нахождения величины заряда и количество заряда
Электрический заряд – это основа работы любого электронного прибора и та величина, без которой невозможно посчитать ни один важный показатель в электродинамике и электростатике. Подробная расшифровка термина, описание формулы нахождения электрического заряда и образец решения типовой задачи приведены в данной статье.
Что такое электрический заряд q
Электрический заряд, обозначаемый в международной системе единиц буквами q и Q, считается скалярной физической величиной, которая определяет свойство частицы или тела выступать в качестве источника электромагнитного поля и вступать в прямое взаимодействие с ним. В физике существует несколько видов электромагнитных заряженных частиц, и они называются положительными или отрицательными. Обе единицы измеряются в Кулонах, а найти их можно путём вычисления произведения одного Ампера с одной секундой.
Понятие из учебного пособия
Формула нахождения заряда
Определить искомую величину можно из физико-математической формулы силы тока. В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10^-19 Кулон.
Обратите внимание! Формула заряда является следствием прямой зависимости напряженности электромагнитного поля от потенциала его частицы, что является основным правилом нахождения емкости заряженного конденсатора и величины энергии, накопленной в нём. Кроме того, вычислить количество заряда можно через силу Лоренца.
Основные формулы
Как вычислять с помощью законов
Поскольку q и Q являются скалярными единицами, вычислить их с помощью законов можно через точные формулы, выведенные известными учеными-физиками. К примеру, в соответствии с законом Кулона, можно найти величину и силовое направление взаимодействия заряженных частиц между несколькими неподвижными телами.
Закон сохранения
Все элементарные частицы подразделяются на нейтральные или заряженные. Они вступают во взаимодействие друг с другом внутри электромагнитного поля. Частицы, которые имеют одноименный электрон, отталкиваются, а разноименный – притягиваются. В первом случае наблюдается избыток электронов, а во втором – их недостаток. Оба типа частиц заряжаются посредством электризации. На практике, при возникновении данного явления, заряженные частицы равны по модулю, несмотря на противоположность знаков. Когда разные частицы притягиваются, то между ними происходит электризация и сохранение электрона. При этом, сумма всех изолированных системных частиц не изменяется, то есть, q + q + q…= const.
Закон сохранения
Закон Кулона
Выше было сказано, что электрические заряженные микрочастицы бывают как положительными, так и отрицательными, а их наличие подтверждается силовым взаимодействием, которое с помощью экспериментов на весах описал в 1785 году О. Кулон, создав свой физико-математический закон.
Закон Кулона представляет собой физическую закономерность, которая описывает взаимодействие наэлектризованных частиц между не электризованными, в зависимости от промежутка между ними. В соответствии с этой формулировкой, чем больше электронов имеет частица, тем ближе она расположена к другой элементарной единице заряда, и, соответственно, сила возрастает.
Обратите внимание! При увеличении расстояния между частицами, сал их взаимодействия неизменно убывает. В математической формуле это выглядит так: F1 = F2 = K*(q1*q2/r2), где q1 и q2 считаются модулями заряженных микрочастиц, k является коэффициентом пропорциональности, который зависит от системного выбора единицы, а r — расстоянием.
Закон Кулона
Образец решения задач по теме «Электрический заряд»
Ниже приведены образцы решения простых задач по электростатике, в частности, на закон Кулона.
Задача 1. Несколько одинаковых заряженных шаров имеют показатели q1 = 6 микрокулон и q2 = -18 микрокулон. Они располагаются друг от друга на 36 сантиметров (0,36 метров). Насколько будет меняться сила их взаимодействия при соприкосновении друг с другом и разведении в сторону?
Чтобы решить эту задачу, нужно воспользоваться эл заряд формулой F=K*(q1*q2/r2), подставив вместо букв известные величины. В результате, выйдет число 7,5.
Задача 2. Маленькие одинаковые шары находятся на промежутке в 0,15 метра и притягиваются с силой 1 микроньютон. Задача состоит в определении первоначальных зарядов шаров.
Чтобы решить вторую задачу, нужно использовать ту же формулу Кулона, но немного видоизмененную: F=kq2/r2. Затем вывести из правила показатель q2. Он будет равен Fr2/k. Подставив известные значения и выполнив несложные расчеты, получится цифры в 10^-7 или 10 микрокулон.
Формула для решения
В целом, электрический заряд представляет собой физическую скалярную величину, которая определяет способность тел являться источником электромагнитного поля и участвовать во взаимодействии с ним. Отыскать величину, которая обозначается буквами q и Q, для решения задач или для выполнения другой работы, можно через закон сохранения, Кулона и представленные выше основные физические формулы.
Работа электрического тока | Формулы и расчеты онлайн
Электрическую энергию можно получать из других видов энергии и преобразовывать в другие виды энергии. Для нее справедлив закон сохранения энергии. В проводнике носители заряда движутся под действием электрического поля, а при переносе заряда совершается работа.
Если:
W — работа электрического тока (Дж = Вт·с),
U — напряжение (В),
I — сила тока (A),
R — сопротивление цепи (Ом),
t — время протекания тока (c),
Q — переносимый током заряд,
То, работа электрического тока:
\[ W = UQ \]
,а
\[ Q = It \]
то получаем
Работа электрического тока через напряжение и ток
\[ W = UIt \]
или используя закон ома:
Работа электрического тока через напряжение и сопротивление
\[ W = \frac{U^2 t}{R} \]
Работа электрического тока через ток и сопротивление
\[ W = I^2 Rt \]
Электрическую энергию можно получать из других видов энергии и преобразовывать в другие виды энергии. Для нее справедлив закон сохранения энергии. В проводнике носители заряда движутся под действием электрического поля, а при переносе заряда совершается работа.
Если:
W — работа электрического тока (Дж = Вт·с),
U — напряжение (В),
I — сила тока (A),
R — сопротивление цепи (Ом),
t — время протекания тока (c),
Q — переносимый током заряд,
То, работа электрического тока:
\[ W = UQ \]
,а
\[ Q = It \]
то получаем
Работа электрического тока через напряжение и ток
\[ W = UIt \]
или используя закон ома:
Работа электрического тока через напряжение и сопротивление
\[ W = \frac{U^2 t}{R} \]
Работа электрического тока через ток и сопротивление
\[ W = I^2 Rt \]
Работа электрического тока | стр. 612 |
---|
ФИЗИКА: ЗАДАЧИ на Работу электрического тока
Задачи на Работу электрического тока с решениями
Формулы, используемые на уроках «Задачи на Работу электрического тока».
Название величины | Обозначение | Единица измерения | Формула |
Сила тока | I | А | I = U / R |
Напряжение | U | В | U = IR |
Время | t | с | t = A / IU |
Работа тока | А | Дж | A = IUt |
1 мин = 60 с; 1 ч = 60 мин; 1 ч = 3600 с.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача № 1.
Какую работу совершит электрический ток в электродвигателе вентилятора за 20 мин, если сила тока в цепи 0,2 А, а напряжение 12 В?
Задача № 2.
Какую работу совершит электрический ток в паяльнике за 30 мин, если сопротивление паяльника 40 Ом, а сила тока в цепи 3 А?
Задача № 3.
Сколько времени работал электродвигатель игрушечной машины, если при напряжении 12 В и силе тока 0,1 А электрический ток совершил работу 360 Дж?
Задача № 4.
Рассчитайте расход энергии электрической лампой, включенной на 10 мин в сеть напряжением 127 В, если сила тока в лампе 0,5 А.
Задача № 5.
По данным рисунка определите энергию, потребляемую лампой в течение 10 с. Как будет изменяться потребляемая лампой энергия, если ползунок реостата переместить вверх; вниз?
Краткая теория для решения Задачи на Работу электрического тока.
Это конспект по теме «ЗАДАЧИ на Работу электрического тока». Выберите дальнейшие действия:
ФИЗИКА: ЗАДАЧИ на Мощность электрического тока
Задачи на Мощность электрического тока с решениями
Формулы, используемые на уроках «Задачи на Мощность электрического тока»
Название величины | Обозначение | Единица измерения | Формула |
Сила тока | I | А | I = U / R |
Напряжение | U | В | U = IR |
Время | t | с | t = A / IU |
Работа тока | А | Дж | A = IUt |
Мощность тока | Р | Вт | Р = IU |
Мощность источника тока в замкнутой цепи | Р | Вт |
1 мин = 60 с; 1 ч = 60 мин; 1 ч = 3600 с.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача № 1.
Определить мощность тока в электрической лампе, если при напряжении 110 В сила тока в ней 200 мА.
Задача № 2.
Определить мощность тока в электрической лампе, если сопротивление нити акала лампы 400 Ом, а напряжение на нити 100 В.
Задача № 3.
Определить силу тока в лампе электрического фонарика, если напряжение на ней 6 В, а мощность 1,5 Вт.
Задача № 4.
В каком из двух резисторов мощность тока больше при последовательном (см. рис. а) и параллельном (см. рис. б) соединении? Во сколько раз больше, если сопротивления резисторов R1 = 10 Ом и R2 = 100 Ом?
Задача № 5.
Ученики правильно рассчитали, что для освещения елки нужно взять 12 имеющихся у них электрических лампочек. Соединив их последовательно, можно будет включить их в городскую сеть. Почему меньшее число лампочек включать нельзя? Как изменится расход электроэнергии, если число лампочек увеличить до 14?
Задача № 6.
В горном ауле установлен ветряной двигатель, приводящий в действие электрогенератор мощностью 8 кВт. Сколько лампочек мощностью 40 Вт можно питать от этого источника тока, если 5% мощности расходуется в подводящих проводах?
Задача № 7.
Сила тока в паяльнике 4,6 А при напряжении 220 В. Определите мощность тока в паяльнике.
Задача № 8.
Одинакова ли мощность тока в проводниках ?
Задача № 9.
На баллоне первой лампы написано 120 В; 100 Вт, а на баллоне второй — 220 В; 100 Вт. Лампы включены в сеть с напряжением, на которое они рассчитаны. У какой лампы сила тока больше; во сколько раз?
Задача № 10. (повышенной сложности)
В сеть напряжением 120 В параллельно включены две лампы: 1 — мощностью 300 Вт, рассчитанная на напряжение 120 В, и 2, последовательно соединенная с резистором,— на 12 В. Определите показания амперметров А1 и А и сопротивление резистора, если амперметр А2 показывает силу тока 2 А.
Задача № 11.
ОГЭ
При силе тока I1 = 3 А во внешней цепи выделяется мощность Р1 = 18 Вт, а при силе тока I2 = 1 А — мощность Р2 = 10 Вт. Найти ЭДС и внутреннее сопротивление источника тока.
Задача № 12.
ЕГЭ
Имеются две электрические лампочки мощностью Р1 = 40 Вт и Р2 = 60 Вт, рассчитанные на напряжение сети U = 220 В. Какую мощность будет потреблять каждая из лампочек, если их подключить к сети последовательно?
Краткая теория для решения Задачи на Мощность электрического тока.
Это конспект по теме «ЗАДАЧИ на Мощность электрического тока». Выберите дальнейшие действия:
сопротивления через силу тока и напряжение
Электротехника как область науки, занимающаяся использованием электроэнергии, в том числе ее получением, распределением и учетом, оперирует значениями тока, напряжения, мощности и сопротивления. Это основные величины. Кроме этого, имеется множество других характеристик и понятий, но в рамках данной статьи будут рассматриваться именно эти основополагающие понятия.
Многообразие устройств электротехники
Электрический ток
Согласно определению, ток представляет собой упорядоченное движение заряженных частиц в среде. Такими частицами могут быть свободные электроны или ионы, частицы вещества, в которых число протонов в ядре не равно количеству электронов, то есть имеющие определенный заряд, положительный или отрицательный. Электроток может быть постоянный или переменный.
Электрическое напряжение
Электрическое напряжение – это разность потенциалов на противоположных участках цепи. Точное определение понятия подразумевает работу по переносу электрического заряда между участками цепи.
Сопротивление
Любой проводник в цепи препятствует прохождению через себя тока. Данная характеристика определяет такую физическую величину, как сопротивление. Исходя из величины сопротивления, все вещества относят к проводникам или изоляторам. Точная граница весьма расплывчата, поэтому при некоторых условиях некоторые вещества можно отнести как к изоляторам, так и к проводникам. Участок электросхемы может иметь элемент с определенным значением величины, который именуется резистор.
Резисторы различных типов
Мощность
Скорость преобразования, передачи и потребления электрической энергии определяется мощностью.
Взаимосвязь параметров электрической цепи
Все параметры любой электрической цепи строго взаимосвязаны, поэтому в любой момент времени можно точно определить величину любого из них, зная остальные.
К сведению. Основополагающий закон, по которому производится большинство расчетов, – закон Ома, согласно которому сила тока обратно пропорциональна его сопротивлению и прямо пропорциональна приложенной разности потенциалов.
Закон Ома и его основатель
Формула напряжения тока закона Ома выглядит следующим образом:
I=U/R.
Так, цепь с большим напряжением пропускает больший ток, а при одинаковом напряжении ампераж будет больше там, где меньше сопротивление.
Принятые обозначения в формуле расчета напряжения и тока понятны во всем мире:
- I – сила тока;
- U – напряжение;
- R – сопротивление.
Путем простейшего математического преобразования находится формула расчета сопротивления через силу тока и напряжение.
Кроме закона Ома, используется формула расчета мощности:
P=U∙I.
Символом P здесь обозначена мощность тока.
Любая схема может содержать участки, где имеется последовательное соединение, или есть элемент, подключенный параллельно. Расчеты при этом усложняются, но базовые формулы остаются одинаковыми.
Единицы измерения в формуле
Невозможно выполнять расчеты или измерения, не зная, какими величинами оперировать. Общепринятые обозначения, согласно международной системе измерения СИ:
- Напряжение – Вольт. Обозначается символом В или V в англоязычной литературе;
- Сила тока – Ампер. Обозначается символом А;
- Электрическое сопротивление – Ом. Используется обозначение Ом или Ohm;
- Электрическая мощность – Ватт. Обозначается как Вт или W.
Как работает закон в реальной жизни
Используя совместно формулу расчета мощности и закон Ома, можно производить вычисления, не зная одной из величин. Самый простой пример – для лампы накаливания известны только ее мощность и напряжение. Применяя приведенные выше формулы, можно легко определить параметры нити накаливания и ток через нее.
Лампа накаливания
Сила тока формула через мощность:
I=P/U;
Сопротивление:
R=U/I.
Такой же результат можно найти из мощности, не прибегая к промежуточным расчетам:
R=U2/P.
Аналогично можно вычислить любую величину, зная только две из них. Для упрощения преобразований имеется мнемоническое отображение формул, позволяющее находить любые величины.
Правило для запоминания расчетов
Внимательно посмотрев на формулы, можно заметить, что, если уменьшить напряжение на лампе в два раза, ожидаемая мощность не снизится аналогично в два раза, а в четыре, согласно формуле:
P=U2/R.
Это довольно распространенная ошибка среди далеких от электротехники людей, которые неправильно соотносят мощность и напряжение, а также их действие на остальные параметры.
Кстати. Сила тока, найденная через сопротивление и напряжение, справедлива как для постоянного, так и для переменного тока, если в ней не используются такие элементы, как конденсатор или индуктивность.
Облегчить расчеты можно, используя онлайн калькулятор.
Пример с обычной водой
Существуют вещества, которые можно отнести одновременно к проводникам и изоляторам. Самый простой пример – обыкновенная вода. Дистиллированная вода является хорошим изолятором, но наличие в ней практически любых примесей делает ее проводником. Особенно это относится к солям различных металлов. При растворении в воде соли диссоциируются на ионы, их наличие – прямой повод для возникновения тока. Чем больше концентрация солей, тем меньшим сопротивлением будет обладать вода.
Зависимость сопротивления воды от содержания солей
Для наглядности можно взять дистиллированную воду для приготовления электролита для автомобильных аккумуляторных батарей. Опустив щупы омметра в воду, можно увидеть, что его показания велики. Добавление всего нескольких кристаллов поваренной соли через некоторое время вызывает резкое уменьшение сопротивления, которое будет тем меньше, чем больше соли перейдет в раствор.
По какой формуле определяется напряжение
Использование той или иной формулы напряжения электрического тока для вычисления зависит от того, какие величины известны:
- Ток и сопротивление – U=I∙R;
- Ток и мощность – U=P/I;
- Мощность и сопротивление – U=√P∙R
Различные используемые величины
Кроме основных величин: вольт, ампер, ом, ватт, используют кратные, большие или меньшие. Для обозначений применяют соответствующие приставки:
- Кило – 1000;
- Мега – 1000000;
- Гига – 1000000000;
- Милли – 0.001.
Таким образом, получается:
- Киловольт (кВ) – тысяча вольт;
- Мегаватт (Мвт) – миллион ватт;
- Миллиом (мОм) – одна тысячная Ом;
- Гигаватт (ГВт) – тысяча мегаватт или миллиард ватт.
Как найти напряжение
Формула нахождения напряжения как разности потенциалов в электрическом поле:
U=ϕA-ϕB, где ϕAи ϕB – потенциалы в точках А и В, соответственно.
Также можно записать напряжение как работу по переносу единицы заряда из точки А в точку В в электрическом поле:
U=A/q, где q – величина заряда.
Работа тем больше, чем выше напряженность электрического поля Е, то есть сила, действующая на неподвижный заряд.
Потенциальную энергию заряда в электростатическом поле называют электростатический потенциал.
Гидравлическая аналогия
Чтобы легче усвоить законы электрических цепей, можно представить себе аналогию с гидравлической системой, в которой соединение насоса и трубопроводов образует замкнутую систему. Для этого нужны следующие соответствия:
- Источник питания – насос;
- Проводники – трубы;
- Электроток – движение воды.
Без особых усилий становится понятнее, что чем меньше диаметр труб, тем медленнее по ним движется вода. Чем мощнее насос, тем большее количество воды он способен перекачать. При одинаковой мощности насоса уменьшение диаметра труб приведет к снижению потока воды.
Гидравлическая аналогия
Измерительные приборы
Для измерения параметров электрических цепей служат измерительные приборы:
- Вольтметр;
- Амперметр;
- Омметр.
Наиболее часто используется класс комбинированных устройств, в которых переключателем выбирается измеряемая величина – ампервольтомметры или авометры.
Один из самых распространенных авометров
Типичные напряжения
Для стандартизации и возможности использования различного оборудования в быту и технике применяются электрические сети со стандартными значениями:
- Бытовая сеть –220В;
- Бортовая сеть автомобиля – 12 или 24В;
- Батареи и аккумуляторы – 1.5, 3 или 9В.
Потенциал Гальвани
В электрохимии используется понятие потенциала Гальвани, который означает разность потенциала между различными фазами вещества, например, между электродом и электролитом, между электродами из разнородных металлов.
Видео
Как найти общую силу тока в проводнике формулой
Электрическим током в электротехнике называется движение заряженных частиц по какому-либо проводнику. Эта величина не характеризуется лишь количеством энергии электричества, проходящей через проводник, так как за один и тот же проводник можно пропустить ток как разной, так и равной силы за разные промежутки времени. Именно поэтому не все так просто, как кажется. Рекомендуется ознакомиться с более развернутыми определениями электротока, чему он равен и как вычисляется. В этой статье будет объяснено, как найти силу тока в проводнике, будет дана формула этого уравнения.
Сила тока – что это
Рассматривая количество электроэнергии, которое протекает через определенный проводник за различные временные интервалы, станет ясно, что за малый промежуток ток протечет более интенсивно, поэтому нужно ввести еще одно определение. Оно означает силу тока, протекающую в проводнике за секунду времени.
Основные величины, характеризующие поток электронов
Если сформулировать определение на основе всего вышеперечисленного, то сила электротока – это количество электроэнергии, проходящее через поперечное сечение проводника за секунду. Маркируется величина латинской буквой «I».
Гальванометр для измерения небольшой силы тока
Важно! Специалисты определяют силу электротока, равную одному амперу, когда через поперечное сечение проводника проходит один кулон электричества за одну секунду.
Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее. Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль.
Схема, определяющая рассматриваемое понятие
Если известно количество электроэнергии, которое прошло через проводник за конкретный промежуток времени, то силу (не мощность) можно вычислить по формуле, изображенной на картинке.
Когда электросеть замкнута и не имеет никаких ответвлений, через каждое поперечное сечение за секунду протекает одно и то же количество электричества. Теоретически это обосновывается так: заряд не может накапливаться в определенном месте, и сила электротока везде одинакова.
Виды токов
Источники тока
Источником электротока называется такой электротехнический прибор, который конвертирует определенный вид энергии в электрическую. Такие устройства делятся на физические и химические.
Принцип действия химических источников основан на преобразовании химической энергии в электрическую. Это преобразование происходит самостоятельно и не требует участия извне. В зависимости от возобновляемости элементов и типа реакций, они делятся на:
- Первичные (батарейки) Первичные источники нельзя использовать второй раз, если они разрядились, так как химические реакции, протекающие в них, необратимы. Они делятся на топливные и полутопливные элементы. Топливные аналогичны батарейкам, но химические вещества в них заправляются отдельно, как продукты химической реакции они выходят наружу. Это помогает им работать долгое время. Полутопливные включают в себя один из химических элементов, а второй постепенно поступает на протяжении всего использования. Их срок службы определяется запасом невозобновляемого вещества. Если для такого элемента возможна регенерация через зарядку, то он возобновляет свои возможности как аккумулятор.
Батарейки – как первичные химические источники тока
- Вторичные (аккумуляторы) перед использованием проходят цикл зарядки. Заряд, который они получают в процессе, можно транспортировать вместе с устройствами. После расходования заряда возможна его регенерация за счет зарядки и обратимости химической реакции. Также к вторичным относятся возобновляемые элементы, которые механическим или химическим путем заряжаются и восстанавливают способность питать приборы. Они разработаны таким образом, что после определенного срока требуют замены определенных частей для продолжения реакции.
Виды источников питания электрическим током
Важно! Следует понимать, что разделение на батарейки и аккумуляторы условно. Свойства аккумулятора могут проявляться, например, у щелочных батарей, которые можно реанимировать при определенной степени заряда.
Также по типу реагентов химические источники делятся на:
- Кислотные.
- Солевые.
- Щелочные.
Физические же источники электротока основаны на преобразовании механической, а также ядерной, тепловой или световой энергии в электрическую.
Промышленный генератор трехфазного тока
Сила тока – чему равна, в каких единицах она измеряется, как найти силу тока по формуле
Как уже стало понятно, сила электротока – это физическая величина, показывающая заряд, который проходит через проводник за единицу времени. Основная формула для ее вычисления выглядит так: I = q/t, где q – это заряд, который идет по проводнику в кулонах, а t – это временной интервал в секундах.
Рассчитать силу электротока можно и с помощью закона Ома. Он гласит, что эта величина равна напряжению сети в вольтах, деленному на ее сопротивление в омах. В связи с этим имеет место формула такого рода — I = U/R. Этот закон применим для расчета значений постоянного тока.
Чтобы вычислить переменные параметры электричества, нужно разделить найденные величины на квадратный корень из двух.
К сведению! Это более практичный метод измерения, и им приходится пользоваться часто, так как все приборы в доме или в офисе работают от розеток, которые подают переменный ток. Делается это из-за того, что с ним легче работать, его удобнее трансформировать.
Закон Ома в таблице
Важно! Наглядный пример работы переменного электротока можно наблюдать при включении люминесцентных ламп. Пока они полностью не загорятся, они будут моргать, потому что ток двигается в них то туда, то сюда.
Единицей измерения силы тока является ампер. Он определяется как сила неизменяющегося тока, который проходит по бесконечным параллельным проводникам с наименьшим круговым сечением (с минимальной площадью кругового сечения), отдаленным друг от друга на 1 метр и расположенным в безвоздушном вакуумном пространстве. Это взаимодействие на одном метре длины этих проводников, равное 2 × 10 в минус 7-й степени Ньютона. Если в проводнике за одну секунду времени проходит один кулон заряда, то сила тока в нем равна одному амперу.
Аккумуляторы являются вторичными источниками, но неразрывно связаны с батарейками
Зачем нужно измерять силу тока
Силу тока в проводнике или на участке электрической цепи измеряют для того, чтобы иметь понятие о характеристиках данного проводника или цепи. Так как сила тока – один из основных параметров электричества, он неразрывно связан с другими значениями по типу напряжения и сопротивления. Более того, как уже стало понятно, три этих величины могут пропорционально определять друг друга.
Солнечная панель также является источником, преобразующим световую энергию
Расчеты силы электротока делаются в разных случаях:
- При прокладке электрических сетей.
- При создании приборов.
- В образовательных целях.
- При выборе подходящих деталей для совершения тех или иных действий.
Схема устройства генератора тока
Электроприбор для измерения силы тока
Для измерения силы электротока используют специальный прибор под названием амперметр. Если требуется измерить токи самых разных сил, то прибегают к использованию миллиамперметров и макроамперметров. Чтобы измерить им требуемую величину, его подключают в цепь последовательно. Ток, который проходит через устройство, будет изменяться им, и данные будут выведены на цифровой дисплей или аналоговые шкалы.
Важно! Стоит помнить, что включать амперметр можно на любом участке сети, поскольку сила тока в простой замкнутой цепи без ответвлений одинакова во всех точках.
Современные тестеры и мультиметры содержат функцию измерения силы электротока, поэтому нет необходимости прибегать к габаритным приборам, предназначенным для промышленного использования
Силу тока в домашних условиях можно измерить с помощью мультиметра
Таким образом, сила электротока – это основополагающая характеристика движущихся частиц. Она не только дает понять, какое в сети напряжение и сопротивление, но и определяет другие важные величины по типу ЭДС и т. д.
Как проверить выходную мощность аккумулятора
Джеймсом Стивенсом
Изображения в горошек / изображения в горошек / Getty Images
Емкость аккумулятора измеряется в ампер-часах (Ач) или миллиампер-часах (мАч), в зависимости от типа аккумулятора . Маленькие батарейки, такие как батарейки типа AA, измеряются в мАч, а свинцово-кислотные батареи глубокого цикла, устанавливаемые в такие предметы, как тележки для гольфа и инвалидные коляски, измеряются в Ач. Оба относятся к времени, в течение которого батарея может работать, когда она полностью заряжена, но когда батарея разряжается, поэтому мАч или Ач уменьшаются.Хороший способ определить оставшийся заряд в вашей батарее — проверить выходную силу тока с помощью мультиметра.
Step 1
Найдите этикетку на боковой или верхней части аккумулятора, чтобы узнать, сколько Ач обеспечивает аккумулятор, когда он полностью заряжен и находится в хорошем состоянии. Например, на этикетке батареи глубокого разряда может быть указано 12 В 50 Ач, что означает, что она вырабатывает 12 В и 50 ампер-часов.
Шаг 2
Включите мультиметр. Убедитесь, что гнезда на концах двух проводов, идущих к измерителю, вставлены в гнезда Ah jack на измерителе, если у вашего измерителя несколько розеток, или установите его на измерение Ah, повернув шкалу в соответствующее положение или нажав кнопку Ах, кнопка.Уточните настройку Ач до диапазона, который соответствует Ач на этикетке батареи. Например, если на этикетке написано 50 Ач, установите диапазон от 0 до 60 Ач.
Step 3
Подсоедините металлический зажим типа «крокодил» на конце черного провода от измерителя к отрицательной клемме аккумулятора; скорее всего, он будет помечен как «-» или «Neg». Если у счетчика нет зажимов, вам необходимо удерживать датчик на терминале.
Шаг 4
Подсоедините другой зажим типа «крокодил» на конце красного провода измерителя к положительной клемме аккумулятора или удерживайте металлический датчик на клемме; он помечен «+» или «Поз.»
Step 5
Посмотрите на показания на дисплее счетчика. Показания соответствуют этикетке батареи, если она полностью заряжена. Вы можете вычислить процентный уровень заряда вашей батареи, используя калькулятор, чтобы разделить показания счетчика на число. на этикетке батареи, а затем умножьте результат на 100. Например, если показание счетчика равно 20, то 20, разделенное на 50, будет равно 0,2, умноженное на 100, будет равно 20, что означает, что у вас осталось 20 процентов емкости.
Используйте калькулятор для Определите, как долго ваша батарея будет питать ваше электрическое устройство, проверив значения силы тока на этикетке электродвигателя или устройства, которое питает батарея.Например, если устройство потребляет 5 Ач, а показание счетчика составляет 20 Ач, разделите 5 на 20, чтобы получить 4, это означает, что ваша батарея будет обеспечивать питание устройства в течение 4 часов.
Еще статьи
.
Информация о батарее, сила тока = 0 — Apple Community
Анджело Милето писал:
Я поискал на форумах и нашел много тем и информации о батареях на MacBook. Я выполнил калибровку, и после этого сила тока показывает 0. Это верно?
Да, сила тока отображается во время зарядки или без нее. 0 ампер означает, что вы не находитесь в цикле зарядки и работаете от источника питания. Если вы проверите его, когда он заряжается, он покажет значение выше 0.Если вы работаете только от батареи, будет отображаться отрицательное число, показывающее, что мощность разряжается.
Вот несколько советов по уходу за аккумулятором.
Большую часть времени можно оставлять аккумулятор подключенным к зарядному устройству. Единственный раз, когда я отсоединяю свой от зарядного устройства, это во время калибровки или на несколько минут для использования в другой комнате. Вам следует
калибруйте примерно каждые два месяца, чтобы батарея оставалась полностью работоспособной. Если вы используете MacBook нечасто, лучше калибровать батарею не реже одного раза в месяц.
Лучше не использовать аккумулятор без необходимости. Некоторые люди повредили свои батареи, заряжая, а затем разряжая их каждый раз, когда они используют MacBook. Это очень быстро приведет к старению аккумулятора и заставит вас купить аккумулятор раньше, чем следовало бы. Не разряжайте аккумулятор только потому, что вы его использовали. Литий-ионные аккумуляторы предпочитают небольшие заряды большим. Используйте его, а затем подключите как можно скорее. Единственный раз, когда моя батарея полностью разряжена, — это когда я
калибровка .
По следующим ссылкам можно найти полезную информацию о MacBook и уходе за его аккумулятором.
Apple: Советы по увеличению заряда аккумулятора ноутбука
Apple MacBook и MacBook Pro: снижает скорость процессора при извлечении аккумулятора при работе от адаптера переменного тока
Аккумулятор портативного компьютера Apple не показывает полный заряд в Mac OS X
Посмотреть
здесь и
здесь , чтобы получить несколько полезных советов по уходу за аккумулятором.
Apple MacBook: Как снять или установить аккумулятор
Apple: определение количества циклов работы от батареи
Apple: Использование и очистка разъема питания MagSafe
.