Схемы подключения асинхронных электродвигателей
Чтобы привести ротор электродвигателя в движение необходимо правильно подключить концы обмоток статора к трехфазной сети, где рабочее напряжение может быть:
- 220 вольт
- 380 вольт
- 660 вольт
Заказать новый электродвигатель по телефону
Асинхронные электродвигатели АИР предполагают два способа подключения к трехфазной промышленной сети – «треугольник» и «звезда». В основном электродвигатели АИР рассчитаны на 2 номинальных напряжения 220/380 В, либо 380/660 В и имеют два способа подключения к трехфазной промышленной сети: «звезда» и «треугольник»
220/380 220 В – «треугольник» 380 В – «звезда» | 380/660 380 В — «треугольник» 660 В — «звезда» |
Как правильно подключить шесть проводов электродвигателя?
Как правило двигатели имеют шесть выводов для возможности выбора схемы подключения: «звезда» либо «треугольник». Но встречаются и три вывода — уже соединенных внутри двигателя по схеме «звезда».
Схема подключения «звезда»
При подключении обмоток звездой начала обмоток подключаются к фазам, а концы обмоток собираются общую точку (0 точку).
Таким образом напряжение фазной обмотки составит 220В, а линейное напряжение между обмотками 380В. Основным преимуществом подключения электродвигателя по схеме звезда является:
- Плавный пуск
- Возможность перегрузки (недлительной)
- Повышенная надежность
При этом данная схема подключения обеспечит более низкую мощность от заявленной.
Схема подключения «треугольник»
При подключении треугольником последовательно конец одной обмотки соединяется с началом следующей обмотки.
Главными преимуществами такого подключения являются:
- Максимальная мощность
- Повышенный вращающий момент
- Увеличенные тяговые способности
Однако, электродвигатели подключенные по схеме звезда больше нагреваются.
Комбинированный тип подключения
Как уже было отмечено, подключение «звездой» обеспечивает более плавный пуск, но пр этом не достигается максимальная заявленная мощность электромотора. При подключении «треугольником» достигается полная мощность, но пусковой ток может повредить изоляцию. Поэтому для мощных двигателей (начиная от АИР100L2), часто применяют комбинированную схему подключения трехфазных электродвигателей «звезда-треугольник», когда запуск двигателя происходит по схеме «звезда», в рабочем состоянии он переключается на схему «треугольник». Переключение обеспечивается магнитным пускателем или пакетным переключателем.
Наиболее популярные модели асинхронных электродвигателей:
5 шагов подключения неизвестного электродвигателя
Иногда возникает такая проблема — необходимо подключить электродвигатель в стандартную сеть 380В 50 Гц, но характеристики двигателя неизвестны, поскольку документации к нему нет, а шильдик отсутствует.
Существуют 5 простых шагов, последовательно выполнив которые, можно обеспечить двигатель нужным напряжением питания, защитой и схемой включения.
1. Оцениваем номинальную мощность и ток двигателя
Прежде всего нужно ориентировочно определить мощность электродвигателя. Для этого находим похожий двигатель с известными параметрами, воспользовавшись каталогами производителей. Агрегаты должны совпадать по габаритам и диаметру вала.
На данном этапе мы сможем определить основные параметры для подключения и использования привода – мощность, ток, частоту вращения вала.
2. Определяем напряжение по схеме включения
Следующий шаг — определяем, по какой схеме подключить обмотки и какое напряжение подать. Есть несколько критериев, позволяющих с некоторой вероятностью оценить эти параметры.
Напомним, что промышленные низковольтные двигатели выпускаются с двумя видами напряжений питания: 220/380 В и 380/660 В для схем подключения «Треугольник» и «Звезда», соответственно. На двигатели первого вида можно подавать 380 В, собрав обмотки в схему «Звезда», на приводы второго вида – в «Треугольник».
Если электродвигатель новый, то, скорее всего, он собран по схеме, требующей питания 380 В. Именно такую схему обычно используют производители.
Если из двигателя выходит 3 провода, можно сделать вывод, что он имеет стандартное питание 380 В. При этом неважно, по какой схеме агрегат собран внутри. Однако, если в коробке присутствует конденсатор, можно утверждать, что двигатель рассчитан на напряжение 220 В и собран в «Треугольник». Кроме того, мощность в таком случае будет невысокой – не более 2,2 кВт. Для включения такого привода в трехфазную сеть 380 В нужно собрать его по схеме «Звезда».
Если асинхронный двигатель имеет шесть никак не подключенных выводов, определить напряжение питания по схеме включения не получится. В этом случае нужно сначала найти выводы обмоток, затем начало и конец каждой обмотки, чтобы собрать их в одну из схем. Обычно названия обмоток и их начало/конец обозначены.
Электродвигатели мощностью более 5 кВт, как правило, не включают напрямую. Для этого используют преобразователь частоты, устройство плавного пуска, либо схему «Звезда»/«Треугольник».
3. Подаем питание на двигатель
После того, как проведена оценка мощности и выбрана схема включения, можно подавать питание. Первоначально двигатель должен работать в холостом режиме. Питание подается через мотор-автомат и автоматический выключатель. Для включения желательно использовать контактор.
Ориентировочный рабочий ток асинхронного двигателя можно посчитать по эмпирической формуле: I (А) = 2 х P (кВт). То есть, если определено, что мощность двигателя составляет 3 кВт, его номинальный ток будет около 6 А в любой из схем включения.
Номинал мотор-автомата выбирается исходя из определенной ранее мощности. Для холостого хода уставку автомата можно установить в 2 раза меньше номинала, в нашем примере – около 3А. Если автомат выбивает, его уставку увеличивают вплоть до номинала (6 А).
На данном этапе необходимо следить за исправностью двигателя и его температурой, контролировать ток холостого хода токоизмерительными клещами. В холостом режиме двигатель не должен греться при нормальной работе крыльчатки вентилятора. Если нагрев происходит, это может означать, что агрегат неисправен либо нужно изменить схему его включения.
4. Определяем необходимой ток защиты
Номинальный ток и номинальная мощность электродвигателя ограничены его нагревом. Предел рабочей температуры определяется классом изоляции. Максимальная температура обмоток двигателей с низшим классом изоляции (Y) составляет 90°С. На это значение и нужно ориентироваться.
Для определения тока защиты включаем двигатель с номинальной нагрузкой на валу через мотор-автомат с током уставки, определенном на предыдущем шаге. После подачи питания автомат должен отработать по перегрузке. Далее увеличиваем его уставку, при необходимости подключаем автомат с другим диапазоном уставки.
В итоге опытным путем определяем номинал мотор-автомата, уставка которого обеспечивает продолжительную работу двигателя на номинальной нагрузке.
5. Контролируем нагрев обмоток
При работе любого двигателя необходимо периодически контролировать его температуру. В данном случае это особенно важно. Как показывает опыт, болевой порог человеческой руки равен 60°С. Такой способ контроля температуры – самый простой, однако лучшим способом будет использование встроенного термочувствительного элемента.
Заключение
Любой двигатель с неизвестными характеристиками имеет свою историю. Поэтому, прежде чем следовать советам, изложенным в статье, нужно обследовать оборудование либо расспросить персонал о том, где ранее был установлен привод.
Другие полезные материалы:
Трехфазный двигатель в однофазной сети
Эксплуатация электрооборудования вне помещений
Как прозвонить электродвигатель мультиметром
Как рассчитать потребляемую мощность двигателя
Подключение трехфазного асинхронного двигателя
У трёхфазного асинхронного двигателя существует 6 выводов обмотки статора – три начала и три конца. Выводы могут соединяться звездой или треугольником, в зависимости от напряжения питающей сети (380В или 220В). Для этого на корпусе двигателя имеется коробка, в которую выведены начала фаз С1, С2, С3 и концы фаз С4, С5, С6.
Большинство двигателей в настоящее время работают при фазном напряжении 220 В.
Виды соединения обмоток
Соединение звездой – это соединение, при котором концы обмоток имеют одну общую точку (ноль). При таком соединении, линейной напряжение больше чем напряжение в фазе в 1,73 раз. Это значит что если линейное напряжение 380 В, то в фазе будет в 1,73 раза меньше, то есть 220 В. Большой плюс такого соединения в том что пусковые токи невелики в отличие от соединения треугольником. Но при соединении звездой двигатель испытывает значительные потери в мощности.
Соединение треугольником – это соединение, при котором обмотки соединены так, чтобы начало одной обмотки входило в конец другой обмотки. При соединении треугольником фазное напряжение равно линейному, а значит если мы имеем линейное напряжение в сети 220 В, то для правильного подключения двигателя нужно подключать выводы треугольником. Плюс такого соединения в большой мощности, минус в значительных пусковых токах.
Подключение асинхронного двигателя к однофазной сети
Иногда обстоятельства складываются так, что источником питания является однофазная сеть. Для подключения трехфазного двигателя в этом случае следует воспользоваться конденсатором. Конденсатора может быть два – пусковой и рабочий. Два потому что необходимо в процессе запуска и работы изменять емкость, этого добиваются включением-отключением одного из конденсаторов (пускового). Обычно используют бумажные конденсаторы, потому что они неполярные, а в цепи переменного тока это важно учитывать.
Емкость рабочего конденсатора можно рассчитать по формуле:
Емкость пускового конденсатора нужно выбирать в 2-2,5 раза больше емкости рабочего конденсатора, а его рабочее напряжение должно быть выше питающего в 1,5 раза.
В момент подачи напряжения ключ SA замыкают, а затем размыкают, тем самым кратковременно увеличивая ток необходимый для запуска двигателя.
Нужно учитывать, что далеко не все двигатели можно подключать к однофазной цепи. Также нужно знать, что максимальная мощность при таком подключении составит не более 50-60% от мощности при подключении к трехфазной цепи.
Схемы Подключения Трехфазного Асинхронного Электродвигателя и Описание
Подключение трехфазного асинхронного электродвигателя
Трехфазный асинхронный электродвигатель и подключение его к электрической сети часто вызывает массу вопросов. Поэтому в нашей статье мы решили рассмотреть все нюансы, связанные с подготовкой к включению, определением правильного способа подключения и, конечно, разберём возможные варианты схем включения двигателя. Поэтому не будем ходить вокруг да около, а сразу приступим к разбору поставленных вопросов.
Подготовка асинхронного электродвигателя к включению
Виды электродвигателей
На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.
Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.
Определение начала и конца обмотки
Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.
Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.
Обмотки статора электродвигателя
- Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
- Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
- Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления. Между остальными четырьмя выводами значение будет практически бесконечным.
- Следующим этапом будет определение их начала и конца.
ЭДС при различных вариантах соединения обмоток электродвигателя
- Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
- Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.
Схема определения начала и конца обмоток электродвигателя
- Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
- Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
- Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.
Выбор схемы подключения электродвигателя
Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.
Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.
Номинальные параметры на бирке электродвигателя
- Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
- При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.
Разница между схемами соединения «звезда» и «треугольник»
- Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
- В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.
Подключение асинхронного электродвигателя
Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.
В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.
Схема прямого включения асинхронного электродвигателя
В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.
Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.
Трехполюсный автоматический выключатель | Но прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя. |
Номинальные параметры пускателей | Следующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя. |
Кнопочный пост на две кнопки | Пускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот. |
Таблица выбора сечения провода | Кроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя. |
Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.
- Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
- Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.
Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.
Схема подключения первичных и вторичных цепей схемы включения электродвигателя
Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.
- Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.
Расположение элементов пускателя
- Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
- При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.
Нормально закрытые и нормально открытые контакты
- Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
- Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.
Подключение кнопки «Пуск» и «Стоп»
- От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
- Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.
Схема реверсивного включения электродвигателя
Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.
- Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
- Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
- Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.
Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В
- Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
- Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».
Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В
- Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
- Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1. Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
- Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.
Вывод
Способы подключения асинхронного трехфазного электродвигателя зависят от типа двигателя, схемы его соединения и задач, которые стоят перед нами. Мы привели лишь самые распространенные схемы подключения, но существуют и еще более сложные варианты. Особенно это касается асинхронных машин с фазным ротором, которые имеют функцию торможения.
Подключение электродвигателя звездой и треугольником
О достоинствах асинхронных двигателей спорить не приходится. Специалисты, в частности, выделяют:
- высокую производительность;
- надежность;
- неприхотливость;
- простоту конструкции;
- умеренную стоимость ремонта и обслуживания и т.п.
Асинхронный двигатель состоит из двух основных элементов: статора и ротора. Они имеют токопроводящие обмотки, начала и концы которых выводятся в распределительную коробку и фиксируются в два ряда. Они обозначаются либо литерами С (С1, С2, С3 – начала обмоток, С4, С5, С6 – их концы), либо согласно новой маркировке: U1, V1, W1 –начала, U2, V2, W2 – концы.
Очень часто у людей, впервые имеющих дело с двигателями подобного типа, возникает вопрос: как же их лучше подключить? Существует три схемы подключения:
- «треугольник»;
- «звезда»;
- комбинированная («звезда-треугольник»).
Итак, каким образом осуществляется подключение электродвигателя звездой и треугольником?
Подключение звездой
В этом случае концы обмоток статора соединяются вместе в одной точке с помощью специальной перемычки. Трехфазное напряжение подается на их начала. Таким образом, на фазной обмотке напряжение будет 220в, а линейное напряжение между двумя оставшимися фазными обмотками – 380в.
Подключение трехфазных двигателей с питающим напряжением 220/127в к стандартным однофазным сетям выполняется только по типу звезды, в противном случае агрегат быстро придет в негодность. Также именно по данной схеме подключаются все электромоторы российского производства на 380в.
В целом подключение звездой обеспечивает более мягкий запуск двигателя и плавность его работы, давая также возможность перезагрузки. Поэтому двигатели средней мощности принято запускать по данной схеме. Однако следует учесть, что в этом случае трехфазный двигатель не сможет работать на полную мощность.
Подключение треугольником
Обмотки соединяются последовательно в замкнутую ячейку, т.е. конец одной из них соединяется с началом следующей и т.д. Ряды контактов с клеммами располагаются так, чтобы они были смещены относительно друг друга (т.е. напротив вывода С6 (W2)помещается С1 (U1) и т.п.). Места соединения следует подключить к соответствующим фазам питающего напряжения. Линейное напряжение сети и напряжение на фазной обмотке равны 220в
Соединение треугольник гарантирует достижение максимальной мощности асинхронного электродвигателя (т.е. полной паспортной мощности, что в полтора раза больше, чем при соединении звездой), но при этом он подвержен большему нагреву и имеет большие значения пусковых токов. Это обусловлено конструктивными особенностями двигателей данного типа: ротор достаточно массивен и имеет большую инерционность, следовательно, когда он раскручивается, мотор работает в режиме перегрузки. Соответственно, двигатель может быстро выйти из строя. Однако если вам нужно подключить к электросети электромотор, произведенный в Европе и рассчитанный на номинальное напряжение 400/690, то это единственно правильный вариант.
Комбинированное подключение
Эту функцию используют только для двигателей с соответствующей пометкой (Δ/Y), которая обозначает, что возможны оба варианта соединения. Запуск осуществляется при подключении звездой для уменьшения пускового тока, затем после набора номинальной частоты вращения переключение на треугольник происходит в автоматическом режиме. Таким образом мы получаем максимально возможную мощность на выходе.
Использование данного способа связано со скачками токов. При переключении между схемами происходит следующее: прекращается подача тока, снижается скорость вращения ротора (иногда достаточно резко), затем восстанавливается изначальная скорость вращения.
Пусковые реле
Для того чтобы запустить электродвигатель согласно схеме «звезда-треугольник», разработано специальное оборудование. Названия могут быть разными: реле «Старт-дельта», «Пусковые реле времени» и т.п., но схема их действия всегда одинакова: после подачи напряжения на реле начинается отсчет времени разгона, включается пускатель «звезда», затем, по окончании времени разгона контакты размыкаются, пускатель выключается, замыкаются контакты, включающие пускатель «треугольник».
Подобные реле производятся в Чехии (CRM-2T, TRS2D), Австрии (РВП-3, D6DS, ВЛ-32М1), Украине (ВЛ-163), Италии (80 series, Finder). Он могут быть модульными, программируемыми, съемными, одно- или многофункциональными, механическими или цифровыми, суточными, недельными – выбор достаточно широк.
Итак, вопрос: как подключить электродвигатель звездой или треугольником — решается достаточно просто. Внимательно изучите инструкцию, прилагаемую к агрегату, обращая особое внимание на метки на бирке мотора.
Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети
Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.
Схемы подключения трехфазного двигателя
Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:
- Схема звезды.
- Схема треугольника.
Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.
Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.
Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.
Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.
Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.
Проверка схемы подключения мотора
Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.
Метод определения фаз статора
После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.
Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.
Полярность обмоток
Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
- Подключить импульсный постоянный ток.
- Подключить переменный источник тока.
Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.
Как проверить полярность обмоток батарейкой и тестером
На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.
Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.
Проверка переменным током
Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.
Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.
Схема звезды
Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.
Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.
Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:
С = (2800 · I) / U
Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.
Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.
В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».
Схема треугольника
Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.
Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:
С = (4800 · I) / U
Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.
Двигатель с магнитным пускателем
Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.
Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.
В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.
Подключение мотора от автомата
Общий вариант такой схемы подключения выглядит как на рисунке:
Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.
Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.
Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.
При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.
Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.
Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:
- Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
- Нельзя дистанционно выключить и включить электродвигатель.
Похожие темы:
Схема подключения электродвигателя, подключение трехфазного двигателя в однофазную сеть
Схема подключения электродвигателя во многом определяется условиями его эксплуатации.
Например, подключение «звездой» обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением «треугольником».
Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).
На рисунке 1 представлены две схемы соединения обмоток двигателя.
- Схема соединения «звездой». Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).
Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.
- Соединение обмоток электродвигателя «треугольником». При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.
В отличие от соединения «звездой» эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.
- Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.
Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.
Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.
Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.
В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.
- Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
- Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
- Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.
Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.
ПОДКЛЮЧЕНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В ОДНОФАЗНУЮ СЕТЬ
Такая необходимость возникает достаточно часто. Сразу замечу — мощность электродвигателя при этом теряется.
Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100.
Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.
Наиболее простая схема приведена на рисунке 3.
В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.
Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.
Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 — 500 кОм.
По этой схеме можно подключать электродвигатели с по схеме как «треугольник» так и «звезда».
Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.
При нажатии кнопки «пуск» срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими — включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.
После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки «стоп», размыкающей цепь питания.
Катушки пускателей должны быть рассчитана на напряжение 220В.
© 2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Show & Tell: асинхронные двигатели переменного тока
Двигатели переменного тока просты в управлении, надежны и экономичны для общего применения. По этим причинам они являются наиболее популярным типом электродвигателей в различных отраслях промышленности. В этом посте мы кратко представим асинхронные двигатели и продемонстрируем, как ими управлять.
Немного истории
Термин «индукция» в асинхронных двигателях (также известных как асинхронные двигатели) относится к электромагнитной индукции, которая является основной теорией работы асинхронных двигателей.Я объясню это в следующем разделе. Согласно Википедии, с изобретением асинхронного двигателя переменного тока связано несколько имен. В 1824 году французский физик Франсуа Араго открыл вращающиеся магнитные поля и ввел термин «Вращения Араго» (или «Диск Араго»). В 1831 году Майкл Фарадей смог объяснить эффекты, представив теорию электромагнитной индукции. В 1879 году Уолтер Бейли продемонстрировал первый примитивный асинхронный двигатель, включив и выключив его вручную.Первые трехфазные асинхронные двигатели переменного тока без коммутатора были независимо изобретены Галилео Феррарисом в 1885 году и Николой Тесла в 1887 году. Оба опубликовали статьи в 1888 году, чтобы объяснить эти технологии. Тесла подал заявку на патенты в США в 1887 году и получил некоторые из этих патентов в 1888 году. Джордж Вестингауз, который в то время разрабатывал систему переменного тока, лицензировал патенты Теслы в 1888 году и приобрел опцион на патент США на концепцию асинхронного двигателя Феррариса, чтобы развивать технологию дальше.General Electric (GE) начала разрабатывать трехфазные асинхронные двигатели в 1891 году. К 1896 году General Electric и Westinghouse подписали соглашение о перекрестном лицензировании на конструкцию ротора со стержневой обмоткой, позже названного ротором с короткозамкнутым ротором. Та же концепция используется и сегодня.
Асинхронные двигатели идеальны для приложений, требующих непрерывной работы в одном направлении , таких как конвейеры, миксеры и вращающиеся знаки. Они рассчитаны на длительный режим работы и обычно служат долгое время из-за своей простой конструкции. |
Конструкция и теория эксплуатации
На этом изображении показана структура асинхронного двигателя переменного тока, который является основным типом двигателей переменного тока с постоянными разделенными конденсаторами. Вращающийся элемент, ротор, поддерживается в корпусе двигателя двумя шарикоподшипниками для длительного срока службы. Статор расположен вокруг ротора с тонким воздушным зазором. Выходной вал соединен с ротором. Подводящие провода подключаются к обмоткам статора.Фланцевый кронштейн запрессован в корпус двигателя для обеспечения качества. |
Поскольку переменный ток подается на медные обмотки статора, вокруг ротора создается вращающееся магнитное поле со скоростью колебаний переменного тока. Согласно правилу левой руки Флеминга, движущееся магнитное поле индуцирует ток на алюминиевых стержнях (проводнике) в стальном роторе, который генерирует свои собственные противоположные магнитные поля (закон Ленца). Магнитные поля от ротора затем взаимодействуют с вращающимся магнитным полем от статора, и ротор начинает вращаться.
Теория работы асинхронного двигателя переменного тока может быть объяснена с помощью диска Arago , который представляет собой наблюдаемое явление, включающее правило правой руки Флеминга и правило левой руки Флеминга. Хотите узнать больше о теории работы двигателей переменного тока? |
Однофазные асинхронные двигатели
Однофазные асинхронные двигатели предлагаются с разным напряжением и частотой для разных регионов мира.Для США однофазные двигатели обычно предлагаются на 110/115 вольт или 220/230 вольт, которые легко доступны. 60 Гц — типичная частота источника питания.
Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.
Хотя принцип работы должен быть одинаковым для всех однофазных двигателей переменного тока с постоянным разделенным конденсатором, представленных на рынке, цвета выводных проводов могут быть разными для разных производителей.
Для стандартного 3-проводного двигателя цвета проводов обычно белый, красный и черный. Черный всегда связан с нейтралью (N). И белый, и черный подключены к 2 клеммам специального конденсатора. Когда ток (L) подключен к черному или красному через клемму конденсатора, двигатель начнет вращаться в заданном направлении. Для двигателей с клеммной коробкой принцип работы такой же. Однако клеммы обозначены Z2, U2 и U1.
Подключение конденсатора
Для однофазных двигателей конденсатор важен для запуска.Без пускового момента, обеспечиваемого конденсатором, вам пришлось бы помогать запускать двигатель, вручную вращая вал. Это как старые пропеллеры старинного самолета. Убедитесь, что вы не забыли правильно подключить конденсатор. Это был очень распространенный случай устранения неполадок, когда я работал инженером службы поддержки.
Вот пример подключения 4-контактного конденсатора и однофазного двигателя.
Пусть вас не смущает количество выводов на конденсаторе.На схеме внутренней проводки ниже показано, что две ближайшие клеммы имеют внутреннее соединение. В электрическом отношении это то же самое, что и у традиционных конденсаторов с двумя выводами, которые имеют только по одному выводу с каждой стороны. |
Мы также сняли видео, чтобы продемонстрировать правильный способ подключения этих двигателей, включая автоматические выключатели, переключатели и конденсатор.
Трехфазные асинхронные двигатели
Трехфазные асинхронные двигатели обычно предлагаются в США на 220/230 В и 50/60 Гц.В некоторых случаях предлагается 460 вольт. Трехфазные двигатели могут работать либо с постоянной скоростью, либо с инвертором / частотно-регулируемым приводом для приложений с регулируемой скоростью.
Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.
Для трехпроводного трехфазного двигателя у нас такие же цвета проводов. Три фазы от источника питания обозначены L1 (R), L2 (S) и L3 (T).Подключите красный к L1 (R), белый к L2 (S) и черный к L3 (T). Для двигателей с клеммной коробкой клеммы имеют маркировку U, V и W. Принцип работы такой же. Чтобы переключить направление вращения, переключите любое из 2 соединений между R, S и T.
При перегрузке или блокировке вала рекомендуется использовать либо электромагнитный переключатель, либо электронную тепловую функцию инвертора, чтобы предотвратить перегорание двигателя.
Вы наверное обратили внимание, что на схеме подключения нет конденсатора .Для однофазных двигателей требуется конденсатор для создания многофазного источника питания. Для трехфазных двигателей конденсатор не требуется. Мы также сняли видео, чтобы продемонстрировать правильную проводку.
И последнее, но не менее важное. Не забудьте электрически заземлить двигатели с помощью специальной клеммы защитного заземления (PE), чтобы избежать удара или травм со стороны персонала. |
Вот и все, что касается подключения однофазных и трехфазных асинхронных двигателей.Следите за новостями, и я расскажу о подключении других типов двигателей переменного тока, таких как реверсивные двигатели и двигатели с электромагнитным тормозом.
Не забудьте подписаться!
Еще немного истории … Вот видео, которое кратко объясняет историю развития двигателей переменного тока Oriental Motor с 1966 года, когда серия K считалась фактическим стандартом для всех двигателей переменного тока, до появления серий KII и KIIS. |
Асинхронный двигатель | Асинхронный двигатель
Самым распространенным двигателем в мире является асинхронный или асинхронный двигатель. Это двигатель, который может работать без электрического подключения к ротору. В этом посте будет обсуждаться асинхронный двигатель (асинхронные двигатели), его типы, то есть однофазный, трехфазный, короткозамкнутый корпус, контактное кольцо и т. Д., Особенности, принцип работы, применение, преимущества и недостатки.
Что такое асинхронный двигатель (асинхронный двигатель)
Асинхронный двигатель или асинхронный двигатель — это самый основной и распространенный тип электродвигателя, который имеет только обмотку Armortisseur , что означает вспомогательную обмотку только на якоре.В асинхронном двигателе (или асинхронном двигателе) статорная часть двигателя передает электромагнитное поле своей обмоткой на роторную часть двигателя. Это генерирует электрический ток в роторе. Электрический ток создает крутящий момент, который приводит в движение.
Рис.1 — Введение в асинхронный двигатель (асинхронный двигатель)
Он упоминается как «Асинхронный двигатель », поскольку он всегда будет работать со скоростью, меньшей, чем его синхронная скорость.Синхронная скорость определяется как скорость магнитного поля вращающейся машины, которая снова определяется количеством полюсов и частотой в машине.
Поскольку в этом типе двигателя ротор получает поток и вращение за счет магнитного поля в статоре, между токами в статоре и роторе есть задержка. Из-за этого ротор никогда не достигает своей синхронной скорости. Отсюда термин «асинхронный двигатель». На рис. 2 показаны части асинхронного двигателя.
Фиг.2 — Детали асинхронного двигателя (асинхронный двигатель)
Конструкция асинхронного двигателя (асинхронного двигателя)
Он состоит в основном из двух частей, а именно:
Статор
Это стационарная часть электродвигателя. Эта часть обеспечивает электромагнитное поле, необходимое для вращения вращающейся части двигателя. Он состоит из ряда штамповок с прорезями для трехфазной обмотки. Каждая обмотка отделена от другой обмотки на 120 градусов.
Ротор
Это вращающаяся часть двигателя. Более распространенный тип ротора в асинхронных двигателях (или асинхронных двигателях) — это ротор с короткозамкнутым ротором. Ротор имеет форму якоря с сердечником цилиндрической формы. Вокруг сердечника есть параллельные прорези, через которые проходит ток. Сердечник имеет стержень из алюминия, меди или сплава.
Рис.3 — Базовый ротор и статор
Типы асинхронных двигателей (асинхронные двигатели)
Он подразделяется на два типа:
- Однофазный асинхронный двигатель
Трехфазный асинхронный двигатель
Однофазный асинхронный двигатель
Однофазный асинхронный двигатель
не является двигателем с автоматическим запуском.Здесь двигатель подключен к однофазному источнику питания, который передает переменный ток к основной обмотке. Поскольку источник переменного тока представляет собой синусоидальную волну, он создает пульсирующее магнитное поле в обмотке статора.
Пульсирующие магнитные поля — это два магнитных поля, вращающихся в противоположных направлениях; следовательно, крутящий момент не создается. Таким образом, после подачи тока ротор должен быть перемещен в любом направлении извне, чтобы двигатель заработал. Однофазный индуктор отсюда; могут иметь разные разновидности в зависимости от устройства, с которого запускается двигатель, и это:
- Двигатель с разделенной фазой
- Двигатель с экранированными полюсами
- Конденсаторный пусковой двигатель
- Конденсаторный пусковой двигатель и конденсаторный двигатель
Фиг.4 — Принципиальная схема (а) однофазного (б) трехфазного асинхронного двигателя
Трехфазный асинхронный двигатель (асинхронный двигатель)
Это двигатели, для запуска которых не требуется никаких внешних устройств, таких как конденсатор, центробежный переключатель или пусковая обмотка. Принцип работы этого двигателя основан на использовании трех однофазных фаз, разность фаз между которыми составляет 120 градусов. Таким образом, магнитное поле, вызывающее вращение, будет иметь одинаковую разность фаз между ними, это заставит ротор двигаться без какого-либо внешнего крутящего момента.
Для дальнейшего упрощения предположим, что это три фазы: phase1, phase2 и phase3. Итак, первая фаза 1 намагничивается, и ротор начинает двигаться в этом направлении, вскоре после этого будет возбуждена фаза 2, и тогда ротор будет притягиваться к фазе 2, а затем, наконец, к фазе 3. Таким образом, ротор продолжит вращаться.
Далее они подразделяются на категории в зависимости от типа используемого ротора:
- Асинхронный двигатель
- с короткозамкнутым ротором
- или двигатель с фазным ротором
Асинхронный двигатель с контактным кольцом
Асинхронный двигатель с короткозамкнутым ротором
Ротор этого типа имеет форму беличьей клетки, отсюда и название.Ротор изготовлен из стали с очень токопроводящими металлами, такими как алюминий и медь на поверхности. Скорость асинхронного двигателя этого типа очень легко изменить, просто изменив форму стержней в роторе.
Рис.5 — Асинхронный двигатель с короткозамкнутым ротором
Асинхронный двигатель с контактным кольцом или двигатель с фазным ротором
Он также известен как асинхронный двигатель с фазовой обмоткой. Здесь ротор подключен к внешнему сопротивлению через контактные кольца.Скорость ротора регулируется путем регулировки внешнего сопротивления. Поскольку у этого двигателя больше обмоток, чем у асинхронного двигателя с короткозамкнутым ротором, его также называют асинхронным двигателем с фазным ротором.
Рис.6 — Асинхронный двигатель с контактным кольцом
Характеристики асинхронного двигателя (асинхронного двигателя)
Ниже приведены характеристики двух различных типов асинхронных двигателей.
Характеристики однофазного асинхронного двигателя
- Здесь мы выделим некоторые характеристики, которые применимы только к однофазным асинхронным двигателям:
- Однофазные асинхронные двигатели не запускаются автоматически и используют однофазное питание для вращения.
- Для изменения направления вращения в однофазных двигателях лучше всего остановить двигатель и изменить его, иначе существует вероятность повреждения двигателя из-за момента инерции, который действует против направления, в котором необходимо изменить вращение. .
- Для запуска двигателя вам потребуется конденсатор и / или центробежный переключатель.
- Пусковой крутящий момент у этих двигателей низкий.
- Они в основном используются дома или в бытовых приборах из-за низкого коэффициента мощности и эффективности.
Характеристики трехфазного асинхронного двигателя
Ниже перечислены некоторые особенности трехфазного асинхронного двигателя, которые отличают его от однофазного двигателя:
- Это автономные двигатели, не требующие специальных пускателей.
- Имеется три однофазных линии с разностью фаз 120 градусов.
- Он имеет более простое подключение и более надежен, чем однофазные асинхронные двигатели.
- Пусковой крутящий момент у этих двигателей выше, чем у однофазных двигателей.
- Они в основном используются на заводах и в промышленности из-за высокого коэффициента мощности и эффективности.
Как работает асинхронный двигатель (асинхронный двигатель) Работа
Явление, которое заставляет асинхронные двигатели работать, весьма интересно. Двигатели постоянного тока нуждаются в двойном возбуждении для вращения, одно для статора, а другое для ротора.Но в этих двигателях мы должны отдавать это только статору, что делает это уникальным. Как следует из названия, принцип работы этого двигателя основан на индукции. Давайте сделаем ряд шагов, которые происходят при вращении этого двигателя:
- На обмотки статора подается питание, протекает ток и создается магнитный поток.
- Обмотка в роторе устроена таким образом, что каждая катушка закорачивается.
- Короткозамкнутая обмотка ротора обрезается магнитным потоком статора.
Рис.7 — Работа асинхронного двигателя
Согласно законам электромагнитной индукции Фарадея, магнитное поле взаимодействует с электрической цепью, создавая ЭДС (электродвижущую силу). Итак, согласно этому закону, в катушках ротора начинает течь ток.
- Ток в роторе генерирует другой поток.
- Теперь есть два потока: один в статоре, а другой в роторе.
- Поток ротора отстает от потока статора, что создает крутящий момент в роторе в направлении магнитного поля.
Применение асинхронных двигателей
В числе приложений:
- Они широко используются в миксерах, игрушках, вентиляторах и т. Д.
- Они также используются в насосах и компрессорах.
- используются в электробритвах.
- Они используются в буровых станках, лифтах, кранах и дробилках.
- Они подходят для приводов текстильных фабрик и маслоэкстракционных заводов.
Малые асинхронные двигатели
Преимущества асинхронного двигателя
Ниже приведены некоторые преимущества асинхронных двигателей:
- Высокоэффективный и простой в конструкции.
- Очень прочный и может работать в любых условиях.
- Низкие эксплуатационные расходы, поскольку у них не так много деталей, как коммутаторы или щетки.
- Они могут развивать очень высокую скорость, не беспокоясь о том, что они износятся, так как у них нет щеток.
- Они просты в эксплуатации, поскольку к ротору не подключены электрические разъемы.
- Поскольку у них нет щеток, искры не боятся искр, поэтому их можно использовать в загрязненных или взрывоопасных средах.
- Скорость от малой нагрузки до номинальной меняется очень мало.
Недостатки асинхронного двигателя
Асинхронные двигатели имеют простую конструкцию, которая может иметь несколько недостатков, как указано ниже:
- Трудно контролировать скорость асинхронного двигателя, поэтому его нельзя использовать в местах, где требуется точный контроль скорости.
- Падение КПД при малых нагрузках.
- Они имеют высокие входные импульсные токи, что дает низкое напряжение при пуске двигателя.
См. Также: Видео на Youtube по асинхронным двигателям
Также читают: Маховик как накопитель энергии, расчеты и требования к ротору Повышающий трансформатор - работа, конструкция, применение и преимущества Синхронный двигатель - конструкция, принцип, типы, характеристики Что такое клещи (клещи-тестеры) - типы, принцип работы и порядок эксплуатации
Лакшми — B.E (Электроника и связь) и имеет опыт работы в RelQ Software в качестве инженера-испытателя и HP в качестве руководителя службы технической поддержки. Она является автором, редактором и партнером Electricalfundablog.
Типы и удивительные применения асинхронного двигателя
Индукционные машины являются наиболее часто используемым типом двигателей в жилых, коммерческих и промышленных помещениях. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора.
Princy A. J | 4 июня 2020 г.
Асинхронный двигатель — это обычно используемый электродвигатель переменного тока. В асинхронном двигателе электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции от вращающегося магнитного поля обмотки статора. Ротор асинхронного двигателя может быть ротором с короткозамкнутым ротором или ротором с намоткой.
Асинхронные двигатели, используемые в различных приложениях, также называются асинхронными двигателями. Это связано с тем, что асинхронный двигатель всегда работает с меньшей скоростью, чем синхронная скорость. Скорость вращающегося магнитного поля в статоре называется синхронной скоростью.
Индукционные машины являются наиболее часто используемым типом двигателей в жилых, коммерческих и промышленных помещениях. Эти трехфазные двигатели переменного тока обладают следующими характеристиками:
- Простая и грубая конструкция
- Доступное и низкое обслуживание
- Высокая надежность и профессионализм
- Нет необходимости в дополнительном пусковом двигателе и необходимости в синхронизации
Два типа асинхронных двигателей
Однофазный асинхронный двигатель
Однофазный асинхронный двигатель не запускается самостоятельно.Основная обмотка пропускает спорадический ток, когда двигатель подключен к однофазному источнику питания. Вполне логично, что самый дешевый, самый дешевый механизм сортировки должен использоваться наиболее регулярно. В зависимости от способа запуска эти машины классифицируются по-разному. Это двигатели с экранированными полюсами, двигатели с разделенной фазой и конденсаторные двигатели. Кроме того, конденсаторные двигатели запускаются с конденсатора, работают с конденсатором и имеют двигатели с постоянным конденсатором.
В этих однофазных двигателях пусковая обмотка может иметь последовательный конденсатор и центробежный выключатель.Когда подается напряжение питания, ток в основной обмотке удерживает напряжение питания из-за полного сопротивления основной обмотки. И ток в пусковой обмотке опережает / отстает, напряжение питания зависит от импеданса пускового механизма. Угол между двумя обмотками равен разности фаз, достаточной для создания вращающегося магнитного поля для создания пускового момента. В момент, когда двигатель достигает от 70% до 80% синхронной скорости, центробежный переключатель на валу двигателя размыкается и отключает пусковую обмотку.
Применение однофазных асинхронных двигателей
Однофазные асинхронные двигатели используются в системах с малой мощностью. Эти двигатели широко используются в быту и промышленности. Некоторые из приложений упомянуты ниже:
- Насосы
- Компрессоры
- Малые вентиляторы
- Миксеры
- Игрушки
- Высокоскоростные пылесосы
- Электробритвы
- Станки сверлильные
Трехфазный асинхронный двигатель:
Трехфазные асинхронные двигатели, будучи самозапускающимися, не имеют пусковой обмотки, центробежного переключателя, конденсатора или другого пускового устройства.Трехфазные асинхронные двигатели переменного тока находят различное применение в коммерческих и промышленных приложениях. Два типа трехфазных асинхронных двигателей — это двигатели с короткозамкнутым ротором и с фазным ротором. Особенности, которые делают двигатели с короткозамкнутым ротором широко применяемыми, заключаются в основном в их простой конструкции и прочной конструкции. С внешними резисторами двигатели с контактным кольцом могут иметь высокий пусковой момент.
Трехфазные асинхронные двигатели широко используются в бытовых и промышленных приборах, так как они имеют прочную конструкцию, не требуют обслуживания, сравнительно дешевле и требуют питания только на статоре.
Применение трехфазного асинхронного двигателя
- Подъемники
- Краны
- Подъемники
- Вытяжные вентиляторы большой мощности
- Станки токарные приводные
- Дробилки
- Маслоэкстракционные заводы
- Текстиль и др.
типов однофазных асинхронных двигателей | Схема электрических соединений однофазного асинхронного двигателя
Однофазные асинхронные двигатели традиционно используются в жилых помещениях, таких как потолочные вентиляторы, кондиционеры, стиральные машины и холодильники.Эти двигатели состоят из двигателей с расщепленной фазой, экранированных полюсов и конденсаторных двигателей.
Двигатель переменного тока (переменного тока) — это электромеханическое устройство, которое преобразует электрическую энергию в механическое движение за счет использования электромагнетизма и изменения частоты и напряжения, производимых коммунальной компанией или контроллером двигателя.
Двигатели переменного тока составляют основу потребления электроэнергии в мире, потому что они делают так много и с минимальным вмешательством человека.Электродвигатель переменного тока на сегодняшний день является самым простым и дешевым электродвигателем, используемым в промышленности.
Рис.1: Статор и ротор двигателя
Электродвигатель переменного тока состоит из очень небольшого количества деталей, пока они не выходят за рамки своих рабочих характеристик, они могут проработать до 100 лет с минимальным техобслуживанием. Основными частями двигателя переменного тока являются ротор и статор, как показано на рисунке 1. .
Ротор — это вращающаяся часть двигателя переменного тока, которая поддерживается набором подшипников, обеспечивающих безупречное вращение внутри концевых колец.Подшипники запрессованы в набор концевых раструбов, которые заполнены смазкой для обеспечения плавного движения.
Статор — это неподвижная или стационарная часть двигателя, к которой прикреплены концевые раструбы, а обмотки намотаны вокруг многослойных листов железа, которые создают электромагнитное вращающееся поле, когда катушка находится под напряжением.
Двигатели — это очень универсальные электромеханические компоненты, поскольку они могут иметь размер, конфигурацию и конструкцию, подходящую для любой ситуации или для выполнения любых задач.Большой процент двигателей, используемых в промышленности, составляют однофазные и трехфазные двигатели, как показано на рисунке 2.
Рис.2: Трехфазный асинхронный двигатель (Изображение предоставлено Википедией)
Однофазные асинхронные двигатели
Однофазный асинхронный двигатель — это электродвигатель, который работает от одной формы волны переменного тока. Однофазные асинхронные двигатели используются в жилых помещениях для электроприборов переменного тока в одиночных или многоквартирных домах. Существует три типа однофазных асинхронных двигателей: электродвигатели с экранированными полюсами, электродвигатели с разделением фаз и конденсаторные электродвигатели.
Двигатель с экранированными полюсами
Двигатели с экранированными полюсами , , как показано на рисунке 3, представляют собой однофазные асинхронные двигатели, которые используются для работы небольших охлаждающих вентиляторов внутри холодильников компьютеров. Они принадлежат к семейству асинхронных двигателей с короткозамкнутым ротором, которые используются в ограниченном количестве приложений, требующих менее 3/4 лошадиных сил, обычно в диапазоне от 1/20 до 1/6 лошадиных сил.
Самая большая нагрузка: двигатель с экранированным полюсом может повернуть очень легкий компонент, способный вращаться с низкой плотностью вращения. . Обычно, когда двигатели с экранированными полюсами выходят из строя, их выбрасывают в мусорную корзину и покупают новый.
Рис.3: Двигатель с экранированными полюсами
Рис.4: Схема электрических соединений двигателя с экранированными полюсами
Полюса статора снабжены дополнительной обмоткой в каждом углу, называемой обмоткой оттенка , как показано на рис.4 . Эти обмотки не имеют электрического соединения для запуска, но используют индуцированный ток для создания вращающегося магнитного поля.
Полюсная конструкция двигателя с экранированными полюсами позволяет создавать вращающееся магнитное поле, задерживая нарастание магнитного потока. Медный проводник изолирует заштрихованную часть полюса, образуя полный виток вокруг него. В заштрихованной части магнитный поток увеличивается, но задерживается током, индуцированным в медном экране. Магнитный поток в незатененной части увеличивается с током обмотки, формирующим вращающееся поле.
Двигатель с разделенной фазой
Асинхронный двигатель с разделенной фазой — это однофазный асинхронный двигатель с двумя обмотками, называемыми рабочей обмоткой, вторичной пусковой обмоткой и центробежным переключателем, как показано на рисунке 6. Двигатели с разделенной фазой обычно работают при 1/20 л.с. 3 л.с.
Эти двигатели с короткозамкнутым ротором являются ступенью выше двигателей с экранированными полюсами, поскольку они могут немного больше работать с более тяжелой нагрузкой, приложенной к валу ротора.
Рис.5: Двигатель с расщепленной фазой
Рис.6: Схема электрических соединений двигателя с расщепленной фазой
Электродвигатель с расщепленной фазой можно найти в приложениях, требующих от 1/20 л.с. до 1/3 л.с., что означает, что он может вращать все, что угодно, от лопастей потолочного вентилятора, ванн стиральных машин, двигателей нагнетателей для нефтяных печей и небольших насосов.
Центробежный выключатель — это нормально замкнутое управляющее устройство, подключенное к пусковой обмотке. Цель этой конфигурации состоит в том, что пусковая обмотка двигателя будет отключена от цепи, когда двигатель достигнет 75-80% своей номинальной скорости.Несмотря на то, что это считается надежным двигателем, этот центробежный переключатель является подвижной частью, которая иногда не включается снова, когда двигатель перестает вращаться.
Принцип работы двигателей с разделенной фазой
- Чтобы запустить двигатель с расщепленной фазой, пусковая и пусковая обмотки должны быть подключены параллельно
- При 75% полной скорости центробежный выключатель размыкается, отключая пусковую обмотку.
- Поскольку пусковая обмотка отключена от цепи, двигатель работает через пусковую обмотку.
- Для отключения питания двигателя с расщепленной фазой при скорости 40% полной нагрузки центробежный переключатель замыкается. Выключение мотора.
Конденсаторные двигатели
Однофазные конденсаторные двигатели — это следующий шаг в семействе однофазных асинхронных двигателей. Конденсаторные двигатели содержат такую же пусковую и рабочую обмотку, что и двигатель с расщепленной фазой, за исключением конденсатора, который дает двигателю больший крутящий момент при запуске или во время работы. Конденсатор предназначен для возврата напряжения в систему при отсутствии напряжения и синусоидального сигнала ЦАП в однофазной системе.
В однофазной системе переменного тока имеется только одна форма волны напряжения, и в течение одного цикла из 60 гц, необходимых для создания напряжения, напряжение не создается в двух точках. Задача конденсатора — заполнить эту пустоту, чтобы двигатель всегда находился под напряжением, что означает, что во время работы двигателя создается большой крутящий момент.
Есть три типа конденсаторных двигателей: конденсаторный пуск, конденсаторный двигатель и конденсаторный пуск и пуск.
Асинхронный двигатель с конденсаторным пуском
Конденсаторный пуск асинхронные двигатели, как показано на рисунке 7, представляют собой однофазный асинхронный двигатель, в котором конденсатор включен последовательно с пусковой обмоткой и центробежным переключателем двигателя.Эта конфигурация дает двигателю более высокую пусковую мощность, но приложение не требует большой мощности во время работы. Во время работы инерция нагрузки играет большую роль в работе двигателя, когда есть проблема с двигателем, обычно это происходит из-за неисправного конденсатора. Двигатель обычно не вращается, если внешняя сила не раскручивает вал; после запуска он будет продолжать нормально работать до тех пор, пока с двигателя не будет отключено питание.
Электродвигатели с конденсаторным пуском обычно используются в установках переменного тока, больших электродвигателях воздуходувок и вентиляторах конденсатора.Конденсатор этих двигателей иногда встроен в двигатель или расположен на удалении от двигателя, что упрощает замену.
Рис.7: Конденсаторный пусковой двигатель
Работа конденсаторного двигателя
- Имеет пусковую обмотку, рабочую обмотку и центробежный переключатель, который размыкается при скорости полной нагрузки от 60 до 80%, как показано на рисунке 8.
- Пусковая обмотка и конденсатор больше не используются после размыкания центробежного переключателя, как показано на рисунке 9.
- Конденсатор используется только для пуска с высоким крутящим моментом.
Рис.8: Пусковой конденсатор
Рис.9: Центробежный переключатель
Конденсаторный асинхронный двигатель
Асинхронные двигатели с конденсаторным запуском , как видно на рисунках 10 и 11, очень похожи на индукционные электродвигатели с конденсаторным запуском, за исключением того, что пусковая обмотка и рабочая обмотка всегда остаются в цепи. Для этого типа двигателя требуется низкий пусковой крутящий момент, но он должен поддерживать постоянный крутящий момент во время работы.Этот тип двигателя иногда можно встретить в компрессоре кондиционера. Пусковая обмотка постоянно подключена к конденсатору последовательно.
Рис.10: Конденсаторный двигатель
Рис.11: Конденсаторный двигатель
Работа конденсатора
- Использует конденсатор более низкого номинала, потому что конденсатор всегда находится в цепи на полной скорости нагрузки.
- Используется для более высокого крутящего момента.
Конденсатор пусковой конденсатор Асинхронный двигатель
Конденсаторные асинхронные двигатели с пусковым конденсатором — это однофазные асинхронные двигатели, у которых есть конденсатор в пусковой обмотке и в ходовой обмотке, как показано на рисунках 12 и 13 (электрическая схема).Этот тип двигателя разработан для обеспечения высокого пускового момента и стабильной работы в таких приложениях, как большие водяные насосы.
Рис.12: Конденсаторный пуск и конденсаторный двигатель
Рис.13: Схема электрических соединений электродвигателя пускового конденсатора и работающего конденсатора
Конденсатор пуск-конденсатор Работа двигателя
- Состоит из двух конденсаторов
- Один конденсатор включен последовательно с пусковой обмоткой; другой конденсатор включен последовательно с обмоткой хода.
- Оба конденсатора имеют разные номиналы.
- Конденсаторный пуск и запуск Двигатель имеет тот же пусковой момент и более высокий рабочий крутящий момент, потому что у него больше емкости.
- Конденсатор большей емкости для запуска и конденсатор меньшей емкости для работы.
Что такое трехфазный двигатель и как он работает?
Трехфазные двигатели (также численно обозначаемые как трехфазные двигатели) широко используются в промышленности и стали рабочей лошадкой многих механических и электромеханических систем из-за их относительной простоты, проверенной надежности и длительного срока службы.Трехфазные двигатели являются одним из примеров типа асинхронного двигателя, также известного как асинхронный двигатель, который работает на принципах электромагнитной индукции. Хотя существуют также однофазные асинхронные двигатели, эти типы асинхронных двигателей реже используются в промышленных приложениях, но широко используются в бытовых приложениях, таких как пылесосы, компрессоры холодильников и кондиционеры, из-за использования однофазных двигателей. фаза переменного тока в домах и офисах. В этой статье мы обсудим, что такое трехфазный двигатель, и опишем, как он работает.Чтобы получить доступ к другим ресурсам о двигателях, обратитесь к одному из наших других руководств по двигателям, посвященным двигателям переменного тока, двигателям постоянного тока, асинхронным двигателям, или к более общей статье о типах двигателей. Полный список статей о моторах можно найти в разделе статей по теме.
Что такое трехфазное питание?
Чтобы понять трехфазные двигатели, полезно сначала понять трехфазную мощность.
При производстве электроэнергии переменный ток (AC), создаваемый генератором, имеет характеристику, заключающуюся в том, что его амплитуда и направление меняются со временем.Если отображать графически с амплитудой на оси y и временем на оси x, соотношение между напряжением или током в зависимости от времени будет напоминать синусоидальную волну, как показано ниже:
Рисунок 1 — Однофазный переменный ток
Изображение предоставлено: Фуад А. Саад / Shutterstock.com
Электроэнергия, подаваемая в дома, является однофазной, это означает, что имеется один токоведущий провод плюс нейтраль и заземление. В трехфазном питании, которое используется в промышленных и коммерческих условиях для работы более крупного оборудования, которое требует большей мощности, есть три проводника электрического тока, каждый из которых работает с разностью фаз 120 o 2π / 3. радианы друг от друга.Если рассматривать графически, каждая фаза будет выглядеть как отдельная синусоида, которая затем объединяется, как показано на изображении ниже:
Рисунок 2 — Трехфазное электрическое питание со сдвигом фаз 120
o между каждой фазой
Изображение предоставлено: teerawat chitprung / Shutterstock.com
Трехфазные двигатели питаются от электрического напряжения и тока, которые генерируются как трехфазная входная мощность и затем используются для выработки механической энергии в виде вращающегося вала двигателя.
Что такое трехфазный двигатель?
Трехфазные двигатели — это тип двигателя переменного тока, который является конкретным примером многофазного двигателя. Эти двигатели могут быть асинхронными двигателями (также называемыми асинхронными двигателями) или синхронными двигателями. Двигатели состоят из трех основных компонентов — статора, ротора и корпуса.
Статор состоит из ряда пластин из легированной стали, вокруг которых намотана проволока, образуя индукционные катушки, по одной катушке на каждую фазу источника электроэнергии.Катушки статора питаются от трехфазного источника питания.
Ротор также содержит индукционные катушки и металлические стержни, соединенные в цепь. Ротор окружает вал двигателя и представляет собой компонент двигателя, который вращается для выработки механической энергии на выходе двигателя.
Корпус двигателя удерживает ротор с валом двигателя на комплекте подшипников для уменьшения трения вращающегося вала. Корпус имеет торцевые крышки, которые удерживают подшипниковые опоры и вентилятор, прикрепленный к валу двигателя, который вращается при вращении вала двигателя.Вращающийся вентилятор втягивает окружающий воздух снаружи корпуса и заставляет воздух проходить через статор и ротор для охлаждения компонентов двигателя и рассеивания тепла, которое генерируется в различных катушках из-за сопротивления катушки. Кожух также обычно имеет выступающие механические ребра снаружи, которые служат для дальнейшего отвода тепла в наружный воздух. Торцевая крышка также обеспечит место для электрических соединений для трехфазного питания двигателя.
Как работает трехфазный двигатель?
Трехфазные двигатели работают по принципу электромагнитной индукции, который был открыт английским физиком Майклом Фарадеем еще в 1830 году.Фарадей заметил, что когда проводник, такой как катушка или проволочная петля, помещается в изменяющееся магнитное поле, в проводнике возникает наведенная электродвижущая сила или ЭДС. Он также заметил, что ток, протекающий в проводнике, таком как провод, будет генерировать магнитное поле и что магнитное поле будет меняться, когда ток в проводе изменяется по величине или направлению. Это выражается в математической форме, связывая ротор электрического поля со скоростью изменения магнитного потока во времени:
Эти принципы составляют основу для понимания того, как работает трехфазный двигатель.
На рисунке 3 ниже показан закон индукции Фарадея. Обратите внимание, что наличие ЭДС зависит от движения магнита, которое приводит к изменению магнитного поля.
Рисунок 3 — Принцип электромагнитной индукции
Изображение предоставлено: Фуад А. Саад / Shutterstock.com
Для асинхронных двигателей, когда статор питается от трехфазного источника электроэнергии, каждая катушка генерирует магнитное поле, полюса которого (северный или южный) меняют положение, когда переменный ток колеблется в течение полного цикла.Поскольку каждая из трех фаз переменного тока сдвинута по фазе на 120, или , магнитная полярность трех катушек не одинакова в один и тот же момент времени. Это состояние приводит к тому, что статор создает так называемое RMF или вращающееся магнитное поле. Поскольку ротор находится в центре катушек статора, изменяющееся магнитное поле статора индуцирует ток в катушках ротора, что, в свою очередь, приводит к возникновению противоположного магнитного поля, создаваемого ротором. Поле ротора стремится выровнять свою полярность относительно поля статора, в результате к валу двигателя прикладывается чистый крутящий момент, и он начинает вращаться, пытаясь выровнять свое поле.Обратите внимание, что в трехфазном асинхронном двигателе нет прямого электрического соединения с ротором; магнитная индукция вызывает вращение двигателя.
В трехфазных асинхронных двигателях ротор стремится поддерживать соосность с RMF статора, но никогда не достигает этого, поэтому асинхронные двигатели также называют асинхронными. Явление, которое заставляет скорость ротора отставать от скорости RMF, известно как скольжение, что выражается как:
, где N r — это скорость ротора, а N s — синхронная скорость вращающегося поля (RMF) статора.
Синхронные двигатели работают аналогично асинхронным двигателям, за исключением того, что в случае синхронного двигателя поля статора и ротора синхронизированы, так что RMF статора заставляет ротор вращаться с точно такой же скоростью вращения (в синхронизация — значит, скольжение равно 0). Для получения дополнительной информации о том, как это сделать, обратитесь к статьям о реактивных двигателях и бесщеточных двигателях постоянного тока. Обратите внимание, что синхронные двигатели, в отличие от асинхронных двигателей, не нуждаются в питании от сети переменного тока.
Контроллеры двигателей для трехфазных двигателей
Скорость, создаваемая трехфазным двигателем переменного тока, является функцией частоты сети переменного тока, поскольку она является источником RMF в обмотках статора. Поэтому некоторые контроллеры двигателей переменного тока работают, используя вход переменного тока для генерации модулированной или управляемой частоты на входе двигателя, тем самым управляя скоростью двигателя. Другой подход, который можно использовать для управления скоростью двигателя, — это изменение скольжения (описанное ранее).Если скольжение увеличивается, скорость двигателя (то есть скорость ротора) уменьшается.
Чтобы узнать больше о подходах к управлению двигателями, просмотрите нашу статью о контроллерах двигателей переменного тока.
Сводка
В этой статье представлено краткое обсуждение того, что такое трехфазные двигатели и как они работают. Чтобы узнать больше о двигателях, ознакомьтесь с нашими соответствующими статьями, перечисленными ниже. Для получения информации о других продуктах обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.
Источники:
- https://kebblog.com/how-a-3-phase-ac-induction-motor-works/
- https://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx
- http://www.oddparts.com/oddparts/acsi/defines/poles.htm
- http://www.gohz.com/how-to-determine-the-pole-number-of-an-induction-motor
- https://www.elprocus.com/induction-motor-types-advantages/
- https: // www.intechopen.com/books/electric-machines-for-smart-grids-applications-design-simulation-and-control/single-phase-motors-for-household-applications
- https://www.worldwideelectric.net/resource/construction-ac-motors/
Прочие изделия для двигателей
Больше от Machinery, Tools & Supplies
Двигатели переменного тока
| Конструкция машины
Синхронные двигатели и синхронные двигатели — это две основные категории двигателей переменного тока. Асинхронный двигатель является распространенной формой асинхронного двигателя и в основном представляет собой трансформатор переменного тока с вращающейся вторичной обмоткой.Первичная обмотка (статор) подключена к источнику питания, а закороченная вторичная (ротор) несет наведенный вторичный ток. Крутящий момент создается действием токов ротора (вторичных) на поток воздушного зазора. Синхронный двигатель сильно отличается по конструкции и эксплуатационным характеристикам и считается отдельным классом двигателей.
Асинхронные двигатели: Асинхронные двигатели являются простейшими и наиболее прочными электродвигателями и состоят из двух основных электрических узлов: статора с обмоткой и узла ротора.Асинхронный двигатель получил свое название от токов, протекающих во вторичном элементе (роторе), которые индуцируются переменными токами, протекающими в первичном элементе (статоре). Комбинированное электромагнитное воздействие токов статора и ротора создает силу, вызывающую вращение.
Роторы обычно состоят из многослойного цилиндрического железного сердечника с прорезями для размещения проводников. Самый распространенный тип ротора имеет литые алюминиевые жилы и замыкающие концевые кольца. Эта «беличья клетка» вращается, когда движущееся магнитное поле индуцирует ток в закороченных проводниках.Скорость вращения магнитного поля является синхронной скоростью двигателя и определяется числом полюсов статора и частотой источника питания: n s = 120 f / p , где n s = синхронная скорость, f = частота и p = количество полюсов.
Синхронная скорость — это абсолютный верхний предел скорости двигателя. Если ротор вращается с той же скоростью, что и вращающееся магнитное поле, то проводники ротора не перерезают силовые линии и крутящий момент равен нулю.Во время работы ротор всегда вращается медленнее, чем магнитное поле. Скорость ротора достаточно мала, чтобы обеспечить протекание надлежащего количества тока ротора, так что результирующий крутящий момент будет достаточным для преодоления потерь на ветер и трение и управления нагрузкой. Разница в скорости между ротором и магнитным полем, называемая скольжением, обычно выражается в процентах от синхронной скорости: с = 100 ( n s — n a ) / n s , где с = скольжение, n с = синхронная скорость и n a = фактическая скорость.
Многофазные двигатели: Многофазные двигатели с короткозамкнутым ротором — это в основном машины с постоянной скоростью, но некоторая степень гибкости в рабочих характеристиках является результатом изменения конструкции паза ротора. Эти изменения вызывают изменения крутящего момента, тока и скорости при полной нагрузке. Эволюция и стандартизация привели к появлению четырех основных типов двигателей.
Конструкции A и B: Двигатели общего назначения с нормальным пусковым моментом и током и малым скольжением.Многофазные двигатели с дробной мощностью обычно имеют конструкцию B. Из-за падающих характеристик конструкции B многофазный двигатель, который производит такой же пробойный (максимальный) крутящий момент, что и однофазный двигатель, не может достичь той же точки скорости-момента для скорости при полной нагрузке. как однофазный двигатель. Следовательно, момент пробоя должен быть выше (минимум 140% момента пробоя однофазного двигателя общего назначения), чтобы скорости при полной нагрузке были сопоставимы.
Конструкция C: Высокий пусковой момент при нормальном пусковом токе и малом скольжении.Эта конструкция обычно используется там, где отрывные нагрузки высоки при пуске, но которые обычно работают при номинальной полной нагрузке и не подвергаются высоким требованиям к перегрузке после достижения рабочей скорости.
Конструкция D: Высокое скольжение, очень высокий пусковой момент, низкий пусковой ток и низкая скорость при полной нагрузке. Из-за высокого проскальзывания скорость может упасть при столкновении с колеблющимися нагрузками. Эта конструкция подразделяется на несколько групп, которые различаются в зависимости от скольжения или формы кривой скорость-крутящий момент.
Конструкция F: Низкий пусковой момент, низкий пусковой ток и малое скольжение. Эта конструкция предназначена для получения низкого тока заторможенного ротора. Как заторможенный ротор, так и момент пробоя низкие. Обычно используется при низком пусковом моменте и при отсутствии высоких перегрузок после достижения рабочей скорости.
Двигатели с фазным ротором: Двигатели с короткозамкнутым ротором относительно негибки в отношении характеристик скорости и крутящего момента, но специальная версия с фазным ротором имеет регулируемые скорость и крутящий момент.Применение двигателей с фазным ротором заметно отличается от двигателей с короткозамкнутым ротором из-за доступности цепи ротора. Рабочие характеристики получены путем введения различных значений сопротивления в цепь ротора.
Двигатели с фазным ротором обычно запускаются с вторичным сопротивлением в цепи ротора. Сопротивление последовательно уменьшается, чтобы двигатель разгонялся. Таким образом, двигатель может развивать значительный крутящий момент при ограничении тока заторможенного ротора.Это вторичное сопротивление может быть рассчитано на непрерывную работу для рассеивания тепла, выделяемого при непрерывной работе на пониженной скорости, частом ускорении или ускорении с большой инерционной нагрузкой. Внешнее сопротивление придает двигателю такую характеристику, которая приводит к значительному падению оборотов при довольно небольшом изменении нагрузки. Обеспечивается пониженная скорость примерно до 50% от номинальной скорости, но эффективность низкая.
Многоскоростные двигатели: Двигатели с последовательными полюсами рассчитаны на одну скорость.Путем физического повторного соединения проводов можно получить передаточное число 2: 1. Типичные синхронные скорости для двигателя 60 Гц: 3600/1800 об / мин (2/4 полюса), 1800/900 об / мин (4/8 полюса) и 1200/600 об / мин (6/12 полюсов).
Двухобмоточные двигатели имеют две отдельные обмотки, которые можно намотать на любое количество полюсов, чтобы можно было получить другие соотношения скоростей. Однако соотношение больше 4: 1 нецелесообразно из-за размера и веса двигателя. Однофазные многоскоростные двигатели обычно имеют конструкцию с регулируемым крутящим моментом, но доступны двигатели с постоянным крутящим моментом и постоянной мощностью.
Выходная мощность многоскоростных двигателей может быть пропорциональна каждой скорости. Эти двигатели разработаны с выходной мощностью в лошадиных силах в соответствии с одной из следующих нагрузочных характеристик.
Переменный крутящий момент: Двигатели имеют характеристику крутящего момента, которая изменяется как квадрат скорости. Например, двигатель со скоростью 1800/900 об / мин, который развивает 10 л.с. при 1800 об / мин, выдает 2,5 л.с. при 900 об / мин. Поскольку для некоторых нагрузок, таких как центробежные насосы, вентиляторы и воздуходувки, требуется крутящий момент, который изменяется пропорционально квадрату или кубу скорости, эта характеристика двигателя обычно является адекватной.
Постоянный крутящий момент: Эти двигатели могут развивать одинаковый крутящий момент на каждой скорости, поэтому выходная мощность напрямую зависит от скорости. Например, двигатель мощностью 10 л.с. при 1800 об / мин выдает 5 л.с. при 900 об / мин. Эти двигатели используются в приложениях с требованиями к постоянному крутящему моменту, таких как смесители, конвейеры и компрессоры.
Постоянная мощность: Эти двигатели развивают одинаковую мощность на каждой скорости, а крутящий момент обратно пропорционален скорости.Типичные области применения включают станки, такие как дрели, токарные и фрезерные станки.
Однофазные двигатели: Однофазные асинхронные двигатели обычно имеют дробную мощность, хотя однофазные интегральные двигатели доступны в более низком диапазоне мощности. Наиболее распространенными однофазными двигателями с дробной мощностью являются электродвигатели с разделенной фазой, с конденсаторным пуском, с постоянным разделенным конденсатором и с экранированным полюсом.
Двигатели бывают многоскоростные, но есть практический предел количества получаемых скоростей.Доступны двух-, трех- и четырехскоростные двигатели, и выбор скорости может осуществляться последовательно-полюсными или двухобмоточными методами.
Однофазные двигатели вращаются в том направлении, в котором они были запущены; и они запускаются в заданном направлении в соответствии с электрическими соединениями или механической настройкой пусковых средств. Двигатели общего назначения могут работать в любом направлении, но стандартное вращение — против часовой стрелки, если смотреть на конец, противоположный приводному валу.Двигатели можно повторно подключить, чтобы изменить направление вращения.
Универсальные двигатели: Универсальный двигатель работает с почти эквивалентной производительностью на постоянном или переменном токе с частотой до 60 Гц. Он отличается от двигателя постоянного тока из-за передаточных чисел намотки и более тонких металлических пластин. Двигатель серии постоянного тока работает от переменного тока, но с низким КПД. Универсальный двигатель может работать на постоянном токе с практически эквивалентными характеристиками переменного тока, но с меньшими коммутационными характеристиками и меньшим сроком службы щеток, чем у эквивалентного серийного двигателя постоянного тока.
Важной характеристикой универсального двигателя является то, что он имеет самое высокое соотношение мощности на фунт среди всех двигателей переменного тока, поскольку он может работать на скоростях, во много раз превышающих скорость любого другого двигателя с частотой 60 Гц.
При работе без нагрузки универсальный двигатель имеет тенденцию к разбегу, скорость ограничивается только сопротивлением ветра, трением и коммутацией. Поэтому большие универсальные двигатели почти всегда подключаются напрямую к нагрузке для ограничения скорости. На портативных инструментах, таких как электрические пилы, нагрузка на шестерни, подшипники и охлаждающий вентилятор достаточна для поддержания скорости холостого хода на безопасном уровне.
С универсальным двигателем регулирование скорости является простым, поскольку скорость двигателя чувствительна к изменениям как напряжения, так и магнитного потока. С помощью реостата или регулируемого автотрансформатора скорость двигателя можно легко изменять от максимальной до нуля.
Синхронные двигатели: Синхронные двигатели по своей сути являются двигателями с постоянной скоростью и работают в абсолютном синхронизме с частотой сети. Как и в случае асинхронных двигателей с короткозамкнутым ротором, скорость определяется количеством пар полюсов и всегда является отношением к частоте сети.
Типоразмеры синхронных двигателей варьируются от субфракционных двигателей с самовозбуждением до двигателей большой мощности с возбуждением от постоянного тока для промышленных приводов. В диапазоне дробных лошадиных сил синхронные двигатели используются в основном там, где требуется точная постоянная скорость.
Синхронные двигатели большой мощности, применяемые в промышленных нагрузках, выполняют две важные функции. Во-первых, это высокоэффективное средство преобразования энергии переменного тока в механическую.Во-вторых, он может работать с опережающим или единичным коэффициентом мощности, тем самым обеспечивая коррекцию коэффициента мощности.
Существует два основных типа синхронных двигателей: без возбуждения и с возбуждением от постоянного тока.
Двигатели без возбуждения изготавливаются в реактивном и гистерезисном исполнении. Эти двигатели используют схему самозапуска и не требуют внешнего источника возбуждения.
Двигатели с возбуждением от постоянного тока бывают мощностью более 1 л.с. и требуют постоянного тока, подаваемого через контактные кольца для возбуждения.Постоянный ток может подаваться от отдельного источника или от генератора постоянного тока, непосредственно подключенного к валу двигателя.
Однофазные или многофазные синхронные двигатели не могут запускаться без привода или без подключения ротора в виде цепи самозапуска. Поскольку поле вращается с синхронной скоростью, двигатель должен быть ускорен, прежде чем он сможет синхронизироваться. Ускорение с нулевой скорости требует проскальзывания до достижения синхронизма. Следовательно, необходимо использовать отдельные средства запуска.
В конструкциях с автоматическим запуском для типоразмеров мощности используются методы пуска, общие для асинхронных двигателей (расщепленная фаза, конденсаторный пуск, отталкивающий пуск и затененные полюса). Электрические характеристики этих двигателей заставляют их автоматически переключаться на синхронный режим.
Хотя двигатель с возбуждением от постоянного тока имеет короткозамкнутый ротор для запуска, называемый амортизатором или демпферной обмоткой, присущий ему низкий пусковой момент и потребность в источнике питания постоянного тока требует системы запуска, которая обеспечивает полную защиту двигателя при запуске, применяется постоянный ток. возбуждение поля в нужное время, устраняет возбуждение поля при выдергивании ротора (максимальный крутящий момент) и защищает обмотку с короткозамкнутым ротором от теплового повреждения в условиях рассогласования.
Крутящий момент — это минимальный крутящий момент, развиваемый от состояния покоя до точки втягивания. Этот крутящий момент должен превышать крутящий момент нагрузки с достаточным запасом, чтобы удовлетворительная скорость ускорения поддерживалась при нормальных условиях напряжения.
Момент сопротивления возникает из-за выступа (предпочтительного направления намагничивания) полюсных наконечников ротора и пульсирует на скоростях ниже синхронной. Это также влияет на крутящие моменты втягивания и извлечения двигателя, поскольку невозбужденный явнополюсный ротор стремится выровняться с магнитным полем статора для поддержания минимального магнитного сопротивления.Этого реактивного крутящего момента может быть достаточно, чтобы синхронизировать слегка нагруженную малоинерционную систему и развить примерно 30% крутящего момента отрыва.
Синхронный крутящий момент — это крутящий момент, развиваемый после приложения возбуждения, и представляет собой общий установившийся крутящий момент, доступный для привода нагрузки. Он достигает максимума при отставании ротора от магнитного поля вращающегося статора примерно на 70 °. Это максимальное значение фактически является крутящим моментом отрыва.
Момент отрыва — это максимальный устойчивый крутящий момент, который двигатель развивает при синхронной скорости в течение одной минуты с номинальной частотой и нормальным возбуждением.Нормальный момент отрыва обычно составляет 150% от крутящего момента при полной нагрузке для двигателей с единичным коэффициентом мощности и от 175 до 200% для двигателей с опережающим коэффициентом мощности 0,8.
Втягивающий момент синхронного двигателя — это крутящий момент, который он развивает, когда синхронизирует подключенную инерционную нагрузку при приложении возбуждения. Вращающий момент создается при переходе от скорости скольжения к синхронной скорости, когда двигатель переключается с асинхронного режима на синхронный. Обычно это наиболее критический период при запуске синхронного двигателя.Крутящие моменты, развиваемые амортизатором и обмотками возбуждения, становятся нулевыми при синхронной скорости. Таким образом, в точке втягивания эффективны только реактивный момент и синхронизирующий момент, обеспечиваемый возбуждением обмоток возбуждения.
Двигатели с синхронизацией: Двигатели с синхронизацией рассчитаны на менее 1/10 л.с. и используются в качестве первичных двигателей для устройств синхронизации. Поскольку двигатель используется в качестве таймера, он должен работать с постоянной скоростью.
Двигатели переменного и постоянного тока могут использоваться в качестве синхронизирующих двигателей.Двигатели с синхронизацией постоянного тока используются для портативных приложений или там, где требуются высокое ускорение и низкие изменения скорости. Преимущества включают в себя пусковой крутящий момент, превышающий десятикратный рабочий крутящий момент, эффективность от 50 до 70% и относительно простое управление скоростью. Но требуется регулятор скорости, механический или электронный.
Двигатели переменного тока используют доступную мощность, дешевле, имеют более длительный срок службы и не создают радиопомех. Однако двигатели переменного тока не могут быть легко адаптированы для портативных приложений, имеют относительно низкие пусковые моменты и намного менее эффективны, чем двигатели постоянного тока.
Серводвигатели переменного тока: Серводвигатели переменного тока используются в сервомеханизмах переменного тока и компьютерах, которые требуют быстрых и точных характеристик отклика. Для достижения этих характеристик серводвигатели имеют роторы малого диаметра с высоким сопротивлением. Малый диаметр обеспечивает низкую инерцию для быстрого пуска, останова и реверсирования, в то время как высокое сопротивление обеспечивает почти линейную зависимость скорости от крутящего момента для точного управления.
Серводвигатели имеют двухфазную намотку, физически расположенную под прямым углом или в пространственной квадратуре.Фиксированная или опорная обмотка возбуждается от источника постоянного напряжения, в то время как обмотка управления возбуждается регулируемым или переменным управляющим напряжением, обычно от сервоусилителя. Обмотки обычно проектируются с одинаковым соотношением напряжения и витков, так что потребляемая мощность при максимальном возбуждении с фиксированной фазой и при максимальном сигнале фазы управления находятся в равновесии.
В идеальном серводвигателе крутящий момент на любой скорости прямо пропорционален напряжению обмотки управления. Однако на практике эта взаимосвязь существует только при нулевой скорости из-за присущей асинхронному двигателю неспособности реагировать на изменения входного напряжения в условиях небольшой нагрузки.
Собственное демпфирование серводвигателей уменьшается с увеличением номинальных значений, и двигатели имеют разумный КПД за счет линейности скорости-момента. Большинство более крупных двигателей имеют встроенные вспомогательные воздуходувки для поддержания температуры в безопасных рабочих диапазонах. Серводвигатели доступны с номинальной мощностью от менее 1 до 750 Вт и размерами от 0,5 до 7 дюймов. OD. Большинство конструкций доступны с модульными или встроенными редукторами.
Асинхронный двигатель
— обзор
Частотно-регулируемые приводы
Асинхронные и синхронные двигатели рассчитаны на определенное соотношение напряжения к частоте ( В, / Гц).Напряжение — это напряжение питания двигателя, а частота — это частота питания. Отношение В, / Гц прямо пропорционально величине магнитного потока в магнитном материале двигателя (пластинах сердечника статора и ротора). Крутящий момент, развиваемый на валу двигателя, пропорционален силе вращающегося потока. Тип и количество магнитного материала, используемого в конструкции двигателя, являются факторами, определяющими номинальную мощность двигателя.
При постоянной частоте питающей сети более высокое напряжение вызывает более высокое отношение В, / Гц и более высокий магнитный поток.При постоянном напряжении питания более низкая частота питания приведет к более высокому соотношению В, / Гц и более высокому потоку. Более высокий магнитный поток увеличивает крутящий момент двигателя. Когда двигатель работает при напряжении В, / Гц, превышающем номинальное, возникает перенапряжение, которое может вызвать насыщение статора и магнитопровода ротора. Насыщение вызывает перегрев и может привести к отказу мотора. Когда двигатель работает при В и / Гц ниже номинальной, магнитный поток уменьшается. Уменьшение магнитного потока снижает крутящий момент и влияет на способность двигателя выдерживать нагрузку.
Когда двигатели питаются напрямую от электросети, частота питающей сети остается постоянной, а напряжение и ток изменяются во время запуска двигателя. Во время разгона двигателя до синхронной скорости (синхронные двигатели) или скорости, близкой к синхронной (асинхронные двигатели), ток сначала возрастет в несколько раз по сравнению с номинальным током и вызовет падение напряжения. Более низкое напряжение при постоянной частоте питания означает более низкое соотношение В и / Гц и меньший магнитный поток, который влияет на крутящий момент.Как только двигатель ускоряется, напряжение восстанавливается до значения, близкого к номинальному, а крутящий момент на валу двигателя достигает номинального значения. В этом случае скорость двигателя будет постоянной и синхронной (синхронные двигатели) или близкой к синхронной (асинхронные двигатели). Если двигатели подключены напрямую к электросети, скорость определяется фиксированной частотой сети и не может контролироваться. Для управления скоростью при необходимости используются дополнительные механические системы: демпферы, клапаны, коробки передач, тормоза и т. Д.Механические системы снижают общую эффективность системы. Кроме того, как объяснялось ранее, асинхронные двигатели потребляют реактивную мощность, поэтому поддержание коэффициента мощности может быть проблемой для асинхронных двигателей. Синхронные двигатели не вызывают проблем с коэффициентом мощности, они действительно могут помочь.
Существует четыре категории проблем с двигателями, подключенными непосредственно к сети электропитания: высокий пусковой ток, контроль крутящего момента, контроль скорости и коэффициент мощности (только для асинхронных двигателей).Одним из эффективных способов решения проблем является использование частотно-регулируемых приводов. При использовании частотно-регулируемых приводов питание привода осуществляется от сети, а питание двигателя — от привода.
ЧРП
управляют скоростью и крутящим моментом двигателя, управляя частотой и величиной напряжений и токов, подаваемых на двигатель. Каждый частотно-регулируемый привод имеет три секции: выпрямитель, фильтр с накопителем энергии и инвертор. Типичная концептуальная конфигурация показана на рис. 7.22.
Рис. 7.22. Типичная конфигурация ЧРП.
Выпрямитель берет синусоиду фиксированной частоты и величины напряжения из сети и выпрямляет ее в форму сигнала постоянного тока.
Фильтр принимает форму сигнала постоянного тока от выпрямителя и обеспечивает почти чистый линейный постоянный ток. Накопитель энергии используется для поддержания мгновенного энергетического баланса. Если при сбалансированной трехфазной нагрузке общая мощность остается постоянной от момента к моменту, а с идеальным преобразователем, накопление энергии не потребуется. На практике преобразователям требуется накопитель энергии для хранения энергии, достаточной для питания двигателя в течение коротких интервалов, когда мощность нагрузки превышает входную мощность.Конденсаторы и индукторы используются для хранения энергии.
Инвертор преобразует постоянный ток обратно в переменный через набор электронных переключателей (MOSFET (металлооксидный полупроводниковый полевой транзистор), IGBT (биполярный транзистор с изолированным затвором), IGCT (встроенный тиристор с коммутацией затвора), GTO (затвор отключающий тиристор) и др.). Эти переключатели, открывая и закрываясь с определенной скоростью и продолжительностью, могут инвертировать постоянный ток и воссоздавать выходные токи и формы сигналов напряжения, которые имитируют синусоидальные формы сигналов переменного тока.Затем двигатель получает питание от выхода инвертора.
Формы выходных сигналов представляют собой сигналы с широтно-импульсной модуляцией (ШИМ). Они называются сигналами ШИМ, потому что они создаются несколькими импульсами переключателей с короткими интервалами. Величину и частоту сигналов напряжения ШИМ можно регулировать. Изменяя время, импульсы и какие переключатели срабатывают, частота может быть увеличена или уменьшена. Изменяя ширину и длительность импульсов, можно увеличивать и уменьшать среднее напряжение на двигателе.Типичная форма сигнала ШИМ с аппроксимируемой синусоидой показана на рис. 7.23.
Рис. 7.23. Типичная форма сигнала ШИМ с аппроксимируемой синусоидой.
При использовании в качестве примера асинхронного двигателя асинхронный двигатель может эффективно работать только при скорости, близкой к синхронной скорости вращающегося поля. Управление скоростью требует непрерывного изменения скорости вращающегося поля, что требует изменения частоты.
Когда выходное напряжение инвертора на каждой выходной частоте инвертора регулируется таким образом, чтобы соотношение В, / Гц поддерживалось постоянным до номинальной скорости, можно получить семейство кривых крутящего момента-скорости, как показано на рис.7.24.
Рис. 7.24. График зависимости крутящего момента от частоты вращения асинхронного двигателя с частотно-регулируемым приводом с постоянным соотношением В и / Гц.
Точка «a» на рис. 7.24 соответствует крутящему моменту без нагрузки и скорости без нагрузки при частоте питания инвертора 25 Гц. От без нагрузки в точке «a» до полной нагрузки в точке «b» скорость немного снизится. Если требуется поддерживать постоянную скорость из точки «а», регулятор частотно-регулируемого привода повысит частоту, так что рабочая точка при полной нагрузке переместится в точку «с».«Управление частотно-регулируемым приводом также будет повышать напряжение пропорционально увеличению частоты, чтобы поддерживать постоянное соотношение В, / Гц при полной нагрузке и, таким образом, поддерживать крутящий момент при полной нагрузке.
Из рис. 7.24 видно, что момент отрыва постоянен во всех точках ниже номинальной скорости, за исключением низких частот. На низких частотах тяговый момент снижается из-за сопротивления статора. Когда частота приближается к нулю, падение напряжения из-за сопротивления статора становится важным, и уменьшение магнитного потока, вызывающее уменьшение крутящего момента, становится заметным.Этот эффект известен и легко смягчается с помощью низкоскоростного повышения напряжения: увеличения отношения В, / f на низких частотах для восстановления магнитного потока. На рис. 7.25 показан типичный набор кривых крутящий момент-скорость для привода с повышением напряжения на низкой скорости.
Рис. 7.25. График зависимости крутящего момента от частоты вращения асинхронного двигателя с частотно-регулируемым приводом с изменением напряжения и частоты, постоянное соотношение В, / Гц до номинальной скорости и повышение напряжения на низкой скорости.
При превышении номинальной скорости соотношение В, / Гц больше не может поддерживаться постоянным, поскольку напряжение не может превышать номинальное напряжение двигателя, чтобы избежать пробоя изоляции двигателя.Увеличение частоты сверх номинальной частоты возможно и приведет к более высокой скорости, но при сохранении напряжения на уровне номинального напряжения и, следовательно, уменьшении отношения В и / Гц, плотность магнитного потока и крутящий момент уменьшатся.
Преимущество двигателей, поставляемых с частотно-регулируемым приводом, заключается в том, что двигатель может обеспечивать одинаковый максимальный крутящий момент от нулевой до номинальной скорости. Эта область характеристики крутящий момент-скорость двигателя называется областью «постоянного крутящего момента». Непрерывная работа с максимальным крутящим моментом на практике не выполняется из-за тепловых ограничений.Верхний предел крутящего момента, равный номинальному крутящему моменту двигателя, обычно устанавливается в контроллере.
С двигателями, поставляемыми с частотно-регулируемым приводом, и с их наличием высокого крутящего момента на низких скоростях можно избежать проблем пуска, общих для операций с фиксированной частотой (начальное высокое скольжение, высокий пусковой ток, падение напряжения и уменьшение крутящего момента). Двигатель с ЧРП запускается с низкой частоты, которая постепенно увеличивается. Скорость скольжения ротора всегда мала, и ротор непрерывно работает с оптимальным крутящим моментом.Номинальный крутящий момент доступен на низких скоростях, а пусковой ток не превышает номинального тока полной нагрузки. Двигатель может запускаться от недельной сети электроснабжения, не вызывая нарушений напряжения в питающей сети.
Как упоминалось ранее, двигатель с частотно-регулируемым приводом может развивать любой крутящий момент до номинального крутящего момента на любой скорости вплоть до номинальной. Эта область называется областью «постоянного крутящего момента». При превышении номинальной скорости В, / Гц будет снижаться, поскольку напряжение остается постоянным при номинальном напряжении двигателя, ток статора и ротора также остаются постоянными, а скорость и частота увеличиваются, поэтому плотность магнитного потока и крутящий момент уменьшаются обратно пропорционально Частота.Эта область характеристики крутящий момент-скорость двигателя называется областью «постоянной мощности». Область постоянной мощности примерно в два раза превышает номинальную скорость. За пределами области постоянной мощности находится область высоких скоростей, где предел тока совпадает с пределом крутящего момента отрыва, который уменьшается обратно пропорционально квадрату частоты, поэтому постоянная мощность не может поддерживаться дальше. Области постоянного крутящего момента, постоянной мощности и высокой скорости показаны на рис. 7.26.
Рис. 7.26. ЧРП предоставил кривую крутящего момента-скорости асинхронного двигателя в области постоянного крутящего момента, постоянной мощности и высокой скорости.
В двигателях с ЧРП важно отметить, что кривые крутящий момент-скорость показывают крутящий момент, который двигатель может создать для каждой частоты, но не то, как долго и может ли двигатель работать в каждом состоянии непрерывно. Если в приложении с двигателем, поставляемым с частотно-регулируемым приводом, используется стандартный асинхронный двигатель, необходимо учитывать ограничения по нагреву. Стандартный промышленный двигатель обычно заключен в корпус с установленным на внешнем валу вентилятором, который обдувает воздухом внешний корпус с оребрениями. Стандартная конструкция и охлаждение двигателя предназначены для непрерывной работы при фиксированной частоте и номинальной скорости, подаваемой в сеть.Когда стандартный промышленный двигатель работает, подключенный к ЧРП, который производит низкую частоту и запускает двигатель на низкой скорости, охлаждение двигателя становится проблемой. Двигатель будет способен создавать номинальный крутящий момент на низкой скорости, но в этих условиях он будет работать при более высоких температурах, что может существенно повлиять на срок службы двигателя или вызвать перегрев и отказ двигателя.
Когда двигатель используется в приложениях с частотно-регулируемым приводом, важно указать сценарии работы, соответствующим образом спроектировать охлаждение и использовать двигатели, подходящие для работы с инвертором.
Помимо охлаждения, при использовании двигателей с частотно-регулируемым приводом при проектировании необходимо учитывать и другие факторы, такие как влияние гармоник от частотно-регулируемого привода к сети, конфигурация кабеля и размер кабеля от частотно-регулируемого привода к двигателю и т.