Режим короткого замыкания. Когда возникает режим короткого замыкания в цепи
Что такое режим короткого замыкания?
"И где этот режим используют, ведь это короткое замыкание и все должно сгореть? " В измерительных трансформаторах тока, например. Идеальные условия для работы ТТ - именно режим короткого замыкания вторичной обмотки. В действительности ТТ работают в режиме, приближенном к режиму КЗ, т. к. сопротивление измерительных органов приборов и защит, включенных в цепь вторичной обмотки ТТ, а также соединительных проводников, не равно нулю. "Получается у источника эдс (например батарейка) напряжение остается прежним? " Нет, т. к. батарейка не является идеальным источником напряжения. Напряжение уменьшается даже в нормальных нагрузочных режимах.
Используют физики - как явление Сверхпроводимости. Но электронщики его избегают. Хотя если вы диверсант, то попробуйте замкнуть.
Всё верно, а используется в модулях защиты от КЗ блоков питания, звуковой аппаратуры и т. д.
<a rel="nofollow" href="http://ru.wikipedia.org/wiki/Режим_короткого_замыкания_(электроника)" target="_blank" >Здесь знают</a>
Это когда напряжение НА ПОТРЕБИТЕЛЕ около нуля. А на источнике ЭДС оно может быть и побольше. У любых уважающих себя "блоков питания" есть защита от КЗ. Она заключается в том, что если ток через потребителя превышает некоторое значение, "блок питания" сам себя отключает. "Перезагрузка" происходит путём "отруби из розетки".
Напряжение падает из сети 220 V до минимального значения 0,087 pV ( пико, -12 степень ) - защита от кЗ к примеру в блоках питания компьютерных - это обычных предохранитель, который не позволяет огромному току выйти в нашу с вами переменную сеть. Удачи в этом вопросе.
Не все понятно из вопроса, но возможно Вы имеете ввиду измерение такой характеристики силовых трансформаторов как "Напряжение короткого замыкания". Это когда вторичную обмотку замыкают накоротко (в режим КЗ) , а в первичной поднимают напряжение с нуля до напряжения, при котором ток во вторичной обмотке будет равен номинальному.
Коротким замыканием называют непредусмотреный конструкцией режим работы электро-цепи. Например источник питания способный дать ток 1а 12в работает в нормальном режиме при токе потребления 1а, и если вдруг его нагрузить относительно мощным и низким сопротивлением, например 0.1 ом, то если источник напряжения и "потребитель" не имеет защиты по току (а в случае с электрохимическим источником, имеет очень низкое внутреннее сопротивление) то в цепи произойдёт относительно короткое замыкание с мгновенным ростом тока до потенциального предела цепи. То есть, как вы поняли это понятие достаточно обстоятельное и относительное. Так же это понятие может использоваться при описании принципа работы того или иного устройства построенного на этом эффекте (короткого замыкания) : например короткозамкнутый ротор двигателя.
используют при сварке, или при проверке трансформаторов
touch.otvet.mail.ru
Режим короткого замыкания - Википедия
Материал из Википедии — свободной энциклопедии
Режи́м коро́ткого замыка́ния в электротехнике, электронике, при теоретическом анализе электрических цепей — состояние пары некоторых узлов электрической цепи (2 , обычно в качестве закорачиваемого участка цепи рассматриваются двухполюсники), при котором его выводы (зажимы, контакты) присоединены к двум узлам другой цепи с модулем полного входного сопротивления пренебрежимо малым по сравнению с модулем полного выходного сопротивления закорачиваемой цепи (при этом говорят, что пара узлов цепи (источник, выход) замкнута, закорочена, соединена накоротко, соединена коротким соединением).
Таким образом, условие короткого замыкания можно записать:
∣Zi∣≪∣Zo∣{\displaystyle \mid Z_{i}\mid \ll \mid Z_{o}\mid }где ∣Zi∣{\displaystyle \mid Z_{i}\mid } — модуль входного импеданса закорачивающей цепи, ∣Zo∣{\displaystyle \mid Z_{o}\mid } — модуль выходного импеданса закорачиваемой цепи.
Часто вместо термина Режим короткого замыкания используются аббревиатуры: Режим КЗ или просто КЗ. Среди электриков и электронщиков также распространены жаргонизмы «коротец», «коротыш» и «кэзэшка»[источник не указан 857 дней].
Различают КЗ для постоянного и переменного токов. Например, подсоединение конденсатора с достаточно большой ёмкостью к паре узлов цепи, между которыми присутствует напряжение с достаточно высокой частотой, когда модуль реактивного сопротивления конденсатора пренебрежимо мал по сравнению с модулем выходного импеданса закорачиваемой цепи, называют КЗ по переменному току.
Изучение режима короткого замыкания применяется в анализе электрических цепей. При этом рассматривается поведение математической модели электрической цепи при «виртуальном» коротком замыкании (см., например, внутреннее сопротивление).
Применение[ | ]
Режим короткого замыкания может быть как полезным, так и вредным или даже опасным в том или ином техническом устройстве.
Полезные применения[ | ]
Часто в системах промышленной автоматики информация об измеряемых параметрах передается в аналоговом виде передачей токового сигнала. При этом измерительные и промежуточные преобразователи сигналов по типу выходного сигнала являются источником тока, в идеале с бесконечным внутренним выходным сопротивлением. При этом наиболее благоприятный случай, с точки зрения точности передачи информации, когда источник сигнала нагружен на потребитель с нулевым внутренним входным сопротивлением, — то есть, источник сигнала работает в режиме КЗ. (См. подробнее Токовая петля).
Электродинамические датчики, например, индукционные виброметры, сейсмоприёмники также очень часто работают в режиме короткого замыкания, эта мера позволяет дополнительно демпфировать механические колебания подвижной системы датчика из-за возникновения вязких электродинамических сил.
Часто режим короткого замыкания применяется в соединении усилительных каскадов в электронике. Каскодный усилитель представляет собой соединение двух активных компонентов, модуль выходного импеданса для малого сигнала первого каскада в этой схеме многократно превышает модуль входного импеданса второго каскада, то есть, выход первого каскада работает в режиме короткого замыкания.
Цепи питания электронных устройств тоже почти всегда работают в режиме короткого замыкания для переменного тока. Их линии питания обычно шунтируются блокировочными конденсаторами для исключения вредного самовозбуждения усилительных каскадов, помех и сбоев кодов в цифровых устройствах.
Опасность короткого замыкания[ | ]
Если источник напряжения с малым внутренним сопротивлением закоротить, то в цепи потечёт ток равный отношению ЭДС источника к сумме внутреннего сопротивления источника и сопротивления закорачивающей цепи. При большой мощности источника ток достигнет очень большой величины, который может повредить источник, потребитель, соединительные провода. Перегрев соединительных проводов может привести к пожару. Поэтому при питании устройств от мощных источников почти всегда вводят защиту от КЗ в потребителе, которое может внезапно возникнуть от аварий устройств, ошибок людей, ударов молний. Простейшая защита от разрушительных последствий КЗ — плавкий предохранитель. Также применяются различные автоматы защиты сети, их преимущество — многократное восстановление цепи после ак
encyclopaedia.bid
Режимы работы электрических цепей
⇐ ПредыдущаяСтр 3 из 6Следующая ⇒
Электрическая цепь в зависимости от значения сопротивления нагрузки R может работать в различных характерных режимах:
· номинальном;
· согласованном;
· холостого хода;
· короткого замыкания.
Номинальный режим - это расчетный режим, при котором элементы цепи (источники, приемники, линия электропередачи) работают в условиях, соответствующих проектным данным и параметрам.
Изоляция источника, линии электропередачи, приемников рассчитана на определенное напряжение, называемое номинальным. Превышение этого напряжения приводит к пробою изоляции, увеличению токов в цепи и другим аварийным последствиям.
Тепловой режим источников или приемников энергии рассчитан на выделение в них определенного количества тепла, то есть на определенную мощность, а последняя зависит от квадрата тока RI2, rI2.
Расчетный по тепловому режиму ток называется номинальным.
Номинальное значение мощности для источника электрической энергии - это наибольшая мощность, которую источник при нормальных условиях работы может отдать во внешнюю цепь без опасности пробоя изоляции и превышения допустимой температуры нагрева.
Для приемников электрической энергии типа двигателей - это мощность, которую могут развивать на валу при нормальных условиях работы. Для остальных приемников электрической энергии (нагревательные и осветительные приборы) - это их мощность при номинальном режиме. Номинальные значения напряжений, токов и мощностей указывают в паспортах изделий.
Согласованный режим работы - это режим, в котором работает электрическая цепь (источник и приемник), когда сопротивление нагрузки R равна внутреннему сопротивлению источника r. Этот режим характеризуется передачей от данного источника к приемнику максимально возможной мощности. Однако в согласованном режиме К.П.Д. h = 0,5 - низкий и для мощных цепей работа в согласованном режиме экономически невыгодна. Согласованный режим применяется, главным образом, в маломощных цепях, если К.П.Д. не имеет существенного значения, а требуется получить в приемнике возможно большую мощность.
Режим холостого хода и короткого замыкания. Эти режимы являются предельными режимами работы электрической цепи.
В режиме холостого хода внешняя цепь разомкнута и ток равен нулю. Так как ток равен нулю, то падение напряжения на внутреннем сопротивлении источника так же равно нулю (rI = 0) и напряжение на выводах источника равно ЭДС (e = U). Из этих соотношений вытекает метод измерения ЭДС (2.7) источника: при разомкнутой внешней цепи вольтметром, сопротивление которого можно считать бесконечно большим, измеряют напряжение на его выводах.
В режиме короткого замыкания выводы источника соединены между собой, например, сопротивление нагрузки замкнуто проводником с нулевым сопротивлением. Напряжение на приемнике при этом равно нулю.
Сопротивление всей цепи равно внутреннему сопротивлению источника, и ток короткого замыкания в цепи равен:
Iк.з. = e / r.
(2.14)
Он достигает максимально возможного значения для данного источника и может вызывать перегрев источника и даже его повреждение. Для защиты источников электрической энергии и питающих цепей от токов короткого замыкания в маломощных цепях устанавливают плавкие предохранители, в более мощных цепях - отключающие автоматические выключатели, а высоковольтных цепях - специальные высоковольтные выключатели.
mykonspekts.ru
Режим короткого замыкания — Википедия РУ
Режи́м коро́ткого замыка́ния в электротехнике, электронике, при теоретическом анализе электрических цепей — состояние пары некоторых узлов электрической цепи (2 вывода, обычно в качестве закорачиваемого участка цепи рассматриваются двухполюсники), при котором его выводы (зажимы, контакты) присоединены к двум узлам другой цепи с модулем полного входного сопротивления пренебрежимо малым по сравнению с модулем полного выходного сопротивления закорачиваемой цепи (при этом говорят, что пара узлов цепи (источник, выход) замкнута, закорочена, соединена накоротко, соединена коротким соединением).
Таким образом, условие короткого замыкания можно записать:
∣Zi∣≪∣Zo∣{\displaystyle \mid Z_{i}\mid \ll \mid Z_{o}\mid }где ∣Zi∣{\displaystyle \mid Z_{i}\mid } — модуль входного импеданса закорачивающей цепи, ∣Zo∣{\displaystyle \mid Z_{o}\mid } — модуль выходного импеданса закорачиваемой цепи.
Часто вместо термина Режим короткого замыкания используются аббревиатуры: Режим КЗ или просто КЗ. Среди электриков и электронщиков также распространены жаргонизмы «коротец», «коротыш» и «кэзэшка»[источник не указан 1188 дней].
Различают КЗ для постоянного и переменного токов. Например, подсоединение конденсатора с достаточно большой ёмкостью к паре узлов цепи, между которыми присутствует напряжение с достаточно высокой частотой, когда модуль реактивного сопротивления конденсатора пренебрежимо мал по сравнению с модулем выходного импеданса закорачиваемой цепи, называют КЗ по переменному току.
Изучение режима короткого замыкания применяется в анализе электрических цепей. При этом рассматривается поведение математической модели электрической цепи при «виртуальном» коротком замыкании (см., например, внутреннее сопротивление).
Режим короткого замыкания может быть как полезным, так и вредным или даже опасным в том или ином техническом устройстве.
Полезные применения
Часто в системах промышленной автоматики информация об измеряемых параметрах передается в аналоговом виде передачей токового сигнала. При этом измерительные и промежуточные преобразователи сигналов по типу выходного сигнала являются источником тока, в идеале с бесконечным внутренним выходным сопротивлением. При этом наиболее благоприятный случай, с точки зрения точности передачи информации, когда источник сигнала нагружен на потребитель с нулевым внутренним входным сопротивлением, — то есть, источник сигнала работает в режиме КЗ. (См. подробнее Токовая петля).
Электродинамические датчики, например, индукционные виброметры, сейсмоприёмники также очень часто работают в режиме короткого замыкания, эта мера позволяет дополнительно демпфировать механические колебания подвижной системы датчика из-за возникновения вязких электродинамических сил.
Часто режим короткого замыкания применяется в соединении усилительных каскадов в электронике. Каскодный усилитель представляет собой соединение двух активных компонентов, модуль выходного импеданса для малого сигнала первого каскада в этой схеме многократно превышает модуль входного импеданса второго каскада, то есть, выход первого каскада работает в режиме короткого замыкания.
Цепи питания электронных устройств тоже почти всегда работают в режиме короткого замыкания для переменного тока. Их линии питания обычно шунтируются блокировочными конденсаторами для исключения вредного самовозбуждения усилительных каскадов, помех и сбоев кодов в цифровых устройствах.
Опасность короткого замыкания
Если источник напряжения с малым внутренним сопротивлением закоротить, то в цепи потечёт ток равный отношению ЭДС источника к сумме внутреннего сопротивления источника и сопротивления закорачивающей цепи. При большой мощности источника ток достигнет очень большой величины, который может повредить источник, потребитель, соединительные провода. Перегрев соединительных проводов может привести к пожару. Поэтому при питании устройств от мощных источников почти всегда вводят защиту от КЗ в потребителе, которое может внезапно возникнуть от аварий устройств, ошибок людей, ударов молний. Простейшая защита от разрушительных последствий КЗ — плавкий предохранитель. Также применяются различные автоматы защиты сети, их преимущество — многократное восстановление цепи после актов срабатывания при защите, в отличие от однократно используемого плавкого предохранителя или его вставки.
Очень опасно КЗ мощных электрохимических источников электричества, — особо аккумуляторов. Так, например, длительное закорачивание свинцового аккумулятора приводит к вскипанию его электролита с разбрызгиванием капель серной кислоты, ещё опаснее закорачивание литиевых аккумуляторов, ведущее к его перегреву и возможному взрыву корпуса и возгоранию металлического лития.
При закорачивании обмоток статора мощного электрического генератора в нём развиваются огромные электродинамические силы, зачастую приводящие к его разрушению.
http-wikipediya.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.