Закон электромагнитной индукции 🐲 СПАДИЛО.РУ
Магнитный поток наглядно истолковывается как число линий магнитной индукции, пронизывающих поверхность площадью S. Поэтому скорость изменения этого числа есть не что иное, как скорость изменения магнитного потока.
Если за малое время ∆t магнитный поток поменялся на ∆Ф, то скорость изменения магнитного потока равна ΔΦΔt… Поэтому утверждение, которое вытекает непосредственно из опыта, можно сформулировать так:
Сила индукционного тока пропорциональная скорости изменения магнитного потока через поверхность, ограниченную контуром:
Ii~ΔΦΔt.
Известно, что в цепи появляется электрический ток в том случае, когда на свободные заряды проводника действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуров, появляются сторонние силы, действие которых характеризуется ЭДС, называемой ЭДС индукции. Обозначают ее как εi.
Согласно закону Ома для замкнутой цепи:
Ii=εiR..
Сопротивление проводника не зависит от изменения магнитного потока. Следовательно, сила индукционного тока пропорциональна скорости изменения магнитного потока только потому, что ЭДС индукции тоже пропорциональна этой скорости изменения потока.
Закон электромагнитной индукции
ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.
εi=∣∣∣ΔΦΔt..∣∣∣
Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы тока. При такой формулировке закон выражает сущность явления, не зависящую от свойств проводников, в которых возникает индукционный ток.
Определение знака ЭДС индукции
На рисунке изображен замкнутый контур. Будем считать положительным направление обхода контура против часовой стрелки. Нормаль →n к контуру образует правый винт с направлением обхода.
Пусть магнитная индукция →B внешнего магнитного поля направлена вдоль нормали к контуру и возрастает со временем. Тогда Φ>0 и ΔΦΔt..>0. Согласно правилу Ленца индукционный ток создает магнитный поток Φ‘<0. Линии магнитной индукции B’ магнитного поля индукционного тока изображены черным цветом. Следовательно, индукционный ток Ii согласно правилу буравчика направлен по часовой стрелке (против направления положительного обхода) и ЭДС индукции отрицательна. Поэтому в законе электромагнитной индукции должен стоять знак «–», указывающий на то, что εi и ΔΦΔt.. имеют разные знаки:
εi=−ΔΦΔt..
Пример №1. Магнитный поток через контур проводника сопротивлением 3∙10–2 Ом за 2 с изменился на 1,2∙10–2 Вб. Найдите силу тока в проводнике, если изменение потока происходило равномерно.
Известно, что:
Ii=εiR..
εi=∣∣∣ΔΦΔt..∣∣∣
Следовательно:
ЭДС индукции в движущихся проводниках
Электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле порождается переменным магнитным полем. Следовательно, изменяясь во времени, магнитное поле порождает электрическое поле. Но если проводник движется в постоянном во времени магнитном поле, то ЭДС индукции в проводнике обусловлена не вихревым электрическим полем, которое в этом случае не может возникнуть, а другой причиной.
При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца. Она и вызывает перемещение зарядов внутри проводника. ЭДС индукции, следовательно, имеет магнитное происхождение.
Вычислим ЭДС индукции, возникающую в проводнике, движущемся в однородном магнитном поле (см. рисунок). Пусть сторона контура MN длиной l скользит с постоянной скоростью →v вдоль сторон NC и MD, оставаясь все это время параллельной стороне CD. Вектор магнитной индукции →B однородного поля перпендикулярен проводнику и составляет угол α с направлением его скорости.
Сила, с которой магнитное поле действует на движущуюся заряженную частицу, равна по модулю:
FL=|q|vBsin.α
Направлена эта сила вдоль проводника MN. Работа силы Лоренца на пути l положительна и составляет:
A=FLl=|q|vBlsin.α
Внимание!
Формула выше определяет неполную работу силы Лоренца. Кроме силы Лоренца имеется составляющая силы Лоренца, направленная против скорости проводника →v. Такая составляющая тормозит проводник и совершает отрицательную работу. В результате полная работа силы Лоренца оказывается равной нулю.
Электродвижущая сила индукции в проводнике MN равна по определению отношению работы по перемещению заряда q к этому заряду:
εi=A|q|..=vBlsin.α
Эта формула справедлива для любого проводника длиной l, движущегося со скоростью →v в однородном магнитном поле.
В других проводниках контура ЭДС равна нулю, так как проводники неподвижны. Следовательно, ЭДС во всем контуре MNCD равна εi и остается неизменной, если скорость движения →v постоянна. Электрический ток при этом будет увеличиваться, так как при смещении проводника MN вправо уменьшается общее сопротивление контура.
С другой стороны, ЭДС индукции можно вычислить с помощью закона электромагнитной индукции. Магнитный поток через контур MNCD равен:
Φ=BScos.(90°−α)=BSsin.α
угол 90°−α представляет собой угол между векторами →B и нормалью →n к поверхности контура, а S — площадь контура MNCD. Если считать, что в начальный момент времени t=0 проводник MN находится на расстоянии NC от проводника CD, то при перемещении проводника площадь S изменяется со временем следующим образом:
S=l(NC−vt)
За время ∆t площадь контура меняется на ΔS=−lvΔt. Знак «минус» указывает на то, что она уменьшается. Изменение магнитного потока за это время равно:
ΔΦ=−BvlΔtsin.α
Следовательно:
εi=−ΔΦΔt..=Bvlsin.α
Если весь контур MNCD движется в однородном магнитном поле, сохраняя свою ориентацию по отношению к вектору →B, то ЭДС индукции в контуре будет равна нулю, так как поток Φ через поверхность, ограниченную контуром, не меняется. Объяснить это можно так. При движении контура в проводниках MN и CD возникают силы, действующие на электроны в направлениях от N к M и от C к D. Суммарная работа этих сил при обходе контура по часовой стрелке или против нее равна нулю.
Пример №2. Проводник длиной 50 см движется в однородном магнитном поле со скоростью 4 м/с перпендикулярно силовым линиям. Найдите разность потенциалов, возникающую на концах проводника, если вектор магнитной индукции 8 мТл.
50 см = 0,5 м
8 мТл = 8∙10–3 Тл
Так как проводник движется перпендикулярно силовым линиям, то угол α равен 90 градусам, а синус прямого угла равен единице. Поэтому:
εi=Bvlsin.α=8·10−3·4·0,5·1=16·10−3 (В)
Задание EF17754 В заштрихованной области на рисунке действует однородное магнитное поле, направленное перпендикулярно плоскости рисунка, В = 0,1 Тл. Проволочную квадратную рамку сопротивлением R=10Ом и стороной l=10см перемещают в плоскости рисунка поступательно со скоростью υ=1м/с. Чему равен индукционный ток в рамке в состоянии 1?
Ответ:
а) 1 мА
б) 5 мА
в) 10 мА
г) 20 мА
Алгоритм решения
1.Записать исходные данные и перевести единицы измерения величин в СИ.
2.Записать формулу для определения величины индукционного тока.
3.Записать закон электромагнитной индукции для движущихся проводников.
4.Выполнить решение в общем виде.
5.Подставить известные данные и вычислить искомую величину.
Решения
Запишем исходные данные:
• Модуль вектора магнитной индукции однородного магнитного поля: B = 0,1 Тл.
• Сопротивление внутри квадратной проволочной рамки: R = 10 Ом.
• Сторона рамки: l = 10 см.
• Скорость перемещения рамки: v = 1 м/с.
10 см = 0,1 м
Индукционный ток, возникающий в рамке, определяется по формуле:
Ii=εiR..
Закон электромагнитной индукции для движущихся проводников:
εi=vBlsin.α
Отсюда индукционный ток равен:
Ii=vBlsin.αR..
На рисунке вектор магнитной индукции направлен в сторону от наблюдателя. Следовательно, угол между направлением движения рамки и вектором магнитной индукции равен 90 градусам. А синус прямого угла равен единице. Тогда:
Ii=vBlsin.90°R..=1·0,1·0,1·110..=0,001 (А)=1 (мА)
Ответ: а
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF17970
При вращении в однородном магнитном поле плоскости металлического кольца из тонкой проволоки вокруг оси, перпендикулярной линиям поля, максимальная сила индукционного тока, возникающего в кольце, равна I1. Чему будет равна максимальная сила индукционного тока I2 в этом кольце при уменьшении скорости вращения кольца в 2 раза?
Ответ:
а) I2 = 2I1
б) I2 = I1
в) I2 = 0,5I1
г) I2 = 4I1
Алгоритм решения
1.Записать закон электромагнитной индукции.
2.Установить зависимость между величиной индукционного тока и скоростью вращения рамки.
3.Определить, как изменится величина индукционного тока в кольце при уменьшении скорости ее вращения.
Решение
Запишем формулу закона электромагнитной индукции:
εi=∣∣∣ΔΦΔt..∣∣∣
Известно, что отношение изменения магнитного потока ко времени его изменения — это величина, характеризующая скорость этого изменения. Если кольцо в однородном магнитном поле вращать медленнее, то и магнитный поток начнет менять медленнее. Так как ЭДС индукции прямо пропорционально зависит от скорости изменения магнитного потока, то при уменьшении скорости вращения кольца в 2 раза она также уменьшится вдвое.
Также известно, что индукционный ток в рамке определяется формулой:
Ii=εiR..
Видно, что индукционный ток и ЭДС индукции — прямо пропорциональные величины. Следовательно, при уменьшении ЭДС индукции вдвое сила индукционного тока тоже уменьшится в 2 раза. Отсюда следует, что I2 = 0,5I1.
Ответ: в
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF18860 По горизонтально расположенным шероховатым рельсам с пренебрежимо малым сопротивлением могут скользить два одинаковых стержня массой m = 100 г и сопротивлением R = 0,1 Ом каждый. Расстояние между рельсами l = 10 см, а коэффициент трения между стержнями и рельсами μ = 0,1 Рельсы со стержнями находятся в однородном вертикальном магнитном поле с индукцией B = 1 Тл (см. рисунок). Под действием горизонтальной силы, действующей на первый стержень вдоль рельс, оба стержня движутся поступательно равномерно с разными скоростями. Какова скорость движения первого стержня относительно второго? Самоиндукцией контура пренебречь. Ответ записать в системе СИ.
Алгоритм решения
1.Записать исходные данные и перевести единицы измерения в СИ.
2.Записать закон электромагнитной индукции для двигающихся стержней.
3.Выполнить решение задачи в общем виде.
4.Подставить неизвестные данные и вычислить искомую величину.
Решение
Запишем исходные данные:
• Масса стержней: m1=m2=m=100 г.
• Сопротивление стержней: R1=R2=R=0,1 Ом.
• Расстояние между рельсами: l = 10 см.
• Коэффициент трения между стержнями и рельсами: μ = 0,1.
• Модуль вектора магнитной индукции магнитного поля: B = 1 Тл.
• Угол между вектором магнитной индукцией и вектором скорости стержней: α = 90 градусов (синус прямого угла равен «1»).
100 г = 0,1 кг
10 см = 0,1 м
Когда под действием некой силы начинается двигаться первый стержень, магнитный поток, пронизывающий контур, образованные проводящими рельсами и двумя стержнями, меняется. Это приводит к возникновению в этом контуре электродвижущей силы, которую можно определить с помощью закона электромагнитной индукции для двигающихся стержней:
εi=vBlsin.α
Причем v — это разность скоростей стержней (v2 – v1), которая характеризует скорость изменения площади проводящего контура.
Индукционный ток, возникающей в этом контуре, можно выразить, используя закон Ома:
εi=IRк
где Rк — сопротивление контура. Так как стержни соединяются последовательно, и их сопротивления равны R, а сопротивление рельсов ничтожно мало, сопротивление контура равно:
Rк=2R
Отсюда закон Ома принимает вид:
εi=2IR
Тогда ток в контуре равен:
I=εi2R..=vBlsin.α2R..
С одной стороны на стержни действует сила Ампера, с другой — сила трения, возникающего между ними и рельсами. Так как стержни движутся равномерно, равнодействующая сил, приложенных к ним, равна нулю. Следовательно, сила трения и сила Ампера компенсируют друг друга (их модули равны):
Fтр=FА
μmg=BIlsin.α
Подставим сюда выражение, полученное для силы тока в контуре:
μmg=BvBlsin.α2R..lsin.α=vB2l2sin2.α2R..
Отсюда скорость равна:
v=2μmgRB2l2sin2.α..
Так как синус угла равен «1»:
Ответ: 2
pазбирался: Алиса Никитина | обсудить разбор | оценить
Закон электромагнитной индукции:магнитный поток и электродвижущая сила
После возникновения понятия о явлении электромагнитной индукции, интересно было бы узнать её количественные характеристики. Согласно опытам сила индукционного тока, которая возникнет в замкнутом контуре, будет пропорциональна изменению магнитного потока, который пронизывает этот контур.
Магнитный поток
Магнитный поток — это не что иное, как количество пронизывающих контур линий магнитной индукции. Чем больше их пронизывает контур, тем больше будет магнитный поток. Поэтому скорость изменения магнитного потока, можно представить как скорость изменения количество линий магнитной индукции, которые пронизывают контур.
За некоторое достаточно малое время ∆t магнитный поток изменится на некоторую величину ∆Ф. Следовательно, сила индукционного тока в замкнутом контуре будет пропорциональна скорости изменения магнитного потока, который пронизывает поверхность, ограниченную этим контуром.
Ii = ∆Ф/∆t.
Электродвижущая сила
Ток в цепи будет возникать при направленном движении заряженных частиц, под действием некоторых сторонних сил. Электродвижущая сила, величина численно равная работе сил по перемещению, единичного положительного заряда вдоль замкнутого контура, называется электродвижущей силой.
При изменении магнитного потока в контуре возникает электрический ток, а следовательно, возникает электродвижущая сила, которая в этом случае называется ЭДС индукции. Для её обозначение используют прописную букву Е. Мы будем обозначать ЭДС индукции Ei.
Согласно закону Ома для замкнутой цепи, будет выполняться следующее равенство:
Ii = Ei/R.
Теперь сформулируем закон электромагнитной индукции. Он будет говорить об ЭДС индукции, так как сила тока, будет зависеть от свойств проводника, а ЭДС будет определяться только изменением магнитного потока, пронизывающего замкнутый контур.
Закон электромагнитной индукции
ЭДС индукции возникающая в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, которую ограничивает этот контур.
Ei = |∆Ф/∆t |.
Теперь необходимо учесть направление индукционного тока, который возникает в контуре. Для этого в формуле необходимо раскрыть модуль и поставить перед частным знак минус.
Ei = -∆Ф/∆t.
Индукционный ток должен быть направлен в направлении против положительного обхода контура. ЭДС индукции будет отрицательна.
Нужна помощь в учебе?
Предыдущая тема: Направление индукционного тока: правило Ленца и опыт
Следующая тема:   Способы определения ЭДС индукции в движущихся проводниках
Электромагнитная индукция. Правило Ленца
Явление электромагнитной индукции заключается в том, что в результате изменения во времени магнитного потока, который пронизывает замкнутый проводящий контур, в контуре возникает электрический ток. Открыто это явление было физиком из Великобритании Максом Фарадеем в 1831 году.
Формула магнитного потока
Введем обозначения, необходимые нам для записи формулы. Для обозначения магнитного потока используем букву Ф, площади контура – S, модуля вектора магнитной индукции – B, α – это угол между вектором B→ и нормалью n→ к плоскости контура.
Магнитный поток, который проходит через площадь замкнутого проводящего контура, можно задать следующей формулой:
Φ=B·S·cos α,
Проиллюстрируем формулу.
Рисунок 1.20.1. Магнитный поток через замкнутый контур. Направление нормали n→ и выбранное положительное направление l→ обхода контура связаны правилом правого буравчика.
За единицу магнитного потока в СИ принят 1 вебер (Вб). Магнитный поток, равный 1 Вб, может быть создан в плоском контуре площадью 1 м2 под воздействием магнитного поля с индукцией 1 Тл, которое пронизывает контур по направлению нормали.
1 Вб=1 Тл·м2
Закон Фарадея
Изменение магнитного потока приводит к тому, что в проводящем контуре возникает ЭДС индукции δинд. Она равна скорости, с которой происходит изменение магнитного потока через ограниченную контуром поверхность, взятой со знаком минус. Впервые экспериментально установил это Макс Фарадей. Он же записал свое наблюдение в виде формулы ЭДС индукции, которая теперь носит название Закона Фарадея:
Определение 1
Закон Фарадея:
δинд=-∆Φ∆t
Правило Ленца
Определение 2
Согласно результатам опытов, индукционный ток, который возникает в замкнутом контуре в результате изменения магнитного потока, всегда направлен определенным образом. Создаваемое индукционным током магнитное поле препятствует изменению вызвавшего этот индукционный ток магнитного потока. Ленц сформулировал это правило в 1833 году.
Проиллюстрируем правило Ленца рисунком, на котором изображен неподвижный замкнутый проводящий контур, помещенный в однородное магнитное поле. Модуль индукции увеличивается во времени.
Пример 1
Рисунок 1.20.2. Правило Ленца
Здесь ∆Φ∆t>0, а δинд<0 < 0. Индукционный ток Iинд протекает навстречу выбранному положительному направлению l→ обхода контура.
Благодаря правилу Ленца мы можем обосновать тот факт, что в формуле электромагнитной индукции δинд и ∆Φ∆t противоположны по знакам.
Если задуматься о физическом смысле правила Ленца, то это частный случай Закона сохранения энергии.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать задание
Причины возникновения индукционного тока в движущихся и неподвижных проводниках
Причин, по которым может происходить изменение магнитного потока, пронизывающего замкнутый контур, две:
- Изменение магнитного потока вследствие перемещения всего контура или отдельных его частей в магнитном поле, которое не изменяется со временем;
- Изменение магнитного поля при неподвижном контуре.
Перейдем к рассмотрению этих случаев подробнее.
Перемещение контура или его частей в неизменном магнитном поле
При движении проводников и свободных носителей заряда в магнитном поле возникает ЭДС индукции. Объяснить возникновение δинд можно действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца здесь – это сторонняя сила.
Пример 2
На рисунке мы изобразили пример индукции, когда прямоугольный контур помещен в однородное магнитное поле B→ направленное перпендикулярно плоскости контура. Одна из сторон контура перемещается по двум другим сторонам с некоторой скоростью.
Рисунок 1.20.3. Возникновение ЭДС индукции в движущемся проводнике. Отражена составляющая силы Лоренца, которая действует на свободный электрон
На свободные заряды подвижной части контура воздействует сила Лоренца. Основная составляющая силы Лоренца в данном случае направлена вдоль проводника и связана с переносной скоростью зарядов υ→. Модуль этой сторонней силы равен:
FЛ=eυ→B.
Работа силы FЛ на пути l равна:
A=FЛ·l=eυBl.
По определению ЭДС:
δинд=Ae=υBl.
Значение сторонней силы для неподвижных частей контура равно нулю. Для соотношения δинд можно записать другой вариант формулы. Площадь контура с течением времени изменяется на ΔS=lυΔt. Соответственно, магнитный поток тоже будет с течением времени изменяться: ΔΦ=BlυΔt.
Следовательно,
δинд=∆Φ∆t.
Знаки в формуле, которая связывает δинд и ∆Φ∆t, можно установить в зависимости от того, какие направления нормали и направления контура будут выбраны. В случае выбора согласованных между собой по правилу правого буравчика направлений нормали n→ и положительного направления обхода контура l→ можно прийти к формуле Фарадея.
При условии, что сопротивление всей цепи – это R, то по ней будет протекать индукционный ток, который равен Iинд=δиндR. За время Δt на сопротивлении R выделится джоулево тепло:
∆Q=RIинд2∆t=υ2B2l2R∆t
Парадокса здесь нет. Мы просто не учли воздействие на систему еще одной силы. Объяснение заключается в том, что при протекании индукционного тока по проводнику, расположенному в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, которая связана с относительной скоростью движения зарядов вдоль проводника. Благодаря этой составляющей появляется сила Ампера FА→.
Для рассмотренного выше примера модуль силы Ампера равен FA =IBl. Направление силы Ампера таково, что она совершает отрицательную механическую работу Aмех. Вычислить эту механическую работу за определенный период времени можно по формуле:
Aмех=-Fυ∆t=-IBlυ∆t=-υ2B2l2R∆t
Проводник, перемещающийся в магнитном поле, испытывает магнитное торможение. Это приводит к тому, что полная работа силы Лоренца равна нулю. Джоулево тепло может выделяться либо за счет уменьшения кинетической энергии движущегося проводника, либо за счет энергии, которая поддерживает скорость перемещения проводника в пространстве.
Изменение магнитного поля при неподвижном контуре
Определение 3
Вихревое электрическое поле – это электрическое поле, которое вызывается изменяющимся магнитным полем.
В отличие от потенциального электрического поля работа вихревого электрического поля при перемещении единичного положительного заряда по замкнутому проводящему контуру равна δинд в неподвижном проводнике.
В неподвижном проводнике электроны могут приводиться в движение только под действием электрического поля. А возникновение δинд нельзя объяснить действием силы Лоренца.
Первым, кто ввел понятие вихревого электрического поля, был английский физик Джон Максвелл. Случилось это в 1861 году.
Фактически, явления индукции в подвижных и неподвижных проводниках протекают одинаково. Так что в этом случае мы тоже можем использовать формулу Фарадея. Отличия касаются физической причины возникновения индукционного тока: в движущихся проводниках δинд обусловлена силой Лоренца, в неподвижных – действием на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.
Рисунок 1.20.4. Модель электромагнитной индукции
Рисунок 1.20.5. Модель опытов Фарадея
Рисунок 1.20.6. Модель генератора переменного тока
Закон электромагнитной индукции — Chip Stock
Электромагнитная индукция – FIZI4KA
ЕГЭ 2018 по физике ›
Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.
Явление электромагнитной индукции было открыто М. Фарадеем.
Опыты Фарадея
- На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
- Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
- Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.
Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.
Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.
Объяснения возникновения индукционного тока
Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.
Обратите внимание
Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.
Свойства вихревого электрического поля:
- источник – переменное магнитное поле;
- обнаруживается по действию на заряд;
- не является потенциальным;
- линии поля замкнутые.
Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.
Магнитный поток
Магнитным потоком через площадь ( S ) контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ( B ), площади поверхности ( S ), пронизываемой данным потоком, и косинуса угла ( alpha ) между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):
Обозначение – ( Phi ), единица измерения в СИ – вебер (Вб).
Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:
Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.
В зависимости от угла ( alpha ) магнитный поток может быть положительным (( alpha ) 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.
Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).
В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.
Закон электромагнитной индукции Фарадея
Закон электромагнитной индукции (закон Фарадея):
ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:
Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.
Если контур состоит из ( N ) витков, то ЭДС индукции:
Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ( R ):
При движении проводника длиной ( l ) со скоростью ( v ) в постоянном однородном магнитном поле с индукцией ( vec{B} ) ЭДС электромагнитной индукции равна:
где ( alpha ) – угол между векторами ( vec{B} ) и ( vec{v} ).
Важно
Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.
Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.
Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:
- магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
- вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.
Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:
- в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
- в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.
Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.
Алгоритм решения задач с использованием правила Ленца:
- определить направление линий магнитной индукции внешнего магнитного поля;
- выяснить, как изменяется магнитный поток;
- определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
- по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.
Совет
Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.
Самоиндукция
Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.
При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.
В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.
Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.
При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.
Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.
Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.
При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.
ЭДС самоиндукции ( varepsilon_{is} ), возникающая в катушке с индуктивностью ( L ), по закону электромагнитной индукции равна:
ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.
Индуктивность
Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ( Phi ) через контур из этого проводника пропорционален модулю индукции ( vec{B} ) магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.
Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:
Индуктивность – коэффициент пропорциональности ( L ) между силой тока ( I ) в контуре и магнитным потоком ( Phi ), создаваемым этим током:
Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.
Совет
Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:
Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.
Энергия магнитного поля
При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.
Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.
Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:
Основные формулы раздела «Электромагнитная индукция»
Алгоритм решения задач по теме «Электромагнитная индукция»:
1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.
2. Записать формулу:
- закона электромагнитной индукции;
- ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.
3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.
4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).
5. Решить полученную систему уравнений относительно искомой величины.
6. Решение проверить.
Источник: https://fizi4ka.ru/egje-2018-po-fizike/jelektromagnitnaja-indukcija.html
Закон электромагнитной индукции. Правило Ленца
В 1831 году английский ученый физик в своих опытах М.Фарадей открыл явление электромагнитной индукции. Затем изучением этого явления занимались русские ученый Э.Х. Ленц и Б.С.Якоби.
В настоящее время, в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или генераторе электрического тока тока, в трансформаторах, радиоприемниках, и многих других устройствах.
Электромагнитная индукция – это явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока. То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую – и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока, кроме гальваники.
Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.
Закон электромагнитной индукции
Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром.
В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:
Но в общем случае, применяют формулу ЭДС с общим потокосцеплением:
ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в проводнике является катушка, через которую проходит постоянный магнит. Направление индуцируемого тока можно определить с помощью правила Ленца.
Правило Ленца
Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.
В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита.
Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу.
Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.
В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.
Рекомендуем к прочтению – закон Ампера
1 1 1 1 1 1 1 1 1 1 4.15 (52 Голоса)
Источник: https://electroandi.ru/elektrichestvo-i-magnetizm/zakon-elektromagnitnoj-induktsii-pravilo-lentsa.html
Закон электромагнитной индукции Фарадея для начинающих
Что может быть лучше, чем вечером понедельника почитать про основы электродинамики. Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью.
Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет успешно извлечь из недр памяти закон Фарадея.
Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.
Электродинамика – раздел физики, изучающий электромагнитное поле во всех его проявлениях.
Обратите внимание
Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.
Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея.
Майкл Фарадей (1791-1867)
История и определение
Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!
При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!
Рамка в поле
Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.
Электромагнитная индукция – возникновение в замкнутом контуре электрического тока при изменении магнитного потока, проходящего через контур.
Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:
ЭДС, возникающая в контуре, пропорциональна скорости изменения магнитного потока Ф через контур.
А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца. Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.
Для определения направления индукционного тока применяется знаменитое правило буравчика, или правило правой руки, оно же правило правого винта.
Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца укажут направление индукционного тока. Прямо у нас на сайте, вы также можете купить диплом по ПГС.
Правило правой руки
Примеры решения задач
Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.
И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть – обратитесь к нашим авторам! Теперь вы знаете где заказать курсовую работу. Мы быстро предоставим подробное решение и разъясним все вопросы!
Источник: https://Zaochnik.ru/blog/zakon-elektromagnitnoj-indukcii-faradeya-dlya-nachinayushhix/
Закон электромагнитной индукции Фарадея
В 1831 году мир впервые узнал о понятии электромагнитной индукции. Именно тогда Майкл Фарадей обнаружил это явление, ставшее в итоге важнейшим открытием в электродинамике.
До середины XIX века считалось, что электрическое и магнитное поле не имеют никакой связи, и природа их существования различна. Но М. Фарадей был уверен в единой природе этих полей и их свойств.
Явление электромагнитной индукции, обнаруженное им, впоследствии стало фундаментом для устройства генераторов всех электростанций. Благодаря этому открытию знания человечества о электромагнетизме шагнули далеко вперед.
Фарадей проделал следующий опыт: он замыкал цепь в катушке I и вокруг нее возрастало магнитное поле. Далее линии индукции данного магнитного поля пересекали катушку II, в которой возникал индукционный ток.
Рис. 1. Схема опыта Фарадея
На самом деле, одновременно с Фарадеем, но независимо от него, другой ученый Джозеф Генри обнаружил это явление. Однако Фарадей опубликовал свои исследования раньше. Таким образом, автором закона электромагнитной индукции стал Майкл Фарадей.
Важно
Сколько бы экспериментов не проводил Фарадей, неизменным оставалось одно условие: для образования индукционного тока важным является изменение магнитного потока, пронизывающего замкнутый проводящий контур (катушку).
Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.
Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.
Формула закона электромагнитной индукции Фарадея выглядит следующим образом:
Рис. 2. Формула закона электромагнитной индукции
И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея.
По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е.
индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.
В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:
- Edl = -dФ/dt – уравнение электродвижущей силы
- Hdl = -dN/dt – уравнение магнитодвижущей силы.
Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.
Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:
- если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
- если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.
Рис. 3. Возникновение вихревого магнитного поля
Также Максвелл установил, что распространение электромагнитного поля равна скорости распространения света.
Ученикам 11 класса необходимо знать, что электромагнитную индукцию впервые как явление обнаружил Майкл Фарадей. Он доказал, что электрическое и магнитное поле имеют общую природу. Самостоятельные исследования на основе опытов Фарадея также проводили такие великие деятели как Ленц и Максвелл, которые расширили наши познания в области электромагнитного поля.
Средняя оценка: 4.2. Всего получено оценок: 134.
Будь в числе первых на доске почета
Источник: https://obrazovaka.ru/fizika/zakon-elektromagnitnoy-indukcii-faradeya-formula.html
Закон электромагнитной индукции (закон Фарадея)
Федун В.И. Конспект лекций по физике Электромагнетизи
Лекция 26.
Электромагнитная
индукция. Открытие Фарадея.
В 1831 г. М. Фарадеем было сделано одно из
важнейших фундаментальных открытий в
электродинамике – обнаружено явлениеэлектромагнитной
индукции.
В замкнутом проводящем
контуре при изменении магнитного потока
(потока вектора ),
охватываемого этим контуром, возникает
электрический ток.
Этот ток получил название индукционного.
Появление индукционного тока означает,
что при изменении магнитного
потока в контуре возникает э.д.с. индукции (работа по перенесению единичного заряда по замкнутому контуру). Отметим, что значениесовершенно не зависит от того, каким образом осуществляется изменение магнитного потока, и определяется лишь скоростью его изменения, т.е. величиной. Изменение знака производнойприводит к изменению знакаэ.д.с. индукции . |
Рисунок 26.1. |
Фарадей обнаружил, что индукционный
ток можно вызвать двумя различными
способами, которые удобно объяснить с
помощью рисунка.
1-й способ: перемещение рамки в магнитном поле неподвижной катушки(см.
рис.26.1).
2-й способ: изменение магнитного поля
,
создаваемого катушкой,
за счет ее движения или вследствие
изменения силы токав ней (или того и другого вместе). Рамкапри этом неподвижна.
В обоих этих случаях гальванометр будет показывать наличие индукционного
тока в рамке.
Совет
Направление индукционного тока и,
соответственно, знак э.д.с. индукции определяются правилом Ленца.
Правило Ленца.
Индукционный
ток всегда направлен так, чтобы
противодействовать причине, его
вызывающей.
Правило Ленца выражает важное
физическое свойство – стремление
системы противодействовать изменению
ее состояния. Это свойство называют
электромагнитной
инерцией.
Какова бы ни была причина
изменения магнитного потока, охватываемого
замкнутым проводящим контуром, возникающая
в контуре э.д.с. индукции определяется
формулой
Природа электромагнитной индукции.
С целью выяснения физических причин,
которые приводят к возникновению э.д.с.
индукции, последовательно рассмотрим
два случая.
1. Контур движется в постоянном магнитном поле
Пусть контур с подвижной перемычкой длиной находится в магнитном поле, перпендикулярном плоскости контура (см.Рисунок 26.2). Если двигать перемычку со скоростьювправо, то с такой же скоростью начнут двигаться и носители тока в перемычке – электроны. В результате на каждый электрон начинает |
Рисунок 26.2 |
действовать сила
вызывающая перемещение электронов по
перемычке вниз, т.е. потечет ток,
направленный вверх.
Перераспределившиеся заряды создадут
электрическое поле, которое возбудит
ток и в остальных участках контура.
Это и есть индукционный ток.
Магнитная сила играет роль сторонней силы. Ей можно
сопоставить эквивалентное поле сторонних
сил
Электродвижущая сила,
создаваемая этим полем, называется
электродвижущей
силой индукции
.
В нашем случае
Здесь знак «минус» поставлен
потому, что стороннее поле направлено против положительного обхода
контура, определяемого правилом правого
винта. Произведениеесть скорость приращения площади контура
(приращение площади в единицу времени),
поэтому
где
– приращение магнитного потока сквозь
контур.
Тогда,
Полученный результат можно обобщить
на случай произвольной ориентации
вектора индукции магнитного поля относительно плоскости контура и на
любой контур, движущийся (и/или
деформируемый) произвольным образом в
постоянном неоднородном внешнем
магнитном поле.
Итак, возбуждение э.д.с. индукции при
движении контура в постоянном магнитном
поле объясняется действием магнитной
составляющей силы Лоренца, пропорциональной ,
которая возникает при перемещении
проводника.
2. Контур покоится в переменном магнитном поле
Наблюдаемое на опыте возникновение
индукционного тока свидетельствует о
том, что и в этом случае в контуре
появляются сторонние силы, которые
теперь связаны с изменяющимся во времени
магнитным полем. Какова же их природа?
Ответ на этот принципиальный вопрос
был дан Максвеллом.
Поскольку проводник покоится, то скорость
упорядоченного движения электрических
зарядов и, следовательно, магнитная сила,
пропорциональная,
также равна нулю и уже не может привести
заряды в движение.
Однако кроме магнитной
силы на электрический заряд может
действовать только сила со стороны
электрического поля, равная.
Поэтому остается заключить, чтоиндукционный ток обусловлен
электрическим полем ,
возникающим при изменении во времени
внешнего магнитного поля.
Именно
это электрическое поле и ответственно
за появление э.д.с. индукции в неподвижном
контуре. Согласно Максвеллу,изменяющееся
во времени магнитное поле порождает в
окружающем пространстве электрическое
поле.
Возникновение электрического
поля не связано с наличием проводящего
контура, который лишь позволяет обнаружить
по возникновению в нем индукционного
тока существование этого поля.
Формулировка закона
электромагнитной индукции,
данная Максвеллом, принадлежит к числу
наиболее важных обобщений электродинамики.
Всякое изменение
магнитного поля во времени возбуждает
в окружающем пространстве электрическое
поле.
Математическая формулировка закона
электромагнитной индукции в понимании
Максвелла имеет вид:
Циркуляция вектора
напряженности этого поля по любому неподвижному
замкнутому контуруопределяется выражением
где – магнитный поток, пронизывающий контур.
Используемый для обозначения скорости
изменения магнитного потока знак частной
производной указывает на то, что контур
является неподвижным.
Поток вектора через поверхность, ограниченную контуром,
равен,
поэтому выражение закона электромагнитной
индукции можно переписать следующим
образом:
Воспользовавшись теоремой Стокса можно
получить закон электромагнитной индукции
в дифференциальной форме:
Это одно из уравнений системы уравнений
Максвелла.
Тот факт, что циркуляция электрического
поля, возбуждаемого переменным во
времени магнитным полем, отлична от
нуля, означает, что рассматриваемое
электрическое поле не
потенциальное.Оно, как и магнитное
поле, являетсявихревым.
В общем случае электрическое поле может быть представлено векторной
суммой потенциального (поля статических
электрических зарядов, циркуляция
которого равна нулю) и вихревого
(обусловленного изменяющимся во времени
магнитным полем) электрических полей.
В основе рассмотренных нами явлений,
объясняющих закон электромагнитной
индукции, не просматривается общего
принципа, позволяющего установить
общность их физической природы.
Обратите внимание
Поэтому
эти явления следует рассматривать как
независимые, а закон электромагнитной
индукции – как результат их совместного
действия. Тем более удивительным
оказывается тот факт, что э.д.с. индукции в контуре всегда равна скорости изменения
магнитного потока сквозь контур.
В тех
случаях, когда меняется и поле и расположение или конфигурация контура
в магнитном поле, э.д.с. индукции следует
рассчитывать по формуле
а закон электромагнитной индукции можно
представить в виде
Выражение, стоящее в правой части этого
равенства, представляет собой полную
производную магнитного потока по
времени: первое слагаемое связано с
изменением магнитного поля во времени,
второе – с движением контура.
Можно сказать, что во всех случаях
индукционный ток вызывается полной
силой Лоренца
Какая часть индукционного тока вызывается
электрической, а какая магнитной
составляющей силы Лоренца – зависит от
выбора системы отсчета.
О работе сил Лоренца и Ампера.
Из самого определения работы следует,
что сила, действующая в магнитном поле
на электрический заряд и перпендикулярная
его скорости, не может совершать работы.
Однако при движении проводника с током,
увлекающего за собой заряды, сила Ампера
все же работу совершает. Наглядным
подтверждением этого служат электромоторы.
Это противоречие исчезает, если принять
во внимание, что движение проводника в
магнитном поле неизбежно сопровождается
явлением электромагнитной индукции.
Поэтому наряду с силой Ампера работу
над электрическими зарядами совершает
и возникающая в проводнике электродвижущая
сила индукции. Т.о.
, полная работа сил
магнитного поля складывается из
механической работы, обусловленной
силой Ампера, и работы э.д.с., индуцируемой
при движении проводника. Обе работы
равны по модулю и противоположны по
знаку, поэтому их сумма равна нулю.
Действительно, работа амперовой силы
при элементарном перемещении проводника
с током в магнитном поле равна ,
за это же время э.д.с. индукции совершает
работу
тогда полная работа .
Силы Ампера совершают работу не за счет
энергии внешнего магнитного поля,
которое может оставаться постоянным,
а за счет источника э.д.с., поддерживающего
ток в контуре.
Источник: https://StudFiles.net/preview/5735864/
Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца
- Явление электромагнитной индукции
Электрические и магнитные поля порождаются одними и теми же источниками – электрическими зарядами, поэтому можно предположить, что между этими полями существует определенная связь. Это предположение нашло экспериментальное подтверждение в 1831 г. в опытах выдающегося английского физика М.Фарадея. Он открыл явление электромагнитной индукции.
Явление электромагнитной индукции лежит в основе работы индукционных генераторов электрического тока, на которые приходится вся вырабатываемая в мире электроэнергия.
Замкнутый контур, помещенный в однородное магнитное поле
Количественной характеристикой процесса изменения магнитного поля через замкнутый контур является физическая величина называемая магнитным потоком.
Магнитным потоком (Ф) через замкнутый контур площадью (S) называют физическую величину, равную произведению модуля вектора магнитной индукции (В) на площадь контура (S) и на косинус угла между вектором В и нормалью к поверхности: Φ = BS cos α. Единица магнитного потока Ф — вебер (Вб): 1 Вб = 1 Тл · 1 м2.
Важно
Если вектор магнитной индукции перпендикулярен площади контура, то магнитный поток максимальный.
Если вектор магнитной индукции параллелен площади контура, то магнитный поток равен нулю.
- Закон электромагнитной индукции
Опытным путем был установлен закон электромагнитной индукции: ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром: Эта формула носит название закона Фарадея.
Классической демонстрацией основного закона электромагнитной индукции является первый опыт Фарадея. В нем, чем быстрее перемещать магнит через витки катушки, тем больше возникает индукционный ток в ней, а значит, и ЭДС индукции.
Зависимость направления индукционного тока от характера изменения магнитного поля через замкнутый контур в 1833 г. опытным путем установил русский физик Э.Х.Ленц.
Согласно правилу Ленца, возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.
Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей. Правило Ленца отражает тот экспериментальный факт, что всегда имеют противоположные знаки (знак «минус» в формуле Фарадея).
Ленцем был сконструирован прибор, представляющий собой два алюминиевых кольца, сплошное и разрезанное, укрепленные на алюминиевой перекладине. Они могли вращаться вокруг оси, как коромысло.
При внесении магнита в сплошное кольцо оно начинало «убегать» от магнита, поворачивая соответственно коромысло. При вынесении магнита из кольца оно стремилось «догнать» магнит. При движении же магнита внутри разрезанного кольца никакого движения не происходило.
Ленц объяснял опыт тем, что магнитное поле индукционного тока стремилось компенсировать изменение внешнего магнитного потока.
Совет
Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.
Источник: http://kaplio.ru/yavlenie-elektromagnitnoj-induktsii-magnitnyj-potok-zakon-elektromagnitnoj-induktsii-pravilo-lentsa/
Закон ЭДС индукции Фарадея для трансформаторов
Электричество обладает способностью генерировать магнитное поле. В 1831 году М. Фарадей ввел понятие электромагнитная индукция. Он смог получить в закрытой системе проводников электричество, появляющееся при изменении показателей магнитного потока. Формула закона Фарадея дала толчок для развития электродинамики.
История развития
После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.
Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.
Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока.
Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным.
До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.
Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.
Опытное доказательство
Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.
Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.
Количественное выражение
Установить количественное значение явления электромагнитной индукции позволяет закон Фарадея. Он гласит, что ЭДС, определяющаяся в системе, меняет значение пропорционально скорости перемещения потока в проводнике. Формула будет иметь такой вид:
Отрицательный знак свидетельствует о том, что ЭДС препятствует появлению изменений внутри контура. Для решения некоторых задач отрицательный знак в формуле не ставят. В этом случае результат записывают в виде модуля.
Обратите внимание
Система может включать в себя несколько витков. Количество их обозначается латинской буквой N. Все элементы контура пронизываются единым магнитным потоком. ЭДС индукции будет рассчитываться так:
Понятным примером воссоздания электричества в проводнике считается катушка, сквозь которую перемещается постоянный магнит.
Работа Э. Ленца
Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.
Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита.
Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу.
Ток будет перемещаться в сторону движения часовой стрелки.
Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.
Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.
Понятие самоиндукции
Генерация индукции в идеальной системе, которое имеет место при падении или возрастании электричества в проводнике, именуется самоиндукцией.
Закон Фарадея для самоиндукции выражается равенством, когда при изменении электричества не произошло иных изменений:
где е – ЭДС, L – индуктивность закрытой катушки, ΔI/Δt – скорость, с которой происходят изменения силы тока.
Индуктивность
Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:
Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:
Фс = L*I
Значение индуктивности также формируется из закона Фарадея.
Недвижимая система
Сила Лоренца объясняет возникновение ЭДС при движении системы в поле со значением постоянным. Индукционная ЭДС имеет способность возникать и при неподвижной проводящей системе, находящейся в переменном магнитном поле. Сила Лоренца в таком примере не способна объяснить появление ЭДС индукции.
Максвелл для проводящих систем неподвижного типа предложил применять особое уравнение. Оно объясняет возникновение в таких системах ЭДС.
Главным принципом закона Фарадея-Максвелла является факт, что переменное поле образует в пространстве вокруг себя электрическое поле.
Важно
Оно выступает фактором, провоцирующим появление тока индукции в недвижимой системе. Перемещение вектора (Е) по стационарным контурам (L) является ЭДС:
При наличии тока переменного значения законы Фарадея водятся в уравнения Максвелла. Причем они могут быть представлены как в дифференциальной форме, так и в виде интегралов.
Труды в области электролиза
При использовании законов Фарадея описываются закономерности, которые существуют при электролизе. Этот процесс заключается в превращении веществ с разнообразными характеристиками. Это происходит при движении электричества сквозь электролит.
Эти закономерности были доказаны М. Фарадеем в 1834 году. Первое утверждение гласит, что масса вещества, которое образуется на электроде, меняется соответственно заряду, перемещенному сквозь электролит.
Второе утверждение гласит, что эквиваленты компонентов с разными характеристиками пропорциональны химическим эквивалентам этих компонентов.
Оба представленных утверждения совмещаются в объединенный закон Фарадея. Из него следует, что число Фарадея будет равняться электричеству, способному выделить на электролите 1 моль вещества. Ее рассчитывают на единицу валентности. Именно по объединенной формуле в далеком 1874 году был вычислен заряд электрона.
Законы электролиза, установленные Фарадеем, тестировались при различном значении тока, температуры, давления, а также при одновременном выделении двух и более веществ. Электролиз также проводился в разных расплавах и растворителях.
Концентрация электролита также отличалась в разных опытах. При этом иногда наблюдались небольшие отклонения от закона Фарадея. Они объясняются электронной проводимостью электролитов, которая определяется наравне с ионной проводимостью.
Открытия, сделанные английским физиком М. Фарадеем, позволили описать множество явлений. Его законы являются основой современной электродинамики. По этому принципу функционирует различное современное оборудование.
Источник: https://ProTransformatory.ru/raschety/zakon-faradeya
Закон электромагнитной индукции Фарадея
Содержание:
- История открытия
- Законы электромагнитной индукции
- Видеоурок
Если взять замкнутую проводящую систему и создать в ней условия для того чтобы магнитный поток изменился в магнитном поле, то в результате этих движений появится электрический ток. Данное обстоятельство описывает закон электромагнитной индукции Фарадея – английского ученого, который при проведении опытов добился превращения магнитной энергии в электричество. Оно получило название индукционного, поскольку до того времени его можно было создать лишь гальваническим путем.
История открытия
Явление электромагнитной индукции было открыто сразу двумя учеными. Это были Майкл Фарадей и Джозеф Генри, сделавшие свое открытие в 1831 году. Публикация Фарадеем результатов проведенных экспериментов была сделана раньше его коллеги, поэтому индукцию связывают именно с этим ученым. В дальнейшем это понятие было включено в систему СГС.
Для демонстрации явления использовался железный тор, напоминающий конфигурацию современного трансформатора. Противоположные стороны его были обмотаны двумя проводниками с целью использования электромагнитных свойств.
К одному из проводов подключался ток, вызывающий своеобразную электрическую волну при прохождении сквозь тор, и некоторый электрический всплеск с противоположной стороны. Наличие тока было зафиксировано гальванометром. Точно такой же всплеск электричества наблюдался и в момент отключения провода.
Совет
Постепенно были обнаружены и другие формы проявления электромагнитной индукции. Кратковременное возникновение тока наблюдалось во время генерации его на медном диске, вращающемся возле магнита. На самом диске был установлен скользящий электропровод.
Наибольшие представление о том, что такое индуктивность, дал эксперимент с двумя катушками. Одна из них, с меньшими размерами, подключена к жидкостной батарее, расположенной на рисунке с правой стороны. Таким образом, через эту катушку начинает протекать электрический ток, под действием которого возникает магнитное поле.
Когда обе катушки находятся в неподвижном положении относительно друг друга, никаких явлений не происходит. Когда небольшая катушка начинает двигаться, то есть выходить из большой катушки или входить в нее, наступает изменение магнитного потока. В результате, в большой катушке наблюдается появление электродвижущей силы.
Открытие Фарадея доработал другой ученый – Максвелл, который обосновал его математически, отображая данное физическое явление дифференциальными уравнениями. Еще одному ученому-физику – Ленцу удалось определить направление электротока и ЭДС, полученных под действием электромагнитной индукции.
Законы электромагнитной индукции
Сущность электромагнитной индукции определяется замкнутым контуром с электропроводностью, площадь которого пропускает через себя изменяющийся магнитный поток. В этот момент под влиянием магнитного потока появляется электродвижущая сила Еi и в контуре начинает течь электрический ток.
Закон Фарадея для электромагнитной индукции заключается в прямой зависимости ЭДС и скорости, составляющих пропорцию. Данная скорость представляет собой время, в течение которого магнитный поток подвергается изменениям.
Данный закон выражается формулой Еi = – ∆Ф/∆t, в которой Еi – значение электродвижущей силы, возникающей в контуре, а ∆Ф/∆t является скоростью изменения магнитного потока. В этой формуле не совсем понятным остается знак «минус», но ему тоже имеется свое объяснение.
В соответствии с правилом русского ученого Ленца, изучавшего открытия Фарадея, этот знак отображает направление ЭДС, возникающей в контуре.
То есть, направление индукционного тока происходит таким образом, что создаваемый им магнитный поток на площади, ограниченной контуром, препятствует изменениям, вызванным этим током.
Открытия Фарадея были доработаны Максвеллом, у которого теория электромагнитного поля получила новые направления. В результате, появился закон Фарадея и Максвелла, выраженный в следующих формулах:
- Edl = -∆Ф/∆t – отображает электродвижущую силу.
- Hdl = -∆N/∆t – отображает магнитодвижущую силу.
В этих формулах Е соответствует напряженности электрического поля на определенном участке dl, Н является напряженностью магнитного поля на этом же участке, N – поток электрической индукции, t – период времени.
Оба уравнения отличаются симметричностью, позволяющей сделать вывод, что магнитные и электрические явления связаны между собой. С физической точки зрения эти формулы определяют следующее:
- Изменениям в электрическом поле всегда сопутствует образование магнитного поля.
- Изменения в магнитном поле всегда происходят одновременно с образованием электрического поля.
Изменяющийся магнитный поток, проходящий сквозь замкнутую конфигурацию проводящего контура, приводит к возникновению в этом контуре электрического тока. Это основная формулировка закона Фарадея. Если изготовить проволочную рамку и поместить ее внутри вращающегося магнита, то в самой рамке появится электричество.
Это и будет индукционный ток, в полном соответствии с теорией и законом Майкла Фарадея. Изменения магнитного потока, проходящего через контур, могут быть произвольными.
Следовательно, формула ∆Ф/∆t бывает не только линейной, а в определенных условиях принимает любую конфигурацию. Если изменения происходят линейно, то ЭДС электромагнитной индукции, возникающей в контуре, будет постоянной.
Обратите внимание
Временной интервал t становится каким угодно, а отношение ∆Ф/∆t не будет зависеть от его продолжительности.
Если же изменения магнитного потока принимают более сложную форму, то ЭДС индукции уже не будет постоянной, а будет зависеть от данного промежутка времени. В этом случае временной интервал рассматривается в качестве бесконечно малой величины и тогда соотношение ∆Ф/∆t с точки зрения математики станет производной от изменяющегося магнитного потока.
Существует еще один вариант, трактующий закон электромагнитной индукции Фарадея. Его краткая формулировка объясняет, что действие переменного магнитного поля вызывает появление вихревого электрического поля.
Этот же закон можно трактовать как одну из характеристик электромагнитного поля: вектор напряженности поля может циркулировать по любому из контуров со скоростью, равной скорости изменения магнитного потока, проходящего через тот или иной контур.
Источник: https://electric-220.ru/news/zakon_ehlektromagnitnoj_indukcii_faradeja/2018-09-29-1576
Электромагнитная индукция (характеристика) – онлайн-тренажер для подготовки к ЕНТ, итоговой аттестации и ВОУД
Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы индукционного тока, т. к. сила тока зависит и от свойств проводника, для ЭДС определяется только изменением магнитного потока. Согласно закону электромагнитной индукции, ЭДС индукции в замкнутом контуре равна по модулю, скорости изменения магнитного потока через поверхность, ограниченную контуром:
\(\varepsilon_i = \left | \frac {\Delta \Phi}{\Delta t} \right |\).
Известно, что в цепи появляется электрический ток в том случае, когда на свободные заряды проводника действуют сторонние силы. Величину, численно равную работе этих сил при перемещении единичного положительного заряда вдоль замкнутого контура, называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризует ЭДС, называемая ЭДС индукции. Обозначают ее буквой \(\varepsilon\).
Согласно закону Ома для замкнутой цепи, \(I_i = \frac {\varepsilon_i}R\). Сопротивление проводника не зависит от изменения магнитного потока. Следовательно, соотношение это справедливо только потому, что ЭДС индукции пропорциональна \(\frac {\Delta\Phi}{\Delta t}.\)
Другими словами, можно сказать, что электромагнитная индукция – явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока – изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током. Закон электромагнитной индукции Фарадея = ПРАВИЛО ЛЕНЦА
\(\varepsilon = — \frac {d\Phi_B}{dt}\).
Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э.Х. Ленца: Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Магни́тное по́ле – силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, является магнитной составляющей электромагнитного поля.
Эдс индукции в замкнутом контуре это
Электромагнитная индукция (индукция значит наведение) это явление, при котором в замкнутом контуре возникает электрический ток при изменении магнитного потока, пронизывающего его.
Явление электромагнитной индукции было обнаружено в 1831 г.
М. Фарадеем. Ток, возникающий при электромагнитной индукции называют индукционным.
Закон электромагнитной индукцииЭДС индукции в контуре равна скорости изменения магнитного поля сквозь поверхность, ограниченную контуром.
Электромагнитная индукция | |
1831 г. – М. Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает так называемый индукционный ток. (Индукция, в данном случае, – появление, возникновение). | |
Индукционный ток в катушке возникает при перемещении постоянного магнита относительно катушки; при перемещении электромагнита относительно катушки; при перемещении сердечника относительно электромагнита, вставленного в катушку; при регулировании тока в цепи электромагнита; при замыкании и размыкании цепи | |
Появление тока в замкнутом контуре при изменении магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил (или о возникновении ЭДС индукции). Явление возникновения ЭДС в замкнутом проводящем контуре при изменении магнитного поля (потока), пронизывающего контур, называется электромагнитной индукцией. Или:явление возникновения электрического поля при изменении магнитного поля (потока), называется электромагнитной индукцией. | |
Закон электромагнитной индукции При всяком изменении магнитного потока через проводящий замкнутый контур в этом контуре возникает электрический ток. I зависит от свойств контура (сопротивление): . e не зависит от свойств контура: . ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром. | |
Основные применения электромагнитной индукции: генерирование тока (индукционные генераторы на всех электростанциях, динамомашины), трансформаторы. |
Правило Ленца Возникновение индукционного тока – следствие закона сохранения энергии! В случае 1: При приближении магнита, увеличении тока, замыкании цепи: ; Магнитный поток Ф → ΔФ>0.Чтобы компенсировать это изменение (увеличение) внешнего поля, необходимо магнитное поле, направленное в сторону, противоположную внешнему полю: , где – т.н. индукционное магнитное поле. В случае 2: при удалении магнита, уменьшении тока, размыкании цепи: . Магнитный поток Ф → ΔФ 0). Ток в контуре имеет положительное направление ( ), если совпадает с , (т.е. ΔΦ |
Не нашли то, что искали? Воспользуйтесь поиском:
Явление электромагнитной индукции
Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.
Явление электромагнитной индукции было открыто М. Фарадеем.
- На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
- Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
- Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.
Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.
Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.
Объяснения возникновения индукционного тока
Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.
Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.
Свойства вихревого электрического поля:
- источник – переменное магнитное поле;
- обнаруживается по действию на заряд;
- не является потенциальным;
- линии поля замкнутые.
Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.
Магнитный поток
Магнитным потоком через площадь ( S ) контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ( B ) , площади поверхности ( S ) , пронизываемой данным потоком, и косинуса угла ( alpha ) между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):
Обозначение – ( Phi ) , единица измерения в СИ – вебер (Вб).
Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:
Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.
В зависимости от угла ( alpha ) магнитный поток может быть положительным ( ( alpha ) ( alpha ) > 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.
Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).
В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.
Закон электромагнитной индукции Фарадея
Закон электромагнитной индукции (закон Фарадея):
ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:
Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.
Если контур состоит из ( N ) витков, то ЭДС индукции:
Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ( R ) :
При движении проводника длиной ( l ) со скоростью ( v ) в постоянном однородном магнитном поле с индукцией ( vec ) ЭДС электромагнитной индукции равна:
где ( alpha ) – угол между векторами ( vec ) и ( vec ) .
Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.
Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.
Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:
- магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
- вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.
Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:
- в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
- в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.
Правило Ленца
Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.
Алгоритм решения задач с использованием правила Ленца:
- определить направление линий магнитной индукции внешнего магнитного поля;
- выяснить, как изменяется магнитный поток;
- определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
- по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.
Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.
Самоиндукция
Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.
При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.
В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.
Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.
При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.
Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.
Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.
При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.
ЭДС самоиндукции ( varepsilon_ ) , возникающая в катушке с индуктивностью ( L ) , по закону электромагнитной индукции равна:
ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.
Индуктивность
Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ( Phi ) через контур из этого проводника пропорционален модулю индукции ( vec ) магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.
Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:
Индуктивность – коэффициент пропорциональности ( L ) между силой тока ( I ) в контуре и магнитным потоком ( Phi ) , создаваемым этим током:
Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.
Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:
Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.
Энергия магнитного поля
При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.
Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.
Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:
Основные формулы раздела «Электромагнитная индукция»
Алгоритм решения задач по теме «Электромагнитная индукция»:
1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.
2. Записать формулу:
- закона электромагнитной индукции;
- ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.
3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.
4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).
5. Решить полученную систему уравнений относительно искомой величины.
Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением
где — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).
41. Индуктивность, ее единица СИ. Индуктивность длинного соленоида.
Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность [1] , краем которой является этот контур. [2][3][4] .
— магнитный поток, — ток в контуре, — индуктивность.
Нередко говорят об индуктивности прямого длинного провода(см.). В этом случае и других (особенно – в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.
Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока [4] :
.
Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.
При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током [4] :
.
Обозначение и единицы измерения
В системе единиц СИ индуктивность измеряется в генри [7] , сокращенно Гн, в системе СГС — в сантиметрах (1 Гн = 10 9 см) [4] . Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт. Реальный, не сверхпроводящий, контур обладает омическим сопротивлением R, поэтому на нём будет дополнительно возникать напряжение U=I*R, где I — сила тока, протекающего по контуру в данное мгновение времени.
Символ , используемый для обозначения индуктивности, был взят в честь Ленца Эмилия Христиановича (Heinrich Friedrich Emil Lenz) [ источник не указан 1017 дней ] . Единица измерения индуктивности названа в честь Джозефа Генри (Joseph Henry) [8] . Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года [ источник не указан 1017 дней ] .
Электрический ток, который течет в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, согласно закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому прямо пропорционален току I в контуре: (1) где коэффициент пропорциональности L называетсяиндуктивностью контура. При изменении в контуре силы тока будет также изменяться и сцепленный с ним магнитный поток; значит, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называетсясамоиндукцией. Из выражения (1) задается единица индуктивности генри (Гн): 1 Гн — индуктивность контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В
Вычислим индуктивность бесконечно длинного соленоида. Полный магнитный поток сквозь соленоид (потокосцепление) равен μμ(N 2 I/l)S . Подставив в (1), найдем (2) т. е. индуктивность соленоида зависит от длиныl солениода, числа его витков N, его , площади S и магнитной проницаемости μ вещества, из которого изготовлен сердечник соленоида. Доказано, что индуктивность контура зависит в общем случае только от геометрической формы контура, его размеров и магнитной проницаемости среды, в которой он расположен, и можно провести аналог индуктивности контура с электрической емкостью уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды. Найдем, применяя к явлению самоиндукции закон Фарадея, что э.д.с. самоиндукции равна Если контур не претерпевает деформаций и магнитная проницаемость среды остается неизменной (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L = const и(3) где знак минус, определяемый правилом Ленца, говорит о том, чтоналичие индуктивности в контуре приводит к замедлению изменения тока в нем. Если ток со временем увеличивается, то (dI/dt 0 т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его увеличение. Если ток со временем уменьшается, то (dI/dt>0) и ξs >1), обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.
43. Явление взаимной индукции. Трансформатор.
Рассмотрим два неподвижных контура (1 и 2), которые расположены достаточно близко друг от друга (рис. 1). Если в контуре 1 протекает ток I1, то магнитный поток, который создавается этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), прямо пропорционален I1. Обозначим через Ф21 часть потока,пронизывающая контур 2. Тогда (1) где L21 — коэффициент пропорциональности.
Если ток I1 меняет свое значение, то в контуре 2 индуцируется э.д.с. ξi2 , которая по закону Фарадея будет равна и противоположна по знаку скорости изменения магнитного потока Ф21, который создается током в первом контуре и пронизыващет второй: Аналогичным образом, при протекании в контуре 2 тока I2 магнитный поток (его поле изображено на рис. 1 штрихами) пронизывает первый контур. Если Ф12 — часть этого потока, который пронизывает контур 1, то Если ток I2 меняет свое значение, то в контуре 1 индуцируется э.д.с. ξi1 , которая равна и противоположна по знаку скорости изменения магнитного потока Ф12, который создается током во втором контуре и пронизывает первый: Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21 и L12 называются взаимной индуктивностью контуров. Расчеты, которые подтверждены опытом, показывают, что L21 и L12 равны друг другу, т. е. (2) Коэффициенты пропорциональности L12 и L21 зависят от размеров, геометрической формы, взаимного расположения контуров и от магнитной проницаемости среды, окружающей контуры. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн). Найдем взаимную индуктивность двух катушек, которые намотаны на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 2). Магнитная индукция поля, которое создавается первой катушкой с числом витков N1, током I1 и магнитной проницаемостью μ сердечника, B = μμ(N1I1/l) где l — длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки Ф2 = BS = μμ(N1I1/l)S
Значит, полный магнитный поток (потокосцепление) сквозь вторичную обмотку, которая содержит N2 витков, Поток Ψ создается током I1, поэтому, используя (1), найдем (3) Если рассчитать магнитный поток, который создавается катушкой 2 сквозь катушку 1, то для L12 получим выражение в соответствии с формулой (3). Значит, взаимная индуктивность двух катушек, которые намотаны на общий тороидальный сердечник,
Трансформа́тор (от лат. transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредствомэлектромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока
Влияние ЭМИ на устройства с магнитным сердечником.
Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем (английский физик- экспериментатор и химик. 22 сентября 1791 — 25 августа 1867) 29 августа 1831 года. В 1822 году в лабораторном дневнике Фарадея появилась запись: «Превратить магнетизм в электричество». Рассуждения Фарадея были следующими: если в опыте Эрстеда электрический ток обладает магнитной силой, а, по убеждению Фарадея, все силы взаимопревращаемы, то и движение магнита должно возбуждать электрический ток. Путь к электрогенератору оказался нелёгким — первые опыты были неудачны. Главной причиной неудач было незнание того факта, что электрический ток порождается только переменным магнитным полем, причём достаточно сильным (иначе ток будет слишком слаб для регистрации). Для усиления эффекта следовало магнит быстро двигать, а проводник свернуть в катушку. Только десять лет спустя, в 1831 году, Фарадей нашёл, наконец, решение проблемы, обнаружив электромагнитную индукцию. Основные опыты состоялись в период 29 августа — 4 ноября 1831 года, главными из них стали два: *При движении магнитного сердечника внутри проволочной катушки в последней возникал электрический ток. *Включение или выключение тока в проволочной катушке приводило к появлению тока во вторичной катушке, чьи витки чередуются с витками первой. 29 августа, Фарадей провёл опыт с электромагнитом: «Двести три фута медной проволоки в одном куске были намотаны на большой деревянный барабан; другие двести три фута такой же проволоки были проложены в виде спирали между витками первой обмотки, причем металлический контакт был везде устранен посредством шнурка. Одна из этих спиралей была соединена с гальванометром, а другая — с хорошо заряженной батареей из ста пар пластин в четыре квадратных дюйма с двойными медными пластинками. При замыкании контакта наблюдалось внезапное, но очень слабое действие на гальванометр, и подобное же слабое действие имело место при размыкании контакта с батареей.» Таким образом, перемещающийся возле проводника магнит (или включение/выключение тока в соседнем проводнике) порождают в данном проводнике электрический ток. Это явление Фарадей назвал электромагнитной индукцией. Фарадей объяснял электромагнитную индукцию следующим образом. Окрестность всякого заряженного тела пронизано электрическими силовыми линиями, которые передают «силу» (по современной терминологии, энергию), и аналогично энергия магнитного поля течёт вдоль магнитных силовых линий. Эти линии не следует рассматривать как условные абстракции, они представляют собой физическую реальность [45]. При этом: 1)Всякое изменение электрического состояния среды порождает магнитное поле. 2)Всякое изменение магнитного состояния среды порождает электрическое поле[45]. Опыты Фарадея показали, что сила индукционного тока в проводящем контуре пропорциональна скорости изменения числа линий магнитной индукции , пронизывающих поверхность, ограниченную этим контуром. Магнитный поток можно графически представить, как число линий магнитной индукции, пронизывающих поверхность площадью S. Чем больше индукция магнитного поля, тем большее число линий магнитной индукции пронизывает эту поверхность. Поэтому скорость изменения этого числа есть не что иное, как скорость изменения магнитного потока. Если за малое время магнитный поток меняется на , то скорость изменения магнитного потока равна Поэтому утверждение, которое вытекает непосредственно из опыта, можно сформулировать так: сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром: . Известно, что в цепи появляется электрический ток в том случае, когда на свободные заряды проводника действуют сторонние силы. Величину, численно равную работе этих сил при перемещении единичного положительного заряда вдоль замкнутого контура, называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризует ЭДС, называемая ЭДС индукции. Обозначают ее буквой . Согласно закону Ома для замкнутой цепи охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнитомягкого материала. На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку. Электромашинные генераторы и электродвигатели — машины вращательного типа, преобразующие либо механическую энергию в электричес- кую (генераторы),либо электрическую в механическую (двигатели). Действие генераторов основано на принципеэлектромагнитной индукции: в проводе, движущемся в магнитном п оле, наводится электродвижущая сила(ЭДС). Действие электродвигателей основано на том, что на провод с током, помещенный в поперечноемагнитное поле, действует сила. КОНСТРУКЦИЯ ГЕНЕРАТОРА с многочисленными витками, расположенными по окружности цилиндрического якоря. Генератор дает практически постоянный ток. 1 — коллектор; 2 — щетки; 3 — магнитные полюса; 4 — витки; 5 — вал; 6 — якорь. Коллектор состоит из секций, число которых ра вночислу витков якоря. Ток вырабатывается при вращении вала за счет механической энерги и. По-прежнему выгодно применение в промышленности и энергетике для преобразования сравнительно больших мощностей. Перспективно применение умформеров на основе машин двойного питания для передачи мощностей между сетями 50 и 60 Гц, а также между сетью с низкими параметрами напряжения и частоты и сетью с особо высокими требованиями. В этом случае для питания обмоток ротора применяется ещё и статический преобразователь частоты, но мощность преобразователя нужна меньшая (для приведённого примера преобразования 50 в 60 Гц это составляет около 1/5 полной мощности). Преобразователь электрической энергии — это электротехническое устройство, предназначенное для преобразования параметров электрической энергии (напряжения, частоты, числа фаз, формы сигнала). Для реализации преобразователей широко используются полупроводниковые приборы, так как они обеспечивают высокий КПД. 1880-е — настоящее время Трансформаторы + Большая надёжность + Высокий КПД + Большие мощности — Большие габариты при малых частотах — Невозможность преобразования постоянного тока 1960-е — настоящее время Полупроводниковые диоды, тиристоры и транзисторы + Компактность + Бесшумность + Лёгкость и гибкость управления — Потери мощности в ключах — Искажения и помехи в сетях
Закон Фарадея
Концепция закона Фарадея состоит в том, что любое изменение магнитной среды катушки с проволокой вызывает «индуцирование» в катушке напряжения (ЭДС). Независимо от того, как производится изменение, напряжение будет генерироваться. Изменение может быть произведено изменением напряженности магнитного поля, перемещением магнита к катушке или от нее, перемещением катушки в магнитное поле или из него, вращением катушки относительно магнита и т. Д.
Слева вверху на иллюстрации две катушки пронизаны изменяющимся магнитным полем.Магнитный поток F определяется как F = BA, где B — магнитное поле или среднее магнитное поле, а A — площадь, перпендикулярная магнитному полю. Обратите внимание, что для данной скорости изменения потока через катушку генерируемое напряжение пропорционально количеству витков N, через которые проходит поток. Этот пример относится к работе трансформаторов, где магнитный поток обычно следует за железным сердечником от первичной катушки ко вторичной катушке и генерирует вторичное напряжение, пропорциональное количеству витков во вторичной катушке.
По часовой стрелке второй пример показывает напряжение, генерируемое при перемещении катушки в магнитное поле. Иногда это называют «ЭДС движения», и она пропорциональна скорости, с которой катушка перемещается в магнитное поле. Эта скорость может быть выражена через скорость изменения области, находящейся в магнитном поле.
Следующий пример — это стандартная геометрия генератора переменного тока, в которой катушка с проволокой вращается в магнитном поле. Вращение изменяет перпендикулярную площадь катушки по отношению к магнитному полю и генерирует напряжение, пропорциональное мгновенной скорости изменения магнитного потока.При постоянной скорости вращения генерируемое напряжение является синусоидальным.
Последний пример показывает, что напряжение можно генерировать, перемещая магнит к катушке с проволокой или от нее. При постоянной площади изменяющееся магнитное поле вызывает генерируемое напряжение. Направление или «чувство» генерируемого напряжения таково, что любой результирующий ток создает магнитное поле, противодействующее изменению магнитного поля, которое его создало. Это значение знака минус в законе Фарадея, и это называется законом Ленца.
Магнитный поток, индукция и закон Фарадея
Индуцированные ЭДС и магнитный поток
Закон индукции Фарадея гласит, что электродвижущая сила индуцируется изменением магнитного потока.
Цели обучения
Объясните взаимосвязь между магнитным полем и электродвижущей силой
Основные выводы
Ключевые моменты
- Это изменение потока магнитного поля, которое приводит к возникновению электродвижущей силы (или напряжения).
- Магнитный поток (часто обозначаемый Φ или Φ B ), проходящий через поверхность, является составляющей магнитного поля, проходящего через эту поверхность.
- В самом общем виде магнитный поток определяется как [латекс] \ Phi _ {\ text {B}} = \ iint _ {\ text {A}} \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex]. Это интеграл (сумма) всего магнитного поля, проходящего через бесконечно малые элементы площади dA.
Ключевые термины
- векторная площадь : вектор, величина которого соответствует рассматриваемой области, а направление перпендикулярно площади поверхности.
- гальванометр : аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на провод с током.
Индуцированная ЭДС
Аппарат, использованный Фарадеем для демонстрации того, что магнитные поля могут создавать токи, показан на следующем рисунке. Когда переключатель замкнут, магнитное поле создается в катушке в верхней части железного кольца и передается (или направляется) на катушку в нижней части кольца.Гальванометр используется для обнаружения любого тока, наведенного в отдельной катушке внизу.
Аппарат Фарадея : Это аппарат Фарадея для демонстрации того, что магнитное поле может производить ток. Изменение поля, создаваемого верхней катушкой, вызывает ЭДС и, следовательно, ток в нижней катушке. Когда переключатель разомкнут и замкнут, гальванометр регистрирует токи в противоположных направлениях. Когда переключатель остается замкнутым или разомкнутым, через гальванометр не течет ток.
Было обнаружено, что каждый раз, когда переключатель замыкается, гальванометр обнаруживает ток в одном направлении в катушке внизу. Каждый раз при размыкании переключателя гальванометр обнаруживает ток в противоположном направлении. Интересно, что если переключатель остается замкнутым или разомкнутым в течение некоторого времени, через гальванометр нет тока. Замыкание и размыкание переключателя индуцирует ток. Это изменение магнитного поля, которое создает ток. Более важным, чем текущий ток, является вызывающая его электродвижущая сила (ЭДС).Ток является результатом ЭДС, индуцированной изменяющимся магнитным полем, независимо от того, есть ли путь для протекания тока.
Магнитный поток
Магнитный поток (часто обозначаемый Φ или Φ B ), проходящий через поверхность, является составляющей магнитного поля, проходящего через эту поверхность. Магнитный поток через некоторую поверхность пропорционален количеству силовых линий, проходящих через эту поверхность. Магнитный поток, проходящий через поверхность с векторной площадью А, равен
.
[латекс] \ Phi_ \ text {B} = \ mathbf {\ text {B}} \ cdot \ mathbf {\ text {A}} = \ text {BA} \ cos \ theta [/ latex],
, где B — величина магнитного поля (в Тесла, Тл), A — площадь поверхности, а θ — угол между силовыми линиями магнитного поля и нормалью (перпендикулярно) к A.
Для переменного магнитного поля мы сначала рассмотрим магнитный поток [латекс] \ text {d} \ Phi _ \ text {B} [/ latex] через бесконечно малый элемент площади dA, где мы можем считать поле постоянным:
Изменяющееся магнитное поле : Каждая точка на поверхности связана с направлением, называемым нормалью к поверхности; магнитный поток, проходящий через точку, тогда является составляющей магнитного поля вдоль этого нормального направления.
[латекс] \ text {d} \ Phi_ \ text {B} = \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex]
Общая поверхность A затем может быть разбита на бесконечно малые элементы, и тогда полный магнитный поток через поверхность равен интегралу поверхности
[латекс] \ Phi_ \ text {B} = \ iint_ \ text {A} \ mathbf {\ text {B}} \ cdot \ text {d} \ mathbf {\ text {A}} [/ latex].
Закон индукции Фарадея и закон Ленца
Закон индукции Фарадея гласит, что ЭДС, вызванная изменением магнитного потока, равна [латексу] \ text {EMF} = — \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [ / латекс], когда поток изменяется на Δ за время Δt.
Цели обучения
Выразите закон индукции Фарадея в форме уравнения
Основные выводы
Ключевые моменты
- Минус в законе Фарадея означает, что ЭДС создает ток I и магнитное поле B, которые противодействуют изменению потока Δ, известному как закон Ленца.
- Закон индукции Фарадея является основным принципом работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.
- Закон Фарадея гласит, что ЭДС, вызванная изменением магнитного потока, зависит от изменения магнитного потока Δ, времени Δt и числа витков катушек.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея.Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- соленоид : Катушка с проволокой, которая действует как магнит, когда через нее протекает электрический ток.
- поток : Скорость передачи энергии (или другой физической величины) через данную поверхность, в частности электрического или магнитного потока.
Закон индукции Фарадея
Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).Это основной принцип работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.
Эксперименты Фарадея показали, что ЭДС, вызванная изменением магнитного потока, зависит только от нескольких факторов. Во-первых, ЭДС прямо пропорциональна изменению потока Δ. Во-вторых, ЭДС является наибольшей, когда изменение во времени Δt наименьшее, то есть ЭДС обратно пропорциональна Δt. Наконец, если катушка имеет N витков, будет создаваться ЭДС, которая в N раз больше, чем для одиночной катушки, так что ЭДС прямо пропорциональна N.Уравнение для ЭДС, вызванной изменением магнитного потока, равно
[латекс] \ text {EMF} = — \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].
Это соотношение известно как закон индукции Фарадея. Единицы измерения ЭДС, как обычно, — вольты.
Закон Ленца
Знак минус в законе индукции Фарадея очень важен. Минус означает, что ЭДС создает ток I и магнитное поле B, которые противодействуют изменению потока Δ, известному как закон Ленца. Направление (обозначенное знаком минус) ЭМП настолько важно, что оно названо законом Ленца в честь русского Генриха Ленца (1804–1865), который, подобно Фарадею и Генри, независимо исследовал аспекты индукции.Фарадей знал о направлении, но Ленц указал его, поэтому ему приписывают это открытие.
Закон Ленца : (a) Когда стержневой магнит вставляется в катушку, сила магнитного поля в катушке увеличивается. Ток, наведенный в катушке, создает другое поле в направлении, противоположном стержневому магниту, чтобы противодействовать увеличению. Это один из аспектов закона Ленца: индукция препятствует любому изменению потока. (b) и (c) — две другие ситуации. Убедитесь сами, что показанное направление индуцированной катушки B действительно противостоит изменению магнитного потока и что показанное направление тока согласуется с правилом правой руки.
Энергосбережение
Закон Ленца является проявлением сохранения энергии. Индуцированная ЭДС создает ток, который противодействует изменению потока, потому что изменение потока означает изменение энергии. Энергия может входить или уходить, но не мгновенно. Закон Ленца — это следствие. Когда изменение начинается, закон говорит, что индукция противодействует и, таким образом, замедляет изменение. Фактически, если бы индуцированная ЭДС была в том же направлении, что и изменение потока, была бы положительная обратная связь, которая не давала бы нам бесплатную энергию из любого видимого источника — закон сохранения энергии был бы нарушен.
Движение ЭДС
Движение в магнитном поле, которое является стационарным относительно Земли, вызывает ЭДС движения (электродвижущую силу).
Цели обучения
Определить процесс, вызывающий двигательную электродвижущую силу
Основные выводы
Ключевые моменты
- Закон индукции Фарадея можно использовать для расчета ЭДС движения, когда изменение магнитного потока вызвано движущимся элементом в системе.
- То, что движущееся магнитное поле создает электрическое поле (и, наоборот, движущееся электрическое поле создает магнитное поле), является частью причины, по которой электрические и магнитные силы теперь рассматриваются как разные проявления одной и той же силы.
- Любое изменение магнитного потока индуцирует электродвижущую силу (ЭДС), противодействующую этому изменению — процесс, известный как индукция. Движение — одна из основных причин индукции.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- магнитный поток : Мера силы магнитного поля в заданной области.
- индукция : Генерация электрического тока изменяющимся магнитным полем.
Как было замечено в предыдущих атомах, любое изменение магнитного потока индуцирует электродвижущую силу (ЭДС), противодействующую этому изменению — процесс, известный как индукция. Движение — одна из основных причин индукции. Например, магнит, перемещенный к катушке, индуцирует ЭДС, а катушка, перемещенная к магниту, создает аналогичную ЭДС. В этом Атоме мы концентрируемся на движении в магнитном поле, которое является стационарным относительно Земли, производя то, что в общих чертах называется ЭДС движения.
ЭДС движения
Рассмотрим ситуацию, показанную на. Стержень перемещается со скоростью v по паре проводящих рельсов, разделенных расстоянием в однородном магнитном поле B. Рельсы неподвижны относительно B и соединены с неподвижным резистором R ( резистором может быть что угодно от лампочки до вольтметра). Учтите площадь, ограниченную подвижным стержнем, направляющими и резистором. B перпендикулярно этой области, и площадь увеличивается по мере перемещения стержня. Таким образом, магнитный поток между рельсами, стержнем и резистором увеличивается.Когда поток изменяется, ЭДС индуцируется согласно закону индукции Фарадея.
ЭДС движения : (a) ЭДС движения = Bℓv индуцируется между рельсами, когда этот стержень перемещается вправо в однородном магнитном поле. Магнитное поле B направлено внутрь страницы, перпендикулярно движущемуся стержню и рельсам и, следовательно, к области, окружающей их. (б) Закон Ленца дает направление индуцированного поля и тока, а также полярность наведенной ЭДС. Поскольку поток увеличивается, индуцированное поле направлено в противоположном направлении или за пределы страницы.Правило правой руки дает указанное направление тока, и полярность стержня будет управлять таким током.
Чтобы найти величину ЭДС, индуцированной вдоль движущегося стержня, мы используем закон индукции Фарадея без знака:
[латекс] \ text {EMF} = \ text {N} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].
В этом уравнении N = 1 и поток Φ = BAcosθ. Имеем θ = 0º и cosθ = 1, так как B перпендикулярно A. Теперь Δ = Δ (BA) = BΔA, поскольку B однородна. Отметим, что площадь, заметаемая стержнем, равна ΔA = ℓx.Ввод этих величин в выражение для ЭДС дает:
[латекс] \ text {EMF} = \ frac {\ text {B} \ Delta \ text {A}} {\ Delta \ text {t}} = \ text {B} \ frac {\ text {l} \ Дельта \ text {x}} {\ Delta \ text {t}} = \ text {Blv} [/ latex].
Чтобы найти направление индуцированного поля, направление тока и полярность наведенной ЭДС, мы применяем закон Ленца, как объяснено в Законе индукции Фарадея: Закон Ленца. Как видно на рис. 1 (b), уровень освещенности увеличивается, так как увеличивается закрытая площадь.Таким образом, индуцированное поле должно противостоять существующему и быть вне страницы. (Правило правой руки требует, чтобы я вращался против часовой стрелки, что, в свою очередь, означает, что верхняя часть стержня положительна, как показано.)
Зависимость электрического поля от магнитного поля
Между электрической и магнитной силой существует множество связей. То, что движущееся магнитное поле создает электрическое поле (и, наоборот, движущееся электрическое поле создает магнитное поле), является частью причины, по которой электрические и магнитные силы теперь рассматриваются как различных проявлений одной и той же силы (впервые замечено Альбертом Эйнштейном) .Это классическое объединение электрических и магнитных сил в так называемую электромагнитную силу является источником вдохновения для современных усилий по объединению других основных сил.
Обратная ЭДС, вихревые токи и магнитное демпфирование
Обратная ЭДС, вихревые токи и магнитное затухание — все это происходит из-за наведенной ЭДС и может быть объяснено законом индукции Фарадея.
Цели обучения
Объясните взаимосвязь между двигательной электродвижущей силой, вихревыми токами и магнитным демпфированием
Основные выводы
Ключевые моменты
- Входной ЭДС, которая питает двигатель, может противодействовать самогенерируемая ЭДС двигателя, называемая обратной ЭДС двигателя.
- Если ЭДС движения может вызвать токовую петлю в проводнике, ток называется вихревым током.
- Вихревые токи могут вызывать значительное сопротивление, называемое магнитным демпфированием, при движении.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
Задняя ЭДС
Двигатели и генераторы очень похожи. (Прочтите наши атомы в разделах «Электрические генераторы» и «Электродвигатели».) Генераторы преобразуют механическую энергию в электрическую, а двигатели преобразуют электрическую энергию в механическую. Кроме того, двигатели и генераторы имеют одинаковую конструкцию. Когда катушка двигателя поворачивается, магнитный поток изменяется, и возникает электродвижущая сила (ЭДС), соответствующая закону индукции Фарадея. Таким образом, двигатель действует как генератор всякий раз, когда его катушка вращается.Это произойдет независимо от того, поворачивается ли вал под действием внешнего источника, например ременной передачи, или под действием самого двигателя. То есть, когда двигатель выполняет работу и его вал вращается, возникает ЭДС. Закон Ленца говорит нам, что наведенная ЭДС противодействует любому изменению, так что входной ЭДС, питающей двигатель, будет противодействовать самогенерируемая ЭДС двигателя, называемая обратной ЭДС двигателя.
Вихретоковый
Как обсуждалось в разделе «ЭДС движения», ЭДС движения индуцируется, когда проводник движется в магнитном поле или когда магнитное поле движется относительно проводника.Если подвижная ЭДС может вызвать токовую петлю в проводнике, мы называем этот ток вихревым. Вихревые токи могут вызывать значительное сопротивление движению, называемое магнитным затуханием.
Рассмотрим устройство, показанное на рисунке, которое раскачивает маятник между полюсами сильного магнита. Если боб металлический, то при входе в поле и выходе из поля он испытывает значительное сопротивление, что быстро гасит движение. Однако, если боб представляет собой металлическую пластину с прорезями, как показано на (b), эффект от магнита будет гораздо меньше.Заметного воздействия на боб из изолятора не наблюдается.
Устройство для исследования вихревых токов и магнитного затухания : Обычное демонстрационное устройство для изучения вихревых токов и магнитного затухания. (а) Движение металлического маятника, раскачивающегося между полюсами магнита, быстро затухает под действием вихревых токов. (b) Имеется незначительное влияние на движение металлического боба с прорезями, что означает, что вихревые токи становятся менее эффективными. (c) На непроводящем бобе также отсутствует магнитное затухание, поскольку вихревые токи чрезвычайно малы.
показывает, что происходит с металлической пластиной, когда она входит в магнитное поле и выходит из него. В обоих случаях он испытывает силу, противодействующую его движению. Когда он входит слева, поток увеличивается, и поэтому возникает вихревой ток (закон Фарадея) в направлении против часовой стрелки (закон Ленца), как показано. Только правая сторона токовой петли находится в поле, так что слева на нее действует беспрепятственная сила (правило правой руки). Когда металлическая пластина полностью находится внутри поля, вихревой ток отсутствует, если поле однородно, поскольку поток остается постоянным в этой области.Но когда пластина покидает поле справа, поток уменьшается, вызывая вихревой ток по часовой стрелке, который, опять же, испытывает силу слева, еще больше замедляя движение. Аналогичный анализ того, что происходит, когда пластина поворачивается справа налево, показывает, что ее движение также затухает при входе в поле и выходе из него.
Проводящая пластина, проходящая между полюсами магнита : более подробный взгляд на проводящую пластину, проходящую между полюсами магнита.Когда он входит в поле и выходит из него, изменение потока создает вихревой ток. Магнитная сила на токовой петле препятствует движению. Когда пластина полностью находится внутри однородного поля, нет ни тока, ни магнитного сопротивления.
Когда металлическая пластина с прорезями входит в поле, как показано на, ЭДС индуцируется изменением магнитного потока, но это менее эффективно, поскольку прорези ограничивают размер токовых петель. Более того, в соседних контурах есть токи в противоположных направлениях, и их эффекты нейтрализуются.Когда используется изолирующий материал, вихревые токи чрезвычайно малы, поэтому магнитное затухание на изоляторах незначительно. Если необходимо избежать вихревых токов в проводниках, они могут быть выполнены с прорезями или состоять из тонких слоев проводящего материала, разделенных изоляционными листами.
Вихревые токи, индуцированные в металлической пластине с прорезями : Вихревые токи, индуцируемые в металлической пластине с прорезями, входящие в магнитное поле, образуют небольшие петли, и силы на них имеют тенденцию нейтрализоваться, тем самым делая магнитное сопротивление почти нулевым.
Изменение магнитного потока создает электрическое поле
Закон индукции Фарадея гласит, что изменение магнитного поля создает электрическое поле: [latex] \ varepsilon = — \ frac {\ partial \ Phi_ \ text {B}} {\ partial \ text {t}} [/ latex].
Цели обучения
Опишите взаимосвязь между изменяющимся магнитным полем и электрическим полем
Основные выводы
Ключевые моменты
- Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу.
- Альтернативная дифференциальная форма закона индукции Фарадея выражается в уравнении [латекс] \ nabla \ times \ vec {\ text {E}} = — \ frac {\ partial \ vec {\ text {B}}} { \ partial \ text {t}} [/ latex].
- Закон индукции Фарадея — одно из четырех уравнений Максвелла, управляющих всеми электромагнитными явлениями.
Ключевые термины
- векторная область : вектор, величина которого соответствует рассматриваемой области и направление которого перпендикулярно плоскости.
- Уравнения Максвелла : Набор уравнений, описывающих, как электрические и магнитные поля генерируются и изменяются друг другом, а также зарядами и токами.
- Теорема Стокса : утверждение об интегрировании дифференциальных форм на многообразиях, которое одновременно упрощает и обобщает несколько теорем векторного исчисления.
Мы изучили закон индукции Фарадея в предыдущих атомах. Мы узнали взаимосвязь между наведенной электродвижущей силой (ЭДС) и магнитным потоком.Вкратце, закон гласит, что изменение магнитного поля [латекс] (\ frac {\ text {d} \ Phi_ \ text {B}} {\ text {dt}}) [/ latex] создает электрическое поле [латекс] (\ varepsilon) [/ latex], закон индукции Фарадея выражается как [latex] \ varepsilon = — \ frac {\ partial \ Phi_ \ text {B}} {\ partial \ text {t}} [/ latex], где [латекс] \ varepsilon [/ latex] — это индуцированная ЭДС, а [latex] \ Phi_ \ text {B} [/ latex] — магнитный поток. («N» опущено из нашего предыдущего выражения. Число витков катушки может быть включено в магнитный поток, поэтому коэффициент не является обязательным.) Закон индукции Фарадея — это основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС). В этом Атоме мы узнаем об альтернативном математическом выражении закона.
Эксперимент Фарадея : эксперимент Фарадея, показывающий индукцию между витками проволоки: жидкая батарея (справа) обеспечивает ток, который течет через небольшую катушку (A), создавая магнитное поле. Когда катушки неподвижны, ток не индуцируется.Но когда малая катушка перемещается внутрь или из большой катушки (B), магнитный поток через большую катушку изменяется, вызывая ток, который регистрируется гальванометром (G).
Дифференциальная форма закона Фарадея
Магнитный поток [латекс] \ Phi_ \ text {B} = \ int_ \ text {S} \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ text {A}} [/ латекс], где [латекс] \ vec {\ text {A}} [/ latex] — это векторная площадь над замкнутой поверхностью S. Устройство, которое может поддерживать разность потенциалов, несмотря на протекание тока, является источником электродвижущей силы. .(EMF) Математически определение [латекс] \ varepsilon = \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} [/ latex], где интеграл вычисляется по замкнутому циклу C.
Закон Фарадея теперь можно переписать [latex] \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} = — \ frac {\ partial} {\ partial \ text {t}} (\ int \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ text {A}}) [/ latex]. Используя теорему Стокса в векторном исчислении, левая часть равна [latex] \ oint_ \ text {C} \ vec {\ text {E}} \ cdot \ text {d} \ vec {\ text {s}} = \ int_ \ text {S} (\ nabla \ times \ vec {\ text {E}}) \ cdot \ text {d} \ vec {\ text {A}} [/ latex].Также обратите внимание, что в правой части [latex] \ frac {\ partial} {\ partial \ text {t}} (\ int \ vec {\ text {B}} \ cdot \ text {d} \ vec {\ текст {A}}) = \ int \ frac {\ partial \ vec {\ text {B}}} {\ partial \ text {t}} \ cdot \ text {d} \ vec {\ text {A}} [ /латекс]. Таким образом, мы получаем альтернативную форму закона индукции Фарадея: [latex] \ nabla \ times \ vec {\ text {E}} = — \ frac {\ partial \ vec {\ text {B}}} {\ partial \ text {t}} [/ latex]. Это также называется дифференциальной формой закона Фарадея. Это одно из четырех уравнений Максвелла, управляющих всеми электромагнитными явлениями.
Электрогенераторы
Электрические генераторы преобразуют механическую энергию в электрическую; они индуцируют ЭДС, вращая катушку в магнитном поле.
Цели обучения
Объясните, как в электрогенераторах индуцируется электродвижущая сила.
Основные выводы
Ключевые моменты
- Электрический генератор вращает катушку в магнитном поле, индуцируя ЭДС, заданную как функцию времени величиной ε = NABw sinωt.
- Генераторы поставляют почти всю мощность для электрических сетей, которые обеспечивают большую часть мировой электроэнергии.
- Двигатель становится генератором, когда его вал вращается.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- турбина : Любая из различных вращающихся машин, которые используют кинетическую энергию непрерывного потока жидкости (жидкости или газа) для вращения вала.
Электрические генераторы — это устройства, преобразующие механическую энергию в электрическую.Они индуцируют электродвижущую силу (ЭДС), вращая катушку в магнитном поле. Это устройство, преобразующее механическую энергию в электрическую. Генератор заставляет электрический заряд (обычно переносимый электронами) проходить через внешнюю электрическую цепь. Возможные источники механической энергии включают в себя поршневой или турбинный паровой двигатель, воду, падающую через турбину или водяное колесо, двигатель внутреннего сгорания, ветряную турбину, ручной кривошип, сжатый воздух или любой другой источник механической энергии.Генераторы поставляют почти всю мощность для электрических сетей, которые обеспечивают большую часть мировой электроэнергии.
Паровой турбогенератор : Современный паровой турбогенератор.
Базовая настройка
Рассмотрим установку, показанную на. Заряды в проводах петли испытывают магнитную силу, потому что они движутся в магнитном поле. Заряды в вертикальных проводах испытывают силы, параллельные проводу, вызывая токи. Однако те, кто находится в верхнем и нижнем сегментах, ощущают силу, перпендикулярную проводу; эта сила не вызывает тока.Таким образом, мы можем найти наведенную ЭДС, рассматривая только боковые провода. ЭДС движения задается равной ЭДС = Bℓv, где скорость v перпендикулярна магнитному полю B (см. Наш Атом в «ЭДС движения»). Здесь скорость находится под углом θ к B, так что ее составляющая, перпендикулярная B, равна vsinθ.
Схема электрического генератора : Генератор с одной прямоугольной катушкой, вращающейся с постоянной угловой скоростью в однородном магнитном поле, создает ЭДС, синусоидально изменяющуюся во времени.Обратите внимание, что генератор похож на двигатель, за исключением того, что вал вращается для выработки тока, а не наоборот.
Таким образом, в этом случае ЭДС, индуцированная с каждой стороны, равна ЭДС = Bℓvsinθ, и они направлены в одном направлении. Общая ЭДС [латекс] \ varepsilon [/ latex] вокруг петли тогда:
[латекс] \ varepsilon = 2 \ text {Blv} \ sin {\ theta} [/ latex].
Это выражение допустимо, но оно не дает ЭДС как функцию времени. Чтобы найти зависимость ЭДС от времени, предположим, что катушка вращается с постоянной угловой скоростью ω.Угол θ связан с угловой скоростью соотношением θ = ωt, так что:
[латекс] \ varepsilon = 2 \ text {Blv} \ sin {\ omega \ text {t}} [/ latex].
Итак, линейная скорость v связана с угловой скоростью соотношением v = rω. Здесь r = w / 2, так что v = (w / 2) ω, и:
[латекс] \ varepsilon = 2 \ text {Bl} \ frac {\ text {w}} {2} \ omega \ sin {\ omega \ text {t}} = (\ text {lw}) \ text {B } \ omega \ sin {\ omega \ text {t}} [/ латекс].
Учитывая, что площадь петли A = ℓw, и учитывая N петель, мы находим, что:
[латекс] \ varepsilon = \ text {NABw} ~ \ sin {\ omega \ text {t}} [/ latex] — это ЭДС, индуцированная в катушке генератора N витков и площади A, вращающейся с постоянной угловой скоростью в однородное магнитное поле B.
Генераторы, показанные в этом Atom, очень похожи на двигатели, показанные ранее. Это не случайно. Фактически, двигатель становится генератором, когда его вал вращается.
Электродвигатели
Электродвигатель — это устройство, преобразующее электрическую энергию в механическую.
Цели обучения
Объясните, как сила создается в электродвигателях
Основные выводы
Ключевые моменты
- Большинство электродвигателей используют взаимодействие магнитных полей и токопроводящих проводов для создания силы.
- Ток в проводнике состоит из движущихся зарядов. Следовательно, катушка с током в магнитном поле также будет ощущать силу Лоренца.
- В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, которая создает крутящую силу (называемую крутящим моментом), заставляющую ее вращаться.
Ключевые термины
- Сила Лоренца : Сила, действующая на заряженную частицу в электромагнитном поле.
- крутящий момент : вращательное или скручивающее действие силы; (Единица СИ ньютон-метр или Нм; британская единица измерения фут-фунт или фут-фунт)
Основные принципы работы двигателя такие же, как и у генератора, за исключением того, что двигатель преобразует электрическую энергию в механическую энергию (движение).(Сначала прочтите наш атом об электрических генераторах.) Большинство электродвигателей используют взаимодействие магнитных полей и проводников с током для создания силы. Электродвигатели используются в самых разных областях, таких как промышленные вентиляторы, нагнетатели и насосы, станки, бытовая техника, электроинструменты и дисководы.
Lorentz Force
Если вы поместите движущуюся заряженную частицу в магнитное поле, на нее будет действовать сила, называемая силой Лоренца:
[латекс] \ text {F} = \ text {q} \ times \ text {v} \ times \ text {B} [/ latex]
Правило правой руки : Правило правой руки, показывающее направление силы Лоренца
, где v — скорость движущегося заряда, q — заряд, а B — магнитное поле.Ток в проводнике состоит из движущихся зарядов. Следовательно, катушка с током в магнитном поле также будет ощущать силу Лоренца. Для неподвижного прямолинейного токоведущего провода сила Лоренца составляет:
.
[латекс] \ text {F} = \ text {I} \ times \ text {L} \ times \ text {B} [/ latex]
где F — сила (в ньютонах, Н), I — ток в проводе (в амперах, А), L — длина провода, находящегося в магнитном поле (в м). , B, — напряженность магнитного поля (в теслах, Тл).Направление силы Лоренца перпендикулярно как направлению потока тока, так и магнитного поля, и его можно найти с помощью правила правой руки, показанного на рисунке. Используя правую руку, направьте большой палец в направлении тока, и укажите указательным пальцем в направлении магнитного поля. Ваш третий палец теперь будет указывать в направлении силы.
Момент : Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движутся в противоположных направлениях.Это означает, что катушка будет вращаться.
Механика двигателя
И двигатели, и генераторы можно объяснить с помощью катушки, вращающейся в магнитном поле. В генераторе катушка подключена к внешней цепи, которая затем включается. Это приводит к изменению потока, который индуцирует электромагнитное поле. В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, которая создает крутящую силу (называемую крутящим моментом), заставляющую ее вращаться.Любая катушка, по которой проходит ток, может чувствовать силу в магнитном поле. Эта сила является силой Лоренца, действующей на движущиеся заряды в проводнике. Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движутся в противоположных направлениях. Это означает, что катушка будет вращаться.
Индуктивность
Индуктивность — это свойство устройства, которое показывает, насколько эффективно оно индуцирует ЭДС в другом устройстве или на самом себе.
Цели обучения
Описание свойств катушки индуктивности с указанием взаимной индуктивности и самоиндукции
Основные выводы
Ключевые моменты
- Взаимная индуктивность — это влияние двух устройств, индуцирующих друг в друге ЭДС.Изменение тока ΔI 1 / Δt в одном вызывает ЭДС ЭДС2 в секунду: ЭДС 2 = -M ΔI 1 / Δt, где M определяется как взаимная индуктивность между двумя устройствами.
- Самоиндуктивность — это эффект, который устройство вызывает само по себе.
- Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором, и ЭДС, индуцированная в нем изменением тока через него, равна ЭДС = −L ΔI / Δt.
Ключевые термины
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
- Трансформатор : статическое устройство, передающее электрическую энергию от одной цепи к другой с помощью магнитной связи. Их основное назначение — передача энергии между различными уровнями напряжения, что позволяет выбирать наиболее подходящее напряжение для выработки, передачи и распределения электроэнергии по отдельности.
Индукция — это процесс, при котором ЭДС индуцируется изменением магнитного потока. Трансформаторы, например, спроектированы так, чтобы быть особенно эффективными при наведении желаемого напряжения и тока с очень небольшими потерями энергии в другие формы (см. Наш Atom в разделе «Трансформаторы.«) Есть ли полезная физическая величина, связанная с тем, насколько« эффективно »данное устройство? Ответ — да, и эта физическая величина называется индуктивностью.
Взаимная индуктивность
Взаимная индуктивность — это влияние закона индукции Фарадея для одного устройства на другое, например, первичная катушка, при передаче энергии вторичной обмотке в трансформаторе. Посмотрите, где простые катушки наводят друг на друга ЭДС.
Взаимная индуктивность катушек : Эти катушки могут вызывать ЭДС друг в друге, как неэффективный трансформатор.Их взаимная индуктивность M указывает на эффективность связи между ними. Здесь видно, что изменение тока в катушке 1 вызывает ЭДС в катушке 2. (Обратите внимание, что «E2 индуцированная» представляет наведенную ЭДС в катушке 2.)
Во многих случаях, когда геометрия устройств является фиксированной, магнитный поток изменяется за счет изменения тока. Поэтому мы концентрируемся на скорости изменения тока, ΔI / Δt, как на причине индукции. Изменение тока I 1 в одном устройстве, катушка 1, индуцирует ЭДС 2 в другом.Мы выражаем это в форме уравнения как
[латекс] \ text {EMF} _2 = — \ text {M} \ frac {\ Delta \ text {I} _1} {\ Delta \ text {t}} [/ latex],
, где M определяется как взаимная индуктивность между двумя устройствами. Знак минус является выражением закона Ленца. Чем больше взаимная индуктивность M, тем эффективнее связь.
Природа здесь симметрична. Если мы изменим ток I2 в катушке 2, мы индуцируем ЭДС1 в катушке 1, которая равна
.
[латекс] \ text {EMF} _1 = — \ text {M} \ frac {\ Delta \ text {I} _2} {\ Delta \ text {t}} [/ latex],
, где M то же, что и для обратного процесса.Трансформаторы работают в обратном направлении с такой же эффективностью или взаимной индуктивностью M.
Самоиндуктивность
Самоиндуктивность, действие закона индукции Фарадея устройства на самого себя, также существует. Когда, например, увеличивается ток через катушку, магнитное поле и магнитный поток также увеличиваются, вызывая противоэдс, как того требует закон Ленца. И наоборот, если ток уменьшается, индуцируется ЭДС, которая препятствует уменьшению. Большинство устройств имеют фиксированную геометрию, поэтому изменение магнитного потока полностью связано с изменением тока ΔI через устройство.Индуцированная ЭДС связана с физической геометрией устройства и скоростью изменения тока. Выдается
[латекс] \ text {EMF} = — \ text {L} \ frac {\ Delta \ text {I}} {\ Delta \ text {t}} [/ latex],
где L — самоиндукция устройства. Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором. Опять же, знак минус является выражением закона Ленца, указывающего на то, что ЭДС препятствует изменению тока.
Количественная интерпретация ЭДС движения
A ЭДС движения — это электродвижущая сила (ЭДС), индуцированная движением относительно магнитного поля B.
Цели обучения
Сформулируйте две точки зрения, которые применяются для расчета электродвижущей силы
Основные выводы
Ключевые моменты
- Двигательная и наведенная ЭДС — это одно и то же явление, только наблюдаемое в разных системах отсчета. Эквивалентность этих двух явлений подтолкнула Эйнштейна к работе над специальной теорией относительности.
- ЭДС, возникающая из-за относительного движения петли и магнита, задается как [latex] \ varepsilon _ {\ text {motion}} = \ text {vB} \ times \ text {L} [/ latex] (Eq.1), где L — длина объекта, движущегося со скоростью v относительно магнита.
- ЭДС можно рассчитать с двух разных точек зрения: 1) с точки зрения магнитной силы, действующей на движущиеся электроны в магнитном поле, и 2) с точки зрения скорости изменения магнитного потока. Оба дают одинаковый результат.
Ключевые термины
- специальная теория относительности : теория, которая (игнорируя эффекты гравитации) согласовывает принцип относительности с наблюдением, что скорость света постоянна во всех системах отсчета.
- магнитное поле : Состояние в пространстве вокруг магнита или электрического тока, в котором существует обнаруживаемая магнитная сила и где присутствуют два магнитных полюса.
- рамка отсчета : система координат или набор осей, в пределах которых можно измерить положение, ориентацию и другие свойства объектов в ней.
Электродвижущая сила (ЭДС), индуцированная движением относительно магнитного поля B, называется ЭДС движения. Вы могли заметить, что ЭДС движения очень похожа на ЭДС, вызванную изменением магнитного поля.В этом атоме мы видим, что это действительно одно и то же явление, показанное в разных системах отсчета.
ЭДС движения
В случае, когда проводящая петля перемещается в магнит, показанный на (а), магнитная сила, действующая на движущийся заряд в петле, определяется как [латекс] evB [/ латекс] (сила Лоренца, e: заряд электрона).
Петля проводника, движущаяся в магнит : (а) ЭДС движения. Токовая петля переходит в неподвижный магнит. Направление магнитного поля внутрь экрана.(б) Индуцированная ЭДС. Токовая петля неподвижна, а магнит движется.
Из-за силы электроны будут продолжать накапливаться на одной стороне (нижний конец на рисунке), пока на стержне не установится достаточное электрическое поле, препятствующее движению электронов, которое составляет [латекс] \ text {eE} [/ латекс]. Приравнивая две силы, получаем [латекс] \ text {E} = \ text {vB} [/ latex].
Следовательно, двигательная ЭДС на длине L стороны петли определяется как [latex] \ varepsilon _ {\ text {motion}} = \ text {vB} \ times \ text {L} [/ latex] (Eq .1), где L — длина объекта, движущегося со скоростью v относительно магнита.
Индуцированная ЭДС
Поскольку скорость изменения магнитного потока, проходящего через петлю, равна [latex] \ text {B} \ frac {\ text {dA}} {\ text {dt}} [/ latex] (A: площадь петли что магнитное поле проходит), индуцированная ЭДС [латекс] \ varepsilon _ {\ text {индуцированный}} = \ text {BLv} [/ latex] (уравнение 2).
Эквивалентность движущей и индуцированной ЭДС
Из уравнения. 1 и уравнение. 2 мы можем подтвердить, что двигательная и индуцированная ЭДС дают одинаковый результат.Фактически, эквивалентность двух явлений побудила Альберта Эйнштейна исследовать специальную теорию относительности. В своей основополагающей статье по специальной теории относительности, опубликованной в 1905 году, Эйнштейн начинает с упоминания эквивалентности двух явлений:
«…… например, взаимное электродинамическое действие магнита и проводника. Наблюдаемое явление здесь зависит только от относительного движения проводника и магнита, в то время как обычный взгляд проводит резкое различие между двумя случаями, когда одно или другое из этих тел находится в движении.Ведь если магнит находится в движении, а проводник находится в покое, в окрестности магнита возникает электрическое поле с определенной энергией , производящее ток в местах, где части проводника находятся расположенный. Но если магнит неподвижен, а проводник находится в движении, электрическое поле поблизости от магнита не возникает. В проводнике, однако, мы находим электродвижущую силу, которой сама по себе не соответствует энергия, но которая порождает — при условии равенства относительного движения в двух рассмотренных случаях — электрические токи того же пути и силы, что и создаваемые электрическими силами в первом случае.«
Механические работы и электроэнергия
Механическая работа, совершаемая внешней силой для создания ЭДС движения, преобразуется в тепловую энергию; энергия сохраняется в процессе.
Цели обучения
Применить закон сохранения энергии для описания производственной двигательной электродвижущей силы с механической работой
Основные выводы
Ключевые моменты
- ЭДС движения, создаваемая движущимся проводником в однородном поле, задается следующим образом [latex] \ varepsilon = \ text {Blv} [/ latex].
- Чтобы стержень двигался с постоянной скоростью v, мы должны постоянно прикладывать внешнюю силу F ext к стержню во время его движения.
- Закон Ленца гарантирует, что движение стержня противоположно, и, следовательно, закон сохранения энергии не нарушается.
Ключевые термины
- ЭДС движения : ЭДС (электродвижущая сила), индуцированная движением относительно магнитного поля.
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
Мы узнали о двигательной ЭДС ранее (см. Наш Атом в «Двигательной ЭДС»). Для простой схемы, показанной ниже, ЭДС движения [латекс] (\ varepsilon) [/ латекс], создаваемая движущимся проводником (в однородном поле), задается следующим образом:
[латекс] \ varepsilon = \ text {Blv} [/ латекс]
, где B — магнитное поле, l — длина проводящего стержня, а v — (постоянная) скорость его движения. ( B , l и v все перпендикулярны друг другу, как показано на изображении ниже.)
ЭДС движения : (a) ЭДС движения = Bℓv индуцируется между рельсами, когда этот стержень перемещается вправо в однородном магнитном поле. Магнитное поле B направлено внутрь страницы, перпендикулярно движущемуся стержню и рельсам и, следовательно, к области, окружающей их. (б) Закон Ленца дает направление индуцированного поля и тока, а также полярность наведенной ЭДС. Поскольку поток увеличивается, индуцированное поле направлено в противоположном направлении или за пределы страницы. Правило правой руки дает указанное направление тока, и полярность стержня будет управлять таким током.
Сохранение энергии
В этом атоме мы рассмотрим систему с точки зрения энергии . Поскольку стержень движется и пропускает ток и , он ощущает силу Лоренца
.
[латекс] \ text {F} _ \ text {L} = \ text {iBL} [/ latex].
Чтобы стержень двигался с постоянной скоростью v , мы должны постоянно прикладывать внешнюю силу F ext (равную величине F L и противоположную по направлению) к стержню вдоль его движения. .Поскольку стержень движется под углом v , мощность P , передаваемая внешней силой, будет:
[латекс] \ text {P} = \ text {F} _ {\ text {ext}} \ text {v} = (\ text {iBL}) \ times \ text {v} = \ text {i} \ варепсилон [/ латекс].
На последнем этапе мы использовали первое уравнение, о котором мы говорили. Обратите внимание, что это в точности мощность, рассеиваемая в контуре (= ток [латекс] \ умноженное на [/ латекс] напряжение). Таким образом, мы заключаем, что механическая работа, совершаемая внешней силой, чтобы стержень двигался с постоянной скоростью, преобразуется в тепловую энергию в контуре.В более общем смысле, механическая работа, совершаемая внешней силой для создания ЭДС движения, преобразуется в тепловую энергию. Энергия сохраняется в процессе.
Закон Ленца
Из «Закона индукции Фарадея и закона Ленца» мы узнали, что закон Ленца является проявлением сохранения энергии. Как мы видим в примере с этим атомом, закон Ленца гарантирует, что движение стержня противодействует из-за склонности природы противодействовать изменению магнитного поля. Если бы наведенная ЭДС была в том же направлении, что и изменение потока, возникла бы положительная обратная связь, заставляющая стержень улетать от малейшего возмущения.
Энергия в магнитном поле
Магнитное поле накапливает энергию. Плотность энергии задается как [латекс] \ text {u} = \ frac {\ mathbf {\ text {B}} \ cdot \ mathbf {\ text {B}}} {2 \ mu} [/ latex].
Цели обучения
Выразите плотность энергии магнитного поля в форме уравнения
Основные выводы
Ключевые моменты
- Энергия необходима для создания магнитного поля как для работы против электрического поля, создаваемого изменяющимся магнитным полем, так и для изменения намагниченности любого материала в магнитном поле.2 [/ латекс].
Ключевые термины
- проницаемость : Количественная мера степени намагничивания материала в присутствии приложенного магнитного поля (измеряется в ньютонах на квадратный ампер в единицах СИ).
- индуктор : пассивное устройство, которое вводит индуктивность в электрическую цепь.
- ферромагнетик : Материалы, обладающие постоянными магнитными свойствами.
Энергия необходима для создания магнитного поля как для работы против электрического поля, создаваемого изменяющимся магнитным полем, так и для изменения намагниченности любого материала в магнитном поле.Для недисперсионных материалов эта же энергия высвобождается при разрушении магнитного поля. Следовательно, эту энергию можно смоделировать как «хранящуюся» в магнитном поле.
Магнитное поле, создаваемое соленоидом : Магнитное поле, создаваемое соленоидом (вид в разрезе), описанное с использованием силовых линий. Энергия «хранится» в магнитном поле.
Энергия, запасенная в магнитном поле
Для линейных недисперсионных материалов (таких, что B = мкм, H, где мкм, называемая проницаемостью, не зависит от частоты), плотность энергии составляет:
[латекс] \ text {u} = \ frac {\ mathbf {\ text {B}} \ cdot \ mathbf {\ text {B}}} {2 \ mu} = \ frac {\ mu \ mathbf {\ text {H}} \ cdot \ mathbf {\ text {H}}} {2} [/ latex].
Плотность энергии — это количество энергии, хранящейся в данной системе или области пространства на единицу объема. Если поблизости нет магнитных материалов, μ можно заменить на μ 0 . Однако приведенное выше уравнение нельзя использовать для нелинейных материалов; необходимо использовать более общее выражение (приведенное ниже).
В общем, дополнительная работа на единицу объема δW , необходимая для того, чтобы вызвать небольшое изменение магнитного поля δ B, составляет:
[латекс] \ delta \ text {W} = \ mathbf {\ text {H}} \ cdot \ delta \ mathbf {\ text {B}} [/ latex].
Когда связь между H и B известна, это уравнение используется для определения работы, необходимой для достижения заданного магнитного состояния. Для гистерезисных материалов, таких как ферромагнетики и сверхпроводники, необходимая работа также зависит от того, как создается магнитное поле. Однако для линейных недисперсионных материалов общее уравнение приводит непосредственно к более простому уравнению плотности энергии, приведенному выше.
Энергия, запасенная в поле соленоида
Энергия, запасаемая индуктором, равна количеству работы, необходимой для установления тока через индуктор и, следовательно, магнитного поля.2 [/ латекс].
Трансформаторы
Трансформаторы преобразуют напряжения из одного значения в другое; его функция определяется уравнением трансформатора.
Цели обучения
Примените уравнение трансформатора для сравнения вторичного и первичного напряжений
Основные выводы
Ключевые моменты
- Трансформаторы часто используются в нескольких точках систем распределения электроэнергии, а также во многих бытовых адаптерах питания.
- гласит, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их катушках: [латекс] \ frac {\ text {V} _ \ text {s}} {\ text { V} _ \ text {p}} = \ frac {\ text {N} _ \ text {s}} {\ text {N} _ \ text {p}} [/ latex].
- Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной. Это приводит нас к другому полезному вопросу: [latex] \ frac {\ text {I} _ \ text {s}} {\ text {I} _ \ text {p}} = \ frac {\ text {N} _ \ текст {p}} {\ text {N} _ \ text {s}} [/ latex]. Если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.
Уравнение трансформатора
Ключевые термины
- магнитный поток : мера силы магнитного поля в заданной области.
- Закон индукции Фарадея : основной закон электромагнетизма, который предсказывает, как магнитное поле будет взаимодействовать с электрической цепью, создавая электродвижущую силу (ЭДС).
Трансформаторы изменяют напряжение с одного значения на другое. Например, такие устройства, как сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшая бытовая техника, имеют трансформатор (встроенный в их съемный блок), который преобразует 120 В в напряжение, соответствующее устройству.Трансформаторы также используются в нескольких точках в системах распределения электроэнергии, как показано на рисунке. Мощность передается на большие расстояния при высоком напряжении, поскольку для данного количества мощности требуется меньший ток (это означает меньшие потери в линии). Поскольку высокое напряжение представляет большую опасность, трансформаторы используются для получения более низкого напряжения в месте нахождения пользователя.
Настройка трансформатора : Трансформаторы изменяют напряжение в нескольких точках в системе распределения электроэнергии. Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях более 200 кВ, иногда даже 700 кВ, для ограничения потерь энергии.Распределение электроэнергии по районам или промышленным предприятиям осуществляется через подстанцию и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.
Тип трансформатора, рассматриваемого здесь, основан на законе индукции Фарадея и очень похож по конструкции на устройство, которое Фарадей использовал для демонстрации того, что магнитные поля могут создавать токи (показано на рисунке). Две катушки называются первичной и вторичной катушками.При нормальном использовании входное напряжение подается на первичную обмотку, а вторичная обмотка создает преобразованное выходное напряжение. Мало того, что железный сердечник улавливает магнитное поле, создаваемое первичной катушкой, его намагниченность увеличивает напряженность поля. Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток направляется во вторичную обмотку, вызывая ее выходное переменное напряжение.
Простой трансформатор : Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник, ламинированный для минимизации вихревых токов.Магнитное поле, создаваемое первичной обмоткой, в основном ограничивается и увеличивается сердечником, который передает его вторичной обмотке. Любое изменение тока в первичной обмотке вызывает ток во вторичной обмотке. На рисунке показан простой трансформатор с двумя катушками, намотанными с обеих сторон многослойного ферромагнитного сердечника. Набор катушек на левой стороне сердечника обозначен как первичный, и его номер указан как N p. Напряжение на первичной обмотке равно V p. Набор катушек на правой стороне сердечника обозначен как вторичный, и его номер представлен как N s.Напряжение на вторичной обмотке равно В с. Символ трансформатора также показан под диаграммой. Он состоит из двух катушек индуктивности, разделенных двумя равными параллельными линиями, представляющими сердечник.
Уравнение трансформатора
Для простого трансформатора, показанного на, выходное напряжение V s почти полностью зависит от входного напряжения V p и соотношения количества петель в первичной и вторичной обмотках. Закон индукции Фарадея для вторичной обмотки дает ее индуцированное выходное напряжение V с как:
[латекс] \ text {V} _ \ text {s} = — \ text {N} _ \ text {s} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex],
, где N s — количество витков вторичной катушки, а Δ / Δt — скорость изменения магнитного потока.Обратите внимание, что выходное напряжение равно индуцированной ЭДС (В с = ЭДС с ), при условии, что сопротивление катушки невелико. Площадь поперечного сечения катушек одинакова с обеих сторон, как и напряженность магнитного поля, поэтому / Δt одинаково с обеих сторон. Входное первичное напряжение V p также связано с изменением магнитного потока:
[латекс] \ text {V} _ \ text {p} = — \ text {N} _ \ text {p} \ frac {\ Delta \ Phi} {\ Delta \ text {t}} [/ latex].
Соотношение этих двух последних уравнений дает полезное соотношение:
[латекс] \ frac {\ text {V} _ \ text {s}} {\ text {V} _ \ text {p}} = \ frac {\ text {N} _ \ text {s}} {\ текст {N} _ \ text {p}} [/ latex].
Это известно как уравнение трансформатора , которое просто утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества контуров в их катушках. Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению, в зависимости от соотношения количества витков в их катушках. Некоторые трансформаторы даже обеспечивают переменный выход, позволяя выполнять подключение в разных точках вторичной обмотки.Повышающий трансформатор — это трансформатор, который увеличивает напряжение, тогда как понижающий трансформатор снижает напряжение.
Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной. Уравнивание входной и выходной мощности,
[латекс] \ text {P} _ \ text {p} = \ text {I} _ \ text {p} \ text {V} _ \ text {p} = \ text {I} _ \ text {s} \ text {V} _ \ text {s} = \ text {P} _ \ text {s} [/ latex].
Комбинируя эти результаты с уравнением трансформатора, находим:
[латекс] \ frac {\ text {I} _ \ text {s}} {\ text {I} _ \ text {p}} = \ frac {\ text {N} _ \ text {p}} {\ текст {N} _ \ text {s}} [/ latex].
Значит, если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.
| Студенты могут задаться вопросом, как работают трансформаторы и генераторы.Здесь описана потенциальная лаборатория или демонстрация принципа электромагнитной индукции Фарадея. Поскольку медные катушки (называемые петлей) содержат изменяющийся электрический заряд, Справочная информация: Закон индукции Фарадея Прописью: Индуцированная ЭДС (напряжение или разность потенциалов) вокруг замкнутого контура равна мгновенной скорости изменения (производной) магнитного потока через контур. В форме уравнения: Есть три способа изменить магнитный поток через петлю:
Следовательно, изменение угла либо увеличивает, либо уменьшает поток, потому что скалярное произведение зависит от синуса угла между векторами B и dA . Так работает генератор. Генератор вращает петлю (фактически несколько витков) провода через фиксированное магнитное поле и индуцирует напряжение вокруг петли, быстро изменяя поток через петлю при ее вращении.Это индуцированное напряжение вокруг контуров заставляет ток течь через провод, и это выходной ток генератора. Знак минус указывает на то, что индуцированное напряжение имеет направление, которое создает ток, противодействующий изменению магнитного потока в контуре. Это соотношение зафиксировано в Законе Ленца. Закон Ленца : Индуцированный ток в проволочной петле будет в направлении, противоположном изменению потока через петлю.Другими словами, если поток через контур увеличивается, то индуцированный ток создаст свой собственный поток, который будет пытаться компенсировать увеличение потока. Если поток через петлю уменьшается, то индуцированный ток будет в направлении, которое пытается увеличить поток через петлю. | Процедура :
|
Видео с вопросом: скорость изменения наведенного тока
Стенограмма видео
Ток индуцируется в круговой петле радиуса 1.5 сантиметров между двумя полюсами подковообразного электромагнита при изменении тока в электромагните. Магнитное поле в области петли перпендикулярно петле и имеет одинаковую величину. Если скорость изменения магнитного поля составляет 10 тесла в секунду, найдите величину индуцированного тока, если сопротивление контура составляет 25 Ом.
В этом утверждении нам сообщается скорость изменения магнитного поля, 10 тесла в секунду, которую мы назовем 𝑑𝐵 𝑑𝑡. Нам также сообщили, что сопротивление круговой петли составляет 25 Ом, что мы будем называть заглавной.Нам сказали, что радиус этой петли составляет 1,5 сантиметра, что мы будем называть строчными буквами 𝑟. Мы хотим найти величину тока, индуцируемого в контуре. Мы можем назвать это 𝐼.
Начнем с эскиза нашей петли в магните. У нас есть круглая проволочная петля с радиусом в нижнем регистре 𝑟 и электрическим сопротивлением большой буквы, 25 Ом. Наша петля помещена между полюсами подковообразного магнита, который представляет собой электромагнит, магнетизм которого создается пропусканием тока через петли, окружающие магнит.
Создается магнитное поле, которое проходит через круговую петлю. И сила этого магнитного поля со временем меняется. Нам сказали, что изменение 𝐵 по составляет 10 тесла в секунду. Чтобы вычислить ток, который индуцируется в круговой петле из-за этого изменения магнитного поля, мы можем вспомнить закон Фарадея. Этот закон гласит, что ЭДС, обозначенная здесь символом, индуцированная в проводе, равна изменению магнитного потока, который проходит через этот замкнутый контур за единицу времени, умноженному на количество витков в проводе.
И в подтверждение этого закона мы можем далее напомнить, что магнитный поток sub равен напряженности магнитного поля, умноженной на площадь, через которую это поле движется. Когда мы применяем закон Фарадея к нашему сценарию, первое, что мы замечаем, — это то, что 𝑁 равно единице. У нас есть только одна петля. Следующий элемент, который мы хотим рассмотреть, — это магнитный поток 𝜙 sub. Когда мы смотрим на отношения для этого, мы хотим увидеть, какие из 𝐵 или 𝐴 или оба меняются по мере развития этой проблемы.
Когда мы смотрим на круговую проволочную петлю, через которую проходят силовые линии магнитного поля, мы видим, что площадь этой петли не меняется на протяжении всей этой задачи. Однако магнитное поле со временем меняется. И нам сообщают скорость этого изменения в постановке задачи. Это указывает на то, что изменение количества 𝐵 раз 𝐴 за изменение времени равно 𝐴 раз 𝑑𝐵 𝑑𝐵, поскольку 𝐴 является постоянной величиной на всем протяжении.
Мы уже знаем 𝑑𝑡, потому что он указан в формулировке задачи.И мы можем найти 𝐴, зная радиус нашей круговой петли в нижнем регистре 𝑟. Вспоминая, что площадь круга равна, умноженному на квадрат его радиуса, мы можем написать, что наведенная ЭДС или напряжение в кольцевой проволочной петле равно 𝜋 умноженному на 0,015 метра в квадрате, умноженном на 10 тесла в секунду.
Если бы мы вычислили это значение, оно дало бы нам ответ в единицах вольт. Но мы хотим получить ответ тока, который индуцируется в этом контуре, а не разности потенциалов. Вспоминая закон Ома, мы видим, что разность потенциалов равна произведению тока на сопротивление.
Итак, чтобы найти ток, мы можем разделить наведенную ЭДС на сопротивление 𝑅, которое, как нам сказали, составляет 25 Ом. Когда мы вводим эти значения на нашем калькуляторе, мы видим, что с точностью до двух значащих цифр 𝐼 равно 2,8 умножить на 10 до отрицательных четвертых ампер. Это ток, который индуцируется в кольцевой проволочной петле.
Страница не найдена | MIT
Перейти к содержанию ↓
- Образование
- Исследование
- Инновации
- Прием + помощь
- Студенческая жизнь
- Новости
- Выпускников
- О MIT
- Подробнее ↓
- Прием + помощь
- Студенческая жизнь
- Новости
- Выпускников
- О MIT
Меню ↓
Поиск
Меню
Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще!
Что вы ищете?
Увидеть больше результатов
Предложения или отзывы?
Закон Фарадея
Закон Фарадея
Далее: Закон Ленца
Up: Магнитная индукция
Предыдущая: Магнитная индукция
Явление магнитной индукции играет решающую роль в
три очень полезных электрических устройства: электрогенератор , электрический
двигатель , и трансформатор .Без этих устройств современная жизнь была бы
невозможно в нынешнем виде. Магнитная индукция была открыта в 1830 г.
Английский физик Майкл Фарадей. Американский физик Джозеф Генри
независимо друг от друга сделал то же открытие примерно в одно и то же время. Обе
физиков заинтриговал тот факт, что электрический ток, протекающий вокруг
цепь может генерировать магнитное поле. Наверняка, рассуждали они, если электрический
ток может генерировать магнитное поле, тогда магнитное поле должно каким-то образом быть способным
генерировать электрический ток.Однако потребовалось много лет бесплодных экспериментов.
прежде, чем они смогли найти необходимый ингредиент, который позволяет
магнитное поле для генерации электрического тока. Этот
ингредиент — , изменение во времени .
Рассмотрим плоскую петлю из токопроводящего провода соответствующей площади поперечного сечения.
Поместим эту петлю в магнитное поле, напряженность которого приблизительно равна
равномерный по всей длине петли. Предположим, что направление
магнитное поле образует угол с нормальным направлением к
петля.Магнитный поток через петлю равен
определяется как произведение площади петли и составляющей
магнитное поле, перпендикулярное петле. Таким образом,
(191) |
Если петля оборачивается вокруг себя раз (, т.е. , если петля
имеет витков ), то магнитный поток через петлю просто
умножить на магнитный поток за один виток:
(192) |
Наконец, если магнитное поле неоднородно по петле или петля не
лежать в одной плоскости,
тогда мы должны оценить
магнитный поток как поверхностный интеграл
(193) |
Вот какая-то поверхность, к которой прикреплена.Если петля имеет витки, то поток в несколько раз превышает указанное выше значение.
Единица измерения магнитного потока в системе СИ — вебер (Вб). Одна тесла эквивалентна
один вебер на квадратный метр:
(194) |
Фарадей обнаружил, что если магнитное поле проходит через петлю из проволоки
изменяется во времени. , тогда вокруг контура индуцируется ЭДС.
Фарадей смог наблюдать этот эффект, потому что ЭДС вызывает
ток, циркулирующий в петле.Фарадей обнаружил, что величина
ЭДС прямо пропорциональна скорости изменения магнитного поля во времени.
Он также обнаружил, что ЭДС генерируется, когда петля провода перемещается на
из области низкой напряженности магнитного поля в область высокой напряженности магнитного поля, и наоборот . ЭДС прямо пропорциональна
скорость, с которой петля перемещается между двумя областями. Ну наконец то,
Фарадей обнаружил, что ЭДС генерируется вокруг петли, которая на вращается на .
в однородном магнитном поле постоянной напряженности.В этом случае ЭДС
прямо пропорциональна скорости вращения петли.
Фарадей в конце концов
может предложить единый
закон, который мог объяснить все его многочисленные и разнообразные наблюдения. Этот закон, известный как
Закон магнитной индукции Фарадея выглядит следующим образом:
ЭДС, индуцированная в цепи, пропорциональна скорости изменения во времени
магнитный поток, связывающий эту цепь.
Единицы СИ были зафиксированы таким образом, чтобы константа пропорциональности в этом
закон единица .Таким образом, если магнитный поток через цепь изменяется
на сумму во временном интервале
тогда генерируемая в цепи ЭДС равна
(195) |
Есть много разных способов, которыми магнитный поток связывает
электрическая цепь может
изменять. Может измениться либо напряженность магнитного поля, либо направление магнитного поля.
поле может измениться, или положение цепи может измениться, или форма
цепь может измениться, или ориентация цепи может измениться.Закон Фарадея гласит, что все эти способы
полностью эквивалент по генерации ЭДС вокруг
цепь касается.
Далее: Закон Ленца
Up: Магнитная индукция
Предыдущая: Магнитная индукция
2007-07-14
Электромагнитная индукция — Physics A-Level
Изучив этот раздел, вы должны уметь:
- рассчитать потокосцепление через катушку с проводом в магнитном поле
- объясните, как возникает электромагнитная индукция из-за изменений в потокосцеплении
- применять закон Фарадея и закон Ленца
В этом разделе рассматриваются следующие темы
Флюсовая и флюсовая передача
Почти все, что мы делаем, кроме сна в темноте, основано на электромагнитной индукции .Индукция используется для выработки электроэнергии на электростанциях и для преобразования ее напряжения при прохождении через распределительную систему.
Эффекты индукции объясняются с помощью концепции потока . Хотя существование потока уже давно дискредитировано, осознание его значения полезно для понимания законов индукции, изложенных Фарадеем и Ленцем.
Flux представляет собой полезную модель для объяснения эффектов магнитных полей.
Подобно гравитационному и электрическому полям, магнитные поля действуют на расстоянии.Картины магнитного поля используются, чтобы показать силы, действующие вокруг магнита или электрического тока. Эти силы действуют без какой-либо физической связи между магнитом или током, который вызывает поле, и магнитным материалом или током, помещенным в поле. Во времена Фарадея и Ленца их приписывали эффектам потока.
В настоящее время считается, что эти силы можно отнести к «обмену частицами».
При рисовании диаграмм магнитного поля:
- относительная напряженность в различных точках поля показана разделением силовых линий
- чем ближе линии вместе, тем сильнее поле
- эти силовые линии представляют магнитный поток , который, как представляется, занимает пространство вокруг магнита и отвечает за эффект магнитного поля.
Чтобы интегрировать модель потока с сегодняшним объяснением магнитных эффектов с точки зрения напряженности магнитного поля, это можно представить в терминах плотности потока, представленной концентрацией силовых линий магнитного поля. Плотность потока — это поток на единицу площади, поэтому поток теперь определяется в терминах напряженности магнитного поля и площади, через которую это поле проникает.
КЛЮЧЕВЫЙ ТОЧЕК — Магнитный поток Φ, проходящий через область A, определяется как произведение напряженности магнитного поля и площади, перпендикулярной полю.
Φ = B × A
Магнитный поток измеряется в сетках (Wb), где 1 Wb — поток через площадь 1 м 2 , нормальный к однородному полю с напряженностью 1 T.
Это определение связывает эквивалентность современной концепции напряженности магнитного поля и старой концепции «магнитной индукции».
На схеме показан поток через прямоугольную катушку в однородном магнитном поле.
Когда катушка вращается, она «прорезает» магнитный поток или силовые линии и эл.м.ф. индуцируется.
Размер или величина наведенной ЭДС. зависит от:
- количество потока через катушку
- скорость вращения
- количество витков на катушке.
Каждый виток катушки имеет потокосцепление, которое изменяется по мере вращения катушки. Магнитосцепление катушки с Н и витками составляет Н Φ , где Φ — это поток, проходящий через катушку.
Движение катушки параллельно полю не вызывает эл.m.f., поскольку никакие силовые линии не «срезаются». Индуцированная э.д.с. имеет наибольшее значение, когда движение катушки перпендикулярно полю.
Закон Фарадея
Электромагнитная индукция возникает всякий раз, когда изменяется магнитное поле через проводник. Это может быть связано с тем, что проводник движется через магнитное поле, или проводник находится в фиксированном положении в изменяющемся магнитном поле, например, из-за переменного тока.Оба они приводят к ЭДС. индуцируется в проводнике.
Примеры электромагнитной индукции:
- перемещение магнита внутри проволочной катушки
- генерирование высокого напряжения, необходимого для ионизации пара в люминесцентной лампе и возникновения искры, необходимой для воспламенения взрывоопасной смеси в бензиновом двигателе
- изменение напряжения переменного тока с помощью трансформатора.
На электростанции электричество вырабатывается электромагнитом, вращающимся внутри медных катушек.
На диаграмме ниже показана разница в размере ЭДС. когда магнит движется в катушке с разной скоростью.
Закон Фарадея связывает величину наведенной ЭДС. к изменению потокосцепления.
КЛЮЧЕВЫЙ МОМЕНТ. Закон Фарадея гласит, что величина наведенной ЭДС. пропорциональна скорости изменения потокосцепления. Поскольку константа пропорциональности равна 1, для равномерной скорости изменения потокосцепления это можно записать как:
величина индуцированной e.м.ф. N = ΔΦ / Δt, где ΔΦ — изменение потока во времени Δt.
Для создания высокого напряжения, необходимого для возникновения искры, магнитный поток должен быстро меняться. Это происходит, когда ток в электромагните отключен.
В каком направлении?
Закон Фарадея можно использовать для определения величины наведенной ЭДС. например, через концы крыльев самолета, летящего в магнитном поле Земли. В Британии поле Земли составляет 20 ° с вертикалью, см. Следующую диаграмму.
В отличие от стержневого магнита, магнитное поле Земли направлено с юга на север. Можно считать, что он состоит из двух компонентов: вертикального и горизонтального.
Самолет, летящий в направлении Север-Юг, пересекает только вертикальную составляющую, в то время как полет Восток-Запад включает в себя дополнительно пересечение горизонтальной составляющей.
Индуцированная э.д.с. возникает как следствие действия силы на свободные электроны в металле корпуса самолета.Когда самолет движется по воздуху, движение этих электронов образует ток, противоположный направлению полета. Правило левой руки Флеминга можно использовать для определения направления силы, действующей на электроны, и, следовательно, направления индуцированной ЭДС.
Все заряженные частицы испытывают силу из-за их движения через магнитное поле, но эта сила слишком мала, чтобы воздействовать на что-либо, кроме свободных электронов.
В случае полета самолета с севера на юг:
- текущее — юг – север
- «разрезаемое» магнитное поле направлено вертикально вниз
- сила, действующая на свободные электроны, направлена на восток.
Это приводит к дисбалансу заряда и возникновению напряжения на законцовках крыла. Направление э.д.с. индуцируется в самолете и когда магнит движется в катушку с проволокой, можно вычислить с помощью закона Ленца .
КЛЮЧЕВЫЙ МОМЕНТ — Закон Ленца гласит, что направление индуцированной ЭДС. всегда противостоит изменению, которое его вызывает.
Если наведенная э.д.с. в самолете заставлял электроны течь с запада на восток, это создавало силу в северном направлении — противоположном движению самолета.Этого не происходит, потому что нет полной схемы.
На схеме ниже показано, что когда северный полюс магнита перемещается в один конец катушки, индуцированная ЭДС. вызывает индуцированный ток в направлении против часовой стрелки. Когда ток проходит в катушке, магнитное поле похоже на магнитное поле стержневого магнита, причем северный полюс является концом, где ток проходит против часовой стрелки.
Направление индуцированного тока меняется на противоположное путем изменения направления магнита или его движения.
Если бы индуцированный ток был в противоположном направлении, он притягивал бы магнит в катушку и генерировал электричество без подвода энергии.
Закон Ленца — это переформулировка принципа сохранения энергии; индуцированный ток противодействует движению магнита, поэтому необходимо выполнить работу по перемещению магнита против индуцированного магнитного поля. Эта работа представляет собой передачу энергии в цепь, необходимую для возникновения тока.
Объединение законов Фарадея и Ленца дает уравнение для индуцированной e.м.ф .:
КЛЮЧ — Где ε — наведенная ЭДС. Отрицательный знак показывает, что наведенная ЭДС. противостоит вызывающему его изменению потока.
Трансформатор
Трансформаторы используют изменяющиеся магнитные поля для изменения величины переменного напряжения. Переменный ток, протекающий в одной катушке (первичной), вызывает э.д.с. в соседней катушке (вторичной).
На диаграмме ниже показан поток, когда две катушки намотаны на железный сердечник.
Э.д.с. индуцируется независимо от наличия вторичной цепи. Если есть замкнутая цепь, есть также индуцированный ток.
В трансформаторе:
- переменный ток в первичной обмотке создает переменное магнитное поле
- это усилено железным сердечником с высокой проницаемостью
- флюс концентрируется в чугуне
- Э.д.с. индуцируется во вторичной обмотке из-за изменения магнитной связи.
Железо легко намагничивается; его магнитные домены вносят вклад в силу магнитного поля.