08.07.2024

Как определить мощность участка цепи постоянного тока не имея ваттметра: Измерение мощности в электрических цепях постоянного и переменного токов: способы и формулы

Содержание

Измерение мощности в электрических цепях постоянного и переменного токов: способы и формулы

Очень часто при проектировании электрических схем радиолюбители сталкиваются с проблемой измерения мощности, которую потребляют радиокомпоненты. Специалисты в метрологической сфере рекомендуют два метода, позволяющих вычислить и грамотно рассчитать ее значение. В этом случае нужно разобрать подробнее физический смысл величины, а также ее составляющих, от которых она зависит.

Измерение мощности

Общие сведения

При проектировании устройств нужно уметь правильно рассчитывать мощность электроэнергии электрооборудованием. Это необходимо, прежде всего, для долговечной работы устройства. Если изделие работает на износ, то оно способно выйти из строя сразу или в течение некоторого времени.

Такой вариант считается недопустимым, поскольку существуют виды техники, которые должны работать без отказов (аппарат искусственного дыхания, контроль уровня метана в шахте и так далее), так как от этого зависит человеческая жизнь. К основным характеристикам электрической энергии относятся следующие: мощность, сила тока, напряжение (разность потенциалов) и электропроводимость (сопротивление) материалов.

Мощность потребителя

 измерение мощности в цепях переменного тока

Мощность не следует путать с электрической энергией. Единицей измерения первой является ватт (Вт), название которой произошло от фамилии известного физика Джеймса Уатта. Физическим смыслом 1 Вт является расход электрической энергии за единицу времени, равной 1 секунде (1 Вт = расход 1 джоуля за 1 секунду). Существуют производные единицы измерения: милливатт (1 мВт = 0,001 Вт), киловатт (1 кВт = 1000 Вт), мегаватт (1 МВт = 1000 кВт = 1000000 Вт), гигаватт (1 ГВт = 1000 МВт = 1000000 кВт = 1000000000 Вт) и так далее. Для измерения электрической энергии применяются специальные счетчики, а ее единицей измерения является Вт*ч.

Ватт можно связать с некоторыми физическими величинами: 1 Вт = 1 Дж/с = (1 кг * sqr (м)) / (c * sqr ©) = 1 Н * м / с = 746 л. с. Последнее числовое значение называется электрической лошадиной силой. Ваттметр — измеритель электрической мощности. Однако ее величину можно определить и другим способом. Для этого следует разобрать физические величины, от которых она зависит.

Сила тока

Измерение электрической энергии

Количество электрического заряда, который проходит через токопроводящий материал за единицу времени, называется силой электрического тока. Сокращенно величину называют силой тока или током. Она обозначается литерами «I» или «i» и имеет направление (векторная величина). Измеряется ток в амперах (А). Существуют также производные единицы, образованные при помощи приставок: 1 мА = 0,001 А, 1 кА = 1000 А и так далее. Измерить его значение можно амперметром. Для этого его нужно подключать последовательно в электрическую цепь.

Физическим смыслом тока в 1 А является прохождение электрического заряда в 1 Кл (кулон) за 1 секунду через площадь поперечного сечения S. В 1 кулоне содержится примерно 6,241*10^(18) электронов.

Ток в научной интерпретации классифицируется на постоянный и переменный. Первый вид не изменяет своего направления за единицу времени, но его амплитудные значения могут изменяться. Направление и амплитуда переменного тока изменяется по определенному закону (синусоидальный и несинусоидальный). Основным параметром считается его частота. Определяется тип переменного тока с помощью осциллографа.

Электрическое напряжение

Электрическое напряжение

Из курса физики известно, что каждое вещество состоит из атомов, которые обладают нейтральным зарядом. Они состоят из субатомных частиц. К ним относятся следующие: протоны, электроны и нейтроны. Первые имеют положительный заряд, вторые — отрицательный, а третьи — не заряжены вообще.

Суммарный заряд протонов компенсирует заряд всех электронов. Однако под действием внешних сил это равенство нарушается, и электрон «вырывается» из атома, который уже обладает положительным зарядом. Он притягивает электрон с соседнего атома, и процесс повторяется до тех пор, пока энергия не будет минимальной (меньше энергии «вырывания» электрона).

При межатомном взаимодействии образуется электромагнитное поле с отрицательной или положительной составляющими. Разность между двумя точками противоположных по знаку составляющих называется электрическим напряжением. Работа электромагнитного поля по перемещению точечного электрического заряда из точки А в точку В называется разностью потенциалов. Физический смысл напряжения (U): разность потенциалов в 1 В между двумя точечными зарядами в 1 Кл, на перемещение которых тратится энергия электромагнитного поля, равная 1 Дж.

Единицей измерения является вольт (В). Определить значение разности потенциалов можно с помощью вольтметра, который подключается параллельно. Производными единицами измерения считаются следующие: 1 мВ = 0,001 В, 1 кВ = 1000 В, 1 МВ = 1000 кВ = 1000000 В и так далее.

Сопротивление электрической цепи

Электропроводимость материала зависит от нескольких факторов: электронной конфигурации, типа вещества, геометрических параметров и температуры. Сведения об электронной конфигурации вещества можно получить из периодической таблицы Д. И. Менделеева. Согласно этой информации вещества бывают:

  1. Проводниками.
  2. Полупроводниками.
  3. Диэлектриками.

К первой группе следует отнести все металлы, электролиты (растворы, проводящие ток) и ионизированные газы. Носителями электрического заряда в металлах являются электроны. В растворах их роль выполняют ионы, которые бывают положительными (анионы) и отрицательными (катионы). Свободными носителями заряженных частиц в газах считаются свободные электроны и положительно заряженные ионы.

Полупроводники проводят электричество только при определенных условиях. Например, при воздействии на него внешних сил. Под их действием кулоновские связи электрона с ядром уменьшаются. При этом отрицательно заряженная частица «вырывается». На ее месте образуется «дырка», обладающая положительным зарядом. Она притягивает соседний электрон, вырывая его с атома. В результате этого осуществляется движение электронов и дырок. Изоляторы или диэлектрики вообще не проводят электричество. К ним относятся материалы без свободных носителей заряда, а также инертные газы.

Сопротивление электрической цепи

В проводниках при повышении температурных показателей происходит рост величины сопротивления. При этом происходит разрушение и искажение кристаллической решетки. Заряженные частицы сталкиваются (взаимодействуют) с атомами и другими частицами материала. В результате их движение замедляется, но потом снова возобновляется под действием электромагнитного поля. Процесс этого «взаимодействия» называется электрической проводимостью вещества. Однако в полупроводниках при повышении температуры эта величина уменьшается. К геометрии материалов следует отнести следующие: длину и площадь поперечного сечения.

Сопротивление измеряется в Омах (Ом) при помощи омметра, который подсоединяется параллельно к участку цепи или радиодетали. Существуют производные единицы измерения: 1 кОм = 1000 Ом, 1 МОм = 1000 кОм = 1000000 Ом.

Методы измерения

Методы измерения тока

Мощность можно определить двумя способами: косвенным и прямым. В первом случае это делается при помощи амперметра и вольтметра, а также осциллографа. Измеряются значения напряжения и тока, а затем по формулам вычисляется мощность. Этот способ имеет один недостаток: величина мощности получается с некоторой погрешностью.

При использовании прямого метода используется специальный прибор-измеритель. Он называется ваттметром и показывает мгновенное значение мощности. У каждого из способов есть свои достоинства и недостатки. Какой из методов наиболее оптимален, определяет сам радиолюбитель. Если проектируется какое-либо изделие, которое отличается надежностью, то следует применять прямой метод. В других случаях рекомендуется воспользоваться косвенным методом.

Косвенный способ

Мощность в цепях постоянного и переменного токов определяется различными способами. Для каждого случая существуют свои законы и формулы. Однако мощность можно не рассчитывать, поскольку она указана на электрооборудовании. Расчет применяется только при проектировании устройств.

Для цепей постоянного тока нужно воспользоваться формулой: P = U * I. Ее можно вывести из закона Ома для участка или полной цепи. Если рассматривается полная цепь, то формула принимает другой вид с учетом ЭДС (е): P = e * I. Основные соотношения для расчета:

  1. Для участка электрической цепи: P = I * I * R = U * U / R.
  2. Для полной цепи, в которой подключен электродвигатель или выполняется зарядка аккумулятора (потребление): P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
  3. В цепи присутствует генератор или гальванический элемент (отдача): P = I * (e + (I * Rвн)).

Эти соотношения невозможно применять для цепей переменного тока, поскольку он подчиняется другим физическим законам. При измерении мощности в цепях переменного тока следует учитывать ее составляющие (активная, реактивная и полная). Если в цепи присутствует только резистор, то мощность считается активной. При наличии емкости или индуктивности — реактивной. Полная — сумма активной и реактивной составляющих.

Для вычисления первого типа физической величины применяется формула такого вида: Ра = I * U * cos (a). Значения тока и напряжения являются среднеквадратичными, а cos (a) — косинус угла между ними. Для определения реактивной мощности нужно воспользоваться следующей формулой: Qр = I * U * sin (a). Если нагрузка в цепи является индуктивной, то значение будет больше 0. В противном случае — меньше 0. Полная мощность Р определяется по следующему соотношению: P = Pa + Qp.

Прямое определение величины

Для определения значения мощности в цепях переменного и постоянного тока применяются ваттметры. В них используются электродинамические или ферроидальные механизмы. Приборы с электродинамическим механизмом выпускаются в виде переносных приборов. Они обладают высоким классом точности. Измерители мощности рекомендуется применять при выполнении точных расчетов для цепей постоянного и переменного тока с частотой до 5 кГц.

Измерительные приборы

Ферродинамические приборы изготавливаются в виде электронных узлов, которые вставляются в измерительные стенды или щитовые. Основное их назначение — контроль приблизительных параметров потребления мощности электрооборудованием. Они обладают низким классом точности и применяются для измерения значений мощности переменного тока. При постоянном токе погрешность увеличивается, поскольку это обусловлено искажением петли гистерезиса ферромагнитных сердечников.

По диапазону частот приборы можно разделить на две группы: низкочастотные и радиочастотные. Ваттметры низких частот применяются в сетях промышленного питания переменного тока. Радиочастотный тип рекомендуется применять для точных измерений при проектировании различной техники. Они делятся на две категории по мощности:

  1. Проходящие.
  2. Поглощающие.

Первый вид подключается в разрыв линии, а второй — в ее конец в качестве нагрузки согласования. Кроме того, приборы для измерения мощности бывают аналоговыми и цифровыми.

Ваттметр прибор

При измерении мощности на высоких частотах применяются электронные и термоэлектронные ваттметры. Главным узлом считается микроконтроллер и преобразователь активной мощности. Последний преобразовывает переменный ток в постоянный. После этого происходит перемножение в микроконтроллере силы тока и напряжения. Результатом является сигнал на выходе, который зависит от I и U.

Ваттметр состоит из двух катушек. Первая из них подключается последовательно в цепь нагрузки, а другая (подвижная с резистором) — параллельно. В цифровых моделях роль катушек выполняют датчики тока и напряжения. Прибор имеет две пары зажимов. Одна пара применяется для последовательной цепи, а другая — для параллельной. Для правильного включения ваттметра выполняется обозначение * одной из двух пар зажимов.

Таким образом, для измерения мощности электрического тока применяются два метода. Первый из них является косвенным, а второй — прямым. Последний рекомендуется применять при проектировании сложной техники.

Ваттметр прибор Загрузка…

Измерение электрической мощности

Довольно часто возникает необходимость измерять мощность, потребляемую из сети, или же генерируемую в сеть. Это необходимо для учета потребляемой или генерируемой энергии, а также для обеспечения нормальной работы энергосистемы (избежание перегрузок). Измерять мощность можно несколькими способами – прямым и косвенным. При прямом измерении применяют ваттметр, а при косвенном амперметр и вольтметр.

Измерение мощности в цепи постоянного тока

Из-за отсутствия реактивной и активной составляющей в цепях постоянного тока для измерения мощности ваттметр применяют очень редко. Как правило, величину потребляемой или отдаваемой энергии измеряют косвенным методом, с помощью последовательно включенного амперметра измеряют ток I в цепи, а с помощью параллельно подключенного вольтметра измеряют напряжение U нагрузки. После чего применив простую формулу P=UI и получают значение мощности.

Чтоб уменьшить погрешность измерений из-за влияний внутренних сопротивлений устройств, приборы могут подключать по различным схемам, а именно при относительно малом сопротивлении нагрузки R применяют такую схему включения:

Измерение мощности косвенным методом в цепи постоянного тока при малом сопротивлении нагрузки

А при большом значении R такую схему:

Измерение мощности косвенным методом в цепи постоянного тока при большом сопротивлении нагрузки

Измерение мощности в однофазных цепях переменного тока

Главным отличием цепей переменного тока от сетей постоянного тока, пожалуй, заключается в том, что в переменном напряжении существует несколько мощностей – полная, активная и реактивная. Полную измеряют зачастую тем же косвенным методом с помощью амперметра и вольтметра и значение ее равно S=UI.

Замер же активной P=UIcosφ и реактивной  Q=UIsinφ производится прямым методом, с помощью ваттметра. Для измерения ваттметр в цепь подключают по следующей схеме:

Схема подключения однофазного ваттметра

Где токовую обмотку необходимо подключить последовательно с нагрузкой Rн, и, соответственно, обмотку напряжения параллельно нагрузке.

Замер реактивной мощности в однофазных сетях не производится. Такие опыты зачастую ставятся только в лабораториях, где ваттметры включают по специальным схемам.

Измерение мощности в трехфазных цепях переменного тока

Как и в однофазных сетях, так же и в трехфазных полную энергию сети можно измерять косвенным методом, то есть с помощью вольтметра и амперметра по схемам показанным выше. Если нагрузка трехфазной цепи будет симметричной, то можно применить такую формулу:

Полная мощность трехфазной сети

Uл – напряжение линейное, I- фазный ток.

Если же фазная нагрузка не симметрична, то производят суммирование мощностей каждой из фаз:

Полная мощность нессиметричной трехфазной сети

При измерении активной энергии в четырехпроводной цепи при использовании трех ваттметров, как показано ниже:

Схема подключения трехфазного ваттметра с нулевым проводом

Общей энергией потребляемой из сети будет сумма показаний ваттметров:

Активная мощность при измерении ваттметром

Не меньшее распространение получил и метод измерения двумя ваттметрами (применим только для трехпроводных цепей):

Схема подключения трехфазного ваттметра с без нулевого провода

Сумму их показаний можно выразить следующим выражением:

Сумма показаний ваттметров для трехпроводной цепи

При симметричной нагрузке применима такая же формула как и для полной энергии:

Активная мощность трехфазной цепи

Где φ – сдвиг между током и напряжением (угол фазового сдвига).

Измерение реактивной составляющей производят по той же схеме (смотри рисунок в)) и в этом случае она будет равна разности алгебраической между показателями приборов:

Измерение реактивной мощности ваттметром

Измерение реактивной мощности ваттметром будет равна

Если сеть не симметрична, то для измерения реактивной составляющей применяют два или три ваттметра, которые подключают по различным схемам.

Процесс измерения активной и реактивной мощности

Счетчиками индукционными или электронными производят измерения активной мощности цепи переменного напряжения. Они подключаются по тем же схемам что и ваттметры. Учет реактивной энергии в однофазных потребителей в нашей стране не ведется. Ее учет производят в трехфазных цепях крупных промышленных предприятий, потребляющих большие объемы электроэнергии. Счетчики активной энергии имеют маркировку СА, реактивной СР. Также широкое применение получают электронные счетчики электроэнергии.

 

ИЗМЕРЕНИЕ МОЩНОСТИ В ЦЕПЯХ ПОСТОЯННОГО ТОКА — Студопедия

Измерение мощности постоянного тока, определяемой формулой

P = UI, (2)

где U и І — соответственно напряжение тока и ток, производится либо косвенным методом — по показаниям вольтметра и амперметра, либо прямым методом — по показаниям ваттметра.

Сущность косвенного метода измерения мощности заключается в измерении с помощью вольтметра и амперметра напряжения U и тока І цепи и последующем вычислении в соответствии с выражением (2). На рис. 1 приведены две возможные схемы включения вольтметра и амперметра в цепь при измерении мощности, потребляемой нагрузкой RH, Для схемы 1,а мощность, потребляемая схемой, равна:

P = U(IН + IB) = UIН + UIB = PН + PB,

где ІН и ІВ — токи, протекающие соответственно через нагрузку и вольтметр; РН и РВ — мощность, потребляемая соответственно нагрузкой и вольтметром.

Таким образом, для данной схемы включения рассчитанное значение мощности Р будет больше действительного значения мощности, потребляемой нагрузкой РН, на величину РВ= UIB. При этом погрешность определения мощности, потребляемой нагрузкой, будет тем меньше, чем меньше ток ІВ по сравнению с ІН, т. е. чем больше входное сопротивление вольтметра (RВ).

Потребляемая схемой (рис. 1, б) мощность равна:

Р=UIH= (UH+IHRа)IH=PH+Pa,

т. е. определяемая расчетом мощность будет больше действительной мощности нагрузки PH на величину потери мощности в амперметре Pa=IHRа. Погрешность определения потребляемой нагрузкой мощности будет тем меньше, чем меньше сопротивление амперметра по сравнению с сопротивлением нагрузки.



Анализ показывает, что погрешность измерения мощности будет минимальной при включении измерительных приборов по схеме, приведенной на рис. 1,а, если выполняется условие

(3)

При включении приборов по схеме, показанной на рис. 1, б, погрешность измерения будет минимальной при условии

(4)

При точных измерениях упомянутую погрешность можно учесть, если известно сопротивление измерительных приборов.

Рис. 1

Для известного сопротивления нагрузки RH потребляемая им мощность Ра определяется путем измерения тока Iн, протекающего через него, или падения напряжения на нем Un. Расчет мощности производится в соответствии с выражениями:

Рассмотренные методы определения мощности, потребляемой нагрузкой, применяются и при измерении мощности генераторов постоянного тока.

Измерение мощности в цепи постоянного тока прямым методом в основном производится с помощью ваттметров электродинамической системы.


Измерительный механизм ваттметра электродинамической системы, состоящей из неподвижной и расположенной внутри нее подвижной катушек, включается в цепь постоянного тока по схеме, приведенной на рис. 2. Неподвижная (токовая) катушка включается последовательно с нагрузкой, а подвижная — параллельно нагрузке. Добавочное сопротивление Rд, включаемое последовательно с подвижной катушкой, предназначено для расширения предела измерения прибора по напряжению. В результате взаимодействия магнитных полей катушек создается вращающий момент:

где I1 и I2 — токи, протекающие соответственно через неподвижную и подвижную катушку; f (α) — функция, учитывающая изменение вращающего момента в зависимости от угла поворота а подвижной катушки (обусловлена изменением взаимной индукции между катушками).

Противодействующий момент создается токопроводящими пружинами подвижной катушки

где W — удельный противодействующий момент пружин.


Рис. 2
При равенстве вращающего и противодействующего моментов подвижная катушка повернется на некоторый угол а, определяемый из выражения

Так как

то

 

Здесь R2 — сопротивление подвижной катушки; — постоянная величина; Р = IHU — мощность, потребляемая нагрузкой.

Для того чтобы шкала прибора была равномерной, необходимо обеспечить постоянство функции f (α). Это достигается путем соответствующего выбора размеров и формы катушек и их начального взаимного положения.

При включении ваттметра в цепь постоянного тока необходимо соблюдать полярность соединения катушек. Для этого два из четырех зажимов прибора, соответствующих «началу» подвижной и неподвижной катушек, обозначаются звездочками (*) или знаком плюс (+). Эти зажимы должны быть подключены к положительному полюсу источника питания (к генератору — генераторные зажимы), а не к нагрузке.

На рис. 3 приведены две схемы включения ваттметра в цепь постоянного тока. При включении прибора по схеме, показанной на рис. 3, а, на подвижную катушку подается напряжение источника питания UИ которое больше напряжения на сопротивлении нагрузки Uна величину падения напряжения на неподвижной катушке, т. е. показание ваттметра будет больше действительного значения мощности нагрузки. При этом погрешность измерения мощности будет тем меньше, чем меньше сопротивление токовой катушки по сравнению с сопротивлением нагрузки. При включении прибора по схеме, показанной на рис. 3, б, ток, протекающий через нагрузку, будет меньше тока в токовой катушке на величину тока, протекающего через подвижную катушку, т. е. показание прибора будет больше действительного значения мощности, потребляемой нагрузкой. Погрешность измерения мощности, потребляемой нагрузкой, при этом будет тем меньше, чем больше сопротивление подвижной катушки с последовательно включенным добавочным сопротивлением Rд сопротивления нагрузки Rн.

Рис. 3

Как при косвенном, так и при прямом методе измерения мощности результат измерения отличается от действительного значения потребляемой мощности нагрузкой на некоторую систематическую погрешность. Величина систематической погрешности определяется схемой включения ваттметра и сопротивлением его катушек.

Погрешность измерения мощности при включении ваттметра по схеме, показанной на рис. 3, а, будет минимальной, если выполняется условие (3), причем в этом случае за Ra принимается сопротивление неподвижной катушки, а за RB — сопротивление подвижной катушки с последовательно включенным добавочным сопротивлением Rд. При включении ваттметра по схеме (рис. 3, б) погрешность будет минимальной при выполнении условия (4).

назначение, типы, подключение, применение, параметры

Ваттметры 1 Один из параметров, который характеризует состояние электрической сети – это ее мощность. Она отражает величину работы, выполняемую электрическим током в единицу времени. Мощность устройств, включаемых в электрическую цепь, должна быть в рамках мощности сети. Иначе возможны неприятные сюрпризы – от выхода из строя оборудования до короткого замыкания и пожара.

Измеряют мощность электрического тока специальным прибором – ваттметром. И если в цепи постоянного тока она рассчитывается простым умножением силы тока на напряжение (достаточно наличия вольтметра и амперметра), то в сети переменного тока без измерительного оборудования не обойтись. Также им контролируют режим работы электрического оборудования и учитывают расход энергии.

Применение Ваттметров

Основная область применения – это электроэнергетическая промышленность и машиностроение, мастерские по ремонту электроприборов. Однако достаточно широко используют и бытовые измерители, которые приобретают любители электроники, компьютеров и просто обыватели – для учета и экономии энергопотребления.

Применяют ваттметры для:

Типы ваттметров

Измерению мощности предшествует измерение силы тока и напряжения исследуемого участка цепи.

В зависимости способов измерения, преобразования данных и показа итоговой информации, ваттметры делятся на аналоговые и цифровые.

Аналоговые ваттметры бывают показывающие и самопишущие и отражают активную мощность участка цепи. Табло показывающего прибора имеет полукруглую шкалу и поворачивающуюся стрелку. Деления шкалы отградуированы в соответствии с определенными величинами мощности, измеряемой в ваттах (Вт).

Цифровые ваттметры измеряют как активную, так и реактивную мощность. Кроме того, на дисплей прибора могут выводиться (кроме показания мощности) также и сила тока, напряжение, и расход энергии по времени. Данные измерений можно вывести удаленно на компьютер оператора.

Видео о ваттметре из Китая:

Устройство и принцип действия

Аналоговые ваттметры

Наиболее распространенными и точными аналоговыми ваттметрами являются приборы электродинамической системы.

Принцип работы основан на взаимодействии двух катушек. Одна из них – неподвижная, имеет толстую обмотку с небольшим числом витков и малое сопротивление. Подключается последовательно с нагрузкой. Вторая катушка – подвижная.

Ее намотка выполнена из тонкого провода и имеет большое количество витков, поэтому и сопротивление у нее высокое.

Подключается она параллельно нагрузке и снабжается еще добавочным сопротивлением (для исключения короткого замыкания между катушками).

При подключении прибора к сети, в катушках образуются магнитные поля. Их взаимодействие создает вращающий момент, который отклоняет подвижную катушку с подсоединенной к ней стрелкой на определенный угол.

Величина угла эквивалентна произведению силы тока и напряжения в данный момент времени.

Цифровые ваттметры

В основе работы цифрового ваттметра лежит предварительное измерение силы тока и напряжения. Для этого на входе устанавливаются: последовательно нагрузке – датчик тока, параллельно – датчик напряжения. Они могут выполняться на базе термисторов, измерительных трансформаторов, термопар и других элементов.

Мгновенные значения полученных величин тока и напряжения посредством аналого-цифрового преобразователя передаются к встроенному микропроцессору. Здесь производятся необходимые вычисления (находится активная и реактивная мощности) и выдаются в виде итоговой информации на дисплей и подключенные внешние устройства. схема ваттметров

Рисунок — Схема подключения Ваттметра

Подключение Ваттметра

Ваттметры имеют четыре клеммы (2 входа, 2 выхода) для подключения. Две из них используют при сборе последовательной (токовой) цепи – ее подключают первой, а две – для параллельной (цепи напряжения).

Начало цепи напряжения (вход) подключают к началу токовой цепи (соединить клеммы перемычкой), соединенному с одним зажимом сети. Конец цепи напряжения (выход) соединяют с другим зажимом сети.

Рассмотрим несколько ваттметров разного исполнения и разных производителей:

Ваттметры 2

Многофункциональный цифровой ваттметр СМ3010 класса точности 0,1

Предназначен для измерения активной мощности, тока, напряжения и частоты в цепях постоянного тока и в однофазных цепях переменного тока; для поверки ваттметров, амперметров, вольтметров класса 0,3 и ниже, частотомеров класса 0,01 и ниже.

Пределы измерения тока Iп:

  • на постоянном и переменном токе: 0,002-0,005-0,01-0,02-0,05-0,1-0,2-0,5-1-2-5-10 А.

Пределы измерения напряжения Uп:

  • постоянный ток: 1-3-7,5-15-30-75-150-300-450-700-1000 В.
  • переменный ток: 1-3-7,5-15-30-75-150-300-450-700 В.

Пределы измерения мощности соответственно Uп* Iп

Пределы измерения частоты от 40 до 5000Гц.

Основная погрешность:

  • приведенная погрешность измерения тока, напряжения и мощности на постоянном токе ±0,1%;
  • приведенная погрешность измерения тока и напряжения на переменном токе в диапазоне частот от 40 до 1500Гц ±0,1%;
  • приведенная погрешность измерения мощности на переменном токе в диапазоне частот от 40 до 1000Гц ±0,1%;
  • относительная погрешность измерения частоты в диапазоне частот от 40 до 5000Гц ±0,003%;

Габаритные размеры 225х100х205 мм. Масса не более 1кг. Потребляемая мощность не более 5Вт.

Ваттметры многофункциональные СМ3010 выпускаются по ТУ 4221-047-16851585-2014, соответствуют требованиям ТР ТС 004/2011, ТР ТС 020/2011.

Производство – ЗИП-Научприбор.


Ваттметры 3

Устройства измерительные ЦП8506-120 (далее – устройства).

Предназначены для измерения активной, реактивной, активной и реактивной трехфазных трехпроводных цепей переменного тока, отображения текущего значения измеряемой мощности на цифровом индикаторе и преобразования его в аналоговый выход-ной сигнал (далее – выходной сигнал).

Измеренные значения отображаются в цифровой форме на встроенных индикаторах. Отображение измеренных величин на цифровых индикаторах производится в единицах измеряемой величины, поступающей непосредственно на вход устройства, или в единицах измеряемой величины, поступающей на вход трансформаторов тока и напряжения с учетом коэффициентов трансформации, в ваттах, киловаттах, мегаваттах, варах, киловарах, мегаварах. Цифровые индикаторы имеют по четыре значащих разряда.

Назначение ЦП8506-120:

  • для измерения активной и реактивной мощности в трехфазных трехпроводных электрических цепях переменного тока частотой от 45 до 55 Гц

Краткие технические характеристики ЦП8506-120 (Ваттметр)

Варметр щитовой цифровой трехфазный:

  • Коэффициент мощности: для ваттметра cos φ=1, для варметра sin φ=1
  • Габаритные размеры: 120х120х150 мм
  • Высота знака: 20 мм
  • Максимальный диапазон отображения: 9999
  • Класс точности: 0,5
  • Время преобразования: не более 0,5 с
  • Рабочая температура: +5 … +40 град С (О4.1), -40…+50 град С (УХЛ3.1)
  • Степень защиты по передней панели: IP40
  • Потребляемая мощность: 5ВА
  • Масса: не более 1,2 кг

Ваттметры 4

Ваттметр Д5085 (Д 5085, Д-5085)

Предназначен для измерения мощности в однофазных цепях переменного и постоянного тока, а также для поверки менее точных приборов.

Габариты не более (205±1,45)х(290±1,6)х(135±2,0) мм.

Класс точности 0,2.

Ваттметры Д5085 предназначены для измерения мощности в однофазных цепях переменного и постоянного тока, а также для поверки менее точных приборов.

Ваттметры Д5085 предназначены для эксплуатации в условиях умеренного климата в закрытых сухих отапливаемых помещениях, при температуре окружающего воздуха от 10 до 35 °С и относительной влажности до 80 % (при 25 °С ).

Ваттметры Д5085 -04.1 (тропическое исполнение) предназначены для эксплуатации в условиях как сухого, так и влажного тропического климата в закрытых помещениях с кондиционированным или частично кондиционированным воздухом при температуре окружающего воздуха от 1 до 45 °C и относительной влажности до 80 % при температуре 25 °С (по ГОСТ 15150-69).

Технические данные

Ваттметры Д5085 соответствуют классу точности 0,2 по ГОСТ 8476-78.

Номинальный коэффициент мощности ваттметра – 1,0.

Номинальный ток параллельной цепи ваттметра Д5085 равен (5 ± 0,1) mА. Нормальная область частот ваттметра от 45 до 500 Гц, рабочая область частот – 500-1000 Гц.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной отклонением напряжения на ± 20 % от номинального значения либо от пределов нормальной области напряжений, при неизменном значении измеряемой мощности равен ± 0,2 % от конечного значения диапазона измерений.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной отклонением частоты от верхней границы нормальной области до любого значения в рабочей области частот, не превышает ± 0,2 % от конечного значения диапазона измерений.

Предел допускаемой дополнительной погрешности прибора Ваттметр Д5085, вызванной изменением температуры окружающего воздуха от нормальной до любой температуры в пределах рабочих температур на каждые 10 °С изменения температуры, равен ±0,2% от конечного значения диапазона измерений. Нормальная температура – 20±2 °С, если на лицевойчасти прибора не оговорено иное значение.

Ещё одно видео о встраиваемом ваттметре:

Измерение мощности и энергии в электрических цепях — Студопедия

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Рис. 336. Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения — через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения. Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.



Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые — в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.


Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения — последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) — параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 — напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз ? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

Рис. 337. Ферродинамический счетчик электрической энергии

Рис. 338. Индукционный счетчик электрической энергии

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,— буквами Г.

Измерение мощности и энергии — Студопедия

Измерение мощности.В цепях постоянного тока мощность можно измерить косвенным методом с по­мощью амперметра и вольтметра

Р = UI,

 
 

но более точный резуль­тат дает измерение мощности электродинамическим ваттметром, которым измеряется мощность независимо от рода тока. Внешний вид (а) и схема включения ваттметра (б) показаны на рис.16. Ваттметр имеет четыре зажима для подключения подвижной и неподвижной катушек в цепь. Неподвижная катушка включается в цепь последовательно и называется токовой катушкой, а под­вижная катушка вместе с добавочным

Рис.16.1. Однофазный ваттметр: а —внешний вид; б —схема включения в электрическую цепь переменного тока.

сопротивлением гд — па­раллельно нагрузке и называется катушкой напряжения. Начало катушек отмечено звездочкой *I и *U, конец токо­вой катушки 5 А, а конец обмотки напряжения —150V. Так как направление отклонения указательной стрелки ваттметра зависит от взаимного направления токов в катушках, то выводы *I и *U подключаются к источнику тока, а выводы 5 А и 150V—к на­грузке. Ввиду того что выводы *I и *U подключаются к одному и тому же проводу, их можно соединить между собой проводником, что и делается на практике при измерении мощности в цепи по­стоянного тока и активной мощности в цепи переменного тока.

Измерение энергии.Различают следующие способы контроля расхода электроэнергии: 1. Косвенный способ. В этом случае измеряют косвенные параметры, а расход электроэнергии определяют расчетом. Так например, расход электроэнергии в цепях постоянного тока определяется по формуле:



W = U I t(16.1),

где U — напряжение на приемнике электроэнергии I — ток в приемнике t— время прохождения тока.

Т.о. для измерения расхода электроэнергии параллельно приемнику нужно включить вольтметр и измерить напряжение U, последовательно приемнику включить амперметр и измерить силу тока I . Время — t измеряется с помощью хронометра. Сняв показания с вольтметра, амперметра и хронометра расход электроэнергии определяют по формуле (16.1). В цепях переменного тока расход электроэнергии определяется по формуле (16.2)

W = U I t cosφ(16.2)

Т.о. для косвенного измерения расхода электроэнергии в данном случае, кроме вольтметра, амперметра и хронометра нужно включить фазометр для измерения коэффициента мощности cosφ.

2. Непосредственный способ. Этот способ используется в цепях переменного тока. В этом случае для измерения расхода электроэнергии используется индукционный счетчик электрической энергии. Счетчик представляет собой суммирующий прибор. Основное отличие его от стрелочного прибора состоит в том, что угол поворота его подвижной части не ограничиваемый пружиной, нарастает и показания счетчика суммируются. Каждому обороту подвижной части счетчика соответствует определенное количество израсходованной энергии. Счетчик включается в Рис. 16.2 электрическую цепь также как ваттметр (рис. 16, 1), т.е. его токовая обмотка (3) включается последовательно с нагрузкой и контролирует силу тока в нагрузке, а обмотка напряжения (2) включается параллельно нагрузке и контролирует напряжение на нагрузке. Время контролируется за счет количества оборотов диска.



Измерение электрических токов, напряжений, сопротивлений, мощности и энергии

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Рис. 336. Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения — через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения. Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.



Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые — в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.


Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения — последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) — параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 — напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз ? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

Рис. 337. Ферродинамический счетчик электрической энергии

Рис. 338. Индукционный счетчик электрической энергии

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,— буквами Г.

Измерение тока.Для измерения тока в цепи амперметр 2 (рис. 332, а) или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения. Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Для расширения пределов измерения амперметров, предназначенных для работы в цепях постоянного тока, их включают в цепь параллельно шунту 4 (рис. 332,б). При этом через прибор проходит только часть IА измеряемого тока I, обратно пропорциональная его сопротивлению RА. Большая часть Iш этого тока проходит через шунт. Прибор измеряет падение напряжения на шунте, зависящее от проходящего через шунт тока, т. е. используется в качестве милливольтметра. Шкала прибора градуируется в амперах. Зная сопротивления прибора RA и шунта Rш можно по току IА, фиксируемому прибором, определить измеряемый ток:

I = IА (RА+Rш)/Rш = IАn (105)

где n = I/IА = (RA + Rш)/Rш — коэффициент шунтирования. Его обычно выбирают равным или кратным 10. Сопротивление шунта, необходимое для измерения тока I, в n раз большего, чем ток прибора IА,

Rш = RA/(n-1) (106)

Конструктивно шунты либо монтируют в корпус прибора (шунты на токи до 50 А), либо устанавливают вне его и соединяют с прибором проводами. Если прибор предназначен для постоянной работы с шунтом, то шкала его градуируется сразу в значениях измеряемого тока с учетом коэффициента шунтирования и никаких расчетов для определения тока выполнять не требуется. В случае применения наружных (отдельных от приборов) шунтов на них указывают номинальный ток, на который они рассчитаны, и номинальное напряжение на зажимах (калиброванные шунты). Согласно стандартам это напряжение может быть равно 45, 75, 100 и 150 мВ. Шунты подбирают к приборам так, чтобы при номинальном напряжении на зажимах шунта стрелка прибора отклонялась на всю шкалу. Следовательно, номинальные напряжения прибора и шунта должны быть одинаковыми. Имеются также индивидуальные шунты, предназначенные для работы с определенным прибором. Шунты делят на пять классов точности (0,02; 0,05; 0,1; 0,2; 0,5). Обозначение класса соответствует допустимой погрешности в процентах.

Для того чтобы повышение температуры шунта при прохождении по нему тока не оказывало влияния на показания прибора, шунты изготовляют из материалов с большим удельным сопротивлением и малым температурным коэффициентом (константан, манганин, никелин и пр.). Для уменьшения влияния температуры на показания амперметра последовательно с катушкой прибора в некоторых случаях включают добавочный резистор из констан-тана или другого подобного материала.

Рис. 332. Схемы для измерения тока (а, б) и напряжения (в, г)

Измерение напряжения. Для измерения напряжения U, действующего между какими-либо двумя точками электрической цепи, вольтметр 2 (рис. 332, в) присоединяют к этим точкам, т. е. параллельно источнику 1 электрической энергии или приемнику 3.

Для того чтобы включение вольтметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, вольтметры выполняют с большим сопротивлением. Поэтому практически можно пренебрегать проходящим по вольтметру током.

Для расширения пределов измерения вольтметров последовательно с обмоткой прибора включают добавочный резистор 4 (Rд) (рис. 332,г). При этом на прибор приходится лишь часть Uv измеряемого напряжения U, пропорциональная сопротивлению прибора Rv.

Зная сопротивление добавочного резистора и вольтметра, можно по значению напряжения Uv, фиксируемого вольтметром, определить напряжение, действующее в цепи:

U = (Rv+Rд)/Rv * Uv = nUv (107)

Величина n = U/Uv=(Rv+Rд)/Rv показывает, во сколько раз измеряемое напряжение U больше напряжения Uv, приходящегося на прибор, т. е. во сколько раз увеличивается предел измерения напряжения вольтметром при применении добавочного резистора.

Сопротивление добавочного резистора, необходимое для измерения напряжения U, в п раз большего напряжения прибора Uv, определяется по формуле Rд=(n— 1) Rv.

Добавочный резистор может встраиваться в прибор и одновременно использоваться для уменьшения влияния температуры окружающей среды на показания прибора. Для этой цели резистор выполняется из материала, имеющего малый температурный коэффициент, и его сопротивление значительно превышает сопротивление катушки, вследствие чего общее сопротивление прибора становится почти независимым от изменения температуры. По точности добавочные резисторы подразделяются на те же классы точности, что и шунты.

Делители напряжения.Для расширения пределов измерения вольтметров применяют также делители напряжения. Они позволяют уменьшить подлежащее измерению напряжение до значения, соответствующего номинальному напряжению данного вольтметра (предельного напряжения на его шкале). Отношение входного напряжения делителя U1 к выходному U2 (рис. 333, а) называетсякоэффициентом деления. При холостом ходе U1/U2 = (R1+R2)/R2 = 1 + R1/R2. В делителях напряжения это отношение может быть выбрано равным 10, 100, 500 и т. д. в зависимости от того, к каким

Рис. 333. Схемы включения делителей напряжения

выводам делителя подключен вольтметр (рис. 333,б). Делитель напряжения вносит малую погрешность в измерения только в том случае, если сопротивление вольтметра Rv достаточно велико (ток, проходящий через делитель, мал), а сопротивление источника, к которому подключен делитель, мало.

Измерительные трансформаторы.Для включения электроизмерительных приборов в цепи переменного тока служат измерительные трансформаторы, обеспечивающие безопасность обслуживающего персонала при выполнении электрических измерений в цепях высокого напряжения. Включение электроизмерительных приборов в эти цепи без таких трансформаторов запрещается правилами техники безопасности. Кроме того, измерительные трансформаторы расширяют пределы измерения приборов, т. е. позволяют измерять большие токи и напряжения с помощью несложных приборов, рассчитанных для измерения малых токов и напряжений.

Измерительные трансформаторы подразделяют на трансформаторы напряжения и трансформаторы тока. Трансформатор напряжения 1 (рис. 334, а) служит для подключения вольтметров и других приборов, которые должны реагировать на напряжение. Его выполняют, как обычный двухобмоточный понижающий трансформатор: первичную обмотку подключают к двум точкам, между которыми требуется измерить напряжение, а вторичную — к вольтметру 2.

На схемах измерительный трансформатор напряжения изображают как обычный трансформатор (на рис. 334, а показано в круге).

Так как сопротивление обмотки вольтметра, подключаемого к трансформатору напряжения, велико, трансформатор практически работает в режиме холостого хода, и можно с достаточной степенью точности считать, что напряжения U1 и U2 на первичной и вторичной обмотках будут прямо пропорциональны числу витков ?1 и ?2 обеих обмоток трансформатора, т. е.

U1/U2 = ?1/?2 = n (108)

Таким образом, подобрав соответствующее число витков ?1 и ?2 обмоток трансформатора, можно измерять высокие напряжения, подавая на электроизмерительный прибор небольшие напряжения.

Напряжение U1 может быть определено умножением измеренного вторичного напряжения U2 на коэффициент трансформации трансформатора n.

Вольтметры, предназначенные для постоянной работы с трансформаторами напряжения, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого напряжения могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один выэод его вторичной обмотки и стальной кожух трансформатора должны быть заземлены.

Трансформатор тока 3 (рис. 334,б) служит для подключения амперметров и других приборов, которые должны реагировать на протекающий по цепи переменный ток. Его выполняют в виде

Рис. 334. Включение электроизмерительных приборов посредством измерительных трансформаторов напряжения (а) и тока (б)

обычного двухобмоточного повышающего трансформатора; первичную обмотку включают последовательно в цепь измеряемого тока, к вторичной обмотке подключают амперметр 4.

Схемное обозначение измерительных трансформаторов тока показано на рис. 334, б в круге.

Так как сопротивление обмотки амперметра, подключаемого к трансформатору тока, обычно мало, трансформатор практически работает в режиме короткого замыкания, и с достаточной степенью точности можно считать, что токи I1 и I2, проходящие по его обмоткам, будут обратно пропорциональны числу витков ?1 и ?2 этих обмоток, т.е.

I1/I2 = ?1/?2 = n (109)

Следовательно, подобрав соответствующим образом число витков ?1 и ?2 обмоток трансформатора, можно измерять большие токи I1, пропуская через электроизмерительный прибор малые токи I2. Ток I1 может быть при этом определен умножением измеренного вторичного тока I2 на величину n.

Амперметры, предназначенные для постоянной работы совместно с трансформаторами тока, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого тока I1могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один из зажимов вторичной обмотки и кожух трансформатора заземляют.

На э. п. с. применяют так называемые проходные трансформаторы тока (рис. 335). В таком трансформаторе магнитопровод 3 и вторичная обмотка 2 смонтированы на проходном изоляторе 4, служащем для ввода высокого напряжения в кузов, а роль первичной обмотки трансформатора выполняет медный стержень 1, проходящий внутри изолятора.

Условия работы трансформаторов тока отличаются от обычных. Например, размыкание вторичной обмотки трансформатора тока при включенной первичной обмотке недопустимо, так как это вызовет значительное увеличение магнитного потока и, как следствие, температуры сердечника и обмотки трансформатора, т. е. выход его из строя. Кроме того, в разомкнутой вторичной обмотке трансформатора может индуцироваться большая э. д. с, опасная для персонала, производящего измерения.

При включении приборов посредством измерительных трансформаторов возникают погрешности двух видов: погрешность в коэффициенте трансформации и угловая погрешность (при изменениях напряжения или тока отношенияU1/U2 и I1/I2 несколько изменяются и угол сдвига фаз между первичным и вторичным напряжениями и токами отклоняется от 180°). Эти погрешности возрастают при нагрузке трансформатора свыше номинальной. Угловая погрешность оказывает влияние на результаты измере-

Рис. 335. Проходной измерительный трансформатор тока

ний приборами, показания которых зависят от угла сдвига фаз между напряжением и током (например, ваттметров, счетчиков электрической энергии и пр.). В зависимости от допускаемых погрешностей измерительные трансформаторы подразделяют по классам точности. Класс точности (0,2; 0,5; 1 и т. д.) соответствует наибольшей допускаемой погрешности в коэффициенте трансформации в процентах от его номинального значения.

Измерение методом амперметра и вольтметра. Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 339, а через амперметр проходит не только измеряемый ток Ix, но и ток Iv, протекающий через вольтметр. Поэтому сопротивление

Rx = U / (I – U/Rv) (110)

где Rv — сопротивление вольтметра.

При включении приборов по схеме рис. 339, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра UA = IRА. Поэтому

Rx = U/I – RА (111)

где RА — сопротивление амперметра.

В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 339,а, а при измерении больших сопротивлений — схемой рис. 339, б. При этом погрешность измерений, определяемая в первой схеме током Iv, а во второй — падением напряжения UА, будет невелика по сравнению с током Ix и напряжением Ux.

Измерение сопротивлений электрическими мостами. Мостовая схема (рис. 340,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением Rx (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания — в другую (питающую).

Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в та-

Рис. 339. Схемы для измерения сопротивления методом амперметра и вольтметра

Рис. 340. Мостовые схемы постоянного тока, применяемые для измерения сопротивлений

ком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление

Rx = (R1/R2)R3 (112)

В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2.

Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление Rx (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 — гальванометр, а к зажимам 5 и 6 — источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В).

Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление Rx отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом.

При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 340,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением Rx и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом. Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями Rx и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае

Rx = R0R1/R4 (113)

Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом.

Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления Rx. Это позволяет проградуировать шкалу гальванометра в единицах сопротивления Rx или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами.

Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости.

Измерение омметром. Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением Rx (рис. 341) и добавочным резистором RД в цепь постоянного тока. При неизменных э. д. с. источника и сопротивления резистора RД ток в цепи зависит только от сопротивления Rx. Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности.

Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением Rx подключают к различным зажимам.

Измерение больших сопротивлений мегаомметрами.Для измерения сопротивления изоляции чаще всего применяют мегаомметры магнитоэлектрической системы. В качестве измерительного механизма в них использован логометр 2 (рис. 342), показания кото-

Рис. 341. Схема включения омметра

Рис. 342. Устройство мегаомметра

рого не зависят от напряжения источника тока, питающего измерительные цепи. Катушки 1 и 3 прибора находятся в магнитном поле постоянного магнита и подключены к общему источнику питания 4.

Последовательно с одной катушкой включают добавочный резистор Rд, в цепь другой катушки — резистор сопротивлением Rx.

В качестве источника тока обычно используют небольшой генератор 4 постоянного тока, называемый индуктором; якорь генератора приводят во вращение рукояткой, соединенной с ним через редуктор. Индукторы имеют значительные напряжения от 250 до 2500 В, благодаря чему мегаомметром можно измерять большие сопротивления.

При взаимодействии протекающих по катушкам токов I1 и I2 с магнитным полем постоянного магнита создаются два противоположно направленных момента М1 и М2, под влиянием которых подвижная часть прибора и стрелка будут занимать определенное положение. Как было показано в § 100, положение подвижной

Рис. 343. Общий вид мегаомметра (а) и его упрощенная схема (б)

части логометра зависит от отношения I1/I2. Следовательно, при изменении Rx будет изменяться угол ? отклонения стрелки. Шкала мегаомметра градуируется непосредственно в килоомах или мегаомах (рис. 343, а).

Чтобы измерить сопротивление изоляции между проводами, необходимо отключить их от источника тока (от сети) и присоединить один провод к зажиму Л (линия) (рис. 343,б), а другой — к зажиму 3 (земля). Затем, вращая рукоятку индуктора 1 мегаомметра, определяют по шкале логометра 2 сопротивление изоляции. Имеющийся в приборе переключатель 3 позволяет изменять пределы измерения. Напряжение индуктора, а следовательно, частота вращения его рукоятки теоретически не оказывают влияние на результаты измерений, но практически рекомендуется вращать ее более или менее равномерно.

При измерении сопротивления изоляции между обмотками электрической машины отсоединяют их друг от друга и соединяют одну из них с зажимом Л, а другую с зажимом 3, после чего, вращая рукоятку индуктора, определяют сопротивление изоляции. При измерении сопротивления изоляции обмотки относительно корпуса его соединяют с зажимом 3, а обмотку — с зажимом Л.

Метод измерения мощности двумя ваттметрами — при соединении звездой и треугольником

Двухваттметр Метод может использоваться для измерения мощности в трехфазном, трехпроводном соединении звездой или треугольником, сбалансированной или несимметричной нагрузке.

В методе двух ваттметров, токовые катушки ваттметра соединяются с любыми двумя линиями, например R и Y, а потенциальная катушка каждого ваттметра соединяется на одной линии, третья линия, то есть B, как показано ниже на рисунке (A) :

TWO-WATTMETER-METHOD-OF-POWER-MEASUREMENT-FIG-1

Полная мгновенная мощность, потребляемая тремя нагрузками Z 1 , Z 2 и Z 3 , равна сумме мощностей, измеренных двумя ваттметрами, W 1 и W 2 .

В комплекте:

Измерение мощности методом двух ваттметров при соединении звездой

Учитывая приведенный выше рисунок (A), на котором подключены два ваттметра W 1 и W 2 , мгновенный ток через токовую катушку ваттметра, W 1 , определяется уравнением, показанным ниже:

two-wattmeter-method-eq1

Мгновенная разность потенциалов на катушке ваттметра, Вт 1 определяется как:

two-wattmeter-method-eq2

Мгновенная мощность, измеренная ваттметром, Вт 1

two-wattmeter-method-eq3

Мгновенный ток через токовую катушку ваттметра, Вт 2 , определяется уравнением:

two-wattmeter-method-eq4

Мгновенная разность потенциалов на катушке ваттметра, Вт 2 , определяется как:

two-wattmeter-method-eq5

Мгновенная мощность, измеренная ваттметром, Вт 2 :

two-wattmeter-method-eq6

Таким образом, общая мощность, измеренная двумя ваттметрами W 1 и W 2 , будет получена путем сложения уравнений (1) и (2).

two-wattmeter-method-eq7 Где, P — общая мощность, потребляемая тремя нагрузками в любой момент времени.

Измерение мощности методом двух ваттметров при соединении треугольником

С учетом схемы подключения треугольником, показанной на рисунке ниже:

TWO-WATTMETER-METHOD-OF-POWER-MESUREMENT-FIG-2 Мгновенный ток через катушку ваттметра, Вт 1 , определяется уравнением:

two-wattmeter-method-eq8

Мгновенная мощность, измеренная ваттметром, Вт 1 составит:

two-wattmeter-method-eq9

Следовательно, мгновенная мощность, измеренная ваттметром, W 1 будет представлена ​​как:

two-wattmeter-method-eq10

Мгновенный ток через токовую катушку ваттметра, Вт 2 , определяется как:

two-wattmeter-method-eq11

Мгновенная разность потенциалов на катушке потенциалов ваттметра, Вт 2 :

two-wattmeter-method-eq12

Следовательно, мгновенная мощность, измеренная ваттметром, Вт 2 будет:

two-wattmeter-method-eq13

Следовательно, чтобы получить полную мощность, измеренную двумя ваттметрами, необходимо выполнить два уравнения, т.е.е. уравнение (3) и (4) необходимо добавить.

two-wattmeter-method-eq14 Где P — полная мощность, потребляемая тремя нагрузками в любой момент времени.

Мощность, измеряемая двухваттметром в любой момент времени, представляет собой мгновенную мощность, потребляемую тремя нагрузками, подключенными к трем фазам. Фактически, эта мощность является средней мощностью, потребляемой нагрузкой, поскольку ваттметр считывает среднюю мощность из-за инерции их движущейся системы.

.

Метод двух ваттметров — условие сбалансированной нагрузки

Объясняется метод двух ваттметров на примере сбалансированной нагрузки. При этом мы должны доказать, что мощность, измеренная двумя ваттметрами, то есть сумма двух показаний ваттметра, равна трехкратному корню фазного напряжения и линейного напряжения (√3V L I L Cosϕ), что составляет фактическая мощность, потребляемая в 3-фазной сбалансированной нагрузке.

Схема подключения 3-фазной сбалансированной нагрузки, подключенной по схеме «звезда», показана ниже:

TWO-WATTMETER-METHOD-BALANCED-LOAD-FIG-1

В комплекте:

Нагрузка рассматривается как индуктивная, поэтому векторная диаграмма индуктивной нагрузки приведена ниже:

TWO-WATTMETER-METHOD-BALANCED-LOAD-FIG-2 Три напряжения V RN , V YN и V BN смещены на угол 120 градусов, как показано на векторной диаграмме.Фазные токи отстают от соответствующих фазных напряжений на угол ϕ.

Теперь ток, протекающий через токовую катушку ваттметра, W 1 будет иметь вид:

two-wattmeter-balance-condition-eq1

Разность потенциалов на катушке давления или потенциала ваттметра, Вт 1 будет:

two-wattmeter-balance-condition-eq2

Чтобы получить значение V YB , переверните вектор V BN и добавьте его к вектору V YN , как показано на векторной диаграмме выше.

Разность фаз между V RB и I R составляет (30⁰ — ϕ)

Следовательно, мощность, измеренная ваттметром, Вт 1 составляет:

two-wattmeter-balance-condition-eq3

Ток через токовую катушку ваттметра, Вт 2 определяется как:

two-wattmeter-balance-condition-eq4

Разность потенциалов на ваттметре, Вт 2 составляет

two-wattmeter-balance-condition-eq5

Разность фаз V YB и I Y составляет (30⁰ + ϕ) .

Таким образом, мощность, измеренная ваттметром, W 2 определяется уравнением, показанным ниже:

two-wattmeter-balance-condition-eq6

Так как нагрузка находится в сбалансированном состоянии, следовательно,

two-wattmeter-balance-condition-eq7

Следовательно, показания ваттметра будут:

two-wattmeter-balance-condition-eq8

Теперь сумма двух показаний ваттметра будет представлена ​​как:

two-wattmeter-balance-condition-eq9 Вышеприведенное уравнение (1) дает общую мощность, потребляемую трехфазной сбалансированной нагрузкой.

Таким образом, сумма показаний двух ваттметров равна мощности, потребляемой в трехфазной сбалансированной нагрузке.

Определение коэффициента мощности по показаниям ваттметра

Как известно,

two-wattmeter-balance-condition-eq10

Сейчас,

two-wattmeter-balance-condition-eq11 Разделив уравнение (3) на уравнение (2), получим

two-wattmeter-balance-condition-eq12

Коэффициент мощности нагрузки равен

.

two-wattmeter-balance-condition-eq13

Определение реактивной мощности методом двух ваттметров

Чтобы получить реактивную мощность, умножьте уравнение (3) на √3.

two-wattmeter-balance-condition-eq14

Следовательно, реактивная мощность определяется уравнением, показанным ниже:

two-wattmeter-balance-condition-eq15 Для измерения трехфазной мощности вы также можете обратиться к двум темам, указанным ниже:

См. Также: Измерение трехфазной мощности: метод трех ваттметров

См. Также: Метод измерения мощности двумя ваттметрами.

.

Калибровка амперметра, вольтметра и ваттметра с использованием потенциометра

Мы знаем, что напряжение, ток и мощность измеряются в вольтах, амперах, а для измерения этих параметров используются ваттметры, амперметры и ваттметры. Хотя эти измерительные приборы изготовлены с особой тщательностью, они все же могут давать показания ошибок на стороне клиента. Таким образом, эти инструменты откалиброваны, чтобы минимизировать ошибку. В этой статье мы объясним , как откалибровать вольтметр, амперметр и ваттметр с помощью потенциометра .

Прежде чем вдаваться в подробности, давайте сначала обсудим важную концепцию, используемую в этой статье.

Если у нас есть два источника напряжения с одинаковым значением, подключенные параллельно, как показано ниже, то между ними не будет тока. Это связано с тем, что потенциальные значения обоих источников одинаковы, и ни один из источников не может подтолкнуть заряд к другому. Так что в схеме гальванометр не показывает никаких отклонений.

Calibration Phenomenon

Мы будем использовать то же явление уравновешивания двух источников напряжения в процессе калибровки.

Калибровка потенциометра

Calibration of Potentiometer

На рисунке выше показана принципиальная схема для калибровки потенциометра.

На рисунке используется стандартный элемент с напряжением 1,50 В, который при нагрузке не вызывает колебаний напряжения даже в милливольтах. Такой стабильный источник необходим для безошибочной калибровки потенциометра.

Токопроводящая шкала точно масштабирована, чтобы избежать ошибок при измерении.Электропроводящая шкала также имеет гладкую поверхность с четко очерченными размерами для равномерного распределения сопротивления по всей ее длине.

Реостат предназначен для регулировки потока тока в контуре цепи, и, таким образом, мы можем регулировать падение напряжения на единицу длины по проводящей шкале. Сюда также подключается гальванометр для визуализации неисправности, которая возникает в случае протекания тока между стандартной петлей ячейки и проводящей петлей шкалы. Неизвестная ЭДС здесь подключена к гальванометру для измерения после калибровки потенциометра.

Рабочий:

Сначала включите питание и отрегулируйте реостат, чтобы позволить току в несколько сотен миллиампер течь по контуру основной цепи. Поскольку проводящая шкала также находится в основном контуре, через нее протекает тот же ток, что и вызывает падение напряжения. Хотя падение напряжения появляется на металлической шкале, она будет равномерно распределена по всему ее телу.

После появления падения напряжения по проводящей шкале, если мы возьмем скользящий контакт и переместимся по металлической шкале от нуля, то ток потечет из вторичной цепи в первичную из-за дисбаланса цепи.И по мере того, как скользящий контакт перемещается дальше от нуля, величина этого тока уменьшается. Это связано с тем, что по мере увеличения площади контакта падение напряжения на масштабированной площади приближается к напряжению стандартной ячейки. Таким образом, в определенный момент падение напряжения на масштабируемой области будет равно напряжению стандартной ячейки, и в этот момент между двумя цепями не будет протекать ток.

Теперь, когда гальванометр подключен к вторичной цепи, он покажет отклонение на своем дисплее из-за протекания тока, и чем больше ток, тем больше отклонение.Исходя из этого, гальванометр не будет показывать отклонения только тогда, когда обе цепи сбалансированы, и это состояние, которого мы будем пытаться достичь при калибровке потенциометра.

Для лучшего понимания рассмотрим схему, показанную ниже, которая показывает состояние баланса.

Potentiometer Calibration

Если принять сопротивление металлического контакта длиной от 0 до 100 см как «R», то падение напряжения на всем металлическом контакте длиной 100 см составит V = IR. Поскольку мы использовали симметричную схему , это падение напряжения «V» должно быть равно напряжению стандартного элемента, и в показаниях гальванометра будет нулевое отклонение.

Теперь, измерив эту точную длину, на которой гальванометр показывает ноль, мы можем откалибровать шкалу потенциометра на основе стандартного значения напряжения ячейки.

Таким образом, длина шкалы составляет 1 см = 1,5 В / 100 см = 0,005 В = 5 мВ. 

Зная падение напряжения на сантиметр на шкале потенциометра, подключите неизвестное напряжение ко вторичной цепи и сдвиньте контакт, чтобы измерить длину, при которой мы будем иметь нулевое отклонение. Зная этот масштаб, на котором имеет место баланс, мы можем измерить значение неизвестной ЭДС как

.

V = (длина контакта) x (5 мВ).

Применение потенциометров

Помимо измерения неизвестного напряжения, потенциометр также можно использовать для измерения силы тока и мощности, для их измерения требуется всего лишь пара дополнительных компонентов.

Помимо измерения напряжения, тока и мощности, потенциометры в основном используются для калибровки вольтметров, амперметров и ваттметров . Кроме того, поскольку потенциометр является устройством постоянного тока, калибруемые инструменты должны быть типа подвижного железа постоянного тока или электродинамометра.

Калибровка вольтметра с помощью потенциометра

Calibration of Voltmeter using Potentiometer

В схеме наиболее важным компонентом процесса калибровки является подходящий стабильный источник постоянного напряжения. Это связано с тем, что любые колебания напряжения питания вызовут ошибку в калибровке вольтметра, что приведет к полному провалу эксперимента. Таким образом, стандартный элемент напряжения со стабильным конечным значением берется в качестве источника и подключается параллельно вольтметру, который необходимо откалибровать.Две потенциометры «RV1» и «RV2» используются для регулировки напряжения, которое должно появляться на вольтметре, как показано на рисунке.

Коробка соотношения напряжений также подключается параллельно вольтметру, чтобы разделить напряжение на вольтметре и получить соответствующее значение, подходящее для подключения потенциометра.

Со всей установкой мы готовы к проверке точности вольтметра . Итак, для начала просто подайте питание на схему, чтобы получить показания вольтметра и неизвестное напряжение на выходе коробки соотношения напряжений.Теперь мы будем использовать откалиброванный потенциометр для измерения этого неизвестного напряжения.

После получения показаний потенциометра проверьте, соответствуют ли показания потенциометра показаниям вольтметра. Поскольку потенциометр измеряет истинное значение напряжения, если показание потенциометра не совпадает с показанием вольтметра, то отображается отрицательная или положительная ошибка. А для коррекции можно построить калибровочную кривую с помощью показаний вольтметра и потенциометра.

Также для точности измерений необходимо, насколько это возможно, измерять напряжения вблизи максимального диапазона потенциометра.

Калибровка амперметра с помощью потенциометра

Calibration of Ammeter using Potentiometer

Как упоминалось выше, мы будем использовать подходящее стабильное напряжение питания постоянного тока, чтобы избежать ошибок при калибровке, которые не вызывают колебаний напряжения в течение всего эксперимента. Реостат используется для регулировки величины тока, протекающего по всей цепи. Кроме того, стандартное сопротивление «R» подходящего значения с достаточной допустимой нагрузкой по току подключается последовательно с амперметром (который находится в процессе калибровки) для получения параметра напряжения, который относится к току, протекающему в цепи.

Теперь, после включения питания, через всю цепь протекает ток «I», и при этом показании протекания тока будет генерироваться амперметр, присутствующий в контуре. Кроме того, из-за протекания тока на стандартном сопротивлении «R» произойдет падение напряжения.

Теперь мы воспользуемся потенциометром для измерения напряжения на стандартном резисторе, а затем воспользуемся законом Ом для расчета тока через стандартное сопротивление.

То есть ток I = V / R
где
V = напряжение на стандартном резисторе, измеренное потенциометром,
А R = сопротивление стандартного резистора.

Поскольку мы используем стандартный резистор, сопротивление будет точно известно, а напряжение на стандартном резисторе измеряется потенциометром. Рассчитанное значение будет точным значением тока, протекающего через контур. Затем сравните это рассчитанное значение с показаниями амперметра, чтобы проверить точность амперметра. Если есть какие-либо ошибки, мы можем внести необходимые корректировки в амперметр, чтобы исправить ошибки.

Калибровка ваттметра с помощью потенциометра

Calibration of Wattmeter using Potentiometer

Как упоминалось выше, для точного процесса калибровки мы будем использовать два подходящих источника постоянного напряжения постоянного тока в качестве источников.Обычно источник низкого напряжения подключается последовательно с катушкой тока ваттметра, а источник умеренного напряжения подключается к катушке потенциала ваттметра. Реостат в верхней цепи используется для регулировки величины тока, протекающего через токовую катушку, а регулировочный потенциометр в нижней цепи используется для регулировки напряжения на катушке потенциала.

Помните, что регулировочный потенциометр предпочтительнее для регулировки напряжения, а реостат предпочтительнее для регулировки тока в цепи.

Кроме того, стандартное сопротивление «R» подходящего значения и достаточной допустимой нагрузки по току помещается последовательно с токовой катушкой ваттметра. И это стандартное сопротивление будет вызывать падение напряжения на нем, когда ток течет в цепи катушки тока.

После включения питания мы получим два неизвестных значения напряжения, одно на выходе делителя напряжения, а другое на стандартном сопротивлении «R». Теперь, если для измерения напряжения на стандартном резисторе используется потенциометр, мы можем использовать закон Ома для расчета тока через стандартное сопротивление.Поскольку токовая катушка включена последовательно со стандартным сопротивлением, вычисленное значение также представляет ток, проходящий через токовую катушку. Аналогичным образом используйте потенциометр второй раз, чтобы измерить напряжение на потенциальной катушке ваттметра.

Теперь, когда мы измерили ток через токовую катушку и напряжение на потенциальной катушке с помощью потенциометра, мы можем рассчитать мощность как

Мощность P = значение напряжения x текущее значение. 

После расчета мы можем сравнить это рассчитанное значение с показаниями ваттметра, чтобы проверить наличие ошибок.Как только ошибки будут обнаружены, внесите необходимые изменения в ваттметр, чтобы скорректировать ошибки.

Вот как можно использовать потенциометр для калибровки вольтметра, амперметра и ваттметра для получения точных показаний.

.

Калибровка вольтметра, амперметра и ваттметра с помощью потенциометра

Калибровка — это процесс проверки точности результата путем сравнения его со стандартным значением. Другими словами, калибровка проверяет правильность прибора, сравнивая его с эталоном. Он помогает нам определить ошибку, возникающую при считывании, и регулирует напряжения для получения идеальных показаний.

Калибровка вольтметра

Схема калибровки вольтметра показана на рисунке ниже.

calibration-of-voltmeter Для схемы требуются два реостата, один для управления напряжением, а другой — для регулировки. Блок соотношения напряжений используется для понижения напряжения до подходящего значения. Точное значение вольтметра определяется путем измерения значения напряжения в максимально возможном диапазоне потенциометра.

Потенциометр измеряет максимально возможное значение напряжений. Отрицательная и положительная погрешность в показаниях вольтметра возникает, если показания потенциометра и вольтметра не равны.

Калибровка амперметра

На рисунке ниже показана схема калибровки амперметра.

calibration-of-an-ammeter-by-potentiometer Стандартное сопротивление подключается последовательно с амперметром, который необходимо калибровать. Потенциометр используется для измерения напряжения на стандартном резисторе. Приведенная ниже формула определяет ток через стандартное сопротивление. calibration

Где,
В с — напряжение на стандартном резисторе, показанное потенциометром.
S — сопротивление штатного резистора

Этот метод калибровки амперметра очень точен, поскольку в этом методе значение стандартного сопротивления и напряжение на потенциометре точно известны прибору.

Калибровка ваттметра

На рисунке ниже показана схема, используемая для калибровки ваттметра.

calibration-of-wattmeter Стандартное сопротивление подключено последовательно с ваттметром, который необходимо откалибровать. Низкое напряжение подается на токовую катушку ваттметра.Реостат соединен последовательно с катушкой для регулировки величины тока.

Цепь потенциала запитана от источника питания. Коробка для измерения соотношения напряжений используется для понижения напряжения, чтобы потенциометр мог легко считывать напряжение. Фактическое значение фактического значения напряжения и тока измеряется с помощью двухполюсного двухпозиционного переключателя. Сравнивается точное значение VI и значение ваттметра.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *