат измерения сопротивления, специалисты рекомендуют проводить не менее 3-х измерений с различными уровнями электрического тока. После проведения ряда испытаний основной величиной считается усредненное значение полученных данных.

Измерение величины сопротивления методом непосредственной оценки

Такая методика измерения предполагает использование омметра для снятия показаний параметров электрической системы и определения уровня ее сопротивления. Такой вариант измерений допускается только в тех ситуациях, когда заказчик может мириться с возможностью получения не совсем точных результатов.

Из-за недостаточной точности метод измерения омметром применяется для определения примерных значений сопротивления, а также в случаях, когда требуется проверка коммутационных сетей. Для измерения сопротивления следует использовать омметры с диапазоном измерения сопротивлений от 0,1 Ом до 1000 кОм.

В качестве основного омметра для измерения малых сопротивлений, обычно используются приборы логометрического типа М246, оснащенные оптическим указателем и щупальцами, способными зачищаться самостоятельно.

Стоит также отметить, что в некоторых случаях для измерения сопротивления малых величин могут быть использованы приборы, называемые контактомерами. Это качественное оборудование, способное определять сопротивление с погрешностью не более полутора процентов.

В качестве основных измерительных устройств, для проверки сопротивления на обмотках трансформаторов выступают современные потенциометры, отличающиеся высокой точностью. Они работают по методу компенсационного измерения сопротивления.

Одинарные мосты используются при необходимости измерить уровень сопротивления, номинальная величина которого располагается в пределах от 1 Ом до 1 МОм. Такой мост может выдавать результаты с ощутимыми погрешностями, в некоторых случаях достигающими величины в 15%.

Пример технического отчета

Назад

1из27

Вперед

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Онлайн расчет стоимости проектирования

Метод амперметра – вольтметра — Студопедия

Измерение параметров элементов электрических цепей

Электрические цепи представляют собой совокупность соединенных друг с другом элементов – источников электрической энергии и нагрузок в виде резисторов, катушек индуктивности, конденсаторов. При определенных допущениях эти нагрузки можно рассматривать как линейные пассивные двухполюсники с сосредоточенными постоянными, характеризуемые некими идеальными параметрами – сопротивлением R, индуктивностью  L, емкостью С.

При измерении, однако, не всегда удается определить значение того или иного параметра, соответствующее идеальному, совершенному виду элемента. Несовершенство конструкции и характеристик применяемых материалов является причиной появления так называемых остаточных (паразитных) параметров элементов. Так, наряду с главным параметром катушки индуктивности – индуктивностью, она обладает собственной емкостью и активным сопротивлением; резистор, обладая активным сопротивлением, имеет также определенную индуктивность т.п.

С учетом остаточных параметров конденсатор, катушку индуктивности или резистор можно характеризовать некоторым эффективным значением емкости, индуктивности, сопротивления, которые зависят от частоты. Поэтому эффективные параметры компонентов необходимо измерять на рабочих частотах, если их влиянием на результат измерения нельзя пренебречь.

В зависимости от объекта измерений, требуемой точности результата, диапазона рабочих частот и других условий для измерения параметров двухполюсников применяют различные методы и средства измерений. Наиболее распространенными являются следующие методы измерения: амперметра – вольтметра, непосредственной оценки, мостовой, резонансный и дискретного счета.

Метод амперметра – вольтметра

Измерение методом амперметра – вольтметра сводится к измерению тока и напряжения в цепи с измеряемым двухполюсником и последующему расчету его параметров по закону Ома. Метод может быть использован для измерения активного и полного сопротивления, индуктивности и емкости.

Измерение активных сопротивлений производится на постоянном токе, при этом включение резистора RХ в измерительную цепь возможно по схемам, представленным на рис. 13.1, а и б.

Достоинство метода заключается в простоте его реа­лизации, недостаток — в сравнительно невысокой точно­сти результата измерения, которая ограничена классом точности применяемых измерительных приборов и мето­дической погрешностью. Последняя обусловлена влияни­ем мощности, потребляемой измерительными приборами в процессе измерения, другими словами — конечным значением собственных сопротивлений амперметра RA и вольтметра RV. Выразим методическую погрешность че­рез параметры схемы.


В схеме рис. 13.1,а вольтметр показывает значение напряжения на зажимах RХ, а амперметр — сумму токов IV+I.

Следовательно, результат измерения R, вы­численный по показаниям приборов, будет отличаться от RХ :

Относительная погрешность измерения в процентах

Здесь приближенное равенство справедливо, так как при правильной организации эксперимента предполагается выполнение условия RV >>RХ.

В схеме рис.13.1,б амперметр показывает значение тока в цепи с RХ, а вольтметр — сумму падений напря­жений на RХ U и амперметре UA. Учитывая это, можно по показаниям приборов вычислить результат измере­ния:

Относительная погрешность измерения в процентах в данном случае равна:

Сравнивая полученные выражения относительных по­грешностей, приходим к выводу: в схеме рис. 13.1,а на методическую погрешность результата измерения оказы­вает влияние только сопротивление RV; для снижения этой погрешности необходимо обеспечить условие ; в схеме рис. 13.1,б на методическую погрешность результата измерения оказывает влияние только RA; снижение этой погрешности достигается выполнением условия Таким образом, при практическом ис­пользовании данного метода можно рекомендовать пра­вило: измерение малых сопротивлений следует произво­дить по схеме рис. 13.1,а; при измерении больших сопротивлений предпочтение следует отдавать схеме рис. 13.1, б.

Измерение полного сопротивления ZX выполняется на переменном токе частотой f (рис. 13.2). По показаниям вольтметра и амперметра определяют модуль полного сопротивления

,

где — показания вольтметра и амперметра.

Выполнив аналогично предыдущему анализ методической погрешности, придем к выводу, что схему, представленную на рис. 13.2, а, целесообразно применять при , а на рис. 13.2, б – при .

Измерение емкости и индуктивности методом амперметра – вольтметра может быть выполнено по схемам, аналогичным рис. 13.2, только с заменой ZX , соответственно, на С или L.

Емкостное сопротивление конденсатора

,

откуда

.

При измерении емкости этим методом необходимо знать частоту источника питания. Для измерения больших емкостей рекомендуется схема а), а для малых емкостей – схема б).

Измерение индуктивности катушки методом амперметра – вольтметра возможно, если ее сопротивление RL значительно меньше реактивного сопротивления XL. При этом

, откуда .

Если требуется получить более точный результат, то необходимо учесть сопротивление катушки. Так как

,

то

.

Погрешности измерения параметров элементов цепей методом амперметра – вольтметра на низких частотах составляют 0.5-10%. Погрешности измерения возрастают с увеличением частоты.

Мостовой метод

Важным классом средств измерения, предназначенных для измерения параметров элементов электрических цепей методом сравнения, являются мосты. Сравнение измеряемой величины (сопротивления, емкости. Индуктивности) с образцовой мерой при помощи моста в процессе измерения может осуществляться вручную или автоматически, на постоянном или на переменном токе. Мостовые схемы обладают большой точностью, высокой чувствительностью, широким диапазоном измеряемых значений параметров. На основе мостовых методов измерения строятся средства измерения, предназначенные как для измерения какой-либо одной величины, так и универсальные аналоговые и цифровые приборы.

Одинарный мост постоянного тока

Простейшая схема одинарного моста представлена на рис.13.3. Четыре резистора R1,R2,R3,R(их называют плечами моста) соединены в кольцевой замкнутый контур. Точки соединения сопротивлений называют вершинами моста.

Цепи, соединяющие противоположные вершины, называют диагоналями. Диагональ ab содержит источник питания и называется диагональю питания. Диагональ cd, в которую включен индикатор Г, называется измерительной диагональю. В мостах постоянного тока в качестве индикатора обычно используется гальванометр.

В общем случае зависимость протекающего через гальванометр тока Iг от сопротивления плеч, сопротивления гальванометра  Rг и напряжения питания U имеет вид

. (13.1)

Измерение сопротивления может производиться в одном из двух режимов работы моста: уравновешенном либо неуравновешенном. Мост называется уравновешенным, если разность потенциалов между вершинами c и d равна нулю, а, следовательно, и ток через гальванометр равен нулю.

Из (13.1) следует, что Iг = 0 при

. (13.2)

Это условие равновесия одинарного моста постоянного тока можно сформулировать следующим образом: для того, чтобы мост был уравновешен, произведения сопротивлений противолежащих плеч моста должны быть равны. Если сопротивление одного из плеч моста (например, R1) неизвестно, то уравновесив мост путем подбора сопротивлений плеч , находим из условия равновесия

.

В реальных мостах постоянного тока для уравновешивания моста регулируются отношение и сопротивление плеча , которые, соответственно, называют плечами отношения и плечом сравнения.

В состоянии равновесия моста ток через гальванометр равен нулю и, следовательно, колебания напряжения питания и сопротивления гальванометра влияния на результат измерения не оказывают (важно лишь, чтобы чувствительность гальванометра была достаточной для надежной фиксации состояния равновесия). Поэтому основная погрешность уравновешенного моста определяется чувствительностью гальванометра, чувствительностью схемы, погрешностью сопротивлений плеч, а также сопротивлениями монтажных проводов и контактов.

При измерении малых сопротивлений существенным источником погрешности может явиться сопротивление проводов, с помощью которых измеряемый резистор подключается к входным зажимам моста, так как оно полностью входит в результат измерения. Поэтому нижний предел измерения одинарного моста ограничен значениями сопротивления порядка 1 Ом. Верхний же предел измерения 106 — 108Ом ограничивается чувствительностью гальванометра. При больших значениях измеряемого сопротивления токи в плечах моста очень малы и чувствительности гальванометра недостаточно для четкой фиксации равновесия. Для измерения малых сопротивлений (от 1 до 10-8Ом) применяют двойные мосты.

Двойной мост постоянного тока. Схема двойного моста представлена на рис. 13.4 .

Для исключения влияния сопротивлений соединительных проводов и переходных сопротивлений контактов измеряемое сопротивление присоединяется по четырехзажимной схеме включения: двумя токовыми зажимами в цепь источника питания моста, а двумя потенциальными – в измерительную цепь. Аналогичные зажимы имеет образцовое сопротивление . В цепь источника питания моста входит регулировочное сопротивление , измеряемое сопротивление , образцовое сопротивление (одного порядка по величине с ) и малого сопротивления .

Сопротивления плеч R1,R2,R3 и R4, входящие в измерительную цепь, выбирают достаточно большими (сотни и тысячи Ом), поэтому влияние сопротивлений монтажных проводов и переходных сопротивлений в контактах пренебрежимо мало.

При равновесии моста формула для определения сопротивления имеет вид

. (13.3)

При соблюдении равенства

(13.4)

и достаточно малом сопротивлении вторым членом формулы (13.3) можно пренебречь. Тогда формула (13.3) упрощается до следующей

.

Равенство (13.4) должно соблюдаться постоянно, поэтому резисторы R1,R2 и R3,R4 регулируются при помощи спаренных органов управления. Резистор представляет собой короткий отрезок медной шины большого сечения.

Промышленностью выпускаются одинарные и одинарно-двойные мосты постоянного тока классов точности от 0.005 до 5.

Измерительные мосты переменного тока

Для измерения емкости, индуктивности, взаимной индуктивности и тангенса угла потерь конденсаторов применяются мосты переменного тока, схемы которых отличаются большим разнообразием. Кроме простых четырехплечих мостовых схем существуют и более сложные мостовые схемы. Эти схемы путем последовательных эквивалентных преобразований могут быть приведены к простой четырехплечей схеме, которая является, таким образом, основной.

Схема одинарного четырехплечего моста переменного тока приведена на рис. 13.5. Так как мост питается напряжением переменного тока, то в качестве индикатора в нем применяются электронные милливольтметры переменного тока, либо осциллографические индикаторы нуля.

В общем случае сопротивления плеч моста переменного тока представляют собой комплексные сопротивления вида . Аналогично соотношению (13.2) условие равновесия одинарного моста переменного тока имеет вид:

.

Записав это выражение в показательной форме, получим

, (13.5)

где — модуль комплексного сопротивления; — фазовый сдвиг между током и напряжением в соответствующем плече.

Соотношение (13.5) распадается на два скалярных условия равновесия:

(13.6)

Отсюда следует, что в схеме моста переменного тока равновесие наступает только при равенстве произведений модулей комплексных сопротивлений противолежащих плеч и равенстве сумм их фазовых сдвигов. При этом нужно иметь в виду, что при изменении значений активных и реактивных составляющих одновременно изменяются и модуль, и фаза, поэтому мост переменного тока можно привести к состоянию равновесия лишь большим или меньшим числом переходов от регулирования одного параметра к регулированию другого.

Второе уравнение (13.6) показывает, какими по характеру должны быть сопротивления плеч мостовой схемы, чтобы обеспечить возможность ее уравновешивания. Так, например, если в двух смежных плечах включены активные сопротивления (φ = 0), то в двух других смежных плечах обязательно должны быть сопротивления одного характера – или индуктивности, или емкости.

Для измерения емкости конденсаторов без потерь используется мостовая схема, приведенная на рис. 13.6, а. Условие равновесия для этой схемы имеет вид

,

где — образцовый конденсатор переменной емкости, откуда

.

Мостовая схема для измерения индуктивности приведена на рис. 13.6, б. В качестве плеча сравнения здесь также используется конденсатор переменной емкости . Полагая, что активное сопротивление катушки пренебрежимо мало ( ), получим условие равновесия

,

откуда

.

Погрешность моста переменного тока определяется погрешностями элементов, образующих мост, переходных сопротивлений контактов, чувствительностью схемы и индикатора. Мосты переменного тока больше, чем мосты постоянного тока, подвержены влиянию помех и паразитных связей между плечами, плечами и землей, мостом и оператором. Именно поэтому, даже при тщательном экранировании моста и принятии других мер защиты, погрешности мостов переменного тока больше, чем погрешности мостов постоянного тока. Промышленностью выпускаются мосты переменного тока классов точности от 0.1 до 5.0.

Мосты переменного тока работают обычно на низких частотах 100 Гц и 1000 Гц. При работе на повышенных частотах погрешности измерения резко возрастают.

Метод амперметра — вольтметра — Энциклопедия по машиностроению XXL

Измерение сопротивлений. Метод амперметра и вольтметра. Измеряемое сопротивление (фиг. 16) включается последовательно с подходящим источником энергии (батарея, аккумулятор) и амперметром. С помощью амперметра определяют силу тока I в цепи, а вольтметром—напряжение U на зажи-  [c.524]

Метод амперметра и вольтметра основан па законе Ома (фиг. 76)  [c.374]












Сопротивление может быть определено методом амперметра и вольтметра, питая обмотки постоянным током низкого напряжения, или соответствующим измерительным мостиком или омметром.  [c.980]

Методом амперметра и вольтметра (рис. 21) измеряют сопротивление резистора Rx. Амперметр показал / = 3 А, вольтметр V = 7,5 В. Внесите поправку в определение Rx с учетом сопротивления амперметра, равного 0,2 Ом.  [c.67]

Метод амперметра и вольтметра. Метод позволяет измерять величину сопротивления. Метод прост и позволяет проводить измерения сопротивления в рабочем режиме при постоянном и переменном токе (рис. 17.31). Когда Рх> >Ра используется схема а, когда —  [c.296]










Для измерения входных сопротивлений кабелей с защитным покровом из кабельной пряжи и битума в основном применяется метод амперметра и вольтметра или используется измеритель заземления типа МС-08.  [c.108]

Метод амперметра и вольтметра. Этот метод является наиболее приемлемым для достаточно точного определения малых сопротивлений, порядка десятых и сотых долей ома. Такое входное сопротивление часто имеют свинцовые оболочки и броня протяженных кабельных линий, пролежавших несколько лет в земле с низким удельным сопротивлением. Для измерения входных сопротивлений этим методом должен применяться переменный ток, чтобы исключить поляризацию. Ток в цепи измерения не должен быть меньше 10 А,  [c.108]

При измерениях сопротивлений порядка сотых долей ома прибор дает большую погрешность. В таких случаях лучше пользоваться методом амперметра и вольтметра.  [c.110]

Расположение электрода и их тип аналогичны принятым в методе амперметра и вольтметра. Сопротивление токового электрода для предела от О до 10 Ом должно быть не более 250 Ом, для остальных пределов — соответственно 500 и 1000 Ом. Сопротивление зонда не должно превышать 1000 Ом.  [c.110]

Измерение сопротивлений по методу амперметра и вольтметра  [c.928]

Метод амперметра и вольтметра по своей точности значительно уступает методу моста, однако его целесообразно применять в тех случаях, когда величина измеряемого сопротивления зависит от величины тока и когда необходимо учесть эту зависимость. Установление нужной величины тока осуществляется при помощи реостата г.  [c.928]




Фиг. 2. Схема измерения сопротивлений по методу амперметра и вольтметра—вариант 1



Фиг. 3. Схема измерения сопротивлений по методу амперметра и вольтметра — вариант 2

Способ измерения методом амперметра и вольтметра мало пригоден для сплавов, из которых вследствие их свойств (высокая твердость, хрупкость) трудно изготовить длинные образцы мало-го сечения. Кроме того, для образцов большой длины не всегда можно обеспечить постоянство условий обработки и, в частности, температуру нагрева в печи,  [c.145]

Фаза, имеющая замыкание, может быть определена и по величине ее сопротивления, измеренного мостиком, или по методу амперметра и вольтметра меньшее сопротивление будет иметь фаза с короткозамкнутыми витками. Если же фазы нельзя разъединить, то производят измере-  [c.25]

Метод амперметра и вольтметра.  [c.206]

Метод амперметра и вольтметра наиболее прост, применим на постоянном и переменном токе, не требует дополнительных приспособлений.  [c.206]

Точность измерения методом амперметра и вольтметра зависит от схемы включения измерительных приборов. Практически могут иметь место две схемы.  [c.206]

Метод амперметра и вольтметра чрезвычайно прост и не требует особых разъяснений. Однако следует иметь в виду, что погрешности измерения при этом методе могут быть весьма значительными, если неправильно выбрать схему включения приборов. На фиг. 185 пО казаны два возможных варианта включения амперметра и вольтметра для измерения мощности Р, расходуемой на сопротивление R,  [c.230]

Определение коэффициента теплопроводности теплоизоляционных материалов методом трубы. Метод трубы основан на законе теплопроводности цилиндрической стенки. Схема прибора представлена на рис. 32-1. На медную трубу 2 с наружным диаметром di и длиной I накладывается цилиндрический слой исследуемого материала с диаметром d.2, внутри трубы заложен электрический нагреватель 3, создающий равномерный ее обогрев. Равномерность обогрева изоляции 1 обеспечивается] хорошей теплопроводное медной трубы. Сила тока в нагревателе регулируется реостатом. Теплота Q, выделяемая нагревателем 3, определяется по мощности тока, измеряемой амперметром и вольтметром.  [c.519]

Для измерения электрических сопротивлений используют мостовые, компенсационные, логометрические методы и метод амперметра — вольтметра.  [c.322]

Во втором случае результат получен путем расчета — решения уравнения R = Ujl, что характеризует это измерение как косвенное. Измерялись две разноименные величины — измерение совместное. Заметим, что данные для расчета получены методом непосредственной оценки по показаниям амперметра и вольтметра — в результате прямых измерений.  [c.43]

Оцените наибольшую возможную погрешность в измерении сопротивления методом амперметра — вольтметра классов 0,5 при отсчетах у последних отметок Шкал.  [c.69]

При поверке амперметров и вольтметров в последнее время все чаше используется метод прямых измерений — поверка этих приборов осуществляется с помощью калибраторов тока и напряжения. Приведенную погрешность, %, поверяемого прибора в этом случае вычисляют по формуле  [c.94]

Электрические свойства, методы измерения амперметра и вольтметра 296 в переменных электрических полях 298 мостовые двойные 297  [c.351]

Сущность этого метода заключается в том, что пользуясь ваттметром или амперметром и вольтметром, определяется мощность, потребляемая двигателем станка, а затем по величине этой мощности с учетом к. п. д. и скорости резания подсчитывают усилие резания. Эффективная (полезная) мощность станка Ыэф, затрачиваемая на процесс резания, находится по формуле  [c.98]












Рис, 102. Схема для измерения сопротивления методами амперметра (а) и вольтметра (б)  [c.162]

Проверка сопротивлений осуществляется при помощи измерительного моста или методом амперметра-вольтметра.  [c.59]

Измерение сопротивлений производится методом амперметра-вольтметра во время заряда батареи током генератора. Для обеспечения достаточной величины зарядного тока следует перед измерениями немного разрядить батарею двумя-тремя включениями стартера при выключенном зажигании или выключенной подаче топлива. Двигатель при измерениях должен работать на средней частоте вращения коленчатого вала. В связи с малыми значениями падений напряжения на участках зарядной цепи измерения следует производить милливольтметром. Для измерения силы тока в цепь включают амперметр. Все потребители электрической энергии должны быть включены. Значения сопротивлений измеряют на двух участках цепи заряда  [c.131]

При измерениях магнитных характеристик на кольцевых тороидальных образцах наибольшее распространение получил метод амперметра-вольтметра.  [c.22]










Если при измерении методом вольтметра и амперметра сопротивление вольтметра отличается от измеряемого сопротивления менее чем в 100 раз. то истинное значение измеряемого сопротивления определяется по формуле  [c.391]








Метод амперметра — вольтметра. Принципиальная измерительная схема приведена на рис. 75.  [c.121]

Точность метода зависит главным образом от точности используемых амперметра и вольтметра и величины переходных сопротивлений в местах включения приборов и измеряемого сопротивления. Последнее в свою очередь зависит от природы металлов и линейных размеров измеряемого образца.  [c.122]

На рис. 5-2 показана нринципиальная электрическая схема измерений по методу амперметра и вольтметра . На этом рисунке показаны две возможности измерения намагничивающего тока с помощью амперметра и по напряжению на сопротивлении Го.  [c.180]

Измерение сопротивления изоляции трубок производится постоянным напряжением 500 В после выдержки образца под напряжением в течение 1 мин приборами с непосредственным отсчетом значения сопротивления или методом амперметра и вольтметра. Измерение производится на образце трубки длиной не менее 150 мм, внутрь которого вставлен металлический стержень диаметром, равным внутреннему диаметру трубкн, а на наружную поверхность наложен на равном расстоянии от торцов кольцевой электрод длиной 100 мм из алюминиевой фольги (ГОСТ 618-50) толщиной 0,1 мм.  [c.495]

Методы онределеиия по результатам непосредственного измерепия тока и напряжения (метод амперметра и вольтметра). 2) Методы разряда (зарядки) через измеряемое Э. с. конденсатора известной емкости.  [c.450]

Если же обмотка статора имеет три вывода, то найти фазу, имеющую обрыв, при помощи мегомметра (без раз-барии двигателя) не представляется возможным. В этом случае поврежденная фаза может быть найдена лишь путем измерения сопротивления обмоток измерительным мостиком или по методу амперметра и вольтметра при питании каждой фазы посгоянным током. При измерении между точками I—2, а также между точками 2—3 (рис. И,а) велич1ины сопротивлений будут одинаковы, в то время Как между точками 1—3 (концы фазы, имеющей обрыв), оопро-титление будет равно. сумме сопротивлений обмоток двух фаз.  [c.16]

Чтобы получить достаточно высокую точность измерения электрических величин, нужно выбрать амперметр и вольтметр не только высокого класса точности, но и с такими пределами измерения, чтобы измеряемые в опыте величины были близки к пределу прибора. Наиболее высокая точность измерений может быть получена в случае применения потенциометрического метода с четырехпроводной схемой. Электрическая схема в этом случае аналогична схеме измерения сопротивления термометра сопротивления (см. рис. 3.14) с тем лишь отличием, что дополнительно используется делитель напряжения, так как падение напряжения на нагревателе составляет обычно несколько вольт и не может быть измерено на потенциометре. Большое внимание должно быть уделено обеспечению стабильности напряжения во время опыта, так как его колебания увеличивают случайную погрешность измерений. Поэтому при точных измерениях теплоемкости для питания калориметрического нагревателя применяют батарею аккумуляторов большой емкости.  [c.105]

Четыре первых члена этой формулы характеризуют влияние погрешностей электрических величин, необходимых для вычисления количества тепла, выделяемого электрическим током. Ясно, что для уменьшения этих погрешностей надо использовать амперметр и вольтметр высокой точности, причем сопротивление обмотки вольтметра должно быть большим. Однако для проведения наиболее точных экспериментов следует вообще отказаться от схемы, использующей амперметр и вольтметр, и применить метод компенсации. При этом калориметрический нагреватель включается по четырехпроводной системе и вся измерительная схема выглядит аналогично схеме для измерения сопротивления термометра сопротивления (рис. 3-11). только в случае необходимости к потенциометру добавляется делитель напряжения. Применение метода компенсации позволяет существенно уменьшить ошибки измерения напряжения и силы тока нагревателя, а ошибка, зависящая от сопротивлений вольтметра и нагревателя, выпадает совсем.  [c.271]












Предложите схемы поверки ЭИП — шитовых амперметров и вольтметров — на месте эксплуатации методом сличения с образцовыми приборами без нарушения работоспосоОности объекта измерений.  [c.148]

Электрическое сопротивление экранов кабелей постоянному току oпpeдeJTяют методом амперметра-вольтметра на концах строительной длины или образце длиной не менее 0,15 м при напряжении до 300 В. Измерение проводят между жилой заземления и основной жилой, экран и изоляцию прокалывают (до контакта с жилой) стальной иглой диаметром 2,5 мм с углом заточки 30°. При эксплуатации и хранении электрическое сопротивление экранов возрастает, но не более чем до 150% от нормируемой величины при приеме и поставке.  [c.405]

На рйс. 29.108 показана схема прибора для измерения теплопроводности абсолютным стационарным методом. Образец 2 в форме диска толщиной 2,5 мм, диаметром 187 мм помещен между нагреваемой пластиной 5 и холодильником в виде медной плиты I. Для плотного прилегания образца к горячей и холодной поверхностям предусматривается специальное нажимное устройство (здесь не показано). Для нагревания образца и поддержания стабильной температуры используются два нагревателя центральный, основной, 12, который выполнен в виде плоской плитки, и периферийный 13 — в виде плоского кольца, окружающего основной нагреватель., Расходуемая электроэнергия измеряется с помощью точных амперметров и вольтметров. Кольцевой нагреватель служит для предотвращения утечек тепла от образца в радиальном направлении. При установившемся тепловом режиме тепло, выделившееся в нагревателе, полностью проходит через испытуемый материал и воспринимается водой, циркулирующей через полость холодильника. Для предотращения утечек тепла вниз служит нижний охранный электронагреватель. Наличие кольцевого и нижнего охранных нагревателей дает основание считать тепловой поток одномерным. В качестве расчетной принимается поверхность центрального нагревателя. Температура поверхности испытуемого материала измеряется с помощью термопар 3 v 4, помещенных на обогреваемой поверхности прибора и на поверхности холодильника. Кроме основных, в приборе используются еще три вспомогательные термопары 14 — для контроля работы кольцевого электронагревателя, S и 5 — для настройки нижнего охранного нагревателя. Показания термопар 3 и 14 должны быть одинаковыми, то же для термопар 8 и 9. Теплопроводность вычисляется по формулам (29.21) и  [c.440]

При работе электроустановки не исключена возможность повреждения цепи заземления, а также повыщения сопротивления растеканию тока заземлителей. Поэтому техническое состояние заземляющего устройства периодически проверяют при каждом техническом обслуживании. Существует несколько способов измерения сопротивления заземляющих устройств методы амперметра-вольтметра, амперметра-ваттметра и непосредственное измерение сопротивления специальным прибором — измерителем заземления. В передвижных электроустановках чаще B eiO используют последний способ. Непосредственное измерение сопротивления заземлителей проводят с помощью измерителей типов МС-07, МС-08, М-1103.  [c.253]


Метод вольтметра – амперметра

Метод вольтметра – амперметра сводится к измерению тока и напряжения в цепи с измеряемым двухполюсником и последующему его расчету по закону Ома. Таким способом можно измерять активное и полное сопротивление (на постоянном и переменном токе), индуктивность и емкость.

1 Измерение активного сопротивления

Схемы включения измерительных приборов приведены на рисунке 3.4.1.

Рисунок 3.4.1  – Схемы включения измерительных приборов в методе амперметра-вольтметра (а – для больших Rх, б – для малых Rх).

Для измерения полного сопротивления на переменном токе применяются те же схемы, но схема а – для измерения малых сопротивлений, а схема б – для измерения больших сопротивлений.

Искомое сопротивление можно найти, зная Ix и Ux, по закону Ома.

2 Измерение емкости

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.

Рисунок 3.4.2 — Схема измерения емкости конденсатора методом амперметра – вольтметра (а – для измерения малых емкостей, б – для измерения больших емкостей).

В этом случае реактивное сопротивление конденсатора будет равно

, а емкость находится по формуле , где

w — частота, на которой производится измерение.

3 Измерение индуктивности

 Измерение индуктивности методом амперметра – вольтметра возможно, если активное сопротивление катушки намного меньше ее реактивного сопротивления. Применяются те же схемы, что и для измерения емкости, только конденсатор заменяется катушкой индуктивности. Тогда искомая индуктивность будет равна .

Если требуется получить более точный результат, то необходимо учитывать сопротивление катушки , откуда .

Погрешность измерения параметров двухполюсников на низких частотах составляют (0,5 – 10) % и увеличивается с ростом частоты.

Источниками погрешностей являются погрешности измерительных приборов (амперметра и вольтметра) и паразитные параметры.

Поможем написать любую работу на аналогичную
тему

Получить выполненную работу или консультацию специалиста по вашему
учебному проекту

Узнать стоимость

Измерение электрического сопротивления

Подразделяют сопротивления электрические условно на малые (не более 1 Ома), средние (от 1 до 105 Ом), и ,соответственно большие (свыше 105 Ом). Измерения их также могут происходить различными способами. При измерении малых – применяется метод вольтметра-амперметра, а также мостовой. Для средних применимы методы вольтметра-амперметра, мостовой (мосты одинарные), компенсационные и методы непосредственной оценки (омметры). Чтоб измерять большие сопротивления применяют мегомметры, которые реализуют метод непосредственной оценки.

Содержание:

Метод амперметра-вольтметра

Пожалуй, он самый простой для измерения средних и малых сопротивлений R.

При измерении малых R рекомендуют применять такую схему:

Потому что в данном случае IA≈IR  из-за большого внутреннего сопротивления вольтметра относительно R и будет выполнено равенство IV«IR. При среднем значении R рекомендована такая схема:

Так как в этом случае UV≈UR из-за очень малого внутреннего сопротивления амперметра. Соответственно применив закон Ома получим:

Из-за наличия внутренних сопротивлений в приборах возникает погрешность, что есть основным недостатком этого метода. Но при измерении малых R сопротивление вольтметра будет равно RV>100R, а для измерения средних R амперметра RA<100R, то в таком случае суммарная погрешность не будет более 1%.

Метод непосредственной оценки

Чтоб реализовать такой метод необходимо применить омметр, схема которого ниже:

Данное устройство состоит из измерительного механизма ИМ (тип механизма магнитоэлектрический), шкала которого градуируется в омах. Также существует источник питания постоянным током U и резистор добавочный Rд. К выходным зажимам А и В производят подключения измеряемого сопротивления RX. Соответственно в цепи будет протекать ток:

Где RД, RИ, RХ – добавочный резистор и сопротивления измерительного механизма и соответственно объекта, который подлежит измерению. При этом угол отклонения стрелки прибора будет равен:

Где S1 – чувствительность токового измерителя.

Если зажимы А и В разомкнуть () , то угол отклонения стрелки прибора будет равен нулю α=0, а если их закоротить (R=0), то угол отклонения будет максимален. Поэтому у омметра шкала обратная – ноль у него справа.

Омметры довольно таки удобны в практическом применении, но они имеют довольно высокую погрешность (класс точности 2,5). Это связано с нестабильностью источника питания и неравномерностью шкалы. Дабы устранить причину неравномерности шкалы в омметрах стали использовать логометрические измерительные механизмы:

Такие приборы получили название мегомметров. Для получения источника питания в мегомметрах используют небольшие генераторы напряжением до 2500 Вольт и приводящиеся в движение вручную. В электронных же мегомметрах в качестве источника могут быть использованы батарейки или же внешний источник питания, подключаемый через специальный блок питания устройства. Мегомметры применяют для измерений больших сопротивлений, таких как сопротивление изоляции проводников. Для измерений свыше 109 Ома применяют специальные электронные устройства, которые носят название тераомметров.

Мостовой метод

Устройства, применяемые для реализации такого измерения, именуют измерительными мостами. Четырехплечевой или одинарный мост содержит в себе две диагонали и четыре плеча:

Мост образуют три резистора, значения которых известны – R2, R3, R4 и соответственно сопротивление, значение которого необходимо измерить Rx. В одну из диагоналей моста необходимо подключить источник питания, для данного случая источник Е0 подключенный к зажимам a и b, а другую нулевой индикатор НИ (зажимы c и d), который выполняет роль указателя симметричности моста. Когда потенциалы в точках c и d будут равны, то отклонение в НИ протекает ток IНИ = 0 и его отклонение тоже  равно нулю. Мост в состоянии равновесия. Будут выполнятся следующие соотношения: I1 = I2, I3 = I4, RxI1=R3I3, R2I2=R4I4. Учтя равенство токов и почленно разделив два последних уравнения получим:

Из данного выражения можем выделить искомое сопротивление:

Плечо R2 именуют плечом сравнения, а плечами отношений R3 и R4 соответственно.

Методом одинарного моста измеряют только средние сопротивления. Измерять им малые и большие сопротивления не рекомендуют. Нижний предел измерений моста (единицы Ом) ограничивается влиянием сопротивлений проводов и контактов, которые подключаются в плечо ас последовательно с объектом измерения Rх. Верхний предел (105 Ом) ограничен шунтирующим действием токов утечки.

Компенсационный метод

Его применяют для получения повышенной точности измерения. Ниже показана схема подобной установки:

В данную схему входит компенсатор постоянного тока, двухпозиционный переключатель (П2 и П1), резистор образцовый R0, а также источник питания Е и измеряемый резистор Rх. Измеряв падение напряжения на каждом из резисторов при двух разных положениях переключателя определяют – UR0=R0I и URХ=RХI. Из этих выражений можно получить следующую формулу:

При выполнении измерений необходимо ток I поддерживать постоянным и не допускать изменения его значения, для обеспечения точности измерения.

Метод измерения сопротивления

Классификация сопротивлений:

Классификация сопротивлений с точки зрения измерения следующая:

(1) Низкое сопротивление: все сопротивления порядка 1 Ом можно классифицировать как низкие сопротивления.

(2) средние сопротивления: все сопротивления от 1 Ом до примерно 0,1 МОм относятся к средним сопротивлениям.

(3) Высокое сопротивление: все сопротивления порядка выше 0.1 МОм попадает под высокое сопротивление.

Методы измерения низких сопротивлений:

Методы измерения низких сопротивлений :

(i) Амперметр-вольтметр Метод

(ii) Метод двойного моста Кельвина

(iii) Метод потенциометра

————————————————— ———————————————

Если вы электротехника студент не забудьте Читать ниже :

Ставьте лайки и подписывайтесь на нас в Facebook, Google+, Twitter.

———————————————- ————————————————-

Теперь мы собираемся обсудить измерение низкого сопротивления методом амперметра-вольтметра.

Амперметр-вольтметр Метод:

Этот метод измерения сопротивления очень популярен, поскольку инструменты, необходимые для этого испытания, обычно доступны в лаборатории. Два типа соединений, используемых для метода амперметра вольтметра, показаны на рисунке ниже.В обоих случаях снимаются показания амперметра и вольтметра, тогда измеренное значение сопротивления определяется по формуле:

Измеренное значение сопротивления Rm будет равно истинному значению R, если сопротивление амперметра равно нулю, а сопротивление вольтметра бесконечно, так что условия в цепи не нарушаются. Однако на практике это невозможно, и поэтому оба метода дают неточные результаты.

Рассмотрим схему (a): В этой схеме амперметр измеряет истинное значение тока через сопротивление, но вольтметр не измеряет истинное напряжение на сопротивлении.Вольтметр показывает сумму напряжений на амперметре и измеренного сопротивления.

Буква Ra — сопротивление амперметра.

Напряжение на амперметре, Va = IRa

Теперь, измеренное значение сопротивления,

Истинное значение сопротивления,

Таким образом, измеренное значение сопротивления выше истинного значения. Из вышесказанного также ясно, что истинное значение равно измеренному, только если сопротивление амперметра Ra равно нулю.

Относительная погрешность,

Из уравнения-1 ясно, что ошибка в измерениях будет небольшой, если значение измеряемого сопротивления будет большим по сравнению с внутренним сопротивлением амперметра. Поэтому при измерении высоких значений сопротивления следует использовать схему (а).

Рассмотрим схему (b): В этой схеме вольтметр измеряет истинное значение напряжения, а амперметр измеряет сумму токов, протекающих через сопротивление и вольтметр.

Пусть Rv будет сопротивлением вольтметра.

Ток через вольтметр, Iv = V / Rv

Измеренное значение сопротивления,

Истинное значение сопротивления,

Из уравнения-2 видно, что истинное значение сопротивления равно измеренному значению только в том случае, если сопротивление вольтметра бесконечно. Однако, если сопротивление вольтметра очень велико по сравнению с измеряемым сопротивлением:

или Rv >> Rm2 и, следовательно, Rm2 / Rv очень мало.

У нас,

Таким образом, измеренное значение сопротивления меньше истинного значения.

Относительная погрешность,

Величина Rm2 примерно равна

р.

Из уравнения-3 ясно, что ошибка измерения будет небольшой, если значение измеряемого сопротивления очень мало по сравнению с сопротивлением вольтметра. Следовательно, схему (b) следует использовать при измерении низких значений сопротивления.

Амперметр-вольтметр Метод , в двух описанных выше формах, является простым методом, но является сравнительно грубым методом, точность которого ограничена точностью используемого амперметра и вольтметра, даже если сделаны поправки на падение напряжения на амперметре для соединения на рисунке (a) и для шунтирующего эффекта вольтметра для соединений на рисунке (b).Если два прибора имеют точность 0,5% и показания близки к полной шкале, инструментальная погрешность в результате может составлять от 0 до 1%. Если показания близки к полной шкале, процентная погрешность может быть вдвое больше, а для более низких показаний может значительно возрасти. выше. Конечно, с менее точными приборами возможная погрешность увеличивается. Трудно получить точность намного лучше, чем 1% в значении сопротивления в обычных условиях, а погрешность в других случаях может быть значительно выше. Однако этот метод полезен в некоторых лабораторных работах, в которых не требуется более высокой точности.

Пригодность конкретного метода для измерения сопротивления зависит от относительных значений измеряемого сопротивления и сопротивления измерителей. Точка разделения между двумя методами находится на сопротивлении, для которого относительные погрешности, полученные двумя методами, равны.

Относительные ошибки для двух случаев равны, когда:

или при истинном значении сопротивления

Для сопротивления, превышающего значение, заданное уравнением-4, используется метод рисунка (a), а для низкого сопротивления — метод рисунка (b).

Вольтметры и амперметры | Безграничная физика

Вольтметры и амперметры

Вольтметры и амперметры используются для измерения напряжения и тока соответственно.

Цели обучения

Сравнить схемы подключения амперметра и вольтметра

Основные выводы

Ключевые моменты
  • Вольтметр — это прибор, используемый для измерения разности электрических потенциалов между двумя точками в электрической цепи.
  • Амперметр — это измерительное устройство, используемое для измерения электрического тока в цепи.
  • Вольтметр подключается параллельно к устройству для измерения его напряжения, а амперметр подключается последовательно с устройством для измерения его тока.
  • В основе большинства аналоговых счетчиков лежит гальванометр, прибор, который измеряет ток, используя движение или отклонение иглы. Отклонение иглы вызывается магнитной силой, действующей на провод с током.
Ключевые термины
  • шунтирующее сопротивление : небольшое сопротивление R, помещенное параллельно гальванометру G для получения амперметра; чем больше измеряемый ток, тем меньше R должно быть; большая часть тока, протекающего через счетчик, шунтируется через R для защиты гальванометра
  • гальванометр : Аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на провод с током.

Вольтметры и амперметры измеряют напряжение и ток цепи соответственно. Некоторые измерители в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях являются вольтметрами или амперметрами.

Вольтметры и амперметры : Краткое введение в вольтметры и амперметры для начинающих студентов-физиков.

Вольтметры

Вольтметр — это прибор, который измеряет разность электрических потенциалов между двумя точками в электрической цепи.Аналоговый вольтметр перемещает указатель по шкале пропорционально напряжению в цепи; цифровой вольтметр обеспечивает числовой дисплей. Любое измерение, которое можно преобразовать в напряжение, можно отобразить на правильно откалиброванном измерителе; такие измерения включают давление, температуру и расход.

Вольтметр : Демонстрационный вольтметр из класса физики

Чтобы вольтметр мог измерять напряжение устройства, он должен быть подключен параллельно этому устройству.Это необходимо, потому что параллельные объекты испытывают одинаковую разность потенциалов.

Вольтметр, подключенный параллельно : (a) Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) подключается параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между точками a и b. Невозможно подключить вольтметр напрямую к ЭДС без учета его внутреннего сопротивления r. (b) Используемый цифровой вольтметр

Амперметры

Амперметр измеряет электрический ток в цепи.Название происходит от названия единицы измерения электрического тока в системе СИ, ампер (А).

Чтобы амперметр мог измерять ток устройства, он должен быть последовательно подключен к этому устройству. Это необходимо, поскольку последовательно соединенные объекты испытывают одинаковый ток. Их нельзя подключать к источнику напряжения — амперметры предназначены для работы с минимальной нагрузкой (которая относится к падению напряжения на амперметре, обычно составляющему небольшую долю вольта).

Амперметр серии : Амперметр (A) подключается последовательно для измерения тока.Весь ток в этой цепи протекает через счетчик. Амперметр будет иметь такие же показания, если он расположен между точками d и e или между точками f и a, как и в показанном положении. (Обратите внимание, что заглавная буква E обозначает ЭДС, а r обозначает внутреннее сопротивление источника разности потенциалов.)

Гальванометры (аналоговые измерители)

Аналоговые счетчики имеют стрелки, которые поворачиваются, чтобы указывать на числа на шкале, в отличие от цифровых счетчиков, которые имеют числовые показания.Сердцем большинства аналоговых счетчиков является устройство, называемое гальванометром, которое обозначается номером G . Ток через гальванометр I G вызывает пропорциональное движение или отклонение стрелки.

Двумя важнейшими характеристиками любого гальванометра являются его сопротивление и чувствительность по току. Чувствительность по току — это ток, который дает полное отклонение стрелки гальванометра, другими словами, максимальный ток, который может измерить прибор.Например, гальванометр с токовой чувствительностью 50 мкА имеет максимальное отклонение стрелки при протекании через него 50 мкА, находится на полпути шкалы, когда через него протекает 25 мкА, и так далее.

Если такой гальванометр имеет сопротивление 25 Ом, то только напряжение В = IR = (50 мкА) (25 Ом) = 1,25 мВ дает показания полной шкалы. Подключив резисторы к этому гальванометру различными способами, вы можете использовать его как вольтметр или амперметр для измерения широкого диапазона напряжений или токов.

Гальванометры как вольтметры

Гальванометр может работать как вольтметр, если он подключен последовательно с большим сопротивлением R . Значение R определяется максимальным измеряемым напряжением. Предположим, вам нужно 10 В для полного отклонения вольтметра, содержащего гальванометр с сопротивлением 25 Ом и чувствительностью 50 мкА. Тогда приложенное к измерителю напряжение 10 В должно давать ток 50 мкА. Общее сопротивление должно быть:

[латекс] \ text {R} _ {\ text {tot}} = \ text {R} + \ text {r} = \ frac {\ text {V}} {\ text {I}} = \ frac { 10 \ text {V}} {50 \ mu \ text {A}} = 200 \ text {k} \ Omega, [/ latex]

или:

[латекс] \ text {R} = \ text {R} _ {\ text {tot}} — \ text {r} = 200 \ text {k} \ Omega — 25 \ Omega \ приблизительно 200 \ text {k} \Омега.[/ латекс]

(R настолько велик, что сопротивление гальванометра, r, почти ничтожно.) Обратите внимание, что 5 В, приложенное к этому вольтметру, вызывает отклонение в половину шкалы, пропуская через измеритель ток 25 мкА, поэтому показания вольтметра пропорциональны к напряжению по желанию. Этот вольтметр не будет полезен для напряжений менее примерно половины вольта, потому что отклонение измерителя будет слишком маленьким для точного считывания. Для других диапазонов напряжения другие сопротивления подключаются последовательно с гальванометром.Многие измерители позволяют выбирать шкалы, которые включают последовательное включение соответствующего сопротивления с гальванометром.

Гальванометры как амперметры

Тот же гальванометр может также работать как амперметр, если он размещен параллельно с небольшим сопротивлением R , часто называемым шунтирующим сопротивлением. Поскольку сопротивление шунта невелико, большая часть тока проходит через него, что позволяет амперметру измерять токи, намного превышающие те, которые вызывают полное отклонение гальванометра.

Предположим, например, что нам нужен амперметр, который дает полную шкалу отклонения для 1,0 А и который содержит тот же гальванометр на 25 Ом с чувствительностью 50 мкА. Поскольку R и R параллельны, напряжение на них одинаковое.

Эти ИК-капли: IR = I G r

так, чтобы: [latex] \ text {IR} = \ frac {\ text {I} _ \ text {G}} {\ text {I}} = \ frac {\ text {R}} {\ text {r }}. [/ latex]

Решая для R и отмечая, что IG составляет 50 мкА, а I равно 0.{-3} \ Omega. [/ Latex]

Нулевые измерения

Нулевые измерения уравновешивают напряжения, поэтому через измерительные устройства не протекает ток, который мог бы помешать измерению.

Цели обучения

Объясните, почему используются нулевые измерения

Основные выводы

Ключевые моменты
  • Измерения напряжения и тока стандартными вольтметрами и амперметрами изменяют измеряемую цепь, внося погрешности.Вольтметры потребляют дополнительный ток, тогда как амперметры уменьшают ток.
  • Нулевые измерения используются для уменьшения погрешности измеренных значений напряжения и тока.
  • Потенциометр и мост Уитстона — это два метода измерения нуля.
  • Потенциометр — это прибор, который измеряет неизвестное напряжение путем противодействия известному напряжению, не потребляя ток от измеряемого источника напряжения.
  • Мост Уитстона — это электрическая цепь, используемая для измерения неизвестного электрического сопротивления путем уравновешивания двух ветвей мостовой схемы, одна из которых включает неизвестный компонент.
Ключевые термины
  • нулевые измерения : методы более точного измерения тока и напряжения путем балансировки цепи таким образом, чтобы ток не протекал через измерительное устройство
  • потенциометр : прибор, который измеряет напряжение путем противодействия ему точной долей известного напряжения и без потребления тока из неизвестного источника.
  • Мост Уитстона : прибор, используемый для измерения неизвестного электрического сопротивления путем уравновешивания двух ветвей мостовой схемы, одна ветвь которой включает неизвестный компонент.

Нулевые измерения

Стандартные измерения цепей изменения напряжения и тока, вносящие числовые погрешности. Вольтметры потребляют дополнительный ток, тогда как амперметры уменьшают ток. Нулевые измерения уравновешивают напряжения, поэтому ток через измерительный прибор не протекает, и цепь остается неизменной. Нулевые измерения обычно более точны, но более сложны, чем стандартные вольтметры и амперметры. Их точность все еще ограничена.

Потенциометр

При измерении ЭДС аккумулятора и подключении аккумулятора напрямую к стандартному вольтметру, как показано на, фактическая измеряемая величина — это напряжение на клеммах В. Напряжение связано с ЭДС батареи соотношением В = ЭДС Ir , где I — протекающий ток, а r — внутреннее сопротивление батареи.

Вольтметр, подключенный к батарее : Аналоговый вольтметр, подключенный к батарее, потребляет небольшой, но ненулевой ток и измеряет напряжение на клеммах, которое отличается от ЭДС батареи. (Обратите внимание, что заглавная буква E символизирует электродвижущую силу или ЭДС.) Поскольку внутреннее сопротивление батареи точно неизвестно, невозможно точно рассчитать ЭДС.

ЭДС можно было бы точно рассчитать, если бы были известны r , что бывает редко. Если бы ток I можно было сделать нулевым, тогда В = ЭДС , и ЭДС можно было бы непосредственно измерить. Однако стандартным вольтметрам для работы необходим ток.

Потенциометр — это прибор для измерения нуля для измерения потенциалов (напряжений).Источник напряжения подключен к резистору R, пропускает через него постоянный ток. Вдоль провода наблюдается постоянное падение потенциала (падение ИК-излучения), поэтому переменный потенциал получается через контакт вдоль провода.

Неизвестная ЭДС x (обозначенная надписью E x ), подключенная последовательно с гальванометром, показана на. Обратите внимание, что ЭДС x противостоит другому источнику напряжения. Расположение точки контакта регулируется до тех пор, пока гальванометр не покажет ноль.Когда гальванометр показывает ноль, ЭДС x = IR x , где R x — это сопротивление участка провода до точки контакта. Поскольку через гальванометр не протекает ток, он не проходит через неизвестную ЭДС, и определяется ЭДС x .

Потенциометр : Потенциометр является устройством измерения нуля. (a.) Источник напряжения, подключенный к резистору с длинным проводом, пропускает через него постоянный ток I.(b) Неизвестная ЭДС (обозначенная буквой Ex) подключается, как показано, и точка контакта по R регулируется до тех пор, пока гальванометр не покажет ноль. Отрезок провода имеет сопротивление Rx и сценарий Ex = IRx, где I не зависит от соединения, поскольку через гальванометр не течет ток. Таким образом, неизвестная ЭДС пропорциональна сопротивлению сегмента провода.

Стандартная ЭДС заменяется на ЭДС x , и точка контакта регулируется до тех пор, пока гальванометр не покажет ноль, так что ЭДС с = ИК с .В обоих случаях через гальванометр не проходит ток. Ток I через длинный провод идентичен. Принимая соотношение ЭДС x / ЭДС s , I отменяет, и решение для ЭДС x дает то, что видно в.

Поскольку для R используется длинный однородный провод, соотношение сопротивлений R x / R с такое же, как отношение длин провода, который обнуляет гальванометр для каждой ЭДС.Три величины в правой части уравнения теперь известны или измерены, и можно вычислить ЭДС x . В этом расчете часто меньше неопределенности, чем при прямом использовании вольтметра, но он не равен нулю. Всегда есть некоторая неопределенность в соотношении сопротивлений R x / R s и стандартных ЭДС. Кроме того, невозможно определить, когда гальванометр показывает ровно ноль, что вносит ошибку как в R x , так и в R s , а также может повлиять на текущий I .

Измерения сопротивления

Многие так называемые омметры измеряют сопротивление. Наиболее распространенные омметры прикладывают напряжение к сопротивлению, измеряют ток и вычисляют сопротивление по закону Ома. Их показание — это рассчитанное сопротивление. Простые конфигурации с использованием стандартных вольтметров и амперметров имеют ограниченную точность, поскольку измерители изменяют как напряжение, подаваемое на резистор, так и ток, протекающий через него. Мост Уитстона — это устройство измерения нуля для расчета сопротивления путем уравновешивания падения потенциала в цепи.Устройство называется мостом, потому что гальванометр образует мост между двумя ветвями. Для выполнения нулевых измерений в схемах используются различные мостовые устройства. Резисторы R 1 и R 2 точно известны, а стрелка, проходящая через R 3 , указывает, что это переменное сопротивление. Можно точно прочитать значение R 3 . При неизвестном сопротивлении Rx в цепи R 3 регулируется до тех пор, пока гальванометр не покажет ноль.

Мост Уитстона : Мост Уитстона используется для расчета неизвестных сопротивлений. Переменное сопротивление R3 регулируется до тех пор, пока гальванометр не покажет ноль при замкнутом переключателе. Это упрощает схему, позволяя рассчитывать Rx на основе падения ИК-излучения.

Разность потенциалов между точками b и d равна нулю, что означает, что b и d имеют одинаковый потенциал. При отсутствии тока, протекающего через гальванометр, он не влияет на остальную цепь.Таким образом, ветви abc и adc параллельны, и каждая ветвь имеет полное напряжение источника. Поскольку b и d имеют одинаковый потенциал, падение IR вдоль и должно равняться падению IR вдоль ab . Опять же, поскольку b и d имеют одинаковый потенциал, падение ИК-излучения вдоль dc должно равняться падению ИК-излучения вдоль bc . Это уравнение используется для вычисления неизвестного сопротивления, когда ток через гальванометр равен нулю.Этот метод может быть очень точным, но он ограничен двумя факторами. Во-первых, ток через гальванометр не может быть точно равен нулю. Во-вторых, всегда есть неопределенности в R 1 , R 2 и R 3 , которые вносят вклад в неопределенность в R x .

Вольтметр Амперметр Метод измерения сопротивления

Сопротивление делится на три категории для целей измерения. Различные категории сопротивления измеряются разными методами.Вот почему они засекречены. Они классифицируются как
с низким сопротивлением: Сопротивление, имеющее значение 1 Ом или ниже, относится к этой категории.

Среднее сопротивление: Эта категория включает сопротивление от 1 Ом до 0,1 МОм.

Высокое сопротивление: Сопротивление порядка 0,1 МОм и выше классифицируется как высокое сопротивление.

В этом разделе мы обсудим метод измерения среднего сопротивления.Для определения среднего сопротивления используются следующие методы:

· Амперметр Метод вольтметра

· Метод замещения

· Метод моста Уитстона

· Омметр Метод

Амперметр Вольтметр Метод:

Существует два возможных соединения для измерения среднего сопротивления методом амперметра вольтметра, как показано на рисунке ниже:

В обоих случаях снимаются показания вольтметра и амперметра.Если показание вольтметра — V, а показание амперметра — I, тогда измеренное сопротивление будет

.

Rm = V / I

Это измеренное сопротивление Rm будет истинным значением сопротивления тогда и только тогда, когда сопротивление амперметра равно нулю, а сопротивление вольтметра бесконечно. Но на самом деле это невозможно достичь амперметром нулевого сопротивления и вольтметром бесконечного сопротивления. Следовательно, измеренное значение сопротивления Rm будет отклоняться от истинного значения R (Say).

Итак, мы обсудим обе схемы по отдельности и вычислим погрешность измерения в процентах.

Ящик1:

Мы рассматриваем первый тип подключения, как показано на рисунке 1 выше. Из рисунка видно, что вольтметр измеряет падение напряжения на амперметре, а также на резисторе. Итак, V = Va + Vr

Пусть ток, измеренный амперметром = I

Следовательно, измеренное сопротивление Rm = V / I

Итак, Rm = (Va + Vr) / I = (IRa + IR) / I = Ra + R

Следовательно, измеренное сопротивление представляет собой сумму сопротивления амперметра и истинного сопротивления.Следовательно, измеренное значение будет представлять истинное значение, только если сопротивление амперметра Ra равно нулю.

Истинное значение сопротивления R = Rm –Ra

= Rm (1-Ra / Rm)

Относительная погрешность = (Rm-R) / R = Ra / R

Следовательно, относительная погрешность будет меньше, если истинное значение измеряемого сопротивления будет большим по сравнению с внутренним сопротивлением амперметра. Вот почему этот метод следует использовать при измерении высокого сопротивления, но он должен относиться к категории среднего сопротивления.

Ящик 2:

Мы рассмотрим второе соединение, к которому подключен вольтметр, в котором вольтметр подключен к сопротивлению R, значение которого необходимо измерить.

Из рисунка видно, что амперметр будет считывать ток, протекающий через вольтметр и сопротивление R. Следовательно, ток, измеренный амперметром Ia = Iv + Ir

Итак, Ia = Iv + Ir

= V / Rv + V / R, где Rv — сопротивление вольтметра, а V — показание вольтметра.

Измеренное сопротивление Rm = V / Ia

= В / (В / Rv + V / R)

= RvR / (R + Rv)

= R / (1 + R / Rv)…. Деление числителя и знаменателя на

Rv

Следовательно, истинное значение сопротивления R = RmRv / (Rv-Rm)

= Rm (1-Rm / Rv)

Следовательно, истинное значение сопротивления будет равно измеренному значению только в том случае, если значение сопротивления вольтметра Rv бесконечно.

Если предположить, что значение сопротивления вольтметра Rv велико по сравнению с измеряемым сопротивлением R, то Rv >>> Rm

Итак, истинное значение R = Rm (1 + Rm / Rv)

Таким образом, из приведенного выше уравнения ясно, что измеренное значение сопротивления меньше истинного значения.

Относительная погрешность = (Rm-R) / R

= -R / Rv

Следовательно, из выражения относительной погрешности ясно, что погрешность измерения будет низкой, если значение измеряемого сопротивления будет намного меньше по сравнению с внутренним сопротивлением вольтметра.

Это причина; этот метод используется для измерения сопротивления контактов . Поскольку значение сопротивления контакта составляет порядка 20 мкОм, значение очень мало по сравнению с внутренним сопротивлением вольтметра.

Метод вольтметра-амперметра для вариантов Cases1 и Case2 — простой, но неточный метод. Погрешность значения сопротивления зависит от точности амперметра, а также вольтметра. Если точность обоих приборов предполагается 0.5%, тогда, когда оба прибора показывают почти полную шкалу, ошибка измерения сопротивления может варьироваться от 0 до 1%, в то время как если оба прибора показывают около половины шкалы, ошибка может удвоиться и так далее.

Однако этот метод очень полезен там, где не требуется высокая точность. Пригодность Case1 или Case2 зависит от измеряемого значения сопротивления. Точка разделения между двумя методами находится на сопротивлении, для которого оба метода дают одинаковую относительную ошибку.

Итак, Ra / R = R / Rv

R =

Для сопротивления, большего, чем значение, указанное выше, используется вариант Case1, тогда как для значения сопротивления ниже R, указанного выше, используется вариант Case2.

Проверьте эту книгу по электрическим измерениям и приборам. Это действительно потрясающе, и концепции реализованы очень хорошо.

Вольтметр-амперметр Метод измерения среднего сопротивления

В этой статье мы изучим метод вольтметр-амперметр для измерения среднего сопротивления . Как следует из названия метода, в этом методе есть амперметр и вольтметр для измерения сопротивления резистора.

Есть два возможных варианта подключения при измерении сопротивлений среды этим методом. Мы кратко обсудим обе связи. Общим в обоих случаях является то, что нам нужно снимать показания вольтметра и амперметра.

Пусть показания вольтметра и амперметра будут «V» и «I» соответственно. Итак, измеренное сопротивление (R м ) будет дано по формуле:

Существует разница между измеренным значением и истинным значением резистора.Для достижения истинного значения сопротивления сопротивление амперметра должно стать равным нулю, а сопротивление вольтметра должно стать бесконечным, но это идеальные условия, которых практически невозможно достичь. Следовательно, будет отклонение в измеренном значении и истинном значении, и мы найдем для него ошибку в процентах.

вольтметр-амперметр методом Кейс-1

[Используется при измерении высоких сопротивлений]

Рис.1

В приведенной выше схеме (рис.1), амперметр измеряет истинное значение тока, протекающего через сопротивление, но вольтметр не измеряет истинное значение напряжения на сопротивлении.

Здесь вольтметр показывает сумму напряжения на сопротивлении и амперметре.

Пусть напряжение вольтметра будет V.
Пусть напряжение на амперметре будет представлено как V a .
Пусть напряжение на сопротивлении будет представлено как V R .

Тогда получаем,

—————- (1)

Напряжение на сопротивлении (В R ) определяется как,

—————- (2)

Теперь пусть R a будет сопротивлением амперметра.

Следовательно, напряжение на амперметре

Текущее измеренное значение (R m1 ) сопротивления,

Подставляя значение V из уравнения (1)

Подставляя значение V R и V на из уравнения (2) и уравнения (3)

Достаем I обыкновенный получаем,

Отменяем I , получаем,

Следовательно, истинное значение сопротивления (R),

Вычитая R m1 , общее из уравнения,

Следовательно, измеренное значение сопротивления выше истинного значения.Из приведенного выше уравнения также ясно, что истинное значение равно измеренному значению, только если сопротивление амперметра равно нулю.

Относительная ошибка,

Из приведенного выше уравнения ясно, что ошибка (E r ) будет иметь небольшое значение, если значение измерительного сопротивления (R) будет большим по сравнению с внутренним сопротивлением амперметра.

Следовательно, эту схему следует использовать при измерении высоких сопротивлений.

вольтметр-амперметр методом Кейс-2

[Используется при измерении низких сопротивлений]

Инжир.2

В этой схеме (рис. 2) вольтметр измеряет истинное значение напряжения на измеряемом сопротивлении, но амперметр не измеряет истинное значение тока, протекающего через сопротивление.

Ток через амперметр — это сумма тока через вольтметр и сопротивления.

Пусть ток через амперметр равен I.
Пусть ток через вольтметр представлен как I V .
Пусть ток через сопротивление будет представлен как I R .

Тогда получаем,

——————– (4)

Ток через сопротивление (I R ) определяется как,

——————– (5)

Пусть теперь R v будет сопротивлением вольтметра.

Следовательно ток через вольтметр,

——————— (6)

Текущее измеренное значение (R м2 ) сопротивления,

Подставляя значение I из уравнения (4)

Подставляя значение I R и I V из уравнений (5) и уравнения (6)

Вынимая В обыкновенный получаем,

Отменяя V , получаем, упорядочивая значения, которые мы получаем,

Следовательно, истинное значение сопротивления (R),

Вычитая R м2 обычное из уравнения,

Следовательно, истинное значение сопротивления будет равно измеренному значению только в том случае, если значение сопротивления вольтметра (R V ) бесконечно.

Теперь, если предположить, что значение сопротивления вольтметра (R V ) велико по сравнению с измеряемым сопротивлением R, тогда R V >>> R m2

Следовательно,

мало

Мы знаем,

Таким образом, измеренное значение сопротивления меньше истинного значения.

относительная ошибка,

Стоимость рэнд за р. Примерно равна

р.

Следовательно,

Из приведенного выше уравнения видно, что относительная погрешность будет низкой, если измеряемое сопротивление очень мало по сравнению с внутренним сопротивлением вольтметра (R V ).

Следовательно, эту схему следует использовать, когда измеряемые значения сопротивлений низкие.

Примечание:

1. Метод вольтметра-амперметра для случаев 1 и 2 является простым методом, но не является точным. Погрешность значения сопротивления зависит от точности амперметра и вольтметра.

2. Метод вольтметра-амперметра очень полезен там, где не требуется высокая точность.

3. Пригодность варианта 1 или 2 зависит от измеряемого значения сопротивления.

Автор:

Адарш Чаухан

Технологический институт Видьяланкара
Мумбаи

Вольтметры и амперметры постоянного тока — College Physics

Цели обучения

  • Объясните, почему вольтметр необходимо подключать параллельно цепи.
  • Нарисуйте схему, показывающую правильно подключенный амперметр в цепь.
  • Опишите, как гальванометр можно использовать как вольтметр или амперметр.
  • Найдите сопротивление, которое необходимо подключить последовательно с гальванометром, чтобы его можно было использовать в качестве вольтметра с заданными показаниями.
  • Объясните, почему измерение напряжения или тока в цепи никогда не может быть точным.

Вольтметры измеряют напряжение, а амперметры измеряют ток. Некоторые измерители в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях являются вольтметрами или амперметрами. (См. (Рисунок).) Внутренняя конструкция простейшего из этих счетчиков и то, как они подключены к системе, которую они контролируют, дает более полное представление о применении последовательного и параллельного подключения.

Датчики топлива и температуры (крайний правый и крайний левый, соответственно) в этом Volkswagen 1996 года представляют собой вольтметры, которые регистрируют выходное напряжение «передающих» устройств, которое, как мы надеемся, пропорционально количеству бензина в баке и температуре двигателя. (Источник: Кристиан Гирсинг)

Вольтметры подключаются параллельно к любому измеряемому напряжению устройства. Параллельное соединение используется потому, что параллельные объекты испытывают одинаковую разность потенциалов.(См. (Рисунок), где вольтметр обозначен символом V.)

Амперметры подключаются последовательно к любому измеряемому току устройства. Последовательное соединение используется потому, что последовательно соединенные объекты имеют одинаковый ток, проходящий через них. (См. (Рисунок), где амперметр обозначен символом A.)

(a) Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) помещают параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между точками a и b.Невозможно подключить вольтметр непосредственно к ЭДС без учета ее внутреннего сопротивления,. (b) Используемый цифровой вольтметр. (Источник: Messtechniker, Wikimedia Commons)

Для измерения тока последовательно подключают амперметр (А). Весь ток в этой цепи протекает через счетчик. Амперметр будет иметь такие же показания, если он расположен между точками d и e или между точками f и a, как и в показанном положении. (Обратите внимание, что заглавная буква E обозначает ЭДС и обозначает внутреннее сопротивление источника разности потенциалов.)

Аналоговые измерители: гальванометры

У аналоговых счетчиков

есть стрелка, которая поворачивается, чтобы указывать на числа на шкале, в отличие от цифровых счетчиков, которые имеют числовые показания, аналогичные ручному калькулятору. Сердцем большинства аналоговых измерителей является устройство, называемое гальванометром, обозначаемое буквой G. Ток, протекающий через гальванометр, вызывает пропорциональное отклонение стрелки. (Это отклонение происходит из-за силы магнитного поля на провод с током.)

Двумя важнейшими характеристиками данного гальванометра являются его сопротивление и чувствительность по току.Чувствительность по току — это ток, который дает полное отклонение стрелки гальванометра, максимальный ток, который может измерить прибор. Например, гальванометр с чувствительностью по току имеет максимальное отклонение стрелки при прохождении через него, считывает половину шкалы при протекании через него и т. Д.

Если у такого гальванометра есть сопротивление, то при напряжении, равном только полномасштабное показание. Подключив резисторы к этому гальванометру различными способами, вы можете использовать его как вольтметр или амперметр, который может измерять широкий диапазон напряжений или токов.

Гальванометр как амперметр

Тот же гальванометр можно превратить в амперметр, разместив его параллельно небольшому сопротивлению, часто называемому шунтирующим сопротивлением, как показано на (Рисунок). Поскольку сопротивление шунта невелико, большая часть тока проходит через него, что позволяет амперметру измерять токи, намного превышающие токи, вызывающие полное отклонение гальванометра.

Предположим, например, что необходим амперметр, который дает полное отклонение на 1.0 А, и содержит такой же гальванометр со своей чувствительностью. Поскольку и параллельны, напряжение на них одинаковое.

Эти капли такие то. Решив и отметив, что это 0,999950 А, мы имеем

Проведение измерений изменяет схему

Когда вы используете вольтметр или амперметр, вы подключаете другой резистор к существующей цепи и, таким образом, изменяете схему. В идеале вольтметры и амперметры не оказывают заметного влияния на схему, но полезно изучить обстоятельства, при которых они влияют или не влияют.

Сначала рассмотрим вольтметр, который всегда размещается параллельно с измеряемым устройством. Через вольтметр протекает очень небольшой ток, если его сопротивление на несколько порядков больше, чем сопротивление устройства, и поэтому на цепь это не оказывает заметного влияния. (См. (Рисунок) (a).) (Большое сопротивление, параллельное малому сопротивлению, имеет общее сопротивление, по существу равное малому.) Если, однако, сопротивление вольтметра сравнимо с сопротивлением измеряемого устройства, тогда два соединенных параллельно имеют меньшее сопротивление, что существенно влияет на схему.(См. (Рисунок) (b).) Напряжение на устройстве не такое, как при отключении вольтметра от цепи.

(а) Вольтметр, имеющий сопротивление намного больше, чем сопротивление устройства (), с которым он подключен параллельно, создает параллельное сопротивление, по существу такое же, как и у устройства, и не оказывает заметного влияния на измеряемую цепь. (b) Здесь вольтметр имеет такое же сопротивление, что и устройство (), так что параллельное сопротивление составляет половину от того, которое есть, когда вольтметр не подключен. Это пример значительного изменения схемы, которого следует избегать.

Амперметр подключается последовательно к ветви измеряемой цепи, так что его сопротивление добавляется к этой ветви. Обычно сопротивление амперметра очень мало по сравнению с сопротивлениями устройств в цепи, поэтому дополнительное сопротивление незначительно. (См. (Рисунок) (a).) Однако, если задействованы очень маленькие сопротивления нагрузки или если сопротивление амперметра не такое низкое, как должно быть, то общее последовательное сопротивление значительно больше, и ток в ветви измеряется уменьшается.(См. (Рисунок) (b).)

Практическая проблема может возникнуть, если амперметр подключен неправильно. Если его подключить параллельно с резистором для измерения тока в нем, вы можете повредить счетчик; низкое сопротивление амперметра позволит большей части тока в цепи проходить через гальванометр, и этот ток будет больше, поскольку эффективное сопротивление меньше.

(a) Амперметр обычно имеет такое маленькое сопротивление, что общее последовательное сопротивление в измеряемой ветви существенно не увеличивается.Схема практически не изменилась по сравнению с отсутствием амперметра. (b) Здесь сопротивление амперметра такое же, как и сопротивление ветви, так что общее сопротивление удваивается, а сила тока вдвое меньше, чем без амперметра. Этого существенного изменения схемы следует избегать.

Одним из решений проблемы вольтметров и амперметров, мешающих измеряемым цепям, является использование гальванометров с большей чувствительностью. Это позволяет создавать вольтметры с большим сопротивлением и амперметры с меньшим сопротивлением, чем при использовании менее чувствительных гальванометров.

Существуют практические пределы чувствительности гальванометра, но можно получить аналоговые измерители, которые делают измерения с точностью до нескольких процентов. Обратите внимание, что неточность возникает из-за изменения схемы, а не из-за неисправности измерителя.

Связи: границы знаний

Выполнение измерения изменяет измеряемую систему таким образом, что приводит к погрешности измерения. Для макроскопических систем, таких как схемы, обсуждаемые в этом модуле, изменение обычно можно сделать пренебрежимо малым, но полностью исключить его нельзя.Для субмикроскопических систем, таких как атомы, ядра и более мелкие частицы, измерение изменяет систему таким образом, что невозможно сделать сколь угодно малым. Это фактически ограничивает знания о системе — даже ограничивает то, что природа может знать о самой себе. Мы увидим глубокие последствия этого, когда принцип неопределенности Гейзенберга будет обсуждаться в модулях по квантовой механике.

Существует еще один метод измерения, основанный на полном отсутствии тока и, следовательно, без изменения схемы.Они называются нулевыми измерениями и являются темой нулевых измерений. Цифровые измерители, которые используют твердотельную электронику и нулевые измерения, могут достигать точности в одну часть.

Проверьте свое понимание

Цифровые счетчики способны обнаруживать меньшие токи, чем аналоговые счетчики, использующие гальванометры. Как это объясняет их способность измерять напряжение и ток более точно, чем аналоговые измерители?

Поскольку цифровые счетчики требуют меньшего тока, чем аналоговые счетчики, они изменяют схему меньше, чем аналоговые счетчики.Их сопротивление в качестве вольтметра может быть намного больше, чем у аналогового измерителя, а их сопротивление в качестве амперметра может быть намного меньше, чем у аналогового измерителя. Обратитесь к (Рисунок) и (Рисунок) и их обсуждение в тексте.

Исследования PhET: комплект для конструирования цепей (только для постоянного тока), виртуальная лаборатория

Стимулируйте нейрон и следите за тем, что происходит. Сделайте паузу, перемотайте назад и двигайтесь вперед во времени, чтобы наблюдать за перемещением ионов через мембрану нейрона.

Сводка раздела

  • Вольтметры измеряют напряжение, а амперметры измеряют ток.
  • Вольтметр помещается параллельно источнику напряжения для получения полного напряжения и должен иметь большое сопротивление, чтобы ограничить его влияние на цепь.
  • Амперметр подключается последовательно, чтобы получить полный ток, протекающий через ответвление, и должен иметь небольшое сопротивление, чтобы ограничить его влияние на цепь.
  • Оба могут быть основаны на комбинации резистора и гальванометра, устройства, которое дает аналоговые показания тока.
  • Стандартные вольтметры и амперметры изменяют измеряемую цепь и, таким образом, имеют ограниченную точность.

Концептуальные вопросы

Почему не следует подключать амперметр напрямую к источнику напряжения, как показано на (Рисунок)? (Обратите внимание, что скрипт E на рисунке означает ЭДС.)

Предположим, вы используете мультиметр (предназначенный для измерения диапазона напряжений, токов и сопротивлений) для измерения тока в цепи и случайно оставляете его в режиме вольтметра. Как измеритель повлияет на схему? Что бы произошло, если бы вы измеряли напряжение, но случайно перевели измеритель в режим амперметра?

Для измерения токов на (рис.) Замените провод между двумя точками амперметром.Укажите точки, между которыми вы разместите амперметр, чтобы измерить следующее: (a) общий ток; (б) текущий ток; (c) через; (d) через. Обратите внимание, что на каждую часть может быть несколько ответов.

электросчетчиков

Вольтметры

Вольтметры — это инструменты, используемые для измерения разности потенциалов между двумя точками в цепи. Вольтметр подключается параллельно измеряемому элементу, что означает создание пути переменного тока вокруг измеряемого элемента и через вольтметр.Вы правильно подключили вольтметр, если вы можете удалить вольтметр из цепи, не разрывая цепь. На схеме справа вольтметр подключен для правильного измерения разности потенциалов на лампе. Вольтметры имеют очень высокое сопротивление, чтобы минимизировать ток, протекающий через вольтметр, и влияние вольтметра на цепь.

Амперметры

Амперметры — это инструменты, используемые для измерения тока в цепи. Амперметр включен последовательно со схемой, так что измеряемый ток протекает непосредственно через амперметр.Чтобы правильно вставить амперметр, цепь должна быть разорвана. Амперметры имеют очень низкое сопротивление, чтобы минимизировать падение потенциала через амперметр и воздействие амперметра на цепь, поэтому включение амперметра в цепь параллельно может привести к очень высоким токам и может вывести из строя амперметр. На схеме справа амперметр подключен правильно для измерения тока, протекающего по цепи.

Вопрос: На электрической схеме справа возможно
расположение амперметра и вольтметра
обозначены кружками 1, 2, 3 и 4.Где должен быть расположен амперметр?
правильно измерить полный ток и где
должен ли вольтметр быть правильно расположен
измерить общее напряжение?

Ответ: Для измерения полного тока амперметр должен быть помещен в положение 1, так как весь ток в цепи должен проходить через этот провод, а амперметры всегда подключаются последовательно.

Для измерения общего напряжения в цепи вольтметр можно установить в положение 3 или 4.Вольтметры всегда размещаются параллельно с анализируемым элементом схемы, а позиции 3 и 4 эквивалентны, потому что они соединены проводами (а потенциал всегда одинаков в любом месте идеального провода).

Вопрос: На какой схеме ниже правильно показано соединение амперметра A и вольтметра V для измерения сквозного тока и разности потенциалов на резисторе R?

Ответ: (4) показывает амперметр, включенный последовательно, и вольтметр, включенный параллельно резистору.

Вопрос: По сравнению с сопротивлением измеряемой цепи внутреннее сопротивление вольтметра спроектировано так, чтобы оно было очень высоким, поэтому счетчик не будет потреблять ток из цепи

  1. мало тока из цепи
  2. большая часть тока из цепи
  3. весь ток из цепи

Ответ: (2) вольтметр должен потреблять как можно меньше тока из цепи, чтобы минимизировать его влияние на цепь, но для работы требуется небольшое количество тока.

Вольтметр Амперметр Метод измерения сопротивления

Вольтметр Амперметр Метод измерения сопротивления

Сопротивление классифицируется в основном по трем категориям для измерения. Различные категории сопротивления измеряются разными методами. Итак, мы классифицируемся как: —

Низкое сопротивление: — Значение сопротивления, имеющее 1 Ом или ниже 1 Ом, относится к этой категории.(R

<1 Ом)

Среднее сопротивление: — В этой категории сопротивление от 1 Ом до 100 кОм. (1 Ом

Высокое сопротивление: — Сопротивление порядка 100 кОм и выше классифицируется как высокое сопротивление. (R> 100 кОм)

Список различных методов измерения среднего сопротивления: —

  • Мост Пшеничного камня
  • Мост Кэри Фостер Метр
  • Метод V-I
  • Метод замещения
  • Ом метод

Амперметр Вольтметр Метод: —

У нас есть соединение для измерения среднего сопротивления методом амперметра вольтметра: —

Вольтметр Амперметр Метод

На диаграмме выше сняты показания вольтметра и амперметра.Давайте возьмем пример, если показание вольтметра равно V, а показание амперметра — I, тогда измеренное сопротивление будет: —

Rm = V / I

Таким образом, мы можем измерить тестовое сопротивление Rt. Но мы знаем, что для измерения истинного значения сопротивления (Rt) внутреннее сопротивление амперметра должно быть нулевым, а внутреннее сопротивление вольтметра должно быть бесконечным. Но это практически невозможно, чтобы добиться нулевого сопротивления амперметром и бесконечного сопротивления.поэтому измеренное значение сопротивления Rm будет отклоняться от истинного значения R.

Вольтметр используется для измерения падения напряжения на резисторе, а также. Итак, V = Vr + Va
Пусть ток, измеренный амперметром в цепи = I

Итак, измеренное сопротивление Rm = V / I

Итак, Rm = (Va + Vr) / I = (IRa + IR) / I = Ra + R

Таким образом, измеренное сопротивление представляет собой сумму сопротивления истинного сопротивления и амперметра. Таким образом, измеренное значение будет представлять истинное значение только в том случае, если сопротивление амперметра Ra равно нулю.

Истинное значение сопротивления R = Rm –Ra

= Rm (1-Ra / Rm)

Относительная погрешность = (Rm-R) / R = Ra / R

Прочтите также

Метод измерения

Этот метод используется при измерении сопротивления около 100 кОм, но он должен относиться к категории среднего сопротивления. В этом методе относительная погрешность будет меньше, если истинное значение измеряемого сопротивления будет высоким по сравнению с внутренним сопротивлением амперметра. .

ВИДЕО-ЛЕКТОР ↓↓↓↓↓↓

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *