26.11.2024

Что такое электромагнетизм: 3. Электромагнетизм. Электричество и магнетизм. Физика. Курс лекций

Содержание

Магнетизм (электромагнетизм): что это такое в теории элементарной физики

Главная страница » Магнетизм (электромагнетизм): что это такое в теории элементарной физики

Силу, образующуюся в результате течения электрического тока через проводник (например, через участок провода или кабеля), характеризуют как электромагнетизм. При таких условиях проводник окружает магнитное поле. Направление магнитного поля относительно «северного» / «южного» полюсов определяется направлением тока, текущего через проводник.

СОДЕРЖИМОЕ ПУБЛИКАЦИИ :

Роль электромагнетизма в электротехнике

Магнетизм играет важную роль в электротехнике (электронике). Многие электронные и электрические компоненты:

  • реле,
  • соленоиды,
  • катушки индуктивности,
  • дроссели,
  • катушки громкоговорителей,
  • обмотки электродвигателей,
  • генераторы,
  • трансформаторы,
  • счетчики электроэнергии и прочие,

попросту  не способны работать в условиях отсутствия эффекта магнетизма. По сути, любая катушка, выполненная намоткой провода, даёт эффект электромагнетизма в момент течения электрического тока. Для лучшего понимания магнетизма и электромагнетизма в частности, логично рассмотреть физику работы магнитов и магнетизма.

Какой видится природа магнетизма?

Магнетизм нередко присутствуют в естественном состоянии, например, в виде продуктов добываемой минеральной руды. Причём двумя основными типами элементов природного магнетизма выступают:

  1. Оксид железа (FE3O4).
  2. Магнетитовый железняк (FeO·Fe2O3).

Если указанную пару естественных магнитов подвесить на нить, оба займут положение, соответствующее магнитному полю Земли, которое всегда указывает на север.

Магнитное поле ЗемлиПолюса Земли лежат в основе эффекта электромагнетизма — явления, с которым приходится сталкиваться не только инженерам-физикам в исследованиях, но также обычным людям в хозяйственной практике

Достаточно наглядно демонстрирует эффект магнетизма стрелка туристического компаса. Относительно практических применений магнетизм природного происхождения редко принимается во внимание.

Обусловлено это низким уровнем эффекта магнетизма, характерным для таких объектов, плюс следует брать в расчёт создание искусственных магнитов. Люди научились делать искусственные магниты разных форм, размеров, силы.

Эффект магнетизма поддерживается объектами двух форм, представляющих:

  1. Постоянные магниты.
  2. Временные магниты.

Причём используемый тип магнита зависит от конкретного применения. Применяется масса различных типов материалов под изготовление магнитов:

  • железо,
  • никель,
  • никелевые сплавы,
  • хром,
  • кобальт,

Что интересно, будучи в естественном состоянии материала, некоторые элементы списка, например, никель и кобальт, демонстрируют крайне низкие величины магнетизма.

Однако если эти элементы «легируются» с другими материалами — пероксидом железа или алюминия, формируются очень сильные магниты, получившие необычные названия:

  • «Alnico»
  • «Alcomax»,
  • «Alni»,
  • «Hycomax».

Материал в немагнитном состоянии имеет молекулярную структуру в виде разрозненных цепочек (отдельных микро-магнитов), свободно расположенных в случайном порядке.

Общий эффект такого расположения приводит к нулевому или очень слабому эффекту магнетизма. Объясняется подобное явление случайным расположением отдельного молекулярного магнита, имеющего тенденцию нейтрализовать соседние молекулы.

Выстраивание магнитного поля в структуре материалаФормирование поля в структуре материала: 1 – хаотичным случайным образом расположенные магнитные домены не дают эффекта магнетизма; 2 – упорядоченные ровно выстроенные домены дают выраженный эффект магнетизма

Когда материал намагничен, случайное расположение молекул изменяется. В итоге микроскопические случайные молекулярные магниты «выстраиваются» последовательным расположением. Этот эффект молекулярного выравнивания ферромагнитных материалов известен как теория Вебера.

Магнитное выравнивание молекулы куска железа

Теория Вебера основана на магнитных свойствах атомов благодаря действию вращения атомов электронов. Группы атомов объединяются, а магнитные поля вращаются в одном направлении. Материалы составляют микроскопические магниты на молекулярном уровне.

Структура большинства намагниченных материалов состоит из микроскопических элементов, выстроенных в одном направлении для создания только северного полюса и в другом направлении для создания южного полюса.

Материал, в структуре которого молекулярные магниты сосредоточены по всем направлениям, имеет «нейтральные» молекулярные частицы, нейтрализующие любой эффект магнетизма. Эти области молекулярных магнитов именуются «доменами».

Любому материалу характерно создание орбитальных и вращающихся электронов магнитного поля, полностью зависящего от степени выравнивания доменов в материале. Эта степень выравнивания, как правило, определяется величиной намагниченности (М).

Магнетизм и магнитный поток в катушкеСхематичная демонстрация формирования силовых линий: 1 – индуцируемый ток в рабочем материале; 2 – течение тока внутри проводников катушки; 3 – магнитное поле

Внутренняя структура немагнитного материала показывает М = 0. Однако некоторые из доменов могут оставаться выровненными по границам небольших областей в материале. Эффект приложения намагничивающей силы к материалу заключается в выравнивании некоторых доменов для получения ненулевого значения намагничивания.

Как только сила намагничивания нейтрализована, магнетизм внутри материала остаётся на некотором уровне, либо быстро затухнет в зависимости от используемого материала. Эта способность материала сохранять свойство магнетизма называется «Остаточная намагниченность».

Материалы, обладающие свойствами сохранения магнетизма, демонстрируют достаточно высокую способность к остаточной намагниченности, а потому часто используются для изготовления постоянных магнитов. В то же время материалы, обладающие свойством быстрой потери магнетизма, демонстрируют низкую способность остаточной намагниченности. Из таких материалов, изготавливают, к примеру, сердечники для реле и соленоидов.

Что такое магнитный поток?

Любым магнитам, независимо от формы, присуще характерное свойство — наличие пары полюсов. Внутренний магнетизм и молекулярные цепи полюсов образуют своеобразную цепочку невидимых линий потока организованной и сбалансированной структуры.

Эти линии потока образуют магнитное поле. Форма такого поля в некоторых частях более интенсивная, чем в других. Причём область магнита (традиционно концевая), обладающая наибольшим уровнем магнетизма, являются активной областью полюса.

Магнетизм и магнитные полюсаПримерно такой вид формирования полей можно наблюдать (с помощью специальной техники) в области двух сближаемых противоположными полюсами магнитов

Линии потока — векторные поля, не видны невооруженным глазом, но доступны к определению, например, с помощью компаса. Полюса всегда присутствуют парами. Всегда существует область «северного» полюса и область «южного» полюса.

Поля отображаются визуально силовыми линиями, определяющими полюс на каждом конце материала, где линии потока более плотные и концентрированные. Линии, образующие поле, показывающие направление и степень интенсивности, называются силовыми линиями (магнитным потоком). Традиционно такой поток обозначается греческим символом «Фи» (φ).

Силовые линии определяющие эффект магнетизма

Как показано выше, магнитное поле является наиболее сильным вблизи полюсов магнита, где линии потока расположены близко друг к другу. Общее направление потока – традиционно от северного полюса (N) к южному (S) полюсу. Кроме того, силовые линии образуют замкнутые петли, выходящие на северный и на южный полюс.

Однако магнитный поток не течёт с «севера» на «юг» полюсов или каким-либо другим образом, поскольку является статической областью, окружающей магнит, где отмечается действие магнитной силы.

Другими словами, поток не течёт и не движется в принципе, а попросту существует, будучи не подверженным влиянию гравитации. Следующие важные факты магнетизма сопровождают построение силовых линий:

  • силовые линии не пересекаются и не прерываются,
  • силовые линии всегда образуют отдельные замкнутые петли,
  • силовым линиям магнетизма характерно направление с «севера» на «юг»,
  • близкое расположение силовых линий указывает на сильный магнетизм,
  • удалённое расположение силовых линий указывает на слабый магнетизм.

Силы магнетизма притягивают и отталкивают подобно электрическим силам, поэтому сближение двух силовых линий (взаимодействие между двумя полями) вызывает одно из двух явлений магнетизма:

  1. Отталкивание полюсов.
  2. Притягивание полюсов.

Магнетизм - взаимодействие между магнитными полямиЭффект взаимодействия между полями с учётом разного расположения относительно полюсов: 1 – разноимённые полюса вызывают эффект притягивания; 2 – одноимённые полюса вызывают эффект отталкивания; 3 – направление силовых линий

Этот эффект легко запоминается благодаря известному выражению «противоположности притягиваются». Это взаимодействие магнитных полей, показывающие силовые линии окружающие магнит, легко продемонстрировать, используя железные наполнители. Влияние на магнитные поля различных комбинаций полюсов, когда одинаковые полюсы отталкиваются и в отличие от полюсов притягиваются, показано на картинке выше.

Магнитное поле одноименных и разноименных полюсов

Анализ линий магнитного поля с помощью компаса позволяет видеть, что созданием силовых линий придаётся определённый полюс на каждом конце магнита. Эффект магнетизма может быть нарушен нагреванием или ударом магнитного материала, но магнетизм невозможно уничтожить или изолировать, простым разделением магнита на две части.

Поэтому, если используя обычный стержневой магнит, разбить тело этого объекта на две части, двух половинок одного магнита получить не удастся. Вместо этого каждая часть слома образует полноценный магнит, наделённый «северным» и «южным» полюсами.

Продолжением разделения пополам других полученных частей приведёт к тому же результату. Независимо от того, насколько маленькими становятся кусочки магнита, у каждого кусочка будет формироваться «северный» и «южный» полюс, соответственно.

Определение величины магнетизма

Как отмечалось ранее, силовые линии (магнитный поток) магнитного материала обозначается греческим символом «Фи» (φ). Под единицей измерения потока используется Вебер (латинское обозначение Wb, русское – Вб). Число силовых линий в пределах данной единичной области называется «плотностью потока».

Поскольку магнитный поток измеряется в Веберах, а площадь в метрах квадратных, следовательно, плотность потока измеряется отношением Вб / S и обозначается латинским символом — B.

Однако когда речь идет о магнетизме, плотность потока задается в единицах Тесла, поэтому один Вб / S равен одному Тесла (1Вб / 1м2 = 1T). Плотность потока пропорциональна силовым линиям и обратно пропорциональна площади. Отсюда плотность магнитного потока определяется как:

B = φ / S

Пример определения силы магнетизма

Количественный показатель магнитного потока, присутствующего в круглом магнитном стержне, равен 0,06 Вб. Какая плотность магнитного потока, если диаметр стержня магнита равен 24 см? Решение:

Сначала определяется площадь поперечного сечения стержня (в м2):

S = π * R2 (3.14 * 0.122) = 0.045

Далее рассчитывается плотность магнитного потока (в Тесла):

B = φ / S = 0. 06 / 0.045 = 1.33

Если применительно к магнетизму электрических цепей 1Т — это плотность магнитного поля, проводник, несущий ток 1А под прямым углом к магнитному полю, испытывает нагрузку магнитной силы в один ньютон на метр.


При помощи информации: ElectronicsTutorials

ЭЛЕКТРОМАГНЕТИЗМ — это… Что такое ЭЛЕКТРОМАГНЕТИЗМ?



ЭЛЕКТРОМАГНЕТИЗМ

ЭЛЕКТРОМАГНЕТИЗМ, отрасль физики, изучающая законы и явления, связанные со взаимодействием и взаимозависимостью между ЭЛЕКТРИЧЕСТВОМ и МАГНЕТИЗМОМ. Область, в которой можно обнаружить действие электромагнитной системы называется электромагнитным полем. При изменении магнитного поля всегда можно обнаружить наличие электрического поля, и наоборот. И то, и другое поле можно считать электромагнитным. Частица, имеющая электрический заряд, оказывается в магнитном поле, только когда движется, и в электрическом поле, — когда неподвижна.

Когда ток идет по проводу с равномерной скоростью, образующееся при этом магнитное поле в любой плоскости, пересекающей провод под прямым углом, представляет собою ряд концентрических кругов. Сила поля (убывающая по мере удаления от провода)условно обозначена на рис. В,С и D пунктирными линиями. Если провод изогнуть, форма магнитного поля также соответственно изменится. Если придать проводу форму спирали (D) (обмотки), как в катушках и соленоидах, силовые линии поля будут все направлены в одну сторону через центр катушки; в целом поле будет напоминать то, которое создает магнитный стержень, у которого, как показано на рисунке, северный полюс находится справа. Если ввести железный стержень в соленоид, силовые линии остаются внутри его, и в результате на конце стержня образуется высокая концентрация силовых линий. Устройство, основанное ма этом

Научно-технический энциклопедический словарь.

  • ЭЛЕКТРОЛЮМИНЕСЦЕНЦИЯ
  • ЭЛЕКТРОМАГНИТ

Смотреть что такое «ЭЛЕКТРОМАГНЕТИЗМ» в других словарях:

  • электромагнетизм — электромагнетизм …   Орфографический словарь-справочник

  • ЭЛЕКТРОМАГНЕТИЗМ — (этим. см. электричество и магнетизм). Отношение между явлениями магнетическими и электрическими. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЭЛЕКТРОМАГНЕТИЗМ возбуждение электрического тока приближением и… …   Словарь иностранных слов русского языка

  • электромагнетизм — а, м. électromagnétisme m. Магнитные явления, вызываемые движением электрических зарядов. БАС 1. Не ошибемся мы, если предскажем и то, что применение магнетизма к гравированию должно произвести переворот в этом искусстве. Черн. Критика. // ОЗ… …   Исторический словарь галлицизмов русского языка

  • ЭЛЕКТРОМАГНЕТИЗМ — ЭЛЕКТРОМАГНЕТИЗМ, электромагнетизма, мн. нет, муж. (физ.). Магнитные явления, вызываемые электрическим током. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ЭЛЕКТРОМАГНЕТИЗМ — ЭЛЕКТРОМАГНЕТИЗМ, а, м. Совокупность явлений, определяющих неразрывную связь между электрическими и магнитными свойствами вещества. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • электромагнетизм — [IEV number 151 11 08] EN electromagnetism set of the phenomena associated with electromagnetic fields Source: 121 11 74 [IEV number 151 11 08] FR électromagnétisme, m ensemble des phénomènes associés aux champs …   Справочник технического переводчика

  • электромагнетизм — elektromagnetizmas statusas T sritis automatika atitikmenys: angl. electromagnetism vok. Elektromagnetismus, m rus. электромагнетизм, m pranc. électromagnétisme, m …   Automatikos terminų žodynas

  • электромагнетизм — elektromagnetizmas statusas T sritis fizika atitikmenys: angl. electromagnetics; electromagnetism vok. Elektromagnetismus, m rus. электромагнетизм, m pranc. électromagnétisme, m …   Fizikos terminų žodynas

  • Электромагнетизм* — Начало учению об электромагнитных явлениях положено открытием Эрстеда. В 1820 г. Эрстед показал, что проволока, по которой течет электрический ток, вызывает отклонение магнитной стрелки. Он подробно исследовал это отклонение с качественной… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Электромагнетизм — Начало учению об электромагнитных явлениях положено открытием Эрстеда. В 1820 г. Эрстед показал, что проволока, по которой течет электрический ток, вызывает отклонение магнитной стрелки. Он подробно исследовал это отклонение с качественной… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Электромагнетизм

Теория электромагнетизма в ее классическом понимании сформировалась в XIX веке. Это фундаментальное учение о том, как устроен наш мир.

Значение электромагнетизма заключается в том, что:

  1. Философское и мировоззренческое значение данной теории придает описание электромагнитного поля, как особой формы существования материи.
  2. Электромагнетизм играл значимую роль в появлении и развитии теории относительности.
  3. Данный раздел физики играет большую роль в научно – техническом прогрессе.

Замечание 1

Курс «Электромагнетизма» длительное время остается консервативным. Причиной тому служит завершенность теории.

Определение 1

Электромагнетизмом называют раздел физики, который посвящен изучению законов и явлений, связанных с электрическими и магнитными полями, их связью и взаимозависимостью.

Фундаментальными понятиями теории электромагнетизма являются:

  • заряд;
  • электрическое поле;
  • потенциал;
  • энергия поля;
  • электромагнитное взаимодействие;
  • магнитное поле;
  • магнитная индукция;
  • электромагнитное поле и др.

Готовые работы на аналогичную тему

К основным законам электромагнетизма можно отнести следующие:

  • закон Кулона;
  • закон Ампера;
  • закон Био-Савара-Лапласа;
  • закон Ома;
  • закон индукции Фарадея;
  • уравнения Максвелла.

Закон Кулона

Обобщая результаты экспериментов с крутильными весами, Кулон предложил закон, в соответствии с которым пара точечных зарядов (рис.1) $q_1$ и $q_2$, находящихся в вакууме действуют друг на друга с силами равными $F$, направленными вдоль прямой, которая соединяет рассматриваемые заряды, при этом:

$\vec{F}_{12}=\frac{1}{4\pi \varepsilon_{0}}\frac{q_{1}q_{2}}{\left|r_{2}-r_{1} \right|^{3}}\left( \vec{r}_{2}-\vec{r}_{1}\right)=-\vec{F}_{21}\left( 1 \right)$,

где $ \epsilon_0=8,85\bullet 10^{-12}$ Ф/м – электрическая постоянная; $\vec F_{12 }$ — сила, действующая на заряд $q_2$ со стороны заряда $q_1$.

Рисунок 1. Закон Кулона. Автор24 — интернет-биржа студенческих работ

Замечание 2

Одноименные заряды отталкиваются, противоположные притягиваются.

Закон Кулона – это основной закон электростатики.

Для вычисления сил взаимодействия заряженных тел произвольных форм и размеров используют принцип суперпозиции, который можно сформулировать следующим образом:

Взаимодействие пары точечных зарядов не изменяется, если внести третий заряд. Он будет взаимодействовать с первыми двумя зарядами.

Закон Ампера

Датский физик Г. Эрстед обнаружил, что магнитная стрелка, при нахождении рядом с проводом с током может поворачиваться. Данное открытие стало основанием для вывода о связи магнитных и электрических явлений. Основным в открытии Эрстеда было то, что магнит реагировал на перемещающийся электрический заряд. Появилось понимание того, что магнитное поле создается перемещающимся зарядом.

Проводя анализ экспериментов Эрстеда, А. Ампер выдвинул гипотезу о том, что земной магнетизм порождается токами, которые обтекают нашу планету в направлении с запада на восток.

Вывод был сделан следующий:

Магнитные свойства каждого тела определены замкнутыми электрическими токами в нем.

Ампер установил, что два проводника с токами взаимодействуют. Если токи в параллельных проводниках однонаправленные, то эти проводники притягиваются.

Результатом экспериментов Ампера стал закон, который назвали его именем.

Сила взаимодействия пары контуров с током зависит от силы тока в каждом контуре и уменьшается при увеличении расстояния между рассматриваемыми контурами:

$d\vec{F}_{12}=\frac{\mu_{0}}{4\pi }\frac{I_{1}I_{2}(d\vec{l}_{2}\times(d\vec{l}_{1}\times \vec{r}_{12})}{r_{12}^{3}}\left( 2 \right)$,

где $\mu_0=4\pi\bullet 10^{-7}$ Н/$A^2$ — магнитная постоянная; $ d\vec F_{12}$ – сила, с которой первый элемент с током действует на второй. Выражение (2) содержит двойное векторное произведение; $I_1; I_2$ — силы токов, которые текут в проводниках; $I_1d\vec l_1$; $I_2d\vec l_2$ — элементы токов (рис.2).

Рисунок 2. Закон Ампера. Автор24 — интернет-биржа студенческих работ

Закон Био – Савара – Лапласа

Проводники с током воздействуют друг на друга, посредством магнитных полей, которые их окружают.

Введем векторную величину $\vec B$, которая будет характеристикой магнитного поля. Для этого параметра поля был установлен экспериментально закон, который получил название по именам его первооткрывателей, закон Био – Савара- Лапласа:

$dB=\frac{\mu_{0}}{4\pi }\frac{Idl}{r^{2}}\sin {\alpha \, \left( 3\right),}$,

где $Idl$ — элемент с током, который создает магнитное поле; $r$ — расстояние до точки в которой поле рассматривается поле; $\alpha$ — угол между векторами $d\vec l$ и $\vec r$.

Полученный вектор индукции нормален к векторам $d\vec l$ и $\vec r$, его направление определяют при помощи правила буравчика:

Если правый винт поворачивать по направлению тока, то вектор индукции в каждой точке параллелен направлению бесконечно малого перемещения конца рукоятки буравчика.

Замечание 3

Закон Био – Савара- Лапласа играет такую же роль в магнитостатике, как закон Кулона в электростатике.

Закон Ома

В начале XIX века Г. Ом рассматривая процессы течения электрического тока в цепи, имеющей источник установил, что:

$I=\frac{Ɛ}{r+R}\left( 4 \right)$,

где $I$ — сила тока в цепи; $Ɛ$ — электродвижущая сила источника тока; $r$ — внутреннее сопротивление источника; $R$ — сопротивление цепи (внешнее). Выражение (4) описывает ситуацию в замкнутой цепи.

Если рассматривать участок цепи, по которому течет ток, то закон Ома представляется в виде:

$I=\frac{U}{R}\left( 5 \right)$.

где $U$ — напряжение участка; $R$ — сопротивление участка.

Если участок цепи содержит источник, то закон Ома предстанет в виде:

$IR=Ɛ-Ir$(6).

Выражение (6) означает, что напряжение на нагрузке меньше ЭДС на величину, равную падению напряжения ($Ir$) на внутреннем сопротивлении источника.

Закон Ома в виде (4-6) называют законом в интегральной форме.

Закон Ома в дифференциальной форме можно записать как:

$\vec{j}=\frac{1}{\rho }\vec{E}\left( 7 \right)$,

где $\vec j$ — вектор плотности тока; ρ – удельное сопротивление проводника; $\vec E$ — вектор напряженности электрического поля.

Закон индукции Фарадея

Электромагнитная индукция была открыта Фарадеем в 1881 году.

Фарадей понимал электромагнитную индукцию как возбуждение токов в проводниках под воздействием магнитного поля.

Экспериментально доказано, что электродвижущая сила (ЭДС) ($Ɛ $) индукции в контуре пропорциональна скорости изменения магнитного потока сквозь рассматриваемый контур. В Международной системе единиц (СИ) данный результат выражен формулой:

$Ɛ=-\frac{dФ}{dt}\left( 8 \right)$,

где $Ф$ -переменный магнитный поток через замкнутый контур или его часть.

В общем случае изменение магнитного потока сквозь плоский контур вызвано:

  • переменным во времени магнитным полем;
  • движением контура в поле и переменой его ориентации.

Уравнения Максвелла

Максвелл доказал, что сущностью электромагнитной индукции стало создание магнитным полем вихревого электрического поля. Индукционный ток является вторичным эффектом, который появляется в проводящих веществах. Трактовка электромагнитной индукции, которую дал Максвелл стала более общей.

Уравнения Максвелла стали математическим основанием классического электромагнетизма.

Запишем их в виде системы:

$rot\, \vec{E}=-\frac{\partial \vec{B}}{\partial t}\left( 9 \right)$,

$rot\, \vec{H}=\vec{j}+\frac{\partial \vec{D}}{\partial t}\left( 10 \right)$,

$div\, \vec{D}=\rho \left( 11 \right)$,

$div\, \vec{B}=0\left( 12 \right)$.

В выражениях (9)- (12) мы имеем:
$\vec E$ и $\vec D$ — напряженность и индукция электрического поля;

$\vec H$ и $\vec B$ — напряженность и магнитная индукции;

$\rho$ — объемная плотность электрического заряда;

$\vec j$ — плотность тока.

Уравнения Максвелла у нас представлены в дифференциальной форме. Для однозначного описания электромагнитных полей уравнения Максвелла дополняют материальными уравнениями среды. В общем виде они записываются в виде функций:

$\vec D=\vec D(\vec E)$; $\vec B=\vec B(\vec H)$; $\vec j=\vec j(\vec E)$.

Электромагнетизм — это… Что такое Электромагнетизм?

Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд (электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействии с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие с электромагнитным полем (электрический ток может быть рассмотрен при этом как совокупность движущихся заряженных частиц). Любое электрическое и магнитное взаимодействие между заряженными телами рассматривается в современной физике как осуществляющееся через посредство электромагнитного поля, и, следовательно, также является предметом электродинамики.

Чаще всего под термином электродинамика по умолчанию понимается классическая (не затрагивающая квантовых эффектов) электродинамика; для обозначения современной квантовой теории электромагнитного поля и его взаимодействия с заряженными частицами обычно используется устойчивый термин квантовая электродинамика.

Основным содержанием классической электродинамики является описание свойств электромагнитного поля и его взаимодействия с заряженными телами (заряженные тела «порождают» электромагнитное поле, являются его «источниками», а электромагнитное поле в свою очередь действует на заряженные тела, создавая электромагнитные силы). Это описание, кроме определения основных объектов и величин, таких как электрический заряд, электрическое поле, магнитное поле, электромагнитный потенциал, сводится к уравнениям Максвелла в той или иной форме и формуле силы Лоренца, а также затрагивает некоторые смежные вопросы (относящиеся к математической физике, приложениям, вспомогательным величинам и вспомогательным формулам, важным для приложений, как например вектор плотности тока или эмпирический закона Ома). Также это описание включает вопросы сохранения и переноса энергии, импульса, момента импульса электромагнитным полем, включая формулы для плотности энергии, вектора Пойнтинга и т.п.

Иногда под электродинамическими эффектами (в противоположность электростатике) понимают те существенные отличия общего случая поведения электромагнитного поля (например, динамическую взаимосвязь между меняющимися электрическим и магнитным полем) от статического случая, которые делают частный статический случай гораздо более простым для описания, понимания и расчетов.

Свойства статического (не меняющегося со временем или меняющегося достаточно медленно, чтобы «электродинамическими эффектами» в описанном выше смысле можно было пренебречь) электрического поля и его взаимодействия с электрически заряженными телами (электрическими зарядами) описывает отдельный раздел физики — электростатика, хотя являющийся в принципе частным разделом электродинамики, но имеющий самостоятельное значение из-за сильного упрощения всех расчётов в этом случае.

Еще одним сходным частным случаем электродинамики является магнитостатика, исследующая постоянные токи и постоянные магнитные поля (поля не меняются во времени или меняются настолько медленно, что быстротой этих изменений в расчете можно пренебречь).

Электродинамика лежит в основе физической оптики, физики распространения радиоволн, а также пронизывает практически всю физику, так как почти во всех разделах физики приходится иметь дело с электрическими полями и зарядами, а часто и с их нетривиальными быстрыми изменениями и движениями. Кроме того, электродинамика является образцовой физической теорией (и в классическом и в квантовом своем варианте), сочетающей очень большую точность расчетов и предсказаний с влиянием теоретических идей, родившихся в ее области, на другие области теоретической физики.

Электродинамика имеет огромное значение в технике и лежит в основе: радиотехники, электротехники, различных отраслей связи и радио.

История

В 1832 году английский физик Майкл Фарадей теоретически предсказал существование электромагнитного излучения.

В 1864 году Дж. К. Максвелл впервые опубликовал полную основных уравнений «классической электродинамики», описывающие эволюцию электромагнитного поля и его взаимодействие с зарядами и токами.

В ? году Лоренц завершил построение классической электродинамики, описав взаимодействие электромагнитного поля с (движущимися) точечными заряженными частицами.

В середине XX века была создана квантовая электродинамика — одна из наиболее точных физических теорий.

См. также

Ссылки


Wikimedia Foundation.
2010.

Электромагнетизм* — это… Что такое Электромагнетизм*?

— Начало учению об электромагнитных явлениях положено открытием Эрстеда. В 1820 г. Эрстед показал, что проволока, по которой течет электрический ток, вызывает отклонение магнитной стрелки. Он подробно исследовал это отклонение с качественной стороны, но не дал общего правила, по которому можно было бы определять направление отклонения в каждом отдельном случае. Вслед за Эрстедом открытия пошли одно за другим. Ампер (1820) опубликовал свои работы о действии тока на ток или тока на магнит. Амперу принадлежит общее правило для действия тока на магнитную стрелку: если вообразить себя расположенным в проводнике лицом к магнитной стрелке и притом так, чтобы ток имел направление от ног к голове, то северный полюс отклоняется влево. Далее мы увидим, что Ампер свел явления электромагнитные к явлениям электродинамическим (1823). К 1820 г. относятся также работы Араго, который заметил, что проволока, по которой течет электрический ток, притягивает к себе железные опилки. Он же намагнитил впервые железные и стальные проволоки, помещая их внутрь катушки медных проволок, по которым проходил ток. Ему же удалось намагнитить иглу, поместив ее в катушку и разрядив лейденскую банку через катушку. Независимо от Араго намагничивание стали и железа током было открыто Дэви.

Первые количественные определения действия тока на магнит точно так же относятся к 1820 г. и принадлежат Био и Савару. Эти ученые из своих опытов вывели следующее:

Если укрепить маленькую магнитную стрелку sn вблизи длинного вертикального проводника AB и астазировать земное поле магнитом NS (фиг. 1), то можно обнаружить следующее:

1. При прохождении тока через проводник магнитная стрелка устанавливается своей длиной под прямым углом к перпендикуляру, опущенному из центра стрелки на проводник.

2. Сила, действующая на тот или другой полюс n и s перпендикулярна к плоскости, проведенной через проводник и данный полюс

3.


Сила, с которой действует на магнитную стрелку данный ток, проходящий по очень длинному прямолинейному проводнику, обратно пропорциональна расстоянию от проводника до магнитной стрелки.

Все эти наблюдения и другие могут быть выведены из следующего элементарного количественного закона, известного под именем закона Лапласа-Био-Савара:

dF

= k(imSin θ ds)/r2, (1),

где dF — действие элемента тока на магнитный полюс; i — сила тока; m — количество магнетизма, θ — угол, составляемый направлением тока в элементе с линией, соединяющей полюс с элементом тока; ds — длина элемента тока; r —расстояние рассматриваемого элемента от полюса; k — коэффициент пропорциональности.

На основании закона действие равно противодействию, Ампер заключил, что магнитный полюс должен действовать на элемент тока с такой же силой

= k(imSin θ ds)/r2, (2)

прямо противоположной по направлению силе dF, точно также действующей по направлению, составляющему прямой угол с плоскостью, проходящей через полюс и данный элемент. Хотя выражения (1) и (2) хорошо согласуются с опытами, тем не менее на них приходится смотреть не как на закон природы, а как на удобное средство описывать количественную сторону процессов. Главная причина этого в том, что мы не знаем никаких токов, кроме замкнутых, и, следовательно, допущение элемента тока в сущности неправильно. Далее, если мы прибавим к выражениям (1) и (2) какие-нибудь функции, ограниченные только условием, что интеграл их по замкнутому контуру равен нулю, то согласие с опытами будет не менее полное.

Все факты вышеуказанные приводят к выводу, что электрический ток вызывает вокруг себя магнитное поле. Для магнитной силы этого поля должны быть справедливы все законы, справедливые для магнитного поля вообще. В частности, вполне уместно введением понятия о силовых линиях магнитного поля, вызываемого электрическим током. Направление силовых линий в этом случае может быть обнаружено обычным способом при посредстве железных опилок. Если пропустить вертикальную проволоку с током через горизонтальный лист картона и насыпать на картон опилок, то при легком постукивании опилки расположатся концентрическими кругами, если только проводник достаточно длинен. Если проводник имеет форму замкнутого вертикального круга, то на горизонтальном сечении опилки расположатся приблизительно так, как показано на фиг. 2.

Так как силовые линии вокруг проволоки замыкаются и так как силовая линия определяет путь, по которому двигалась бы единица магнетизма в данном поле, то ясно, что можно вызвать вращение магнитного полюса вокруг тока. Первый прибор, в котором подобное вращение было осуществлено, был построен Фарадеем. Очевидно, что по силе магнитного поля можно судить о силе тока. К этому вопросу мы сейчас и подойдем.

Рассматривая магнитный потенциал очень длинного прямолинейного тока, мы легко можем доказать, что этот потенциал многозначен. В данной точке он может иметь бесконечно большое число различных значений, разнящихся одно от другого на 4 kmi π , где k — коэффициент, остальные буквы известны. Этим и объясняется возможность непрерывного вращения магнитного полюса вокруг тока. 4 kmi π и есть работа, совершаемая при одном обороте полюса; она берется за счет энергии источника тока. Особый интерес представляет случай замкнутого тока. Замкнутый ток мы можем себе представить в виде петли, сделанной на проволоке, по которой течет ток. Петля имеет произвольную форму. Два конца петли свернуты в жгут (шнур) и идут к далеко поставленному элементу. Опыт показывает, что жгут, составленный из двух проводников, по которым ток течет в противоположных направлениях и которые навиты один на другой, не производит магнитного поля. Элемент предполагается далеко расположенным. Следовательно, остается только петля, которую можно рассматривать, как замкнутый ток. Рассматривая магнитный потенциал такого замкнутого тока в какой-нибудь точке P и сравнивая его с потенциалом в той же точке двойного магнитного слоя, ограниченного тем же контуром, что и наш ток, мы придем к такому выводу (как известно, двойным магнитным слоем называется бесконечно тонкий листок, ограниченный данным контуром и намагниченный перпендикулярно к своей поверхности; произведение σε — поверхностной плотности намагничивания на толщину слоя — называется магнитной силой листка; обозначим ее через ф).

Если сила двойного магнитного слоя численно равна ki и если двойной магнитный слой расположен на поверхности S (фиг. 3) таким образом, что его положительная сторона (сев. магнетизм) приходится с той стороны, откуда ток представляется идущим обратно часовой стрелке, то потенциал в каких-либо точках P и Р’ от двойного магнитного слоя и от замкнутого тока отличается только на величину постоянную, т. е. не зависящую от координат.

Обозначим потенциалы от замкнутого тока через Ω и Ω’, а от двойного магнитного слоя через V и V’; телесный угол, под которым из точек P и P’ виден контур, обозначим через ω и ω ‘.

Тогда мы будем иметь

Ω = ki ω + С, Ω ‘ = ki ω ‘ + C, (3)

V

= фω, W’ = фω ‘

Итак, силы, с которыми действуют на данное количество магнетизма замкнутый ток и двойной магнитный слой, ограниченный тем же контуром, что и ток, и удовлетворяющий указанным выше двум условиям, равны и по величине и по направлению. Следовательно, любой замкнутый ток можно заменить эквивалентным ему двойным магнитным слоем. Такой способ рассмотрения замкнутых токов приводит к установлению электромагнитной единицы силы тока.

Условие эквивалентности есть ф = ki приняв k = 1, получим i = 1, если ф = 1. Это и есть электромагнитная единица. Словами эта теорема может быть выражена так.

Электромагнитная единица силы тока есть сила такого тока, которые, проходя по замкнутому контуру, оказывает на данное внешнее количество магнетизма то же действие, что и двойной магнитный слой, ограниченный тем же контуром и обладающий силой ф = 1. Отсюда сейчас получаются измерения электромагнитной единицы силы тока.

[i] = [ ф ] = [m] ε / S = [L3/2M ½T—1] / [L] = [L½M ½T—1] (4)

Рассматривая работу, совершаемую при передвижении единицы количества северного магнетизма в магнитном поле замкнутого тока по замкнутой кривой из данной точки снова в первоначальное положение, можно убедиться в том, что эта работа равна 0, когда кривая движения единицы магнетизма не охватывает собой линии тока (фиг. 4, кривые РР 1P2 Р , РР 1′ Р 2 ‘Р ) и равна ╠ 4 π i, когда кривая движения охватывает собой линию тока (кривая QQ’Q2Q1Q).

Это происходит от того, что, переходя через двойной магнитный слой, потенциал меняется не непрерывно, а скачком на ╠ 4 π i. Следовательно, если единица количества магнетизма n раз обернется вокруг тока, то работа будет ╠ 4π ni. Мы видим, что и потенциал замкнутого тока есть функция многозначная с периодом ╠ 4 π i . Общее выражением для потенциала замкнутого тока, т. е. для величины работы, необходимой для переведения единицы северного магнетизма из бесконечности в данную точку, равно

Ω = ╠ i ω + п4π i. (5)

Прежде, чем пойти дальше в рассмотрении электромагнитных явлений, нам надо установить понятие о магнитном потоке.

Пусть H есть нормальная к элементу поверхности dS слагающая магнитной силы поля. Тогда через элемент поверхности dS проходит, как говорят, магнитный силовой поток HdS.

Выражение это требует введения еще одного множителя, если мы примем во внимание магнитную проницаемость среды и если нам надо обобщить вывод на случай нескольких сред. В таком случае его пишут так: μ HdS, и называют потоком магнитной индукции, или просто магнитным потоком через элемент поверхности. Если мы от элемента поверхности перейдем к определенной площади, то надо взять двойной интеграл от выражения μ HdS. Условимся говорить, что из данной поверхности исходит одна силовая трубка, если

∫∫ μ HdS = 1.

Тогда вообще μ HdS = dN

и

∫∫ μ HdS = N (6)

прямо дают число силовых трубок N, проходящих через данную поверхность. Выражение μ HdS не теряет свойства непрерывности при переходе из одной среды в другую.

Далее, в данном магнитном потоке для любого сечения S справедливо соотношение ∫∫ μ HndS = const, где Hn — нормальная производящая магнитной силы. Это свойство уподобляет магнитный поток потоку несжимаемой жидкости. О силовых трубках магнитного потока прежде всего предполагают, что они не начинаются у одного полюса и кончаются у другого; а что они внутри магнита идут от второго полюса к первому и, следовательно, замкнуты сами на себя (фиг. 5). Следовательно, мы имеем замкнутую магнитную цепь.

Рассмотрим одну силовую трубку этой цепи. Пусть её сечение dq. Возьмем элемент силовой линии dl в этой трубке. Работа необходимая, чтобы обвести вокруг по этой силовой линии единицу количества магнетизма пусть будет равна А. Она называется магнитодвижущей силой.

Очевидно,

А

= ∫Hdl. (7)

С другой стороны, магнитный поток равняется

N

= μ Hdq или H = N/ μ dq, (8)

отсюда

A

= N∫(dl/ μ dq),

или

N

= А/(∫dl/μ dq) = [∫Hdl] /[ ∫(1/ μ )(dl/ dq)]. (9)

Формула полученная весьма похожа на формулу Ома. Магнитный поток играет роль силы тока ∫ Hdl — магнитодвижущая сила, аналогичная электродвижущей силе в формуле Ома ∫(1/μ)(dl/ dq), играет роль магнитного сопротивления. Оно, подобно электрическому, прямо пропорционально длине и обратно пропорционально поперечному сечению. 1/μ — удельное магнитное сопротивление.

Хевисайд предложил называть величину ∫(1/μ)(dl/ dq) магнитной неподатливостью. Обозначая ее одной буквой W, мы получаем известное соотношение A = NW,т. е. магнитодвижущая сила равна произведению магнитного потока на магнитное сопротивление.

Перейдем теперь снова к Э. Определим магнитную силу внутри соленоида. Вообразим себе тонкостенную трубку сечения q и длины l; q предполагается малым сравнительно с l. В стенках течет ток; направление токовых линий перпендикулярно к направлению оси трубки. Осуществить этот случай можно, свив проволоку в спираль и пропуская через нее ток (соленоид, фиг. 6).

Если у соленоида на длину l приходится n витков и по нему течет ток i, то это равносильно тому, как если бы обороты соленоида не были изолированы один от другого и если бы в образованной при этом сплошной металлической трубке протекал ток равный ni. Внутри соленоида магнитные силовые линии будут параллельны оси соленоида. Применим к магнитному потоку соленоида только что полученное выражение для магнитной цепи. Мы видели, что если провести единицу магнетизма по замкнутой кривой вокруг проволоки с током i, то производится работа 4π i. Следовательно, магнитодвижущая сила соленоида из n оборотов и с силой тока i будет равна 4π ni.

Что касается сопротивления магнитной цепи, то трубки магнитной индукции, выйдя из соленоида, где они параллельны оси соленоида, замкнутся через внешнее пространство. При этом сечение сильно возрастет и, следовательно, сопротивление будет мало по сравнению с сопротивлением внутри соленоида. Мы можем пренебречь первым сравнительно со вторым. Тогда выражение для магнитного потока напишется так: N = A/W, A = 4 π ni,

W

= l/q, N = 4 π niq/l.

Магнитная сила внутри соленоида

H

= N/q = 4 π ni/l. (10)

Если оба конца соленоида свести и устроить замкнутый соленоид, то силовые линии вовсе не выйдут наружу, и вышенаписанные формулы становятся строго верными. Внешнего действия такой соленоид не обнаружит, так как для каждой внешней замкнутой кривой магнитодвижущая сила = 0.

Если оба конца свободны, то соленоид должен действовать как магниты. Количество магнетизма полюса может быть измерено таким образом m = N/4 π = niq/l.

Эти формулы есть следствие формулы (2). Число силовых линий значительно возрастет, если ввести в соленоид железный сердечник, так как тогда уменьшится сопротивление магнитной цепи.

Соответственно этому получатся и более мощные магниты. На этом основано устройство электромагнитов. Внутри катушки из изолированной проволоки (соленоида) помещается сердечник из мягкого железа.

Число линий сил внутри соленоида будет

4 π ni /(1/ μ) (l/q). (11)

Заметим, что только что написанная формула в несколько более общем виде

N

= (Σ 4 π ni)/ [ Σ (1/ μ) (l /q)] играет большую роль в электротехнике. Она известна под именем формулы Каппа и братьев Гопкинсонов. Итак, соленоид с железным сердечником есть электромагнит. Э. придается самая разнообразная форма. Фиг. 7 изображает прямой электромагнит, фиг. 8 обыкновенный большой подковообразный магнит; на таблице Электромагнит, фиг. 5 представлен горизонтальный электромагнит Румкорфа, особенно удобный для исследования магнитооптических явлений; фиг. 9 — электромагнит Джоуля, очень большой подъемной силы, так как в нем сердечник очень широкий и очень короткий, т. е. очень малого сопротивления.

Электромагниты значительно превосходят все другие магниты по силе, и только благодаря им и стало возможно исследование многих свойств и явлений в магнитном поле, напр., магнитных свойств всех тел (пара- и диамагнетизм), магнитного вращения плоскости поляризации, магнитострикция, явления Керра, Зеемана, Холля, гистерезис etc.

Магнитные свойства соленоида привели Ампера к выводу, что все электромагнитные явления в сущности суть электродинамические и что всякий магнит есть соленоид. Именно Ампер предположил, что можно каждый кусок железа или стали представлять себе состоящим из маленьких молекулярных магнитов, которые суть не что иное как частицы того же железа или стали, но вокруг которых течет ток в определенном направлении. Явление намагничивания и состоит в ориентировке всех этих магнитиков параллельно друг другу. Тогда внутри магнита токи никакого действия не окажут, так как рядом с каждым током, текущим справа налево, непременно будет ток обратного направления. Токи же на поверхности сложатся в один соленоидальный. Следовательно, магнит есть соленоид. Многие, хотя не все, явления магнетизма хорошо объясняются теорией Ампера. Однако мы видели, что удобен и вполне возможен и обратный путь, когда замкнутые токи рассматриваются как двойные магнитные слои, следовательно, явления электродинамические сводятся к электромагнитным. Таким образом, можно выяснить все явления электромагнетизма, не прибегая к действию на расстояние. Выводится и правило Ампера и его же закон элементарного действия магнитного поля на элемент тока. В заключение укажу на выражение потенциальной энергии двойного магнитного слоя или замкнутого тока.

P

= — фN для двойного магнитного слоя.

P

= — iN для замкнутого тока. Именно из этого выражения исходя и выводится увеличение параметра тока в магнитном поле и элементарный закон действия магнитного ноля на ток.

К. Баумгарт.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон.
1890—1907.

Электромагнетизм — это… Что такое Электромагнетизм?

Начало учению об электромагнитных явлениях положено открытием Эрстеда. В 1820 г. Эрстед показал, что проволока, по которой течет электрический ток, вызывает отклонение магнитной стрелки. Он подробно исследовал это отклонение с качественной стороны, но не дал общего правила, по которому можно было бы определять направление отклонения в каждом отдельном случае. Вслед за Эрстедом открытия пошли одно за другим. Ампер (1820) опубликовал свои работы о действии тока на ток или тока на магнит. Амперу принадлежит общее правило для действия тока на магнитную стрелку: если вообразить себя расположенным в проводнике лицом к магнитной стрелке и притом так, чтобы ток имел направление от ног к голове, то северный полюс отклоняется влево. Далее мы увидим, что Ампер свел явления электромагнитные к явлениям электродинамическим (1823). К 1820 г. относятся также работы Араго, который заметил, что проволока, по которой течет электрический ток, притягивает к себе железные опилки. Он же намагнитил впервые железные и стальные проволоки, помещая их внутрь катушки медных проволок, по которым проходил ток. Ему же удалось намагнитить иглу, поместив ее в катушку и разрядив лейденскую банку через катушку. Независимо от Араго намагничивание стали и железа током было открыто Дэви.

Первые количественные определения действия тока на магнит точно так же относятся к 1820 г. и принадлежат Био и Савару. Эти ученые из своих опытов вывели следующее:

Если укрепить маленькую магнитную стрелку sn вблизи длинного вертикального проводника AB и астазировать земное поле магнитом NS (фиг. 1), то можно обнаружить следующее:

1. При прохождении тока через проводник магнитная стрелка устанавливается своей длиной под прямым углом к перпендикуляру, опущенному из центра стрелки на проводник.

2. Сила, действующая на тот или другой полюс n и s перпендикулярна к плоскости, проведенной через проводник и данный полюс

3.


Сила, с которой действует на магнитную стрелку данный ток, проходящий по очень длинному прямолинейному проводнику, обратно пропорциональна расстоянию от проводника до магнитной стрелки.

Все эти наблюдения и другие могут быть выведены из следующего элементарного количественного закона, известного под именем закона Лапласа-Био-Савара:

dF = k(imSinθds)/r 2, (1),

где dF — действие элемента тока на магнитный полюс; i — сила тока; m — количество магнетизма, θ — угол, составляемый направлением тока в элементе с линией, соединяющей полюс с элементом тока; ds — длина элемента тока; r —расстояние рассматриваемого элемента от полюса; k — коэффициент пропорциональности.

На основании закона действие равно противодействию, Ампер заключил, что магнитный полюс должен действовать на элемент тока с такой же силой

= k(imSinθds)/r 2, (2)

прямо противоположной по направлению силе dF, точно также действующей по направлению, составляющему прямой угол с плоскостью, проходящей через полюс и данный элемент. Хотя выражения (1) и (2) хорошо согласуются с опытами, тем не менее на них приходится смотреть не как на закон природы, а как на удобное средство описывать количественную сторону процессов. Главная причина этого в том, что мы не знаем никаких токов, кроме замкнутых, и, следовательно, допущение элемента тока в сущности неправильно. Далее, если мы прибавим к выражениям (1) и (2) какие-нибудь функции, ограниченные только условием, что интеграл их по замкнутому контуру равен нулю, то согласие с опытами будет не менее полное.

Все факты вышеуказанные приводят к выводу, что электрический ток вызывает вокруг себя магнитное поле. Для магнитной силы этого поля должны быть справедливы все законы, справедливые для магнитного поля вообще. В частности, вполне уместно введением понятия о силовых линиях магнитного поля, вызываемого электрическим током. Направление силовых линий в этом случае может быть обнаружено обычным способом при посредстве железных опилок. Если пропустить вертикальную проволоку с током через горизонтальный лист картона и насыпать на картон опилок, то при легком постукивании опилки расположатся концентрическими кругами, если только проводник достаточно длинен. Если проводник имеет форму замкнутого вертикального круга, то на горизонтальном сечении опилки расположатся приблизительно так, как показано на фиг. 2.

Так как силовые линии вокруг проволоки замыкаются и так как силовая линия определяет путь, по которому двигалась бы единица магнетизма в данном поле, то ясно, что можно вызвать вращение магнитного полюса вокруг тока. Первый прибор, в котором подобное вращение было осуществлено, был построен Фарадеем. Очевидно, что по силе магнитного поля можно судить о силе тока. К этому вопросу мы сейчас и подойдем.

Так как силовые линии вокруг проволоки замыкаются и так как силовая линия определяет путь, по которому двигалась бы единица магнетизма в данном поле, то ясно, что можно вызвать вращение магнитного полюса вокруг тока. Первый прибор, в котором подобное вращение было осуществлено, был построен Фарадеем. Очевидно, что по силе магнитного поля можно судить о силе тока. К этому вопросу мы сейчас и подойдем.

Рассматривая магнитный потенциал очень длинного прямолинейного тока, мы легко можем доказать, что этот потенциал многозначен. В данной точке он может иметь бесконечно большое число различных значений, разнящихся одно от другого на 4 kmiπ, где k — коэффициент, остальные буквы известны. Этим и объясняется возможность непрерывного вращения магнитного полюса вокруг тока. 4kmiπ и есть работа, совершаемая при одном обороте полюса; она берется за счет энергии источника тока. Особый интерес представляет случай замкнутого тока. Замкнутый ток мы можем себе представить в виде петли, сделанной на проволоке, по которой течет ток. Петля имеет произвольную форму. Два конца петли свернуты в жгут (шнур) и идут к далеко поставленному элементу. Опыт показывает, что жгут, составленный из двух проводников, по которым ток течет в противоположных направлениях и которые навиты один на другой, не производит магнитного поля. Элемент предполагается далеко расположенным. Следовательно, остается только петля, которую можно рассматривать, как замкнутый ток. Рассматривая магнитный потенциал такого замкнутого тока в какой-нибудь точке P и сравнивая его с потенциалом в той же точке двойного магнитного слоя, ограниченного тем же контуром, что и наш ток, мы придем к такому выводу (как известно, двойным магнитным слоем называется бесконечно тонкий листок, ограниченный данным контуром и намагниченный перпендикулярно к своей поверхности; произведение σε — поверхностной плотности намагничивания на толщину слоя — называется магнитной силой листка; обозначим ее через ф).

Если сила двойного магнитного слоя численно равна ki и если двойной магнитный слой расположен на поверхности S (фиг. 3) таким образом, что его положительная сторона (сев. магнетизм) приходится с той стороны, откуда ток представляется идущим обратно часовой стрелке, то потенциал в каких-либо точках P и Р’ от двойного магнитного слоя и от замкнутого тока отличается только на величину постоянную, т. е. не зависящую от координат.

Так как силовые линии вокруг проволоки замыкаются и так как силовая линия определяет путь, по которому двигалась бы единица магнетизма в данном поле, то ясно, что можно вызвать вращение магнитного полюса вокруг тока. Первый прибор, в котором подобное вращение было осуществлено, был построен Фарадеем. Очевидно, что по силе магнитного поля можно судить о силе тока. К этому вопросу мы сейчас и подойдем.

Обозначим потенциалы от замкнутого тока через Ω и Ω’, а от двойного магнитного слоя через V и V’; телесный угол, под которым из точек P и P’ виден контур, обозначим через ω и ω’.

Тогда мы будем иметь

Ω = kiω + С, Ω’ = kiω+ C, (3)

V = фω, W’ = фω

Итак, силы, с которыми действуют на данное количество магнетизма замкнутый ток и двойной магнитный слой, ограниченный тем же контуром, что и ток, и удовлетворяющий указанным выше двум условиям, равны и по величине и по направлению. Следовательно, любой замкнутый ток можно заменить эквивалентным ему двойным магнитным слоем. Такой способ рассмотрения замкнутых токов приводит к установлению электромагнитной единицы силы тока.

Условие эквивалентности есть ф = ki приняв k = 1, получим i = 1, если ф = 1. Это и есть электромагнитная единица. Словами эта теорема может быть выражена так.

Электромагнитная единица силы тока есть сила такого тока, которые, проходя по замкнутому контуру, оказывает на данное внешнее количество магнетизма то же действие, что и двойной магнитный слой, ограниченный тем же контуром и обладающий силой ф = 1. Отсюда сейчас получаются измерения электромагнитной единицы силы тока.

[i] = [ф] = [m] ε / S = [L3/2M ½T1] / [L] = [L½M ½T1] (4)

Рассматривая работу, совершаемую при передвижении единицы количества северного магнетизма в магнитном поле замкнутого тока по замкнутой кривой из данной точки снова в первоначальное положение, можно убедиться в том, что эта работа равна 0, когда кривая движения единицы магнетизма не охватывает собой линии тока (фиг. 4, кривые РР1P2Р, РР1Р2‘Р) и равна ±i, когда кривая движения охватывает собой линию тока (кривая QQ’Q2Q1Q).

Так как силовые линии вокруг проволоки замыкаются и так как силовая линия определяет путь, по которому двигалась бы единица магнетизма в данном поле, то ясно, что можно вызвать вращение магнитного полюса вокруг тока. Первый прибор, в котором подобное вращение было осуществлено, был построен Фарадеем. Очевидно, что по силе магнитного поля можно судить о силе тока. К этому вопросу мы сейчас и подойдем.

Это происходит от того, что, переходя через двойной магнитный слой, потенциал меняется не непрерывно, а скачком на ±i. Следовательно, если единица количества магнетизма n раз обернется вокруг тока, то работа будет ± 4πni. Мы видим, что и потенциал замкнутого тока есть функция многозначная с периодом ±i. Общее выражением для потенциала замкнутого тока, т. е. для величины работы, необходимой для переведения единицы северного магнетизма из бесконечности в данную точку, равно

Ω = ± + n4πi. (5)

Прежде, чем пойти дальше в рассмотрении электромагнитных явлений, нам надо установить понятие о магнитном потоке.

Пусть H есть нормальная к элементу поверхности dS слагающая магнитной силы поля. Тогда через элемент поверхности dS проходит, как говорят, магнитный силовой поток HdS.

Выражение это требует введения еще одного множителя, если мы примем во внимание магнитную проницаемость среды и если нам надо обобщить вывод на случай нескольких сред. В таком случае его пишут так: μHdS, и называют потоком магнитной индукции, или просто магнитным потоком через элемент поверхности. Если мы от элемента поверхности перейдем к определенной площади, то надо взять двойной интеграл от выражения μHdS. Условимся говорить, что из данной поверхности исходит одна силовая трубка, если

∫∫μHdS = 1.

Тогда вообще μHdS = dN

и

∫∫μHdS = N (6)

прямо дают число силовых трубок N, проходящих через данную поверхность. Выражение μHdS не теряет свойства непрерывности при переходе из одной среды в другую.

Далее, в данном магнитном потоке для любого сечения S справедливо соотношение ∫∫μHndS = const, где Hn — нормальная производящая магнитной силы. Это свойство уподобляет магнитный поток потоку несжимаемой жидкости. О силовых трубках магнитного потока прежде всего предполагают, что они не начинаются у одного полюса и кончаются у другого; а что они внутри магнита идут от второго полюса к первому и, следовательно, замкнуты сами на себя (фиг. 5). Следовательно, мы имеем замкнутую магнитную цепь.

Так как силовые линии вокруг проволоки замыкаются и так как силовая линия определяет путь, по которому двигалась бы единица магнетизма в данном поле, то ясно, что можно вызвать вращение магнитного полюса вокруг тока. Первый прибор, в котором подобное вращение было осуществлено, был построен Фарадеем. Очевидно, что по силе магнитного поля можно судить о силе тока. К этому вопросу мы сейчас и подойдем.

Рассмотрим одну силовую трубку этой цепи. Пусть её сечение dq. Возьмем элемент силовой линии dl в этой трубке. Работа необходимая, чтобы обвести вокруг по этой силовой линии единицу количества магнетизма пусть будет равна А. Она называется магнитодвижущей силой.

Очевидно,

А = ∫Hdl. (7)

С другой стороны, магнитный поток равняется

N = μHdq или H = N/μdq, (8)

отсюда

A = N∫(dl/μdq),

или

N = А/(∫dl/μdq) = [∫Hdl] /[ ∫(1/μ )(dl/ dq)]. (9)

Формула полученная весьма похожа на формулу Ома. Магнитный поток играет роль силы тока ∫Hdl — магнитодвижущая сила, аналогичная электродвижущей силе в формуле Ома ∫(1/μ)(dl/ dq), играет роль магнитного сопротивления. Оно, подобно электрическому, прямо пропорционально длине и обратно пропорционально поперечному сечению. 1/μ — удельное магнитное сопротивление.

Хевисайд предложил называть величину ∫(1/μ)(dl/ dq) магнитной неподатливостью. Обозначая ее одной буквой W, мы получаем известное соотношение A = NW,т. е. магнитодвижущая сила равна произведению магнитного потока на магнитное сопротивление.

Перейдем теперь снова к Э. Определим магнитную силу внутри соленоида. Вообразим себе тонкостенную трубку сечения q и длины l; q предполагается малым сравнительно с l. В стенках течет ток; направление токовых линий перпендикулярно к направлению оси трубки. Осуществить этот случай можно, свив проволоку в спираль и пропуская через нее ток (соленоид, фиг. 6).

Так как силовые линии вокруг проволоки замыкаются и так как силовая линия определяет путь, по которому двигалась бы единица магнетизма в данном поле, то ясно, что можно вызвать вращение магнитного полюса вокруг тока. Первый прибор, в котором подобное вращение было осуществлено, был построен Фарадеем. Очевидно, что по силе магнитного поля можно судить о силе тока. К этому вопросу мы сейчас и подойдем.

Если у соленоида на длину l приходится n витков и по нему течет ток i, то это равносильно тому, как если бы обороты соленоида не были изолированы один от другого и если бы в образованной при этом сплошной металлической трубке протекал ток равный ni. Внутри соленоида магнитные силовые линии будут параллельны оси соленоида. Применим к магнитному потоку соленоида только что полученное выражение для магнитной цепи. Мы видели, что если провести единицу магнетизма по замкнутой кривой вокруг проволоки с током i, то производится работа 4πi. Следовательно, магнитодвижущая сила соленоида из n оборотов и с силой тока i будет равна 4πni.

Что касается сопротивления магнитной цепи, то трубки магнитной индукции, выйдя из соленоида, где они параллельны оси соленоида, замкнутся через внешнее пространство. При этом сечение сильно возрастет и, следовательно, сопротивление будет мало по сравнению с сопротивлением внутри соленоида. Мы можем пренебречь первым сравнительно со вторым. Тогда выражение для магнитного потока напишется так: N = A/W, A = 4πni,

W = l/q, N = 4πniq/l.

Магнитная сила внутри соленоида

H = N/q = 4πni/l. (10)

Если оба конца соленоида свести и устроить замкнутый соленоид, то силовые линии вовсе не выйдут наружу, и вышенаписанные формулы становятся строго верными. Внешнего действия такой соленоид не обнаружит, так как для каждой внешней замкнутой кривой магнитодвижущая сила = 0.

Если оба конца свободны, то соленоид должен действовать как магниты. Количество магнетизма полюса может быть измерено таким образом m = N/4π = niq/l.

Эти формулы есть следствие формулы (2). Число силовых линий значительно возрастет, если ввести в соленоид железный сердечник, так как тогда уменьшится сопротивление магнитной цепи.

Соответственно этому получатся и более мощные магниты. На этом основано устройство электромагнитов. Внутри катушки из изолированной проволоки (соленоида) помещается сердечник из мягкого железа.

Соответственно этому получатся и более мощные магниты. На этом основано устройство электромагнитов. Внутри катушки из изолированной проволоки (соленоида) помещается сердечник из мягкого железа.

Число линий сил внутри соленоида будет

Число линий сил внутри соленоида будет

ni /(1/μ) (l/q). (11)

Заметим, что только что написанная формула в несколько более общем виде

N = (Σ4πni)/ [Σ1/((μ) ( l /q)] играет большую роль в электротехнике. Она известна под именем формулы Каппа и братьев Гопкинсонов. Итак, соленоид с железным сердечником есть электромагнит. Э. придается самая разнообразная форма. Фиг. 7 изображает прямой электромагнит, фиг. 8 обыкновенный большой подковообразный магнит; на таблице Электромагнит, фиг. 5 представлен горизонтальный электромагнит Румкорфа, особенно удобный для исследования магнитооптических явлений; фиг. 9 — электромагнит Джоуля, очень большой подъемной силы, так как в нем сердечник очень широкий и очень короткий, т. е. очень малого сопротивления.

Электромагниты значительно превосходят все другие магниты по силе, и только благодаря им и стало возможно исследование многих свойств и явлений в магнитном поле, напр., магнитных свойств всех тел (пара- и диамагнетизм), магнитного вращения плоскости поляризации, магнитострикция, явления Керра, Зеемана, Холля, гистерезис etc.

Электромагниты значительно превосходят все другие магниты по силе, и только благодаря им и стало возможно исследование многих свойств и явлений в магнитном поле, напр., магнитных свойств всех тел (пара- и диамагнетизм), магнитного вращения плоскости поляризации, магнитострикция, явления Керра, Зеемана, Холля, гистерезис etc.

Магнитные свойства соленоида привели Ампера к выводу, что все электромагнитные явления в сущности суть электродинамические и что всякий магнит есть соленоид. Именно Ампер предположил, что можно каждый кусок железа или стали представлять себе состоящим из маленьких молекулярных магнитов, которые суть не что иное как частицы того же железа или стали, но вокруг которых течет ток в определенном направлении. Явление намагничивания и состоит в ориентировке всех этих магнитиков параллельно друг другу. Тогда внутри магнита токи никакого действия не окажут, так как рядом с каждым током, текущим справа налево, непременно будет ток обратного направления. Токи же на поверхности сложатся в один соленоидальный. Следовательно, магнит есть соленоид. Многие, хотя не все, явления магнетизма хорошо объясняются теорией Ампера. Однако мы видели, что удобен и вполне возможен и обратный путь, когда замкнутые токи рассматриваются как двойные магнитные слои, следовательно, явления электродинамические сводятся к электромагнитным. Таким образом, можно выяснить все явления электромагнетизма, не прибегая к действию на расстояние. Выводится и правило Ампера и его же закон элементарного действия магнитного поля на элемент тока. В заключение укажу на выражение потенциальной энергии двойного магнитного слоя или замкнутого тока.

P = — фN для двойного магнитного слоя.

P = — iN для замкнутого тока. Именно из этого выражения исходя и выводится увеличение параметра тока в магнитном поле и элементарный закон действия магнитного ноля на ток.

К. Баумгарт.

Магнетизм и электромагнетизм

Стрелка компаса - магнит. Она указывает на северный магнитный полюс ЗемлиСтрелка компаса - магнит. Она указывает на северный магнитный полюс ЗемлиМагнетизм — это невидимая сила, притягивающая или отталкивающая железо и сталь. Предметы, создающие эту силу, называются магнитами, а область вокруг них, где действует сила, называется магнитным полем. Проходя по проводу, электрический ток (читайте статью «Электричество«) создает магнитное поле. Это явление называется электромагнетизмом. С его помощью можно создавать мощные магниты — электромагниты и использовать ток для приведения предметов в движение. Северные полюса магнитов, как и южные, взаимно отталкиваются. Северный полюс одного магнита притягивается к южному полюсу другого. Стрелка компаса — магнит. Она указывает на северный магнитный полюс Земли.

Магнетизм

Слово «магнетизм» происходит от названия местности в Турции. В области Магнезия более 2000 лет назад древние греки обнаружили минорат, притягивающий металлы. Этот минерал представлял со­бой разновидность железной руды и был назван магнетитом. Подвешенный на веревке кусок магнетита вращается, стараясь занять положение «север —  юг». Удлиненные куски магнита – магнитного железняка — когда-то использовались как стрелки компаса. Обычно магнит — это металлическое тело, например железное или стальное, обладающее магнитными свойствами и ведущее себя как магнетит. У магнита есть два полюса — южный и северный.

Стальная игла намагничивается, если провести ею по магниту несколько разСтальная игла намагничивается, если провести ею по магниту несколько разМеталлы, способные намагничиваться, называют  ферромагнетиками. «Мягкие» ферромагнетики, например железо, лег­ко теряют свои магнитные свойства. Сталь — «жесткий» ферромагнетик; она долго сохраняет магнетизм. Такой магнетизм называют индуцированным. Стальная игла намагничивается, если провести ею по магниту несколько раз. В магнитных веществах содержатся особые группы молекул — домены, т.е. малые магниты. Металл намагничен, если все до­мены направлены в одну сторону. Однако при нагревании или ударе направление доменов меняется случайным образом. Когда ферромагнетик находится в ненамагниченном состоянии, домены в нем направлены случайным образом. При намагничивании домены располагаются так, что их одинаковые полюса становятся направлены в одну сторону.

Магнитное поле — это область вокруг магнита, в которой действуют магнитные силы (подробнее в статье «Силы«). Их величину и направление можно показать с помощью линий магнитной индукции. У Земли также есть магнитное поле. Из-за вращения Земли вокруг своей оси расплавленный металл, содержащийся во внешнем ядре, медленно течет и создает магнитное поле Земли. Многие птицы, в том числе и крачки, ориентируются при своих перелётах по силовым линиям магнитного поля.

Направление линий магнитного поля зависит от направления тока в проводеНаправление линий магнитного поля зависит от направления тока в проводеЭлектромагнетизм

Проходящий по проводу электрический ток создает магнитное поле. Это явление называется электромагнетизмом. Провод, намотанный на железный сердечник, при прохождении тока ведет себя как магнитный брусок. Провод в этом случае называют соленоидом. Направление линий магнитного поля зависит от направления тока в проводе. Если ток идет по часовой стрелке, мы смотрим со стороны южного полюса. Если при взгляде с торца ток течет против часовой стрелки, то это северный полюс. Подробнее можно прочитать в статье: Индукция магнитного поля. Соленоид используется в электромагнитах. Его магнитное поле можно включать и выключать, управляя током. Соленоиды также применяются в микрофонах и громкоговорителях.

Электромагниты

Электромагнит — это магнит, который можно включать и выключать при помощи электрического тока. Чтобы создать электромагнит, нужно обмотать железный сердечник проводом — соленоидом. Железо — это мягкий ферромагнетик, т.е. оно теряет магнитные свойства, когда ток исчезает. На электромагнетизме основано действие релейных переключателей и электрических звонков. Электромагниты используются в проекте скоростного поезда – они установлены на рельсах и днищах вагонов. Их полюса отталкивают друг друга, и поезд зависает над рельсами. Трение уменьшается, и скорость поезда возрастает.

Так устроен мощный электромотор - микромоторТак устроен мощный электромотор - микромоторЭлектромоторы

При помощи электромагнетизма электромотор превращает электроэнергию в энергию движения. В простом электромоторе имеется плоский проволочный контур — ротор, помещенный между двумя магнитами. Когда по ротору проходит ток, силы электромагнитного поля ротора и магнитных полей магнитов заставляют ротор вращаться. Когда ротор занимает вертикальное положение, коллектор меняет направление тока, что приводит к обращению направления магнитного поля, а значит, и силы, действующей на ротор. Ротор переворачивается. Когда ротор совершает полный оборот, цикл возобновляется. Электромоторы используются в самых разных машинах, от стиральных машин и фенов до игрушечных автомобилей и поездов. Небольшие электромоторы применяются в микрохирургии и в космической технике. Так устроен мощный электромотор — микромотор «Тошиба» диаметр 0,8 мм (слева). Электромагнит создает постоянное магнитное поле. В магнитном поле вращается ротор.

Такое устройство называется дисковым генераторомТакое устройство называется дисковым генераторомПроизводство электричества

Английский физик Майкл Фарадей (1791 — 1867) обнаружил, что при движении проводника в магнитном поле в про­воднике возникает ток. Фарадей обнаружил появление тока, вращая диск вблизи магнита. Такое устройство называется дисковым генератором. Генератор, или динамо-машина, — это устройство, превращающее энергию движения в электрическую. Принцип ее действия противоположен принципу действия электромотора.

На электростанциях энергию движения от­дает пар, вращающий турбины. Турбины вращают стержень генера­тора, при этом проволочные контуры вращаются между двумя магнитами. В результате возникает ток, меняющий направление после каждого полуоборота. Такой ток называется переменным.

Определение

в кембриджском словаре английского языка

Чтобы правильно дискретизировать фундаментальные законы электромагнетизма , важно оценить их связь с дифференциальной геометрией и алгебраической топологией (теорией когомологий).

Книга сильна по истории не только плазмы, но и атомной физики и электромагнетизма .

Эти примеры взяты из Cambridge English Corpus и из источников в Интернете. Любые мнения в примерах не отражают мнение редакторов Cambridge Dictionary, Cambridge University Press или его лицензиаров.

Еще примеры
Меньше примеров

Я стремлюсь передать богатство тонких математических особенностей, которые проявляются в «простых» задачах вычислительного электромагнетизма .Мы также осознаем существенную разницу между моделями для акустики и электромагнетизмом .

Мне было приятно наблюдать всплеск исследовательской деятельности в области математических аспектов вычислительного электромагнетизма в последние годы..

Электромагнетизм — Википедия

Electromagnetismul este acea ramură a fizicii care studiază sarcinile magnetice i electrice, câmpurile create de acestea (электрическое или магнитное), легальное описание интерактивного dintre.

Efectul Magnetic al curentului electric

Ramurile Principale Ale Electromagnetismului Sun:

  • Electrostatica, Care se ocupă cu studiul sarcinilor electrice aflate in repaus și al câmpurilor generate de acestea.
  • Electrodinamica, care se ocupă cu studiul sarcinilor aflate în mișcare, precum și al câmpurilor generate de acestea.
  • Magnetismul, care se ocupă cu studiul câmpului magnet.

Deși grecii antici cunoșteau proprietățile electrostatice ale chihlimbarului, iar chinezii puteau face magneți bruți din pietre magnetice (около 2700 евро в час), până la sfârșitul secolululiónВ 1785 году французский физик Шарль-Огюстен де Кулон приступил к первому уходу за подтверждением экспериментального объекта сарцинированным электричеством, который был основан на его основе. Matematicienii Simeon Denis Poisson i Carl Friedrich Gauss au dezvoltat o teorie cu Privire la distribuirea произвольно сарцинировал электричество.

О частичном încărcată cu o sarcină pozitivă atrage или частичном încărcată negativ, tinzând să accelereze spre aceasta. Daca aceasta întâmpină rezistență din partea mediului prin care trece, viteza sa se micșorează iar mediul suferă o încălzire.Возможна работа с потоком электричества, производимая с помощью континуума, проводимого в частном порядке, в итальянском языке, Алессандро Вольта в 1800 году. conscină a proprietăților interne ale acesteia. Când cele două borne sunt conectate printr-un проводник, в частности încărcate negativ vor fi «împinse» spre borna pozitivă iar acest process va încălzi firul, acesta opunând rezistență mișcării.Când специфически ajung la borna pozitivă, bateria le va forța in interior spre borna negativă, învingând forțele de rezistență формулирует в legea lui Coulomb. Физический немецкий Георг Симон Ом — это descoperit existența unei constante aconductorului, ca proporție între Intensitatea i rezistența acestuia. Legea lui Ohm nu este universal valabilă in fizică, ci mai degrabă descrie caracteristicile unel clase limitate de materiale solide.

Primele Concepte asupra magnetismlui bazate pe existen doa a doi poli magneti au apărut în secolul XVII i în mare parte datorită Experimentelor lui Coulomb.

Prima legătură între magnetism i electricitate făcuta prin Intermediul Experimentelor fizicianului danez Ганс Кристиан Эрстед, забота в 1819 году об обнаружении переменного магнитного поля, которое отклоняет, а затем устанавливает новый проводник под напряжением электрического. La o săptâmană de la aflarea acestei descoperiri, cercetătorul francez Andre Marie Ampere va демонстрация că doi wirectori purtători de curent electric se vor comporta ca i cei doi poli ai unui магнит.

În 1831 г. физический химический английский Майкл Фарадей: описание că un curent electric poate fi indus într-un fir i fără conectarea acestuia la o baterie, fie prin mișcarea var. Care se dorește generat curentul.Legătura dintre electricitate i магнетизм poate fi cel mai bine redată în termeni asociați câmpului магнитный sau forței ce va acționa într-un anume punct asupra unei sarcini electrice.

Sarcinile electrice staționare produc câmpuri electrice; curenții — sarcini electrice mobile — produc câmpuri magnetice. Aceste descoperiri а.е. Фост redate приемно-о Forma Precisa де către fizicianul englez Джеймс Клерк Максвелл уход în descompunerea ecuaţiilor diferenţiale забочусь Ii Poarta numele găsit relaţia dintre locul şi perioada schimbării câmpurilor Electrice şi magnetice приемно-ун anumit пунктуатором şi respectiv Sarcina şi densitatea curentului în acel punct.По принципу, aceste ecuații разрешить определенную интенсивность câmpului oriunde în orice moment printr-o cunoaștere a sarcinilor electrice și curenților.

Un rezultat neașteptat obținut prin descoperirea acestor ecuații a fost intuirea unui nou tip de câmp Magnetic, заботиться о распространении у viteza luminii sub forma undelor electromagnetice. В 1887 году немецкий физик Генрих Рудольф Герц создал новую базу для передачи радио, радара, телевидения и стал альтернативным телекомуникациям.

Proprietățile câmpurilor magnetice și electrice ale acestor unde sunt similare cu cele ale unei sforiungi, întinse, al carei capăt este mișcat foarte Repede în sus i în jos.

n orice punct ales, sfoara va fi observată ca oscilând cu aceeași frecvență și respectiv cu aceeași perioadă ca i sursa. Punctele alese de-a Lungul sforii la differite distanțe de sursă vor ajunge în punctul maxim pe axa verticală într-un sistem cartezian la momente diferite în timp.

Viteza cu care seprogă mișcarea verticală de-a Lungul sforii din аналогия с номером viteza undei electromagnetice în cazul acesteia, ea fiind o funcție de spațiu, masă și tensiune electrică.Un Instantaneu asupra sforii (după ce a fost în mișcare) va arăta puncte având aceeași dispunere și mișcare, отдельный де о distanță numită Lungimea de unda . Aceasta este egală cu viteza undei raportată la frecvență.

Unități SI по электромагнетизму
Simbol mărime Mărime electrică Unitate de măsură (UM) Simbol UM Transformare în UM фундаментальные
Я Intensitatea curentului электрическая ампер А А = Вт / В = К / с
q Cantitate de electricitate кулон С А · с
U Diferență de Potențial; Forță Electromotoare вольт В Дж / C = кг · м 2 · с −3 · A −1
R, Z, X Rezistență, Impedanță, Reactanță Ом Ом В / А = кг · м 2 · с −3 · A −2
ρ Rezistivitate Ом метр Ом · м кг · м 3 · с −3 · A −2
P Автомобиль электрический ватт Вт В · A = кг · м 2 · с −3
C Емкостной электрический фарад F C / V = ​​кг −1 · м −2 · A 2 · с 4
Elastanță 1 / фарад Ф -1 В / C = кг · м 2 · A −2 · с −4
ε Permitivitate фарад на метро Ф / м кг −1 · м −3 · A 2 · с 4
χ e Susceptibilitate electrică (габаритный)
G, Y, B Conductanță, Admitanță, Susceptanță сименс S Ом −1 = кг −1 · м −2 · с 3 · A 2
σ Conductivitate siemens pe metru См / м кг −1 · м −3 · с 3 · A 2
H Câmp Magnetic, Intensitatea câmpului magnet ампер на метро А / м А · м −1
Φ м Магнитный поток Вебер Вт В · с = кг · м 2 · с −2 · A −1
B Densitatea fluxului Magnetic, Inducție Magnetică, Forța câmpului Magnetic тесла т Вт / м 2 = кг · с −2 · A −1
Reluctanță ампер pe weber А / Вт кг −1 · м −2 · с 2 · A 2
L Inductanță генри H Вт / А = В · с / А = кг · м 2 · с −2 · A −2
μ проницаемость Генри Пе Метру Г / м кг · м · с −2 · A −2
χ м Восприимчивое магнитное (габаритный)

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *