27.11.2024

Как на схеме обозначается реостат: Реостат как обозначается на схеме

Содержание

Как на схемах электрических цепей изображают реостат

В схемах электросетей все элементы имеют условные обозначения, в том числе и резистор. Это важный компонент, который используется в разных частях сети, в зависимости от выполняемой функции. Как на схемах электрических цепей изображают реостат, расскажем дальше.

Понятие и назначение

Реостат (резистор) – управляющий элемент электроцепей. С его помощью регулируется величина силы тока и напряжения. Он выпускается в разных вариантах и используется в электронике, радиотехнике, автомобилестроении и т.д.

Назначение резисторов прямо зависит от разновидности:

  1. Пусковые – применяются для включения электродвигателей.
  2. Пускорегулирующие – запускают двигатели и контролируют силу тока.
  3. Балластные или нагрузочные – поглощают энергию, которая используется для регулировки нагрузки в генераторах, т.е. формируют необходимое сопротивление в сети.
  4. Поглощающие – выводят лишнюю энергию из электромашин.
  5. Потенциометры – особая группа устройств, используемых для раздела напряжения.

Благодаря наличию прибора в цепи снижается вероятность скачков тока и перегрузки оборудования, что увеличивает период эксплуатации техники.

Устройство и принцип работы

Прежде чем понять, как на электрической схеме обозначается реостат, необходимо узнать его комплектацию и принцип работы.

Конструкция прибора состоит из:

  • Керамической трубки (цилиндра) – полая внутри для снижения температуры в процессе прохождения электроэнергии.
  • Медной проволоки – наматывается на трубку, а ее концы выводятся на контакты.
  • Металлической штанги – размещена выше трубки, на одной из сторон компонента есть контакт.
  • Движущийся ползунок или контакт – закрепляется на штанге.

 

Несмотря на выпуск многих разновидностей, принцип функционирования у всех приборов примерно одинаковый. Подключение возможно с помощью клемм, размещенных с обеих сторон трубки. Ток идет по всему периметру, в зависимости от местонахождения ползунка.

Если он расположен в центре устройства, то ток пройдет только до середины. Если ползунок размещен в конце, то ток проходит полностью, формируя высокое напряжение. В большинстве случаев задействуется только часть плоскости, т.е. бегунок не устанавливается на краю цилиндра. Изменение его месторасположения пропорционально колебанию силы тока.

Обозначение реостата на схеме электрической цепи

По стандартам РФ условные графические обозначения устройства на схемах должны соответствовать ГОСТ 2.728-74. В соответствии с ним резисторы обозначаются так:

Нелинейные, непостоянные и подстроенные резисторы обозначаются следующим образом:

Зная обозначение, можно сделать рисунок или начертить схему электрической цепи, где используется реостат.

Как прибор включается в сеть

Включение устройства в цепь осуществляется двумя способами: последовательно и параллельно. При последовательном подключении сопротивление оборудования складывается. Общее сопротивление будет больше любого отдельно взятого.

Схема электрических цепей, где обозначают реостаты с параллельным подключением, выглядит так:

При таком соединении складываются величины, обратные сопротивлению, т.е. общая проводимость состоит из проводимостей каждого компонента.

Представленные чертежи предназначены для простейшего оборудования. Чем больше элементов они будут включать, тем сложнее устройство, созданное на их основе.

Читайте также:

Как на схемах изображают реостат. Реостат и методы его включения

На уроке рассматривается прибор под названием реостат, сопротивление которого можно изменять. Подробно рассматривается устройство реостата и принцип его работы. Показывается обозначение реостата на схемах, возможные варианты включения реостата в электрическую цепь. Приводятся примеры применения реостата в повседневной жизни.

Тема: Электромагнитные явления

Урок: Реостаты

На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.

Рис. 1. Устройство реостата

На рисунке 1 представлен реостат без оболочки. Это сделано для того, чтобы можно было посмотреть все его части. На керамическую трубу (1) намотан провод (2). Его концы выведены к двум контактам (3а). Также имеется штанга, в конце которой расположен контакт (3б). По этой штанге движется скользящий контакт (4), так называемый «ползун».

Если расположить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если передвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, его длина возрастет, сопротивление увеличится, а сила тока уменьшится. Если же передвинуть «ползун» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, и сила тока в цепи возрастет.

Рис. 2. Реостат

Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт — подводящий к реостату провод, зеленый — скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо — увеличится. Также может использоваться следующее изображение реостата (рис. 4):

Рис. 4. Еще одно изображение реостата

Прямоугольник обозначает сопротивление, а стрелка — то, что его можно изменять.

В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.

Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.

Реостат — достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. — М.: Мнемозина.
  2. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. — М.: Просвещение.
  1. Центр образования «Технологии обучения» ().
  2. Школьный демонстрационный физический эксперимент ().
  3. Электротехника ().

Домашнее задание

  1. Стр. 108-110: вопросы № 1-5. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли при движении ползунка реостата вправо сопротивление будет уменьшаться?
  4. Чем обусловлено применение именно керамической трубы в реостате?

На практике часто приходится менять силу тока в цепи, делая ее то больше, то меньше. Так, изменяя силу тока в динамике радиоприемника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

Во многих случаях для регулирования силы тока в цепи применяют специальные приборы — реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включенного в цепь участка АС. При этом будет меняться сопротивление цепи, а, следовательно, и сила тока в ней, это покажет амперметр.

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением, а для того чтобы длинная проволока не мешала ее наматывают спиралью.

Один из реостатов (ползунковый реостат) изображен на рисунке а), а его условное обозначение в схемах — на рисунке б).

В этом реостате никелиновая проволока намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки.

Электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим 1. С помощью этого зажима и зажима 2, соединенного с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь.

Стрелками указано как протекает электрический ток через реостат


Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включенного в цепь. То есть мы увеличиваем или уменьшаем количество витков по которым протекает электрический ток (чем больше витков, тем больше сопротивление).

Каждый реостат рассчитан на определенное сопротивление (чем больше проволоки намотано, тем большее сопротивление может дать такой реостат) и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на реостате (см. рисунок а
).

[Значения 6Ω и 3 А означают что данный реостат способен изменять свое сопротивление с 0 до 6 Ом, и ток с силой больше чем 3 Ампера пропускать по нему не стоит.
]

Теперь самое время перейти от теории к практике!

Часть 1. Регулировка силы тока в лампочке.

На видео видно, как передвигая ползунок реостата вправо и влево, лампочка горит ярче или тусклее.

Понять принцип опыта можно взглянув на схему (см. рисунок 4).

На рисунке указана схема цепи, которую мы собирали в видео. Полное сопротивление цепи состоит из сопротивления R л лампочки и сопротивления включенной в цепь части проволоки (на рисунке заштрихована) реостата. Незаштрихованная часть проволоки в цепь не включена. Если изменить положение ползунка, то изменится длина включенной в цепь части проволоки, что приведет к изменению силы тока.

Так, если передвинуть ползунок в крайнее правое положение (точка С), то в цепь будет включена вся проволока, сопротивление цепи станет наибольшим, а сила тока — наименьшей, поэтому нить лампочки будет гореть тускло или совсем не будет гореть (так как эл. ток такой силы не может разогреть спираль лампочки до свечения).

Если же передвинуть ползунок реостата в положение А, то электрический ток совсем не будет идти по проволоке реостата и, следовательно, сопротивление реостата будет равно нулю. Весь ток будет расходоваться на горение лампы, и она будет светить максимально ярко.

Часть 2. Включение лампочки от карманного фонаря в сеть 220 В.

Внимание!
Не повторяйте этот опыт самостоятельно. Напоминаем, что поражение электрическим током осветительной сети может привести к смерти.

Что произойдет, если включить лампочку от фонарика в осветительную сеть напряжением 220 В? Понятно, что лампочка, рассчитанная на работу от батареек с суммарным напряжением 3,5 Вольт (3 пальчиковых батарейки), не способна выдержать напряжение в 63 раза большее — она сразу перегорит (может и взорваться).

Как тогда это сделать? На помощь придет уже известный нам прибор — реостат.

Нам нужен такой реостат, который способен был задержать бурный поток электрического тока, идущего от осветительной сети, и превратить его в тоненький ручеек электричества, который будет питать нашу хрупкую лампочку не нанося ей вреда.

Мы взяли реостат с сопротивлением 1000 (Ом). Это значит, что если эл. ток будет проходить по всей проволоке этого реостата, то на выходе из него получится ток с силой всего лишь 0,22 Ампер.

I=U/R=220 В / 1000 (Ом) = 0, 22 А

Для питания же нашей лампочки нужно даже более сильное электричество (0,28 А). То есть реостат не пропустит достаточное количество тока, чтобы зажечь нашу маленькую лампочку.

Это мы и наблюдаем во второй части видео, где в крайнем положении ползунка лампочка не горит, а при передвижении его вправо лампочка начинает загораться все ярче и ярче (подвигая ползунок мы запускаем все больше тока).

В определенный момент (на определенном положении ползунка реостата) лампочка перегорает, потому что реостат (при данном положении ползунка) пропустил слишком много электричества, которое и пережгло нить накаливания лампочки.

Так можно ли включить низковольтную лампочку в осветительную сеть? Можно! Только следует задержать все лишнее электричество реостатом с достаточно большим сопротивлением.

Часть 3. Включение лампы на 3,5 В вместе с лампой 60 Вт в сеть 220 В.

Мы взяли лампу мощностью 60 Вт, рассчитанную на напряжение 220 В, и лампочку от карманного фонарика на 3,5 В и силу тока 0,28 А.

Что произойдет, если включить эти лампочки в осветительную сеть напряжением 220 В? Понятно, что 60-ти ваттная лампочка будет гореть нормально (она на это и предназначена), а вот лампочка от карманного фонарика немедленно перегорит при включении ее в сеть (т.к. рассчитана работать от батареек только на 3,5 Вольта).

Но в опыте видно, как при подключении лампочек друг за другом (последовательно) и включении их в сеть 220 В обе лампы горят нормальным накалом и даже не думают перегорать. Даже когда ползунок реостата в крайнем положении (т.е. он не создает никакого сопротивления току) маленькая лампочка не перегорает.

Почему так? Почему даже при выключенном реостате (при его нулевом сопротивлении) лампа не перегорает? Что не дает ей перегореть при таком большом напряжении? И действительно ли напряжение на маленькой лампочке такое большое? Будет ли работать маленькая лампа если заменить лампу мощностью 60 Вт на стоваттную лампочку (100 Вт)?

Вы уже сможете ответить на большинство вопросов, если внимательно следили за ходом рассуждений в предыдущей части статьи. В этом опыте маленькой лампочке не дает перегорать большая лампочка. Она выступает в роли реостата с большим сопротивлением и берет на себя почти всю нагрузку.

Давайте попробуем разобраться как такое может происходить, что маленькая лампочка не перегорает благодаря лампочке в 60 Вт и доказать расчетным методом, что для нормального накала обеих лампочек необходимо одна и та же сила тока.

На помощь в решении этого вопроса нам придет физика, а конкретно ее раздел электричество (изучается в 8 классе).

Инструкция

Используя учебник по , повторите, как распределяется ток в случаях параллельного и последовательного включения резисторов в электрическую цепь. Знание данных закономерностей позволит правильно подключить реостат. Как известно, при параллельном подключении резистора в цепь ток, проходящий ранее через элемент, к которому подключается , разделяется на две части: одна часть течет через первоначальный элемент, а другая – через резистор.

Нарисуйте схему параллельного включения реостата в цепь, если вам необходимо шунтировать некоторый элемент цепи и контролировать силу тока через него в максимально возможных пределах. При максимально возможном значении сопротивления реостата ток через исследуемый элемент остается первоначальным, а при минимальном сопротивлении весь ток проходит через реостат в обход элемента.

Обратите внимание, что параллельного включения реостата не позволит вам контролировать общий ток в цепи, ибо при параллельном подключении элементов общая сила тока не изменяется, она только распределяется между отдельными ветвями.

Если же вам необходимо иметь возможность изменять общий ток цепи, то реостат нужно подключить последовательно с элементами цепи. Тогда появится возможность изменять общее сопротивление цепи, регулируя таким образом и общий ток.

Заметьте, что при подключении реостата последовательно с исследуемым элементом появляется возможность увеличивать и уменьшать напряжение на элементе. Это обосновывается тем, что напряжение в цепи распределятся по элементам в соответствии с правилом: чем больше сопротивление, тем больше напряжение, падающее на данном элементе.

Обратите также внимание на то, что при подключении реостата в цепь последовательно с исследуемым элементом можно контролировать не только напряжение на данном элементе, но и силу тока. Ведь при изменении тока в общей цепи его значение изменяется и в отдельных элементах цепи, включенных последовательно в цепь. Между тем, существует определенное различие между двумя способами регулирования силы тока через элемент. В случае подключения реостата последовательно вы получаете возможность изменять силу тока в исследуемом элементе, не затрагивая всю схему, а значит, не вторгаясь в режим работы устройства. В случае же включения реостата последовательно в электрическую цепь любые манипуляции с ним приводят к колебаниям силы тока во всей цепи, нарушая, таким образом, работу прибора.

Изменение тока, происходящее при изменении сопротивления, зависит от того, каким именно является исследуемой резистивный элемент, а именно, от того, какой вольт-амперной характеристикой он обладает.

Вам понадобится

  • Учебник по физике 8 класса, лист бумаги, шариковая ручка.

Инструкция

Прочитайте в учебнике по формулировку выражения закона Ома. Как известно, именно этот закон описывает связь электрического тока и напряжения на участке цепи. По закону Ома, сила тока прямо пропорциональна напряжению на участке цепи и обратно пропорциональна сопротивлению данного участка. Таким образом, очевидным является, что при увеличении сопротивления ток, проходящий через него, уменьшается.

Обратите внимание, что зависимость тока от сопротивления участка цепи является гиперболической, что говорит о резком спаде тока при увеличении значения сопротивления.

Помните, что такая зависимость тока от сопротивления является справедливой лишь для участка цепи, состоящего из одного элемента, а также лишь для обычных линейных резистивных элементов. Линейность в данном случае означает то, что вольт-амперная (зависимость тока от напряжения) представляется в виде прямой линии.

Напишите на листе бумаги выражение для закона Ома . Оно будет равно произведению силы тока на сопротивление резистора. Придайте сопротивлению несколько постоянных значений и запишите соответствующие законы Ома для каждого из них. Вы получите уравнения прямых с различными коэффициентами.

Соберём цепь, изображённую на рисунке. Силу тока в цепи измеряют амперметром, напряжение — вольтметром. Зная напряжение на концах проводника и силу тока в нём, по закону Ома можно определить сопротивление каждого из проводников.

В цепь источника тока по очереди будем включать различные проводники, например, никелиновые проволоки одинаковой толщины, но разной длины. Выполнив указанные опыты, мы установим, что из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление.
В следующем эксперименте по очереди будем включать никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения). Установим, что из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока, поперечное сечение которой меньше.
В третьем эксперименте по очереди будем включать никелиновую и нихромовую проволоки одинаковой длины и толщины. Установим, что никелиновая и нихромовая проволоки одинаковых размеров имеют разное сопротивление.
Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил:

Сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

Обрати внимание!

Сопротивление проводника прямо пропорционально его длине, т.е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т.е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причём у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход её в другой сосуд по толстой трубке произойдёт гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т.е. первый оказывает ему меньшее сопротивление, чем второй.

Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристаллической решётки проводника. Из-за различия в строении кристаллической решётки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга. Для характеристики материала вводят величину, которую называют удельным сопротивлением.

Удельное сопротивление — это физическая величина, которая определяет сопротивление проводника из данного вещества длиной \(1\) м и площадью поперечного сечения \(1\) м².

Введём буквенные обозначения: \(ρ\) — удельное сопротивление проводника, \(l\) — длина проводника, \(S\) — площадь его поперечного сечения. Тогда сопротивление проводника \(R\) выразится формулой:

R = ρ ι S .

Из этой формулы можно выразить и другие величины:

ι = RS ρ , S = ρ ι R , ρ = RS ι .

Из последней формулы можно определить единицу удельного сопротивления. Так как единицей сопротивления является \(1\) Ом, единицей площади поперечного сечения — \(1\) м², а единицей длины — \(1\) м, то единицей удельного сопротивления будет:

1 Ом ⋅ 1 м 2 1 м = 1 Ом ⋅ 1 м, т.е. Ом ⋅ м.

Удобнее выражать площадь поперечного сечения проводника в квадратных миллиметрах, так как она чаще всего бывает небольшой. Тогда единицей удельного сопротивления будет:

1 Ом ⋅ 1 мм 2 1 м, т.е. Ом ⋅ мм 2 м.

В таблице приведены значения удельного сопротивления некоторых веществ при \(20\) °С.

Обрати внимание!

Удельное сопротивление с изменением температуры меняется.

Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.

Обрати внимание!

Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь — лучшие проводники электричества.

При проводке электрических цепей используют алюминиевые, медные и железные провода.
Во многих случаях нужны приборы, имеющие большое сопротивление. Их изготавливают из специально созданных сплавов — веществ с большим удельным сопротивлением. Например, как видно из таблицы, сплав нихром имеет удельное сопротивление почти в \(40\) раз большее, чем алюминий.

Обрати внимание!

Стекло и дерево имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток и являются изоляторами.

На практике часто приходится менять силу тока в цепи, делая её то больше, то меньше. Так, изменяя силу тока в динамике радиоприёмника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

Для регулирования силы тока в цепи применяют специальные приборы — реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включённого в цепь участка АС. При этом будет меняться сопротивление цепи, а следовательно, и сила тока в ней, это покажет амперметр.

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением. Один из реостатов (ползунковый реостат) изображён на рисунке.

В этом реостате никелиновая проволока намотана на керамический цилиндр. Проволока покрыта тонким слоем не проводящей ток окалины, поэтому витки её изолированы друг от друга. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки. От трения ползунка о витки слой окалины под его контактами стирается, и электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим \(1\). С помощью этого зажима и зажима \(2\), соединённого с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь. Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включённого в цепь.

Реостатом называют электрическое устройство используемое для ограничения и регулировки тока или напряжения в электрической схеме.

По своему внутреннему устройству реостаты делятся на проволочные и не проволочные. Основной частью любого проволочного реостата является керамическая трубка, на которую намотана особая высокоомная проволока. На направляющем металлическом стержне закреплен ползунок, свободно передвигающийся вдоль проволоки, намотанной на керамие.

Итак, любой реостат состоит из нескольких основных частей:

Керамического цилиндра

Металлическая проволока — которая наматывется на трубку из керамики, концы проволоки выведены на контакты (зажимы), расположенные на противоположных концах трубки с обоих сторон;

Металлическая штанга — установлена чуть выше трубки, на одной стороне которой имеется контактная клемма;

Движущийся контакт — закреплен на штанге, который иногда называют ползун.

Реостат подсоединен в цепь через две зажимные клеммы: нижнюю непосредственно с обмотки и верхнюю клемму с движущегося контакта. При подключении реостата в электрическую цепь, ток от нижней клеммы течет по виткам из металлической проволоки, а затем проходит через скользящий контакт, затем по металлическому стержню и на верхний контакт.

Т.е, в схеме будет задействована только часть реостатной обмотки. В тот момент, когда ползунок двигается, изменяется сопротивление обмотки, т.к меняется ее длина, а соответственно сопротивление и сила тока в электрической цепи.

Необходимо отметить, что ток следует по каждому витку обмотки, а не поперек них. Это происходит потому, что витки обмотки изолированы друг от друга.

Так на рисунке А – движущийся контакт находится посередине. Поэтому ток будет протекать только через половину устройства. На позиции Б — токовый проводник используется полностью поетому, его длина максимальная, как и сопротивление, а в соответствии с сила тока снижается. На третьем рисунке все наоборот: снижается сопротивление, растут амперы.

На электрических схемах реостат обозначен следующим образом:

Реостат в схему включается всегда последовательно. При этом один из контактов подсоединен к ползуну, с помощью которого и регулируется количество ампер в цепи. Но необходимо добавить, что этот прибор можно применять и для регулировки напряжения. Здесь может быть применено несколько схем с одним или двумя сопротивлениями. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Обычно этот электронный компонент включается в электрическую схему для регулирования величины тока, пример подключения показан на рисунке ниже.

При перемещении движка изменяется длина токопроводящего слоя, а следовательно, и величина сопротивления реостата, включаемого последовательно в схему, что в вызывает некоторое изменение величины силы тока в цепи и перераспределение напряжения между реостатом и нагрузкой.

Когда движок перемещается к контакту, величина сопротивления реостата сильно снижается,а ток в в цепи наоборот возрастает, тогда меньшая часть напряжения будет гасится на приборе и сильнее возрастет напряжение на подключенной к нагрузке.

Если движок перемещать к противоположному контакту, сопротивление реостата возрастает, а ток в цепи снижается, падение напряжение на реостате будет увеличиваться, а на нагрузке снижаться.

Расчет представленной выше схемы, аналогичен расчету гасящего сопротивления. Величина сопротивления реостата вычисляется по формуле:

R реост =U реост /I

Падение напряжения находится по формуле ниже:

U реост =U ист -U потр

У реостата имеется всего два вывода, а у его родственника , целых три. Поэтому больше не путайте их между собой.

Как обозначается реостат на схеме. Что такое реостат? Виды и их назначение. Тема: Электромагнитные явления


Электрические сети зациклены на передаче электроэнергии от источника к потребителю, которые являются основными элементами цепочки. Но кроме них в электрическую цепь вставляются и другие составляющие, к примеру, управляющие элементы, к которым относится реостат или любой другой прибор с таким же принципом действия. Устройство реостата – это проводник определенного сечения и длины, через которые можно узнать сопротивление проводника. Конечно, обговаривается и его материал. Изменяя сопротивление прибора, а, точнее, проводника, можно регулировать величину силы тока и напряжения в сети. Итак, реостат – это прибор, регулирующий напряжение и ток.

Устройство и принцип работы

Если рассматривать реостатную конструкцию, то необходимо отметить несколько основных его частей:

  • это трубка из керамики;
  • на нее намотана металлическая проволока, концы которой выведены на контакты, расположенные на противоположных концах керамической трубки;
  • выше трубки установлена металлическая штанга, на одной стороне которой установлен контакт;
  • на штанге закреплен движущийся контакт, который электрики называют ползун.

Теперь, как все это работает. Обратите внимание на рисунок ниже.

Первая позиция (а) – контакт (движущийся) посередине. Это говорит о том, что ток будет проходить только через половину прибора. Вторая позиция (б) говорит о том, что задействован проводник полностью. То есть, его длина максимальная, значит, и сопротивление максимальное, при этом сила тока уменьшилась. Понятно, что чем больше сопротивление, тем меньше сила тока. Третья позиция (в) – здесь все наоборот: снижается сопротивление, увеличивается сила тока.

Хотелось бы обратить ваше внимание на то, что керамическая трубка, используемая в реостатной конструкции, полая. Это необходимая составляющая, которая позволяет прибору охлаждаться при прохождении через проводник электроэнергии. Добавим: считается, что самые безопасные реостаты – это те, которые закрыты кожухом.

Как включается реостат в цепь

Во-первых, этот прибор в электрическую цепь включается только последовательно. Во-вторых, один из контактов подключается к ползуну, с помощью которого и регулируется величина тока в цепи. Но необходимо отметить, что этот управляющий элемент можно использовать и для регулировки напряжения в электрической цепочке. Здесь может быть использовано несколько схем с одним сопротивлением или двумя. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Реостаты – это универсальные приборы. Их сегодня используют не только для управления силой тока и напряжением. К примеру, в телевизорах они установлены для увеличения или уменьшения звука. Да и переключение каналов косвенно связано с ними же.

И еще один момент. В электрических схемах обозначение этих приборов вот такое:

или такое

На первом рисунке более подробно расписана схема подключения, где красный прямоугольник – это и есть проводник, накрученный на керамическую основу. Синяя линия – это контакт, через который подводится питающий провод. Зеленная стрелка – это ползун. Она направлена влево, что говорит о том, что перемещая ползунок влево, мы уменьшаем сопротивление проводника. И, наоборот, перемещаем контакт вправо, увеличиваем сопротивление.

Рисунок второй более упрощенный. На нем всего лишь прямоугольник, показывающий наличие сопротивления, и стрелка, которая показывает, что этот показатель можно изменять.

Конечно, вся эта информация касается простейших элементов. Но необходимо отметить, что реостаты могут быть разными, все зависит от того места, куда они должны быть установлены. Есть различия и по токопроводящему материалу, который лежит в основе. К примеру, это может быть уголь, металлы, жидкости и керамика. К тому же процесс охлаждения производится воздушным путем или при помощи жидкостей, и это может быть не только вода.

Прибор, способный справляться с изменением сопротивления, принято называть реостатом. Структурно он представлен набором резисторов, которые подключены между собой ступенчато, и может обеспечивать непрерывное изменение сопротивления. В отдельную категорию выделяются устройства, осуществляющие плавное регулирование без разрыва сети. Чтобы определиться, для чего нужен реостат, нужно детальнее рассмотреть его особенности и принцип работы.


Описываемые приспособления универсальны в применении. В зависимости от непосредственного назначения их принято разделять на такие виды:

Важно! Реостаты применяются в качестве ограничителей тока в обмотках возбуждения электромашин с постоянным током.

Таким способом выравниваются сильные перепады электрического тока, а также динамические перегрузки, влекущие повреждение привода и всего механизма, подведенного к нему. Обеспечение подходящего сопротивления в момент запуска продлевает эксплуатационный срок коллектора и щеток.

В отдельную группу выделяются потенциометры. Они представляют собой делители напряжения, в основу которых заложены переменные резисторы. Такие приборы дают возможность применять в электронных схемах разное напряжение без дополнительных блоков питания, трансформаторов. Регулирование силы тока посредством реостата часто задействуется в радиотехнической сфере. Ярким тому примером выступает изменение громкости в динамиках.

Описываемые приспособления похожи по своему функциональному назначению. Конструктивно и визуально самым простым считается реостат ползункового типа. Он подсоединяется к цепи с помощью верхней и нижней клеммы. Прибор сконструирован таким способом, что ток поступает по всей длине провода, а не в поперечном направлении витков. Это осуществляется благодаря надежной изоляции проводников.

Важно! Большинство положений бегунка используют только часть реостата. При изменении длины проводника осуществляется регулировка силы электротока в рабочей цепи. С целью предупреждения преждевременного износа витков ползунок оснащается скользящим контактом (колесико или стержень из графита).

Часто реостат применяют для регулирования в цепи вместо потенциометра. В таком случае выполняется его подключение с помощью трех клемм. В нижней части две из них являются входом, соединяются с источником напряжения. Одна нижняя клемма и верхняя свободная используются в качестве выхода. Когда происходит передвижение ползунка, напряжение без труда регулируется.

Реостат имеет свойство функционировать в балластном режиме, в чем может возникнуть необходимость при создании активной нагрузки во время потребления энергии. В такой ситуации рекомендуется учитывать рассеивающие способности используемого агрегата. Если есть избыточное тепло, прибор выходит из строя. При подключении в электросеть нужно правильно рассчитать рассеиваемую мощность реостата, если требуется, создать достаточное и правильное охлаждение.

Большой популярностью пользуются реостаты, имеющие внешнее оформление в виде тора. Основная сфера их применения — электротранспорт (трамваи), промышленная отрасль. Регулирование осуществляется путем перемещения ползунка по кругу. Передвижение такой детали выполняется по обмоткам, которые расположены тороидально.

Устройство, выполненное по принципу тора, видоизменяет сопротивление практически без разрыва цепи. Его противоположностью является агрегат рычажного типа. Принцип работы такого реостата основан на том, что резисторы закреплены на специальной раме, они выбираются посредством специального рычага. При любой коммутации происходит разрыв контура.

Схемы, в которых задействуется рычажный прибор, лишены плавной регулировки сопротивления. Какие-либо переключения влекут за собой поступательное изменение показателей в сети. Что касается дискретности шагов, она зависит от диапазона регулировки и численности резисторов, присутствующих на раме.

Еще одной разновидностью выступают штепсельные реостаты, с помощью которых осуществляется ступенчатая регулировка сопротивления. Основное отличие — изменение параметров внутри сети без предварительного разрыва цепи. Когда штепсель поступает на перемычку, основная доля тока идет без сопротивления. Перенаправление тока на резистор осуществляется путем вытаскивания штепселя.

Жидкостные и ламповые приспособления относятся к специфическим видам реостатов. Ввиду наличия определенных недостатков они имеют узкую, специализированную сферу применения:

  1. Приборы жидкостного типа задействуются во взрывоопасной сфере в качестве управляющих деталей двигателя.
  2. Ламповые изделия характеризуются малой точностью и надежностью. Часто используются в учебных заведениях на уроках физики, в лабораториях, исследовательских центрах.

Определив, для чего предназначены реостаты, следует подробнее рассмотреть их составляющую сторону. В зависимости от материала, используемого на производстве, выделяются следующие установки:

  • керамические — особенность заключается в применении при небольших мощностях;
  • металлические — нашли широкое потребление в разных направлениях деятельности человека;
  • угольные — их основное использование в промышленности.

Важно! Тепло отводится масляным, водяным или воздушным путем. Если нет возможности рассеивания тепла с рабочей поверхности, задействуется жидкостное охлаждение. Теплоотдача может повышаться за счет применения вентилятора и радиатора.

Напряжение, сила тока в рабочей цепи, положение ползунка в реостате и оказываемое им сопротивление находятся в непосредственной зависимости. Такая особенность положена в основу датчика угла поворота. В подобном приборе конкретная электрическая величина соответствует определенному положению ротора.

В настоящее время подобные датчики заменяются усовершенствованными оптическими и магнитными аналогами. Причиной тому выступает неустойчивость зависимости сопротивления и угла по отношению к температурному действию. Постепенное вытеснение датчиков реостатного типа еще обусловлено переходом на цифровые, более удобные системы. Сегодня резистивные измерители задействуются в схемах, где присутствуют аналоговые сигналы.

Зная, для чего нужны реостаты электрического типа, легко можно объяснить их широкое использование в автомобилестроении, технике, промышленности. Сопротивление необходимо для работы радиотехники, при запуске электродвигателей, они применимы в виде активной нагрузки. Выход из строя небольшого прибора может повлечь сбой работы всей системы. В этом и заключается важность реостатов


Обычно редко кто задумывается, каким образом в различных приборах регулируется уровень звука. Во многих электрических приборах регулировка громкости звука осуществляется за счет изменения силы тока. Для этого чаще всего применяется специальный аппарат, разработанный Иоганном Христианом Поггендорфом, который регулирует силу тока и напряжение электрической сети, он получил название – реостат.

Итак, реостат представляет собой прибор, основная задача которого заключается в регулировке напряжения и силы тока. Этот элемент электрической сети весьма распространен, его применяют в физике, радиотехнике, электронике.

Устройство реостата

Устройство реостата для опытного физика не вызывает трудностей и представляет собой керамический полый цилиндр с металлической обмоткой, концы которой выведены на специальные контакты, получившие название клеммы, расположенные с обеих сторон керамического цилиндра. В качестве обмотки применяется материал, обладающий большим удельным сопротивлением, за счет этого даже небольшое изменение длины отражает изменение и сопротивления. Вдоль цилиндра расположен металлический шланг, на котором закреплен движущийся контакт, который получил название ползунок.

Керамический цилиндр внутри пуст для того, чтобы происходило охлаждение прибора при прохождении через него электроэнергии. Для безопасности ряд приборов имеют специальный кожух, скрывающий все внутренности механизма.

Принцип работы

Вне зависимости от типа реостата, принцип работы у всех примерно аналогичен. Например, ползунковый реостат работает следующим образом:

  • Подключение к сети происходит через клеммы, расположенные с обеих сторон цилиндра;
  • Ток проходит по всей длине, в зависимости от места расположения ползунка. Так, если ползунок находится в центре прибора, то ток проходит только до середины; если ползунок находится в конце прибора, тогда ток проходит целиком, соответственно напряжение максимальное.

Чаще всего задействована в работе только часть прибора, т.е. ползунок не доходит до края реостата. Изменение места расположения бегунка прямо пропорционально изменению силы тока. Подключение реостата к электрической сети осуществляется последовательно.

Виды реостатов

Разновидность реостатов зависит от их основного назначения:

  • Пусковые реостаты предназначены для запуска электродвигателей с постоянным или переменным током;
  • Пускорегулирующие реостаты не только предназначены для запуска двигателей с постоянным током, но и для регулировки силы тока;
  • Балластные реостаты, еще получили название нагрузочные, поглощают энергию, которая необходима для регулирования нагрузки на электрогенераторах, т.е. создают нужное сопротивление в электрической сети;
  • Реостаты возбуждения применяются в электрических машинах для регулировки постоянного и переменного тока, они поглощают лишнюю энергию;
  • В особорую группу выделяют реостаты, предназначенные для деления напряжения, их называют потенциометрами. Они позволяют применять в одном приборе различные напряжения, не используя дополнительные приспособления, такие как трансформаторы и блоки питания. В этом случае реостат имеет 3 клеммы, где нижние клеммы используются для входа тока, а верхняя и одна нижняя – в качестве выхода. Регулировка напряжения осуществляется при движении ползунка.

Благодаря применению в электрических приборах и машинах реостатов, происходит уменьшение снижения скачков электрического тока и перегрузок двигателя, это, в свою очередь, увеличивает срок службы электрических приборов.

Реостат на электрической схеме имеет свое особое обозначение.

Виды реостатов по материалу их изготовления

Главным элементом, определяющим принцип работы реостата, является материал, из которого он изготовлен. Кроме того, при прохождении через прибор тока должно происходить его охлаждение: воздушное или жидкостное. Воздушное охлаждение происходит благодаря полому цилиндру и применимо во всех приборах. Жидкостное охлаждение используется только для реостатов, изготовленных из металла. Охлаждение происходит за счет полного погружения в жидкость или отдельных частей прибора. Жидкостные реостаты могут быть водными или масляными.

Можно выделить следующие реостаты по материалу изготовления:

  • Металлические реостаты с воздушным типом охлаждения наиболее распространены, поскольку применимы в различных сферах и для различных приборов, сопротивление в них может быть постоянным или ступенчатым. Достоинством подобных конструкций являются компактные размеры, достаточно простая конструкция, доступная ценовая стоимость. Металлические жидкостные реостаты представляют собой сосуд, наполненный жидкостью. В качестве материала изготовления могут быть использованы сталь, чугун, хром, никель, железо и др.;
  • Жидкостные реостаты применимы для регулировки силы тока;
  • Керамические – применимы при относительно небольших нагрузках;
  • Угольные на сегодняшний день применяются только в промышленной сфере и представляют собой ряд шайб из угля, сжатых друг с другом при помощи пружин. Изменение сопротивления данного типа реостата происходит при помощи изменения силы сжатия пружин.

Задаваясь вопросом, зачем в повседневной жизни нужен данный прибор, можно получить банальный ответ: ни один современный телевизор не обходится без реостата. Благодаря этому прибору, происходит регулировка уровня громкости, также он связан с возможностью переключения каналов.

Как видно, это действительно универсальный и незаменимый компонент. Стоит подчеркнуть, что разновидностей реостатов весьма много, в зависимости от их основного предназначения. На сегодняшний день реостат применяется в промышленной сфере, в автомобилестроении, в современной электронной технике. Он широко применим в радиотехнике и различных типах электродвигателей. Выход из строя реостата способен вывести из строя всю систему электросети.

Видео

На уроке рассматривается прибор под названием реостат, сопротивление которого можно изменять. Подробно рассматривается устройство реостата и принцип его работы. Показывается обозначение реостата на схемах, возможные варианты включения реостата в электрическую цепь. Приводятся примеры применения реостата в повседневной жизни.

Тема: Электромагнитные явления

Урок: Реостаты

На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.

Рис. 1. Устройство реостата

На рисунке 1 представлен реостат без оболочки. Это сделано для того, чтобы можно было посмотреть все его части. На керамическую трубу (1) намотан провод (2). Его концы выведены к двум контактам (3а). Также имеется штанга, в конце которой расположен контакт (3б). По этой штанге движется скользящий контакт (4), так называемый «ползун».

Если расположить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если передвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, его длина возрастет, сопротивление увеличится, а сила тока уменьшится. Если же передвинуть «ползун» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, и сила тока в цепи возрастет.

Рис. 2. Реостат

Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт — подводящий к реостату провод, зеленый — скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо — увеличится. Также может использоваться следующее изображение реостата (рис. 4):

Рис. 4. Еще одно изображение реостата

Прямоугольник обозначает сопротивление, а стрелка — то, что его можно изменять.

В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.

Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.

Реостат — достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. — М.: Мнемозина.
  2. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. — М.: Просвещение.
  1. Центр образования «Технологии обучения» ().
  2. Школьный демонстрационный физический эксперимент ().
  3. Электротехника ().

Домашнее задание

  1. Стр. 108-110: вопросы № 1-5. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли при движении ползунка реостата вправо сопротивление будет уменьшаться?
  4. Чем обусловлено применение именно керамической трубы в реостате?

Во многих электронных устройствах для регулирования громкости звука необходимо изменять силу тока. Рассмотрим устройство (реостаты), с помощью которого можно изменять силу тока и напряжение. Сила тока зависит от напряжения на концах участка цепи и от сопротивления проводника: I=U/R
. Если изменять сопротивление проводника R
, тогда будет меняться сила тока.

Сопротивление зависит от длины L
, от площади поперечного сечения S
и от материала проводника – удельного сопротивления. Для того чтобы изменять сопротивление проводника, нужно менять длину, толщину или материал. Весьма удобно изменять длину проводника.

Разберем цепь, состоящую из источника тока, ключа, амперметра и проводника в виде резистора АС из проволоки с большим удельным сопротивлением.

Перемещая контакт С по этой проволоке, можно менять длину проводника, которая задействована в цепи, тем самым изменять сопротивление, а значит, и силу тока. Следовательно, можно создать устройство с переменным сопротивлением, с помощью которого можно изменять силу тока. Такие устройства имеют название реостатами.

Реостат – это устройство с изменяемым сопротивлением, которое служит для регулировки силы тока и напряжения.

Устройство реостата

На цилиндр, выполненный из керамики, намотан металлический проводник, который сделан из материала с большим удельным сопротивлением. Сделано это для того, чтобы при небольшом изменении длины существенно менялось сопротивление. Этот металлический провод называется обмоткой. Он так называется, потому что намотан на керамический цилиндр.

Концы обмотки выведены к зажимам, которые называются клеммами. В верхней части реостата есть металлический стержень, который тоже заканчивается клеммами. Вдоль металлического стержня и вдоль обмотки может перемещаться скользящий контакт, который называется ползунком. Так как скользящий контакт имеет такое название, то подобный реостат называется ползунковым реостатом.

Принцип действия

Ползунковый реостат подсоединен в цепь через две клеммы: нижнюю с обмотки и верхнюю клемму, там, где металлический стержень. При подключении его в цепь, таким образом, ток через нижнюю клемму проходит по виткам обмотки, а не поперек витков. Далее ток проходит через скользящий контакт, потом по металлическому стержню, и опять в цепь.

Таким образом, в цепи задействована только часть обмотки реостата. Когда ползунок перемещается, то меняется сопротивление той части обмотки реостата, которая находится в цепи. Изменяется длина обмотки, сопротивление и сила тока в цепи.

Необходимо обратить внимание, что ток в той части реостата, по которой он проходит, идет по каждому витку обмотки, а не поперек них. Это достигается тем, что витки обмотки изолированы между собой тонким слоем изоляционного материала. Разберемся, как осуществляется контакт между витками обмотки и ползунком.

При движении по обмотке ползунок движется по ее верхнему слою, который имеет зачищенный участок изоляции на пути ползунка. Так осуществляется контакт между ползунком и витком обмотки. Между собой витки изолированы.

На схеме изображена цепь с источником тока, выключателем, амперметром и ползунковым реостатом. При перемещении ползунка реостата меняется его сопротивление и сила тока в цепи.

Ползунковый реостат можно подключать к цепи при помощи двух клемм: верхней и нижней. Но реостаты подключаются и по-другому.

Реостат можно подключить через три клеммы. Две нижние клеммы соединяются с концами обмотки, и один провод с верхней клеммы. Напряжение подается на всю обмотку, а снимается напряжение только с части обмотки. Ползунок делит реостат на два резистора, которые соединены последовательно.

Общее напряжение равно сумме напряжений каждого резистора. Поэтому выходное напряжение меньше входного значения. Выходное напряжение меньше, чем входное во столько раз, во сколько сопротивление части обмотки меньше, чем сопротивление всей обмотки. То есть, реостат делит напряжение, и называется делителем напряжения или потенциометром.

Виды и особенности реостатов

Реостат в виде тора

Два крайних зажима – это концы обмотки, а средний зажим соединен с ползунком. Вращая ползунок по обмотке, можно изменить сопротивление и сила тока в цепи.

Рычажные реостаты

Они получили такое название, потому что в его нижней части находится переключатель – рычаг. С помощью него можно включать разные части спирали резисторов. На рисунке показан принцип работы рычажного реостата.

Рычажный реостат изменяет силу тока скачкообразно, в то время как ползунковый реостат меняет силу тока плавно. Если в цепи будет присутствовать резистор, то при перемещении ползунка на ползунковом реостате или при переключении рычага рычажного реостата будет меняться сила тока и напряжение на концах резистора.

Штепсельные

Такие устройства состоят из магазина сопротивлений.

Это набор различных сопротивлений. Они называются спирали-резисторы. При помощи штепселя можно включать или выключать разные спирали-резисторы. Когда штепсель находится в перемычке, то больший ток идет через перемычку, а не через резистор. Таким образом, резистор отключается. Используя штепсель, можно получать разные сопротивления.

Материалы и охлаждение

Основным элементом в устройстве реостата является материал изготовления, по виду которого реостаты делятся на несколько видов:

  • Угольные.
  • Металлические.
  • Жидкостные.
  • Керамические.

Электрический ток в сопротивлениях преобразуется в тепловую энергию, которая должна каким-то образом отводиться от них. Поэтому реостаты также делятся по типу охлаждения:

  • Воздушные.
  • Жидкостные.

Жидкостные реостаты разделяются на водяные и масляные. Воздушный вид используется в любых конструкциях приборов. Жидкостное охлаждение применяется только для металлических реостатов, их сопротивления омываются жидкостью, либо полностью в нее погружены. Нельзя забывать, что охлаждающая жидкость также должна охлаждаться.

Металлические реостаты

Это конструкция реостата с воздушным охлаждением. Такие модели приобрели популярность, так как легко подходят для различных условий работы своими электрическими, тепловыми характеристиками, а также формой конструкции. Они бывают с непрерывным или ступенчатым типом регулировки сопротивления.

В устройстве имеется подвижный контакт, скользящий по неподвижным контактам, расположенным в этой же плоскости. Неподвижные контакты выполнены в виде винтов с плоскими головками, пластин или шин. Подвижный контакт называется щеткой. Он бывает мостиковым или рычажным.

Такие виды реостатов делят на самоустанавливающиеся и несамоустанавливающиеся. Последний вид имеет простую конструкцию, но ненадежен в применении, так как контакт часто нарушается.

Масляные

Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла. Это делает возможным повышение нагрузки на небольшое время, снижает расход материала изготовления сопротивления и габариты корпуса реостата.

Детали, погружаемые в масло, должны иметь значительную поверхность для хорошей отдачи тепла. В масле увеличиваются возможности контактов на отключение. Это является преимуществом такого вида реостатов. Благодаря смазке на контакты можно прилагать повышенные усилия. К недостаткам можно отнести риск возникновения пожара и загрязнение места установки.

Физика 8 класс. Электрические цепи. Реостат :: Класс!ная физика

Физика 8 класс. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

Для того чтобы создать электрический ток,

необходимо составить замкнутую электрическую цепь из электрических приборов.

Элементы электрической цепи соединяются проводами и подключаются к источнику питания.
Самая простая электрическая цепь состоит из :

1. источника тока 
2. потребителя электроэнергии(лампа, электроплитка, электродвигатель, электробытовые приборы)
3. замыкающего и размыкающего устройства(выключатель, кнопка, рубильник)
4. соединительных проводов 

Чертежи, на которых показано, как электрические приборы соединены в цепь, называются электрическими схемами.

На электрических схемах все элементы электрической цепи имеют условные обозначения.

1 — гальванический элемент. 
2 — батарея элементов 
3 — соединение проводов 
4 — пересечение проводов на схеме без соединения 
5 — зажимы для подключения 
6 — ключ 
7 — электрическая лампа 
8 — электрический звонок 
9 — резистор ( или иначе «сопротивление2) 
10- нагревательный элемент 
11 — предохранитель 

РЕОСТАТ

Существуют сопротивления, величину которых можно плавно изменять.
Это могут быть переменные резисторы или сопротивления, называемые реостатами.

Таким образом, реостаты — это приборы, сопротивление которых можно регулировать.
Они применяются тогда, когда необходимо менять силу тока в цепи.
Реостат отличается от переменного резистора своей конструкцией и большой мощностью.

Устали? — Отдыхаем!

Изображение реостата на схеме — Инженер ПТО

В предыдущей статье мы подробно рассмотрели что такое потенциометр. Данная статья является продолжением этой темы и здесь мы рассмотрим что такое реостат, реостат как регулятор тока и рассмотрим тип реостат — слайдер.

Описание и принцип работы

До сих пор мы видели, что переменный резистор может быть сконфигурирован для работы в качестве цепи делителя напряжения, которому присваивается название потенциометра . Но мы также можем настроить переменный резистор для регулирования тока, и этот тип конфигурации широко известен как реостат.

Реостаты — это двухполюсные переменные резисторы, которые настроены на использование только одного концевого контакта и только контакта стеклоочистителя. Неиспользуемая концевая клемма может быть либо оставлена ​​неподключенной, либо подключена напрямую к стеклоочистителю. Это устройства с проволочной обмоткой, которые содержат плотные витки эмалированной проволоки для тяжелых условий эксплуатации, которые изменяют сопротивление ступенчато. Изменяя положение стеклоочистителя на резистивном элементе, величина сопротивления может быть увеличена или уменьшена, тем самым управляя величиной тока. Большой выбор реостатов вы найдете на Алиэкспресс, переходите и покупайте любой.

Затем реостат используется для управления током путем изменения значения его сопротивления, превращая его в настоящий переменный резистор. Классический пример использования реостата — это управление скоростью модельного набора поездов или Scalextric, где величина тока, проходящего через реостат, регулируется законом Ома. Тогда реостаты определяются не только их резистивными значениями, но также и их возможностями по управлению мощностью как P = I 2 * R.

Реостат как регулятор тока

На приведенной выше схеме эффективное сопротивление реостата находится между контактом 3 концевого зажима и контактом стеклоочистителя на контакте 2. Если контакт 1 не подключен, сопротивление цепи между контактом 1 и контактом 2 разомкнуто и не оказывает влияния на величину тока нагрузки. И наоборот, если контакт 1 и контакт 2 соединены вместе, то эта часть резистивной дорожки замкнута накоротко и снова не влияет на значение тока нагрузки.

Поскольку реостаты контролируют ток, то по определению они должны быть соответствующим образом рассчитаны на то, чтобы выдерживать этот постоянный ток нагрузки. Потенциометр с тремя контактами можно настроить как реостат с двумя контактами, но резистивная дорожка на основе углерода может не выдержать ток нагрузки. Также контакт стеклоочистителя потенциометра обычно является самой слабой точкой, поэтому лучше всего проводить через стеклоочиститель как можно меньше тока.

Однако обратите внимание, что реостат не подходит для управления током нагрузки, если сопротивление нагрузки, R L , намного выше, чем полное значение сопротивления реостата. Это R L >> R RHEO . Резистивное значение сопротивления нагрузки должно быть намного ниже, чем у реостата, чтобы ток нагрузки мог протекать.

Обычно реостаты представляют собой высокомощные электромеханические переменные резисторы, используемые для силовых применений, и резистивный элемент которые обычно изготавливается из толстого резистивного провода, подходящего для обеспечения максимального тока I, когда его сопротивление R минимально.

Проволочные реостаты в основном используются в приложениях управления мощностью, таких как схемы управления лампами, нагревателями или двигателями, для регулирования полевых токов для управления скоростью или пусковым током двигателей постоянного тока и т.д. Существует много типов реостатов, но наиболее распространенными являются вращающиеся тороидальные типы, которые используют открытую конструкцию для охлаждения, но также доступны закрытые типы.

Слайдер реостат

Имеются также реостаты с трубчатыми слайдерами, которые можно найти в физических лабораториях и лабораториях в школах и колледжах. Эти линейные или скользящие типы используют резистивный провод, намотанный на изолирующий трубчатый формирователь или цилиндр. Скользящий контакт (штифт 2), установленный выше, регулируется вручную влево или вправо для увеличения или уменьшения эффективного сопротивления реостата, как показано на рисунке.

Как и в случае с вращающимися потенциометрами, также доступны ползунковые реостаты многоканального типа. В некоторых типах постоянные электрические соединения сделаны с резистивным проводом, чтобы дать фиксированное значение сопротивления между любыми двумя терминалами. Такие промежуточные соединения обычно известны как «ответвления», то же имя, что и используемые на трансформаторах.

Линейные или логарифмические потенциометры

Наиболее популярным типом переменного резистора и потенциометра является линейный тип или линейный конус, значение сопротивления которого на выводе 2 изменяется линейно при регулировке, создавая характеристическую кривую, которая представляет собой прямую линию. То есть резистивная дорожка имеет одинаковое изменение сопротивления на угол поворота по всей длине дорожки.

Таким образом, если стеклоочиститель вращается на 20% от его общего хода, то его сопротивление составляет 20% от максимального или минимального. Это происходит главным образом потому, что их резистивные дорожки выполнены из углеродных композитов, металлокерамических сплавов или материалов типа проводящих пластиков, которые имеют линейную характеристику по всей длине.

Но резистивный элемент потенциометра не всегда может давать прямолинейную характеристику или иметь линейное изменение сопротивления во всем диапазоне хода при регулировке стеклоочистителя, но вместо этого может вызывать то, что называется логарифмическим изменением сопротивления.

Логарифмические потенциометры являются в основном очень популярными нелинейными или непропорциональными типами потенциометров, сопротивление которых изменяется логарифмически. Логарифмические потенциометры обычно используются в качестве регуляторов громкости и усиления в аудиоприложениях, где затухание изменяется как логарифмическое отношение в децибелах. Это связано с тем, что чувствительность к уровню звука человеческого уха имеет логарифмический отклик и, следовательно, является нелинейной.

Если бы мы использовали линейный потенциометр для управления громкостью, у ухо бы создалось впечатление, что большая часть регулировки громкости ограничена одним концом дорожки горшка. Тем не менее, логарифмический потенциометр создает впечатление более равномерной и сбалансированной регулировки громкости при полном вращении регулятора громкости.

Таким образом, работа логарифмических потенциометров при настройке заключается в создании выходного сигнала, который близко соответствует нелинейной чувствительности человеческого уха, при которой уровень громкости звучит так, как будто он линейно увеличивается. Однако некоторые более дешевые логарифмические потенциометры являются скорее экспоненциальными в изменениях сопротивления, чем логарифмическими, но все еще называют логарифмическими, потому что их резистивный отклик является линейным в логарифмическом масштабе. Наряду с логарифмическими потенциометрами существуют также антилогарифмические потенциометры, в которых их сопротивление сначала быстро увеличивается, но затем выравнивается.

Все потенциометры и реостаты доступны в виде различных резистивных дорожек или схем, известных как законы, линейные, логарифмические или антилогарифмические. Эти термины более сокращенно обозначаются как lin , log и anti-log соответственно.

Лучший способ определить тип или закон конкретного потенциометра — установить ось вала в центр его перемещения, то есть примерно на половину, а затем измерить сопротивление на каждой половине от стеклоочистителя до концевой клеммы. Если каждая половина имеет более или менее равное сопротивление, то это линейный потенциометр. Если сопротивление, кажется, разделено примерно на 90% в одну сторону и 10% в другую, то есть вероятность, что это логарифмический потенциометр.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Что такое резистор

Резистор – это самый распространенный радиоэлемент во всей радиоэлектронной промышленности. Я могу со 100% уверенностью сказать, что абсолютно на любой плате какого-либо устройства вы найдете хотя бы один резистор. Резистор имеет важное свойство – он обладает активным сопротивлением электрическому току. Существует также и реактивное сопротивление. Подробнее про реактивное и активное сопротивление.

Постоянные резисторы

Постоянное резисторы выглядят примерно вот так:

Слева мы видим большой зеленый резистор, который рассеивает очень большую мощность. Справа – маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье маркировка резисторов.

Вот так выглядит постоянный резистор на электрических схемах:

Наше отечественное изображение резистора изображают прямоугольником (слева), а заморский вариант (справа), или как говорят – буржуйский, используется в иностранных радиосхемах.

Вот так маркируются мощности на советских резисторах:

Далее мощность маркируется с помощью римских цифр. V – 5 Ватт, X – 10 Ватт, L -50 Ватт и тд.

Какие еще бывают виды резисторов? Давайте рассмотрим самые распространенные:

20 ваттный стекловидный с проволочными выводами, 20 ваттный с монтажными лепестками,30 ваттный в стекловидной эмали, 5 ваттный и 20 ваттный с монтажными лепестками

1, 3, 5 ваттные керамические; 5,10,25, 50 ваттные с кондуктивным теплообменом

2, 1, 0.5, 0.25, 0.125 ваттные углеродной структуры; SMD резисторы типоразмеров 2010, 1206, 0805, 0603,0402; резисторная SMD сборка, 6,8,10 выводные резисторные сборки для сквозного монтажа, резистор в DIP корпусе

Переменные резисторы

Переменные резисторы выглядят так:

На схемах обозначаются так:

Соответственно отечественный и зарубежный вариант.

А вот и их цоколевка (расположение выводов):

Переменный резистор, который управляет напряжением называется потенциометром, а который управляет силой тока – реостатом. Здесь заложен принцип делителя напряжения и делителя тока соответственно. Различие между потенциометром и реостатом в схеме подключения самого переменного резистора. В схеме с реостатом в переменном резисторе соединяется средний и крайний выводы.

Переменные резисторы, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами. У них есть специальные пазы для регулировки сопротивления (отмечены красной рамкой):

А вот так обозначаются подстроечные резисторы и их схемы включения в режиме реостата и потенциометра.

Термисторы

Термисторы – это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр термисторов, как ТКС – тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды.

Этот коэффициент может быть как отрицательный, так и положительный. Если ТКС отрицательный, то такой термистор называют термистором, а если ТКС положительный, то такой термистор называют позистором. У термисторов при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды растет и сопротивление.

Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС — Positive Temperature Coefficient — положительный ТКС), то и на схемах они будут обозначаться соответствующим образом.

Варисторы

Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения – это варисторы.

Это свойство варисторов широко используют от защиты перенапряжений в цепи, а также от импульсных скачков напряжения. Допустим у нас “скакануло” напряжение. Все это дело “чухнул” варистор и сразу же резко изменил сопротивление в меньшую сторону. Так как сопротивление варистора стало очень маленьким, то весь электрический ток сразу же начнет протекать через него, тем самым защищая основную цепь радиоэлектронного устройства. При этом варистор берет всю мощность импульса на себя и очень часто платит за это своей жизнью, то его выгорает наглухо

На схемах варисторы обозначаются вот таким образом:

Фоторезисторы

Большой популярностью также пользуются фоторезисторы. Они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например, от фонарика.

На схемах они обозначаются вот таким образом:

Тензорезисторы

Принцип действия их работы основан на растяжении тонких печатных проводников. При растяжении они становятся еще тоньше. Это все равно, что вытягивать жевательную резинку. Чем больше вы ее вытягиваете, тем тоньше она становится. А как вы знаете, чем тоньше проводник, тем бОльшим сопротивлением он обладает.

На схемах тензорезистор выглядит вот так:

Вот анимация работы тензорезистора, позаимствованная с Википедии.

Ну и как вы догадались, тензорезисторы используются в электронных весах, а также в различных датчиках, где применяется какое-либо давление, либо сила.

Последовательное и параллельное соединение резисторов

Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.

В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:

При последовательном соединении номиналы резисторов просто тупо суммируются

Резюме

Резистор – это радиокомпонент электронной промышленности, который используется абсолютно во всей радиоэлектронной аппаратуре. Он используется для создания делителей тока, делителя напряжения, в качестве шунта и, конечно же, для ограничения силы тока.

Резистор обладает активным сопротивлением, в отличие от катушки индуктивности и конденсатора.

По конструктивному исполнению резисторы делятся на два класса: переменные и постоянные.

Существуют также подвиды резисторов – это фоторезисторы, термисторы, варисторы, тензорезисторы и другие специфические редко используемые подвиды резисторов.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

1. Реостат как элемент управления

На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.

2. Устройство реостата

Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

3. Изображения реостата на схемах

Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт – подводящий к реостату провод, зеленый – скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо – увеличится. Также может использоваться следующее изображение реостата (рис. 4):

Рис. 4. Еще одно изображение реостата

Прямоугольник обозначает сопротивление, а стрелка – то, что его можно изменять.

4. Включение реостата в электрическую цепь

В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.

Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.

5. Применение реостата

Реостат – достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Центр образования «Технологии обучения» (Источник).
  2. Школьный демонстрационный физический эксперимент (Источник).
  3. Электротехника (Источник).

Домашнее задание

  1. Стр. 108–110: вопросы № 1–5. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли при движении ползунка реостата вправо сопротивление будет уменьшаться?
  4. Чем обусловлено применение именно керамической трубы в реостате?

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Как обозначается реостат на схеме. Реостат и методы его включения

Закон Ома наглядно показывает, что силу тока в цепи можно изменять путем включения в нее электрического аппарата – резистора или реостата, имеющего некоторое электрическое сопротивление. Этим свойством широко пользуются в практике для регулирования и ограничения тока в двигателях, генераторах и других электрических устройствах.

Резисторы и реостаты (рисунок 8) обычно изготовляют из проволоки или ленты, материалом для которой служат сплавы металлов, обладающие высоким удельным сопротивлением (константан, никелин, манганин, фех­раль), что дает возможность для изготовления этих аппаратов применять про­волоку наименьшей длины. В устройствах радиотехники и электроники часто применяют резисторы, выполненные из графита.

Рисунок 8 – Устройство реостатов:

а
– с плавным изменением сопротивления, б
– со ступенчатым изменением сопротивления, в
– из чугунных пластин, г
– из фехралевой ленты

Реостат r
может быть включен в цепь между источником и приемни­ком r н
электрической энергии (рисунок 9а
). В этом случае при изменении сопротивления реостата, например, вследствие перемещения подвижного контакта изменяется сила тока I
, проходящего через источник и приемник. Этот ток протекает только по части реостата. Однако реостат можно вклю­чить в цепь таким образом, чтобы ток проходил по всему его сопротивлению, а к приемнику ответвлялась только часть тока источника. В этом случае два крайних зажима 1
и 2
реостата (рисунок 9б
) подключают к источнику элек­трической энергии, а один из этих зажимов, например 2
, и подвижной кон­такт реостата 3
присоединяют к приемнику r н
. Очевидно, что при таком включении к приемнику будет подаваться напряжение U
, которое зависит от сопротивления части реостата, включенной между зажимом 2
и подвижным контактом.

Рисунок 9 – Схемы включения реостатов:

а
– последовательно в цепь приемника электрической энергии, б
– в качестве делителя напряжения

Следовательно, передвигая подвижной контакт реостата, можно изме­нять напряжение U
, подводимое к приемнику.

Реостат, включенный по схеме, показанной на рисунке 9б
, называется делителем напряжения или потенциометром. Если сопротивление приемника относительно велико по сравнению с сопротивлением реостата, то напряже­ние на зажимах приемника

где r 1
и r 2
– сопротивления частей реостата.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Из чего состоит электрическая цепь?

2. Какие приборы могут выступать в качестве источников и приемников энергии?

3. Внешний и внутренний источник электрической энергии.

4. Что называется электрическим током, силой тока? Направление тока. Какой ток называется переменным, постоянным?

5. Электропроводность вещества: разделение на проводники, диэлектрики, полупроводники.

6. Что называется электрическим полем?

7. Что такое напряженность электрического поля?

8. Что такое энергия электрического поля?

9. Понятие электрического потенциала.

10. Что называется электрическим напряжением?

Люди, которые связаны каким-то образом с физикой, электроникой, радиотехникой, часто сталкиваются с таким элементом, как реостат. А другие совершенно не имеют понятия об этом. Данная статья поможет разобраться с реостат и для чего он нужен.

Определение и виды

Итак, реостат — это аппарат, состоящий из нескольких резисторов и устройства, при помощи которого регулируется сопротивление всех включенных резисторов.

Виды реостатов зависят от их назначения:

  • Бывают пусковые реостаты тока, которые служат для запуска электродвигателей переменного или же
  • Пускорегулирующий реостат нужен для запуска частоты вращения электрических двигателей с постоянным током и ее регулирования.
  • Балластный или нагрузочный реостат — электрический аппарат для поглощения энергии, нужной при регулировании нагрузки генератора или же при проверке этого генератора.
  • Реостат возбуждения необходим для того, чтобы регулировать ток, находящийся в обмотках электрических машин переменного либо постоянного тока.

Материал и охлаждение

Одним из главных элементов, определяющих конструкцию элемента, является тот материал, из которого состоит реостат. И по этой причине можно разделить реостаты на керамические, жидкостные, металлические и угольные. Электроэнергия в резисторах преобразуется в теплоту, которая от них должна отводиться. Поэтому у реостатов бывает воздушное и жидкостное охлаждение. Второй тип может быть водяным или масляным. Воздушный тип применяется для любой конструкции реостата. Жидкостный же лишь для металлических, так как их резисторы обтекаются жидкостью или полностью в нее погружаются. Нужно при этом знать, что жидкость, используемая для охлаждения, может и даже должна сама охлаждаться или воздухом, или жидкостью.

Металлические реостаты

Что такое реостат из металла? Это элемент, имеющий воздушный тип охлаждения. Такие реостаты наиболее распространены, так как их наиболее легко можно приспособить к самым разным рабочим условиям. Это относится как к тепловым и электрическим характеристикам, так и к параметрам конструкции. Они могут изготавливаться со ступенчатым или непрерывным типом изменения сопротивления.

Переключатель является плоским. В нем есть подвижный контакт, который скользит по контактам неподвижным в одной и той же плоскости. Те контакты, которые не двигаются, выполнены в форме болтов, имеющих плоские головки цилиндрического или полусферического типа в форме пластин либо шин, которые расположены по дуге в один ряд или два. Тот контакт, который двигается, называется щеткой. Он может быть рычажным или мостиковым по своему типу выполнения.

Еще есть разделение на самоустанавливающийся и несамоустанавливающийся. Последний вариант по конструкции проще, но, так как контакт часто нарушается, он не является надежным в использовании. Самоустанавливающийся подвижный контакт обеспечивает необходимую степень нажатия и в эксплуатации более надежен. Именно поэтому такой вид наиболее распространен.

Плюсы и минусы плоских переключателей

К достоинствам переключателей плоского типа можно отнести несложную конструкцию, маленькие габариты при значительном количестве ступеней, низкую стоимость, реле, отключающие и защищающие управляемые цепи.

Из минусов отмечается недостаточная мощность переключения, маленькая разрывная мощность. А еще из-за трения и оплавления из строя быстро выходит щетка.

Масляное охлаждение

Металлические реостаты с масляным типом охлаждения увеличивают теплоемкость и время нагрева из-за хорошей проводимости тепла маслом. Это дает возможность увеличивать нагрузку при кратковременном режиме и сокращать расход материала резисторов и размеры самого реостата.

Элементы, которые погружаются в масло, должны обладать большой поверхностью для обеспечения хорошей теплоотдачи. Если резистор закрытого типа, то нет смысла погружать его в масло. Само погружение дает защиту контактам и резисторам от воздействия окружающих факторов. В масле отключающие способности контактов повышаются. Это достоинство реостатов такого типа. Благодаря смазке возможны большие нажатия на контакты. Но есть и недостатки. Это повышение риска опасности пожара и загрязнение помещения.

Реостат можно включать в схему в качестве или же потенциометра. Это обеспечивает плавную регулировку сопротивления и, как следствие, регулирование силы тока и напряжения в цепи. Их часто применяют в лабораториях.

Пускорегулирующие реостаты

Реостаты, имеющие ступенчатое сделаны из резисторов и переключающего устройства, состоящего, в свою очередь, из неподвижных контактов, одного скользящего контакта. Здесь же имеется привод.

Пускорегулирующие реостаты имеют полюсы якоря, который присоединяется к неподвижным контактам. Подвижный контакт замыкает и размыкает ступени сопротивления, а также и другие цепи, которые управляются данным реостатом. Привод в реостате может быть двигательным или ручным. Это что такое? Реостат такого типа широко распространен. Но недостатки у такой конструкции все же имеются. Это большое количество проводов для монтажа и деталей для крепежа. Особенно много их в реостатах возбуждения с большим числом ступеней.

Реостаты, наполненные маслом, состоят из переключающего устройства и пакетов резисторов, которые встроены в бак и погружены в масло. Пакеты состоят из элементов, выполненных из Они прикрепляются к крышке бака.

Устройство переключения имеет вид барабана и является осью с прикрепленными к ней частями цилиндрической поверхности, которые соединены, согласно схеме. Неподвижные контакты, которые соединены с элементами резистора, крепятся на неподвижную рейку. Когда ось барабана поворачивается приводом либо маховиком, эти части перемыкают неподвижные контакты, являясь контактами подвижными. Этим изменяется сопротивление в цепи.

Вышесказанное полностью проясняет вопрос, что такое реостат. Как видно, это очень важный элемент, который широко применяется в различных

Прибор, способный справляться с изменением сопротивления, принято называть реостатом. Структурно он представлен набором резисторов, которые подключены между собой ступенчато, и может обеспечивать непрерывное изменение сопротивления. В отдельную категорию выделяются устройства, осуществляющие плавное регулирование без разрыва сети. Чтобы определиться, для чего нужен реостат, нужно детальнее рассмотреть его особенности и принцип работы.


Описываемые приспособления универсальны в применении. В зависимости от непосредственного назначения их принято разделять на такие виды:

Важно! Реостаты применяются в качестве ограничителей тока в обмотках возбуждения электромашин с постоянным током.

Таким способом выравниваются сильные перепады электрического тока, а также динамические перегрузки, влекущие повреждение привода и всего механизма, подведенного к нему. Обеспечение подходящего сопротивления в момент запуска продлевает эксплуатационный срок коллектора и щеток.

В отдельную группу выделяются потенциометры. Они представляют собой делители напряжения, в основу которых заложены переменные резисторы. Такие приборы дают возможность применять в электронных схемах разное напряжение без дополнительных блоков питания, трансформаторов. Регулирование силы тока посредством реостата часто задействуется в радиотехнической сфере. Ярким тому примером выступает изменение громкости в динамиках.

Описываемые приспособления похожи по своему функциональному назначению. Конструктивно и визуально самым простым считается реостат ползункового типа. Он подсоединяется к цепи с помощью верхней и нижней клеммы. Прибор сконструирован таким способом, что ток поступает по всей длине провода, а не в поперечном направлении витков. Это осуществляется благодаря надежной изоляции проводников.

Важно! Большинство положений бегунка используют только часть реостата. При изменении длины проводника осуществляется регулировка силы электротока в рабочей цепи. С целью предупреждения преждевременного износа витков ползунок оснащается скользящим контактом (колесико или стержень из графита).

Часто реостат применяют для регулирования в цепи вместо потенциометра. В таком случае выполняется его подключение с помощью трех клемм. В нижней части две из них являются входом, соединяются с источником напряжения. Одна нижняя клемма и верхняя свободная используются в качестве выхода. Когда происходит передвижение ползунка, напряжение без труда регулируется.

Реостат имеет свойство функционировать в балластном режиме, в чем может возникнуть необходимость при создании активной нагрузки во время потребления энергии. В такой ситуации рекомендуется учитывать рассеивающие способности используемого агрегата. Если есть избыточное тепло, прибор выходит из строя. При подключении в электросеть нужно правильно рассчитать рассеиваемую мощность реостата, если требуется, создать достаточное и правильное охлаждение.

Большой популярностью пользуются реостаты, имеющие внешнее оформление в виде тора. Основная сфера их применения — электротранспорт (трамваи), промышленная отрасль. Регулирование осуществляется путем перемещения ползунка по кругу. Передвижение такой детали выполняется по обмоткам, которые расположены тороидально.

Устройство, выполненное по принципу тора, видоизменяет сопротивление практически без разрыва цепи. Его противоположностью является агрегат рычажного типа. Принцип работы такого реостата основан на том, что резисторы закреплены на специальной раме, они выбираются посредством специального рычага. При любой коммутации происходит разрыв контура.

Схемы, в которых задействуется рычажный прибор, лишены плавной регулировки сопротивления. Какие-либо переключения влекут за собой поступательное изменение показателей в сети. Что касается дискретности шагов, она зависит от диапазона регулировки и численности резисторов, присутствующих на раме.

Еще одной разновидностью выступают штепсельные реостаты, с помощью которых осуществляется ступенчатая регулировка сопротивления. Основное отличие — изменение параметров внутри сети без предварительного разрыва цепи. Когда штепсель поступает на перемычку, основная доля тока идет без сопротивления. Перенаправление тока на резистор осуществляется путем вытаскивания штепселя.

Жидкостные и ламповые приспособления относятся к специфическим видам реостатов. Ввиду наличия определенных недостатков они имеют узкую, специализированную сферу применения:

  1. Приборы жидкостного типа задействуются во взрывоопасной сфере в качестве управляющих деталей двигателя.
  2. Ламповые изделия характеризуются малой точностью и надежностью. Часто используются в учебных заведениях на уроках физики, в лабораториях, исследовательских центрах.

Определив, для чего предназначены реостаты, следует подробнее рассмотреть их составляющую сторону. В зависимости от материала, используемого на производстве, выделяются следующие установки:

  • керамические — особенность заключается в применении при небольших мощностях;
  • металлические — нашли широкое потребление в разных направлениях деятельности человека;
  • угольные — их основное использование в промышленности.

Важно! Тепло отводится масляным, водяным или воздушным путем. Если нет возможности рассеивания тепла с рабочей поверхности, задействуется жидкостное охлаждение. Теплоотдача может повышаться за счет применения вентилятора и радиатора.

Напряжение, сила тока в рабочей цепи, положение ползунка в реостате и оказываемое им сопротивление находятся в непосредственной зависимости. Такая особенность положена в основу датчика угла поворота. В подобном приборе конкретная электрическая величина соответствует определенному положению ротора.

В настоящее время подобные датчики заменяются усовершенствованными оптическими и магнитными аналогами. Причиной тому выступает неустойчивость зависимости сопротивления и угла по отношению к температурному действию. Постепенное вытеснение датчиков реостатного типа еще обусловлено переходом на цифровые, более удобные системы. Сегодня резистивные измерители задействуются в схемах, где присутствуют аналоговые сигналы.

Зная, для чего нужны реостаты электрического типа, легко можно объяснить их широкое использование в автомобилестроении, технике, промышленности. Сопротивление необходимо для работы радиотехники, при запуске электродвигателей, они применимы в виде активной нагрузки. Выход из строя небольшого прибора может повлечь сбой работы всей системы. В этом и заключается важность реостатов

Резисторы.
Закон Ома наглядно показывает, что силу тока в электрической цепи можно изменять, включая в нее различные сопротивления. Этим свойством широко пользуются на практике для регулирования и ограничения тока в обмотках двигателей, генераторов и других электрических потребителях. Электрический аппарат, предназначенный для включения в электрическую цепь с целью регулирования или ограничения проходящего по ней тока, называют резистором. Резисторы бывают с постоянным или регулируемым сопротивлением. Последние иногда называют реостатами.
Резисторы обычно изготовляют из проволоки или ленты, материалом для которых служат сплавы металлов, обладающие высоким удельным сопротивлением (константан, никелин, манганин, фехраль). Это дает возможность для изготовления резисторов применять проволоку наименьшей длины. В электрических цепях, по которым проходят сравнительно небольшие токи (например, в цепях управления, в устройствах электроники и радиотехники), часто применяют непроволочные резисторы, выполненные из графита и других материалов.
Реостаты могут выполняться с плавным или ступенчатым изменением сопротивления. В лабораториях для управления электрическими машинами и испытательными устройствами часто используют ползунковый реостат с плавным изменением сопротивления (рис. 16, а). Такой реостат состоит из изоляционной трубки 4, на которую навита проволочная спираль 5. К виткам этой спирали прикасается подвижной контакт 2. Зажим 1 реостата соединяется с подвижным контактом, другой зажим 3 — с одним из концов спирали. Перемещая подвижной контакт, можно изменять длину проволоки, расположенной между зажимами реостата, и тем самым изменять его сопротивление.
Для пуска и регулирования электрических двигателей станков, грузоподъемных механизмов и пр. применяют ползунковый реостат со ступенчатым изменением сопротивления (рис. 16, б). Реостат состоит из ряда одинаковых сопротивлений 9 (секций), присоединенных к контактам 8. Для включения в цепь того или иного числа секций служит ползунок 7 со штурвалом 6.
Для регулирования тока при пуске тяговых двигателей электрических локомотивов постоянного тока применяют реостаты со ступенчатым изменением сопротивления (пусковые реостаты). Отдельные секции реостата в процессе пуска замыкаются накоротко дистанционно управляемыми выключателями, называемыми контакторами.
На некоторых электровозах (например, электровозах ЧС) пусковые реостаты выполнены из чугунных литых пластин 10 особой формы, напоминающей зигзагообразно уложенную ленту. Отдельные пластины собирают на изолированных шпильках и прикрепляют к основанию 11 (рис. 16, в).

В последнее время пусковые реостаты электровозов и моторных вагонов выполняют из фехралевой ленты 12, намотанной на фарфоровые изоляторы 13 (рис. 16, г). Так же устроены и реостаты, служащие для регулирования тока возбуждения тяговых двигателей на электровозах и тепловозах. Реостаты из фехралевой ленты более

прочны, более устойчивы против тряски и вибраций и имеют меньшую массу, чем реостаты, выполненные из чугунных пластин.
Схемы включения реостатов.
Реостат 2 (рис. 17) может быть включен последовательно в цепь между источником 1 и приемником 4 электрической энергии. В этом случае при изменении сопротивления реостата, т. е. при перемещении подвижного контакта 3, изменяется сила тока в приемнике. Этот ток проходит только по части сопротивления реостата.
Однако реостат можно включать в цепь таким образом, чтобы ток проходил по всему его сопротивлению, а к приемнику ответвлялась только часть тока источника. В этом случае два крайних зажима 2 и 4 реостата (рис. 18) подключают к источнику 5, а один из этих зажимов, например 4, и подвижной контакт 3 реостата — к приемнику 1. Очевидно, что при таком включении к приемнику будет подаваться напряжение U, равное падению напряжения между зажимом 4 и подвижным контактом 3 реостата. Следовательно, передвигая подвижной контакт реостата, можно изменять напряжение U, подводимое к приемнику, и силу тока в нем. Напряжение U представляет собой только часть напряжения Uи на зажимах источника.
Реостат, включенный по схеме рис. 18, называется делителем напряжения, или потенциометром.

Прибор был разработан учёным Иоганном Христианом Поггендорфом. Так что же такое реостат и для чего он необходим?


Что такое реостат

Реостат имеет достаточно простую конструкцию

Реостатом называют электрический аппарат, состоящий из резисторов и устройства, с помощью которого осуществляется регулирование сопротивления всех включённых резисторов.
Данный прибор является универсальным: он способен не только управлять силой тока и напряжением, но и устанавливать громкость звука в телевизорах.

Устройство реостата

Керамический цилиндр обматывается металлическим проводником, называемым обмоткой. Его концы выводятся к клеммам. Это небольшие по размеру зажимы, к которым крепится верхний стержень, выполненный из металла. Вдоль этого стержня и обмотки перемещается скользящий контакт, который специалисты зовут ползунком. Благодаря данным элементам и осуществляется работа реостата.

Стоит отметить, что керамический цилиндр полый. Эта особенность позволяет аппарату охлаждаться, предотвращает перегревы, делая прибор более безопасным.

Для чего он нужен

Реостат является лучшим способом контроля и регулирования силы тока.
Аппарат меняет сопротивление, способен изменять напряжение в электрической цепи, что позволяет регулировать функционирование электродвигателя в швейной машине, громкость радиоприёмника, телевизора.

Реостат позволяет регулировать и менять силу тока и напряжение

Реостат активно применяется при создании электрических приборов. Благодаря такому элементу силу тока и напряжения можно контролировать, преотвращая перегревы.

Реостаты. Виды и устройство. Работа и особенности. Применение

Во многих электронных устройствах для регулирования громкости звука необходимо изменять силу тока. Рассмотрим устройство (реостаты), с помощью которого можно изменять силу тока и напряжение. Сила тока зависит от напряжения на концах участка цепи и от сопротивления проводника: I=U/R. Если изменять сопротивление проводника R, тогда будет меняться сила тока.

Сопротивление зависит от длины L, от площади поперечного сечения S и от материала проводника – удельного сопротивления. Для того чтобы изменять сопротивление проводника, нужно менять длину, толщину или материал. Весьма удобно изменять длину проводника.

Например, цепь, состоящая из источника тока, ключа, амперметра и проводника в виде резистора АС из проволоки с большим удельным сопротивлением.

Перемещая контакт С по этой проволоке, можно менять длину проводника, которая задействована в цепи, тем самым изменять сопротивление, а значит, и силу тока. Следовательно, можно создать устройство с переменным сопротивлением, с помощью которого можно изменять силу тока. Такие устройства имеют название реостатами.

Реостат – это устройство с изменяемым сопротивлением, которое служит для регулировки силы тока и напряжения.

Устройство реостата

На цилиндр, выполненный из керамики, намотан металлический проводник, который сделан из материала с большим удельным сопротивлением. Сделано это для того, чтобы при небольшом изменении длины существенно менялось сопротивление. Этот металлический провод называется обмоткой. Он так называется, потому что намотан на керамический цилиндр.

Концы обмотки выведены к зажимам, которые называются клеммами. В верхней части реостата есть металлический стержень, который тоже заканчивается клеммами. Вдоль металлического стержня и вдоль обмотки может перемещаться скользящий контакт, который называется ползунком. Так как скользящий контакт имеет такое название, то подобный реостат называется ползунковым реостатом.

Принцип действия

Ползунковый реостат подсоединен в цепь через две клеммы: нижнюю с обмотки и верхнюю клемму, там, где металлический стержень. При подключении его в цепь, таким образом, ток через нижнюю клемму проходит по виткам обмотки, а не поперек витков. Далее ток проходит через скользящий контакт, потом по металлическому стержню, и опять в цепь.

Таким образом, в цепи задействована только часть обмотки реостата. Когда ползунок перемещается, то меняется сопротивление той части обмотки реостата, которая находится в цепи. Изменяется длина обмотки, сопротивление и сила тока в цепи.

Необходимо обратить внимание, что ток в той части реостата, по которой он проходит, идет по каждому витку обмотки, а не поперек них. Это достигается тем, что витки обмотки изолированы между собой тонким слоем изоляционного материала. Разберемся, как осуществляется контакт между витками обмотки и ползунком.

При движении по обмотке ползунок движется по ее верхнему слою, который имеет зачищенный участок изоляции на пути ползунка. Так осуществляется контакт между ползунком и витком обмотки. Между собой витки изолированы.

На схеме изображена цепь с источником тока, выключателем, амперметром и ползунковым реостатом. При перемещении ползунка реостата меняется его сопротивление и сила тока в цепи.

Ползунковый реостат можно подключать к цепи при помощи двух клемм: верхней и нижней. Но реостаты подключаются и по-другому.

Реостат можно подключить через три клеммы. Две нижние клеммы соединяются с концами обмотки, и один провод с верхней клеммы. Напряжение подается на всю обмотку, а снимается напряжение только с части обмотки. Ползунок делит реостат на два резистора, которые соединены последовательно.

Общее напряжение равно сумме напряжений каждого резистора. Поэтому выходное напряжение меньше входного значения. Выходное напряжение меньше, чем входное во столько раз, во сколько сопротивление части обмотки меньше, чем сопротивление всей обмотки. То есть, реостат делит напряжение, и называется делителем напряжения или потенциометром.

Виды и особенности реостатов

Реостат в виде тора

Два крайних зажима – это концы обмотки, а средний зажим соединен с ползунком. Вращая ползунок по обмотке, можно изменить сопротивление и сила тока в цепи.

Рычажные реостаты

Они получили такое название, потому что в его нижней части находится переключатель – рычаг. С помощью него можно включать разные части спирали резисторов. На рисунке показан принцип работы рычажного реостата.

Рычажный реостат изменяет силу тока скачкообразно, в то время как ползунковый реостат меняет силу тока плавно. Если в цепи будет присутствовать резистор, то при перемещении ползунка на ползунковом реостате или при переключении рычага рычажного реостата будет меняться сила тока и напряжение на концах резистора.

Штепсельные

Такие устройства состоят из магазина сопротивлений.

Это набор различных сопротивлений. Они называются спирали-резисторы. При помощи штепселя можно включать или выключать разные спирали-резисторы. Когда штепсель находится в перемычке, то больший ток идет через перемычку, а не через резистор. Таким образом, резистор отключается. Используя штепсель, можно получать разные сопротивления.

Материалы и охлаждение

Основным элементом в устройстве реостата является материал изготовления, по виду которого реостаты делятся на несколько видов:
  • Угольные.
  • Металлические.
  • Жидкостные.
  • Керамические.
Электрический ток в сопротивлениях преобразуется в тепловую энергию, которая должна каким-то образом отводиться от них. Поэтому реостаты также делятся по типу охлаждения:
  • Воздушные.
  • Жидкостные.

Жидкостные реостаты разделяются на водяные и масляные. Воздушный вид используется в любых конструкциях приборов. Жидкостное охлаждение применяется только для металлических реостатов, их сопротивления омываются жидкостью, либо полностью в нее погружены. Нельзя забывать, что охлаждающая жидкость также должна охлаждаться.

Металлические реостаты

Это конструкция реостата с воздушным охлаждением. Такие модели приобрели популярность, так как легко подходят для различных условий работы своими электрическими, тепловыми характеристиками, а также формой конструкции. Они бывают с непрерывным или ступенчатым типом регулировки сопротивления.

В устройстве имеется подвижный контакт, скользящий по неподвижным контактам, расположенным в этой же плоскости. Неподвижные контакты выполнены в виде винтов с плоскими головками, пластин или шин. Подвижный контакт называется щеткой. Он бывает мостиковым или рычажным.

Такие виды реостатов делят на самоустанавливающиеся и несамоустанавливающиеся. Последний вид имеет простую конструкцию, но ненадежен в применении, так как контакт часто нарушается.

Масляные

Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла. Это делает возможным повышение нагрузки на небольшое время, снижает расход материала изготовления сопротивления и габариты корпуса реостата.

Детали, погружаемые в масло, должны иметь значительную поверхность для хорошей отдачи тепла. В масле увеличиваются возможности контактов на отключение. Это является преимуществом такого вида реостатов. Благодаря смазке на контакты можно прилагать повышенные усилия. К недостаткам можно отнести риск возникновения пожара и загрязнение места установки.

Похожие темы:

Описание, конструкция, символы и применение реостата

Реостат
определение

Реостат — переменный резистор, который
используется для управления потоком электрического тока вручную
увеличение или уменьшение сопротивления. Английский ученый
Сэр Чарльз Уитстон придумал слово реостат, оно происходит от
от греческих слов «реос» и «-статис», что означает ручей.
управляющее устройство или текущее управляющее устройство.

Что
такое реостат?

Электрический ток, протекающий через
электрическая схема определяется двумя факторами: величиной напряжения
приложенное и общее сопротивление электрического
схема. Если уменьшить сопротивление цепи, поток
электрический ток в цепи будет увеличиваться. На
с другой стороны, если мы увеличим сопротивление цепи, поток
электрический ток через цепь будет уменьшен.

Поместив реостат в электрическую
цепи, мы можем контролировать (увеличивать или уменьшать) поток
электрический ток в цепи. Реостат снижает электрическую
текущий поток до определенного уровня. Однако это не полностью
блокирует прохождение электрического тока. Чтобы полностью заблокировать
электрический ток, нам нужно бесконечное сопротивление. Практически
невозможно полностью заблокировать электрический ток.

Строительство
реостата

Строительство реостата почти завершено.
аналогично потенциометру.
Как и потенциометр, реостат также состоит из трех
терминалы: терминал A, терминал B и терминал C. Однако мы
используйте только две клеммы: либо A и B, либо B и C.
и клемма C — это две фиксированные клеммы, подключенные к обоим
концы резистивного элемента, называемые дорожкой, а клемма B — это
регулируемый терминал, подключенный к скользящему дворнику или ползунку.

Стеклоочиститель, движущийся по резистивному
элемент изменяет сопротивление реостата. Сопротивление
реостат меняется при перемещении ползунка или дворника
резистивный путь. Резистивный элемент реостата
из мотка проволоки или тонкой углеродной пленки.

Реостаты в основном намотаны проволокой. Следовательно,
реостаты также иногда называют переменными проволочными обмотками.
резисторы.Обычно реостаты изготавливаются путем намотки нихрома.
проволока вокруг изолирующего керамического сердечника. Керамическое ядро
реостат действует как теплоизолирующий материал. Следовательно
керамический сердечник не пропускает тепло.

Сопротивление
реостата зависит от длины резистивной дорожки

Сопротивление реостата зависит от
длина резистивной дорожки, по которой электрический ток
течет.

Если мы используем клеммы A и B в
реостата минимальное сопротивление достигается при перемещении
ползунок или стеклоочиститель рядом с выводом A, потому что длина
резистивный путь уменьшается. В результате лишь небольшая сумма
электрического тока блокируется и большое количество электрического
ток разрешен.

Аналогично максимальное сопротивление
достигается, когда мы перемещаем ползунок ближе к клемме C, потому что
длина резистивного пути увеличивается.В результате большой
количество электрического тока заблокировано и только небольшое количество
электрический ток допускается.

Если использовать клеммы B и C, минимальный
сопротивление достигается, когда мы перемещаем ползунок или стеклоочиститель близко к
клемма C, потому что длина резистивного пути
уменьшается. В результате только небольшое количество электрического тока
блокируется и допускается большое количество электрического тока.

Аналогично максимальное сопротивление
достигается, когда мы перемещаем ползунок ближе к клемме A, потому что
длина резистивного пути увеличивается. В результате большой
количество электрического тока заблокировано и только небольшое количество
электрический ток допускается.

Помните, что мы не уменьшаем сопротивление
провода или резистивного пути; вместо этого мы просто сокращаем
длина резистивного пути для уменьшения сопротивления.Когда мы
поворачиваем внешнюю ручку руками, дворник или бегунок движется
по резистивному пути.

Символ
реостата

Американский стандарт и международный
Стандартный символ реостата показан на рисунке ниже.

Зигзагообразные линии с тремя выводами
представляют собой американский стандартный символ реостата и
прямоугольная коробка с тремя выводами представляет собой
международный стандартный символ реостата.

Типы
реостатов

Реостаты бывают двух типов:

  • Реостаты поворотные
  • Линейные реостаты

Поворотный
реостаты

Роторный реостат также иногда называют
круговой реостат, потому что его резистивный элемент выглядит как
круг. Резистивный элемент поворотного реостата круглый.
или под углом.В этих типах резисторов стеклоочиститель или ползунок
движется вращательно. Роторные реостаты используются в большинстве
приложений, чем линейные реостаты, потому что их размер
меньше линейных реостатов.

линейный
реостаты

Линейный реостат также иногда называют
цилиндрический реостат, поскольку его резистивный элемент выглядит как
цилиндр.В этих типах резисторов стеклоочиститель или ползунок перемещается
линейным образом. Линейные реостаты используются в лабораториях
проводить исследования и преподавать.

Разница
между потенциометром и реостатом

Конструкция обоих потенциометров
и реостат такой же. Основное отличие в том, как мы его использовали
для работы. В потенциометрах мы используем все три клеммы
для выполнения операции, тогда как в реостатах мы используем только
два терминала для выполнения операции.

Приложения
реостата

  • Реостат обычно используется в приложениях с высокими
    требуется напряжение или ток.
  • Реостаты используются при тусклом свете для изменения интенсивности
    свет. Если увеличить сопротивление реостата, поток
    электрического тока через лампочку уменьшается. Как
    в результате яркость света уменьшается.Аналогично, если
    уменьшаем сопротивление реостата, поток
    электрический ток через лампочку увеличивается. Как
    в результате яркость света увеличивается.
  • Реостаты используются для увеличения или уменьшения громкости
    радио и увеличить или уменьшить скорость электрического
    мотор.

Работа, строительство, типы и использование

Реостат — Рабочий

Один из самых распространенных электрических компонентов — резистор.В приложениях, где требуется переменное сопротивление, в основном предпочтительны потенциометры и реостат. Примерно так же мы уже обсуждали потенциометры в нашей предыдущей статье.

Здесь мы поговорим о реостате более подробно.

Что такое реостат?

Реостат — это тип переменного резистора, сопротивление которого можно изменять, чтобы изменить величину тока, протекающего через цепь.

Это устройство было названо «Реостат» английским ученым сэром Чарльзом с использованием двух греческих слов «реос» и «statis» (что означает текущее управляющее устройство).

Он имеет два терминала, один из которых фиксированный, а другой — подвижный. Некоторые реостаты имеют три вывода, как и потенциометр, хотя используются только два вывода (используются только один из двух фиксированных выводов и подвижный вывод).

Некоторые практические реостаты показаны ниже.

Практические реостаты

В отличие от потенциометров, эти устройства должны пропускать значительный ток. Следовательно, резисторы с проволочной обмоткой в ​​основном используются для создания реостатов.

На принципиальной схеме реостат часто представлен так, как показано ниже.

Символ реостата

Схема реостата

Так на каком основании работает реостат? Давайте узнаем об этом в следующем разделе.

Принцип работы реостата

Чтобы понять значение реостата и принцип его работы, давайте освежим основы электрических схем.

Три основных параметра электрической цепи: напряжение, приложенное к цепи, ток в цепи и сопротивление цепи.

Теперь мы знаем, что эти параметры взаимозависимы. То есть, чтобы изменить ток, мы можем либо изменить приложенное напряжение, либо изменить сопротивление цепи.

Когда мы используем реостат в цепи, то, что мы в основном делаем, — это изменяем сопротивление цепи, чтобы изменить ток. Поскольку ток и сопротивление обратно пропорциональны, если требуется уменьшение тока, мы увеличим сопротивление реостата. Точно так же, если требуется увеличение тока, мы просто уменьшим сопротивление реостата.

Теперь вы можете задаться вопросом, существует ли максимальный предел, до которого сопротивление может быть уменьшено или увеличено в реостате. Ответ — да, есть. Каждый реостат имеет рейтинг сопротивления, например, если реостат имеет рейтинг 50 кОм, минимальное сопротивление, которое он может предложить, равно 0, а максимальное — 50 кОм.

Так как же изменить сопротивление реостата?

Для этого пересмотрите свои основы сопротивления. В нашей предыдущей статье «Сопротивление и электропроводность — Полное руководство » мы обсудили параметры, от которых зависит сопротивление материала.Три основных фактора, от которых зависит сопротивление материала, — это его длина, площадь поперечного сечения и тип.

Здесь, в этом устройстве, эффективная длина изменяется с помощью скользящего контакта. Реостат, как уже упоминалось, имеет фиксированный и подвижный вывод. Эффективная длина — это длина между фиксированным выводом и положением скользящего вывода на резистивном пути. По мере движения ползунка эффективная длина изменяется, тем самым изменяя сопротивление реостата.

Поскольку сопротивление прямо пропорционально длине, по мере увеличения эффективной длины сопротивление увеличивается. Точно так же, когда эффективная длина уменьшается, сопротивление реостата уменьшается.

Теперь, когда принцип работы достаточно ясен, давайте посмотрим на конструкцию и типы реостатов.

Строительство реостата:

Конструкция реостата такая же, как и у потенциометра, о чем подробно говорилось в нашей статье о потенциометрах.Подобно потенциометру, реостат имеет три контакта, два фиксированных и один подвижный. Кроме того, этот подвижный терминал скользит по резистивной дорожке. Этот резистивный путь может быть из любого типа резистивного материала, такого как резистор из углеродного состава, резистор с проволочной обмоткой, резистор из проводящего пластика и керамический резистор. Выбор типа резистивного материала полностью зависит от типа применения. Однако в большинстве приложений эти реостаты имеют тенденцию пропускать значительный ток, и поэтому в этих случаях выбирается резистивный путь с проволочной обмоткой.

Также геометрия резистивного пути может быть вращательной или линейной.

Исходя из геометрии резистивного пути, у нас есть два основных типа реостатов, а именно роторные реостаты и линейные реостаты. Помимо этих двух существует еще один тип реостата, называемый триммером.

Вам также может понравиться — Как сделать реостат

Рабочий реостат

Остановимся вкратце о каждом из них

Типы реостатов:

1.Линейный реостат:

Эти реостаты имеют линейный резистивный путь. Скользящий терминал скользит по этому пути. Есть два фиксированных терминала, однако используется только один из двух. Другой терминал подключен к слайдеру.

В основном они используются в лабораторных условиях. В основном используется проволочный резистивный путь вдоль материала линейной цилиндрической формы.

На следующем рисунке показан типичный линейный реостат.

Линейный реостат

2.Поворотный реостат:

В полном соответствии со своим названием поворотный реостат имеет поворотный резистивный путь. Они в основном используются в энергетических приложениях. Эти реостаты имеют вал, на котором установлен грязесъемник. Стеклоочиститель — это не что иное, как скользящий контакт для поворотного реостата, который может вращаться на ¾ круга.

Функция и принцип работы одинаковы для обоих типов реостатов.

На рисунке ниже показан роторный реостат.

Поворотный реостат

3.Предустановленный реостат:

Когда реостаты используются в печатной плате, они используются как подстроечные резисторы или предустановленные реостаты. Триммеры — это не что иное, как небольшой реостат, в основном используемый в схемах калибровки. Доступны два подстроечных резистора, хотя в большинстве случаев подстроечный резистор с трехполюсным потенциометром используется в качестве двухполюсного реостата.

На рисунке ниже показан триммер.

Предустановка

Мы видим, что реостат и потенциометр имеют одинаковую конструкцию.Вы можете задаться вопросом, можно ли использовать потенциометр в качестве реостата.

Да, можно подключить как реостат. Посмотрим, как это сделать.

Потенциометр, подключенный как реостат:

Вам также может понравиться — Разница между потенциометром и реостатом

Мы видим, что потенциометр имеет три вывода, два фиксированных вывода и подвижный вывод. Реостат также имеет то же самое, хотя использует только один из двух фиксированных выводов.Так что подключить потенциометр к реостату довольно просто.

Все, что вам нужно сделать, это соединить неподвижный терминал и подвижный терминал вместе так, чтобы он действовал как единый движущийся терминал. Таким образом, теперь у вас есть фиксированный терминал и подвижный терминал.

Вместо регулятора напряжения, потенциометр будет работать как регулятор тока или реостат.

Таким образом, вы можете использовать потенциометр в качестве реостата. Следовательно, обычная практика заключается в подключении кастрюли в качестве реостата.

На рисунке ниже показано схематическое изображение потенциометра, подключенного как реостат.

Потенциометр, подключенный как переменное сопротивление

Реостат — применение и применение

Самым распространенным применением реостатов, как уже обсуждалось, является управление током. Все другие приложения в основном основаны на этом текущем управляющем свойстве реостата. Эти реостаты используются для ограничения тока и предотвращения сильноточных повреждений.В соответствии с текущими требованиями выбирается размер используемого реостата. Например, для сильноточных цепей используются большие реостаты. Они также используются в цепях регулятора освещенности, цепях регулирования скорости
для двигателей, нагревателей и духовок. Поскольку они рассеивают тепло, они имеют низкий КПД и, следовательно, в настоящее время заменяются переключающими устройствами с регулируемой шириной импульса. Предустановленные реостаты или подстроечные резисторы используются во время калибровки или настройки схемы. В случае отсутствия подстроечных резисторов с двумя выводами, подстроечный потенциометр с тремя выводами подключается как подстроечный реостат.

На этом мы подходим к заключению статьи. Давайте быстро рассмотрим реостаты.

Реостаты: быстрый взгляд назад.

Реостаты — это разновидность переменных резисторов. В основном это три оконечных устройства, но используются только два из этих трех терминалов. Три клеммы включают две фиксированные клеммы и подвижную клемму (называемую ползунком или дворником). Из двух фиксированных терминалов используется только один. Когда ползунок перемещается по резистивному пути, они изменяют сопротивление в цепи и, следовательно, контролируют ток в цепи.Они похожи на потенциометр, хотя оба используются для разных целей. Потенциометр используется для управления напряжением в цепи, а реостат используется для управления током в цепи. Конструкция реостата такая же, как и у потенциометра. Он имеет резистивную липкость, которая может быть линейной или вращательной. Типы реостатов включают линейные, поворотные и подстроечные реостаты.

Вам также может понравиться — Переменный резистор — Рабочий

Подстроечный реостат используется, когда эти устройства должны быть включены в печатные платы.Поворотные и линейные реостаты используются в силовых и токоограничивающих приложениях. Потенциометр можно подключить как реостат, просто подключив его фиксированные клеммы к скользящей клемме. Таким образом, в областях, где реостат недоступен, потенциометр можно подключить таким образом и использовать в качестве реостата.

Схема, работа, символы и ее применение

В электрической цепи многократно желательно ограничивать ток, что может быть сделано путем уменьшения напряжения или увеличения сопротивления в цепи (закон Ома).Реостат — это устройство, которое облегчает это. Слово реостат происходит от греческого языка, означающего изменяющийся поток (текущий). Это необходимо для любой электротехнической лаборатории / мастерской, чтобы проводить эксперименты в условиях переменного тока и напряжения. Это делается путем вставки в цепь переменного сопротивления. Обеспечиваемый этим плавный контроль очень помогает при проведении точных наблюдений. Доступны многие типы реостатов, которые используются в силовых / электрических цепях, но здесь мы ограничимся линейным реостатом скользящего типа, который наиболее часто используется в электрических / силовых цепях.

Что такое реостат?

Определение: Реостат — это плавно изменяемое сопротивление, используемое для изменения протекания тока в электрической цепи. Британский ученый сэр Чарльз Уитстон был человеком, который дал это греческое слово, означающее текущее управляющее устройство.

Реостат

Функция реостата

Из базовой электротехники мы знаем, что напряжение, ток и сопротивление взаимозависимы и могут быть представлены как:

R = V / I

Где R — сопротивление, ‘ V — напряжение, а I — ток.И поэтому, чтобы изменить ток, мы должны либо изменить напряжение, либо сопротивление. Источник напряжения обычно фиксирован и не может быть изменен, поэтому остается только сопротивление.

Это сопротивление, которое можно плавно изменять от нуля до максимального значения. Кроме того, мы знаем, что сопротивление прямо пропорционально длине провода и обратно пропорционально диаметру провода. Материал также играет свою роль, поскольку разные материалы имеют разное удельное сопротивление.Длину и диаметр проволоки можно легко выбрать в зависимости от наших требований.

Поскольку прохождение тока через сопротивление связано с повышением температуры. Поскольку повышение температуры также может привести к изменению сопротивления. В реостате всегда желательно, чтобы сопротивление оставалось почти постоянным в широком диапазоне температур. Для этой цели используется материал, известный как «константан», который представляет собой сплав меди и никеля, поскольку его сопротивление остается стабильным в широком диапазоне температур.

Конструктивно он имеет две фиксированные точки / клеммы, которые представляют собой концы константановой проволоки, намотанной на керамическую трубку. Третья точка — это точка очистки, которая перемещается (вручную или с помощью мотора) по этой намотанной проволоке. Когда мы перемещаем точку стеклоочистителя, подключенную к цепи, мы можем изменять сопротивление. В зависимости от конструкции он может быть линейного или роторного типа.

Конструкция

Наглядный вид линейного типа показан выше, который не требует пояснений.

Символы

Различные стандарты показывают символы реостата по-разному, однако наиболее часто используемые символы показаны выше.

Символы реостата

Работа реостата

Чтобы понять, как это работает, давайте возьмем пример реостата, который последовательно соединен с полем двигателя постоянного тока. Поскольку производительность двигателя постоянного тока во многом зависит от тока возбуждения, который должен быть точно отрегулирован, и он подключен последовательно с полем, это может сделать это хорошо.

Схема подключения реостата

Как показано на схеме подключения выше. Можно добавить, что хотя обычно требуется только фиксированная точка и переменная точка, существуют условия, при которых используются все три точки / терминала.

Цепь с двумя точками

На приведенном выше рисунке можно заметить, что точка стеклоочистителя и одна из фиксированных точек соединены, это сделано для того, чтобы исключить возможность разрыва цепи якоря / поля двигателя, если регулируемая точка / точка стеклоочистителя теряет контакт с сопротивлением или реостатом (будучи подвижной точкой). Точно так же все три точки используются, когда он используется в качестве потенциального делителя.

Области применения / применения

Применения реостата включают следующее.

  • Используется в электрических мастерских / испытательных лабораториях для изучения характеристик различного оборудования / цепей при различных условиях тока и напряжения.
  • Используется в мостах из пшеничного камня для определения неизвестных параметров путем балансировки моста.
  • Используется как диммер в цепях освещения.
  • Может использоваться как переменная резистивная нагрузка.
  • Может использоваться как делитель напряжения.

Разница между реостатом и потенциометром

Основное различие между этими двумя — их допустимая мощность.

Реостат Потенциометр
Реостат, способный выдерживать более высокие ток и напряжение, в основном используется в электрических приложениях, таких как управление двигателем, управление освещением Потенциометр в основном используется в электронных приложениях, таких как электронные регуляторы, эталоны и т. д.

Конструктивно он может использовать различные среды в зависимости от текущей мощности, наиболее распространенным из которых является реостат с проволочной обмоткой. Потенциометр имеет проволочную намотку или, возможно, сопротивление графита / графита.
При этом все три точки могут использоваться или не использоваться. В потенциометре используются все три точки (две фиксированные и одна переменная)
Диапазон не доступен в реостате. Потенциометр, также известный как «горшок», бывает разных размеров и форм. Для большого диапазона и точных настроек у нас есть десять поворотов. У нас также могут быть цифровые потенциометры с использованием электронных компонентов.
Реостат из-за больших потерь мощности в виде тепла имеет ограниченное применение. В настоящее время используется большинство электронных компонентов, таких как SCR, MOSFET и т. Д.

Практически все электронное оборудование, в котором для настройки и управления требуются потенциометры.

Часто задаваемые вопросы

1). Из чего сделан реостат?

Для реостатного контроля можно использовать различные среды, наиболее распространенной из которых является резистивный провод из константана, обеспечивающий стабильность в широком диапазоне температур.

2). В чем разница между реостатом и потенциометром?

Основное различие между реостатом и потенциометром заключается в его допустимой мощности. Реостат подходит для работы с высоким током и напряжением, в то время как потенциометр может работать с током в низком диапазоне, например, Ma. и Mv. Диапазон.

3) В чем принцип реостата?

Принцип реостата основан на законе Ома, который гласит, что ток в проводнике прямо пропорционален приложенному напряжению и обратно пропорционален сопротивлению, при этом физические условия остаются постоянными.

4) Как проверить реостат?

Реостат можно проверить путем измерения сопротивления между любой из двух фиксированных и переменных точек. Изменение сопротивления должно быть пропорционально перемещению точки стеклоочистителя при ее перемещении от минимума к максимуму. Полученное таким образом значение должно соответствовать номинальному значению.

5) Почему у реостата три клеммы?

Некоторые особые требования к цепи требуют использования всех трех выводов, как в случае, когда реостат используется в качестве делителя потенциала, и где мы хотим исключить возможность разрыва цепи из-за движения стеклоочистителя.

Итак, это все о реостате. Это очень важное и полезное оборудование, хотя оно заменяется электронными устройствами, но не нашло замены во многих основных функциях, таких как мост Уитстона, пускатели ротора, пускатели двигателей постоянного тока и т. Д. прост, прочен и эффективно отлит.

Разница между потенциометром и реостатом

Потенциометр и реостат — это два термина, которые связаны с переменными резисторами .Технически оба этих термина представляют две разные конфигурации, предоставляемые одними и теми же компонентами. Прочитав этот пост, вы сможете разработать кристально ясную концепцию в отношении обоих терминов.

Введение в переменный резистор (VR)

Переменный резистор — это трехполюсное устройство. Он обеспечивает переменное значение сопротивления в электрических цепях. Например, напряжение V.R 9 кОм обеспечит сопротивление в диапазоне 0–9 кОм.

Наиболее распространенный тип V.R. показан ниже.Он имеет три клеммы a, b, c (подробности мы рассмотрим позже). Круговую ручку можно вращать для изменения выходного сопротивления.

Как упоминалось ранее, переменный резистор указанного выше типа является наиболее распространенным. Между тем, он тоже самый старый.
Сегодняшние переменные резисторы упакованы как trimpots (последняя версия) с маленьким болтом с одной стороны. Для операций с отрезами можно использовать зажим для затяжки винтов.
[Читайте также: Диоды, транзисторы и GTO]

Потенциометр

Давайте пересмотрим исходный переменный резистор.Конфигурация потенциометра использует в работе все три клеммы.

В левой части изображения показана принципиальная схема конфигурации, а в правой части — практический вид.

Два синих провода подключаются к внешней цепи для подачи переменного напряжения на выход. И это причина, по которой потенциометр назван так .

Реостат

В этой схеме в работе используются два вывода переменного резистора. Клемма a подключается к источнику питания, b подключается последовательно с внешней цепью, а c остается разомкнутой.Цель состоит в том, чтобы добиться постоянного значения «R», чтобы получить переменный ток в соединительной цепи / устройстве. В левой части изображения показана принципиальная схема конфигурации реостата, а в правой части показано практическое подключение для этой конфигурации.

Потенциометр против реостата: практическое применение

Потенциометр обеспечивает изменение напряжения на выходных клеммах и используется в электроэнергетике для управления скоростью машин постоянного тока. Он также находит свое применение в звуковом оборудовании для управления звуком.Согласование частот на старых радиоприемниках использовало повторяющиеся принципы обеих этих конфигураций.

Завершая вышеприведенное обсуждение, в двух словах можно подвести итоги:

Потенциометр и реостат — это две конфигурации, которые можно использовать в электронных схемах и компонентах для достижения переменных значений напряжения и тока.


Автор: Гузель Санс получил степень бакалавра в области электроэнергетики. Сфера его интересов — ВЧ моделирование, защита энергосистем и проектирование электроники.Он любит программировать JS, CSS и играть с HTML5 в часы досуга. Он является основателем онлайн-инструмента «Электрические калькуляторы». Любимое программное обеспечение: MATLAB.

3.7: Потенциометр как реостат

Детали и материалы

  • Аккумулятор 6 В
  • Потенциометр, однооборотный, 5 кОм, линейный конус (Каталожный номер Radio Shack 271-1714)
  • Маленький мотор для хобби, с постоянным магнитом (каталог Radio Shack № 273-223 или аналог)

Для этого эксперимента вам понадобится потенциометр с относительно низким значением, конечно, не более 5 кОм.

Перекрестные ссылки

Уроки электрических цепей , том 1, глава 2: «Закон Ома»

Инструкции по подключению потенциометра

Потенциометры

находят наиболее сложное применение в качестве делителей напряжения, где положение вала определяет конкретный коэффициент деления напряжения. Однако есть приложения, в которых нам не обязательно нужен переменный делитель напряжения, а просто переменный резистор: двухполюсное устройство. Технически переменный резистор известен как реостат , но потенциометры можно довольно легко заставить работать как реостаты.

В своей простейшей конфигурации потенциометр можно использовать в качестве реостата, просто используя клемму стеклоочистителя и одну из других клемм, при этом третья клемма остается неподключенной и неиспользуемой:

Перемещение регулятора потенциометра в направлении, приближающем стеклоочиститель к другой используемой клемме, приводит к более низкому сопротивлению. Направление движения, необходимое для увеличения или уменьшения сопротивления, может быть изменено с помощью другого набора клемм:

Однако будьте осторожны, чтобы не использовать две внешние клеммы, так как это приведет к тому, что не изменится в сопротивлении при вращении вала потенциометра.Другими словами, он больше не будет работать как переменная сопротивление :

Постройте цепь, как показано на схеме и иллюстрации, используя всего две клеммы на потенциометре, и посмотрите, как можно контролировать скорость двигателя, регулируя положение вала. Поэкспериментируйте с различными клеммами на потенциометре, отмечая изменения в управлении скоростью двигателя. Если ваш потенциометр имеет высокое сопротивление (измеренное между двумя внешними клеммами), двигатель может вообще не двигаться, пока стеклоочиститель не будет поднесен очень близко к подключенной внешней клемме.

Как видите, скорость двигателя можно изменять с помощью последовательно включенного реостата для изменения общего сопротивления цепи и ограничения общего тока. Однако этот простой метод управления скоростью двигателя неэффективен, так как приводит к рассеиванию (потере) значительного количества энергии реостатом. Гораздо более эффективный способ управления двигателем основан на быстрой «пульсации» мощности двигателя с использованием высокоскоростного переключающего устройства, такого как транзистор . Похожий метод регулирования мощности используется в бытовых «диммерных» выключателях света.К сожалению, эти методы слишком сложны, чтобы исследовать их на данном этапе экспериментов.

Когда потенциометр используется в качестве реостата, «неиспользуемая» клемма часто подключается к клемме стеклоочистителя, например:

На первый взгляд это кажется бессмысленным, так как не влияет на контроль сопротивления. Вы можете убедиться в этом сами, вставив другой провод в свою схему и сравнив поведение двигателя до и после изменения:

Если потенциометр исправен, этот дополнительный провод не имеет никакого значения.Однако, если стеклоочиститель когда-либо потеряет контакт с резистивной полосой внутри потенциометра, это соединение гарантирует, что цепь не откроется полностью: что все еще будет резистивный путь для тока через двигатель. В некоторых приложениях это может быть важно. Старые потенциометры, как правило, страдают от периодических потерь контакта между дворником и резистивной полосой, и если цепь не может выдержать полную потерю целостности (бесконечное сопротивление), создаваемую этим условием, этот «дополнительный» провод обеспечивает определенную защиту, поддерживая целостность цепи.

Вы можете смоделировать такой «отказ» контакта стеклоочистителя, отсоединив среднюю клемму потенциометра от клеммной колодки, измерив напряжение на двигателе, чтобы убедиться, что к нему все еще идет энергия, даже небольшая:

Обозначение переменного резистора

: полное руководство

Электронный символ — это пиктограмма, используемая для обозначения различных электрических и электронных устройств или функций, таких как провода, батареи, резисторы и транзисторы, на принципиальной схеме электрической или электронной схемы.Сегодня эти символы в значительной степени стандартизированы на международном уровне, но могут отличаться от страны к стране или могут иметь разные инженерные дисциплины, основанные на традиционных соглашениях. В этой статье Linquip рассмотрит обозначение переменного резистора. Читай дальше, чтобы узнать больше.

Стандарты на символы

Графические символы, используемые для электрических компонентов в принципиальных схемах, соответствуют национальным и международным стандартам, в частности:

  • IEC 60617 (также известный как британский стандарт BS 3939)
  • Существует также IEC 61131-3 — для символов релейной логики
  • JIC (Объединенный промышленный совет) символы, одобренные и утвержденные NMTBA (Национальная ассоциация производителей станков).Они взяты из Приложения к спецификации NMTBA EGPl-1967
  • .

  • ANSI Y32.2-1975 (также известный как IEEE Std 315-1975 или CSA Z99-1975).
  • IEEE Std 91 / 91a: графические символы для логических функций (используются в цифровой электронике). Он упоминается в ANSI Y32.2 / IEEE Std 315.
  • Австралийский стандарт AS 1102 (основан на немного измененной версии IEC 60617; отменен без замены с рекомендацией использовать IEC 60617).

Количество стандартов приводит к путанице и ошибкам.Использование символов иногда является уникальным для инженерных дисциплин, и существуют национальные или местные варианты международных стандартов. Например, символы освещения и мощности, используемые как часть архитектурных чертежей, могут отличаться от символов устройств, используемых в электронике.

Что такое символ переменного резистора?

Переменный резистор, также называемый регулируемым резистором, состоит из двух выводов, где один из выводов представляет собой скользящий или подвижный контакт, часто известный как стеклоочиститель.Обозначение переменного резистора IEC представлено прямоугольной рамкой и стрелкой поперек (или над ней), как показано на рисунке ниже.

Обозначения различных типов переменного резистора

Вот обозначения различных типов переменных резисторов для электронных схем.

Символ потенциометра очень похож на символ переменного резистора; однако это устройство с тремя выводами. Когда все три клеммы используются в цепи, а выходное напряжение снимается с подвижной клеммы, переменный резистор известен как потенциометр.

Здесь две фиксированные клеммы подключены к источнику напряжения. Это означает, что падение напряжения на всей резистивной дорожке не что иное, как напряжение источника. Выходная цепь подключена к подвижной клемме. Таким образом, контролируя / изменяя положение подвижной клеммы, мы можем изменить сопротивление и, следовательно, напряжение на нагрузке.

Этот символ переменного резистора на принципиальной схеме представлен, как показано на рисунке ниже.

Конструкция реостата почти аналогична потенциометру.Как и потенциометр, реостат также состоит из трех выводов. Однако в этом типе переменного резистора используется одна из фиксированных клемм и подвижная клемма, а третья фиксированная клемма остается неиспользованной. Такое подключение помогает уменьшить или увеличить ток в цепи, просто изменив положение движущегося стеклоочистителя. При изменении сопротивления ток изменяется обратно пропорционально. То есть при увеличении сопротивления ток в цепи уменьшится.

Прямоугольная коробка с тремя клеммами и стрелкой поперек нее представляет собой символ реостата.

Термистор — это тип резистора, сопротивление которого быстро изменяется при небольшом изменении температуры. Обозначение термистора по международному стандарту показано на рисунке ниже.

Предустановленный переменный резистор — это микроверсия переменного резистора, имеющая три ножки или клеммы. Его можно установить прямо на схему.Предустановленное значение корректируется только один раз в процессе калибровки контура. Он имеет регулируемый винт, прикрепленный к резистору, который регулируется с помощью отвертки, чтобы получить желаемое сопротивление. Сопротивление здесь изменяется логарифмически. Этот символ переменного резистора показан на рисунке ниже.

Фоторезистор, также называемый светозависимым резистором (LDR), представляет собой переменный резистор, сопротивление которого изменяется обратно пропорционально интенсивности света. Чтобы представить фоторезистор на принципиальной схеме, выбранный символ указывает на то, что это светозависимое устройство, а также тот факт, что это резистор.Символ представляет собой резистор с кружком вокруг него. Есть также две стрелки, указывающие на него, представляющие свет.

Магниторезистор — это особый вид переменного резистора, электрическое сопротивление которого зависит от приложенной к нему внешней магнитной силы.

На принципиальной схеме магнитосопротивление представлено символом, показанным ниже. Стрелка, проходящая через символ резистора, обозначает переменный резистор, а «x» под ним означает, что используемый переменный резистор является магниторезистором.

Итак, это все, что вам нужно знать о символе переменного резистора. Если вам понравилась эта статья в Linquip, дайте нам знать, оставив ответ в разделе комментариев. Есть вопросы, с которыми мы можем вам помочь? Не стесняйтесь зарегистрируйтесь на нашем веб-сайте, чтобы получить самую профессиональную консультацию от наших экспертов.

Строительство. Работа, подключения и приложения

Все мы, должно быть, были свидетелями и использовали цилиндрическое устройство, называемое реостатом, во время проведения экспериментов в лаборатории физики.Но мы никогда особо не вдавались в подробности его технических деталей.

Реостат — это тип переменного резистора, сопротивление которого можно изменять для изменения количества электрического тока, протекающего через электрическую цепь. Обычно доступные резисторы имеют фиксированное значение и используются для ограничения меньших значений электрического тока. Реостат используется для изменения более высоких значений электрического тока.

Краткая история

В девятнадцатом веке сэр Чарльз Уитстон изобрел реостат, используя длинную трубку со спиральными проводами вокруг нее и регулируемый ползунок.Слово реостат состоит из двух слов («рео» означает поток тока по-гречески и «стат» означает стационарный инструмент). При включении в электрическую цепь поток электричества изменялся через две клеммы: одна клемма рядом с ползунком / регулируемым контактом, а другая подключена около дна.

Строительство

Современный реостат мало чем отличается от своей более ранней версии. Длинная цилиндрическая конструкция с керамическим сердечником плотно намотана на нихромовую проволоку.Керамический сердечник действует как изолирующий материал для выделяемого тепла.

Подобно потенциометру, реостат имеет три вывода, из которых используются только два. Вверху присутствует ползунок, который может свободно перемещаться и контактирует с ранеными проводами.

Принцип работы

Реостат основан на законе Ома, который определяется по формуле:

R = V / I

где R = сопротивление
В = напряжение
I = ток

Из приведенного выше закона мы видим, что сопротивление обратно пропорционально току.Это означает, что увеличение сопротивления уменьшает ток и наоборот.

Также по следующей формуле:

R = ρL / A

где R = сопротивление
ρ = удельное сопротивление
L = длина
A = площадь поперечного сечения

сопротивление прямо пропорционально длине. Следовательно, сопротивление увеличивается с увеличением длины провода (т. Е. Количества витков).

Подключения

Как указывалось ранее, из трех выводов реостата используются только два.

Изображение предоставлено: www.physics-and-radio-electronics.com

На приведенной выше диаграмме показано, как выполняются соединения в реостате при его включении в электрическую цепь. Один конец провода, от которого ток поступает в устройство, подключается к нижнему левому выводу (вывод A). Перемещая стеклоочиститель / ползунок, сопротивление может быть увеличено или уменьшено. Затем этот переменный ток течет через верхний правый вывод (вывод B) дальше в электрическую цепь.

Стеклоочиститель / ползунок, находящийся рядом с выводом A, указывает на низкое сопротивление, тогда как оно увеличивается при приближении к выводу B.

Если мы используем клеммы B и C, минимальное сопротивление достигается, когда мы перемещаем стеклоочиститель / ползунок близко к клемме B, потому что длина резистивного пути теперь уменьшается. Это приводит к протеканию большого количества электрического тока. Когда стеклоочиститель / ползунок перемещается к клемме A, максимальное сопротивление достигается по мере увеличения длины резистивного пути. Следовательно, большой поток электрического тока ограничивается.

Реостат в международном масштабе обозначается следующим символом:

Приложения

Реостат обычно используется в приложениях, где требуется высокое напряжение или ток, например:

  • Изменение силы света лампочки.Увеличение сопротивления реостата уменьшает протекание электрического тока, что приводит к затемнению света и наоборот.
  • Генераторы
  • Скорость двигателя
  • Контроль температуры нагревателя и духового шкафа
  • Регулятор громкости

Типы реостатов

Linear: Он имеет цилиндрическую форму, в которой стеклоочиститель или ползун движется линейно. Имеет линейный резистивный путь. Они в основном используются в лабораториях для обучения и экспериментов.

Поворотный: Имеет поворотный резистивный путь. В этом случае дворник или ползунок установлен на валу и вращается, вращаясь более чем на 3⁄4 круга. Они в основном используются в энергетических приложениях.

Предварительная установка: Они маленькие по размеру и представляют собой не что иное, как небольшой реостат. Триммеры или предустановленные реостаты используются в печатной плате для калибровки.

Реостат против потенциометра

Хотя оба они служат для изменения степени сопротивления, у них есть определенные различия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *