Автоматическое включение резерва (АВР) дома и на производстве
Автоматическое включение резерва представляет собой решение, которое реализует логику безаварийной работы схемы электроснабжения при исчезновении рабочего питания путем включения резервного источника питания взамен отключенного.
Черт, наверно не совсем понятно написал. В общем, если происходит авария, например ток на вводе становится больше уставки токовой защиты или пропадает напряжение вследствие аварии => ввод отключается => с выдержкой времени включается другой ввод и потребители секции вновь становятся запитаны.
АВР предназначено для бесперебойности электроснабжения. Если бы его не было, то происходило отключение и оперативному персоналу приходилось производить переключения вручную. Однако, длительные перерывы питания вредны для производства и могут приводить к авариям и незапланированным остановам. Никто не хочет заново растапливать котёл. Ну и естественно экономические потери от недоотпуска электро и тепловой энергии… Но экономика не мой конёк, поэтому углубимся в электрическую часть.
Расшифровка значения данного понятия в области электрики лежит в словах выше — это автоматическое включение резерва, в отдельных источниках эта аббревиатура может расшифровываться как аварийный ввод резерва, но сути это не меняет.
Разобравшись с определением, двинемся дальше, и рассмотрим какими бывают вводы резерва. В зависимости от времени действия — могут быть стандартные с выдержкой времени от 0,3 до 1-2 секунд и быстродействующие — с временем действия до пары десятых секунд. БАВРы в основном применяют на опасных и ответственных производствах, где нарушение электроснабжения приведет к ужасающим последствиям (нефтяные, химические заводы).
Варианты схем снабжения:
- с явным резервом (на одной секции два питания, одно рабочее, а второе резервное)
- с неявным резервом (две секции, у каждой свой рабочий ввод, а между секциями секционный выключатель. Тут следует учитывать возможность запуска механизмов и нагрузки двух секций от одного, оставшегося в работе трансформатора. Его мощность должна быть рассчитана на требуемую нагрузку. Такие схемы являются двусторонними)
- групповое резервирование (одна резервная секция, от которой ничего не запитано, и к этой секции идут шины или кабельные линии от каждой рабочей секции)
Кроме секций распредустройств, вводов домов существует ввод резерва различных ответственных механизмов. В данном случае уже гасится не секция, а при отказе (аварийном останове или срабатывании РЗА) механизма отключается и включается аналогичный резервный для поддержания режима работы системы. Например, есть воображаемая тэц или котельная и там есть четыре сетевых насоса => два всегда в работе => и у каждого есть по насосу с резервным другим.
Некоторые требования по ПУЭ
Несмотря на разницу в областях применения, принципы работы должны быть аналогичными. Вот некоторые требования, предъявляемые ПУЭ к устройствам включения резерва (полный список требований можно прочитать в разделах 3.3.30-3.3.42 правил устройства электроустановок):
- следует использовать АВР, если это приведет к уменьшению токов короткого замыкания, упрощению схемы и удешевлению аппаратуры
- может применяться на линиях, трансформаторах, ответственных механизмах, секционных выключателях
- действие ввода резерва должно быть однократного действия
- данная автоматика должна срабатывать и при исчезновении напряжения на защищаемом присоединении
- Если есть несколько рабочих вводов и один резервный. Например, каждая секция от своего рабочего трансформатора, а резервный трансформатор общий. Так вот при срабатывании АВР при такой схеме должна быть обеспечена возможность срабатывания автоматики при каждом отключении рабочего ввода любой секции. Даже, если отключения идут подряд. Хотя тут спорно…
- Кроме того, дополняя прошлый пункт, стоит отметить необходимость достаточной мощности резервного трансформатора. Если же мощности не хватает, то необходимо производить перед включением АВР отключение неответственных механизмов.
- Схема должна быть отстроена от режима самозапуска и от снижения напряжения при удаленном коротком замыкании
- Устройства должны быть обеспечены устройством пуска по снижению напряжения. А в отдельных случаях пускаться по частоте и даже действию датчиков (давления, расхода).
Это вероятно не все пункты из ПУЭ. Более подробно и возможно доходчиво можно почитать в первоисточнике.
Обозначение на схеме
В зависимости от чертившего, варианты обозначения на схеме электроснабжения могут разниться. Я часто работаю со схемами различных ТЭЦ, котельных и там встречаются следующие обозначения:
- рядом с выключателем, который должен включаться при нарушении питания пишется АВР (иногда это слово внутри прямоугольника)
- иногда на схеме не обозначено наличие, хотя в реальности присутствует (или сверху справа, где описание схемы, текстом прописано как происходит резервирование)
- рядом с выключателем рисуют кружок, который и обозначает данную возможность
- на выключателе, на котором реализована схема, сбоку или сверху нарисован примыкающий треугольник и рядом написано название автоматики
Пусковой орган может быть исполнен с пуском от
- реле напряжения
- реле напряжения и реле тока
- реле тока и реле частоты
Примеры расчета уставок АВР
Уставка пускового органа реле минимального напряжения (РМН) принимается из двух условий:
где Uc.р. — напряжение срабатывания реле;
Uотс.к. — наименьшее напряжение при расчете трехфазного КЗ;
Ucам — наименьшее напряжение при самозапуске ЭД;
kотс — коэффициент отстройки равный 1,25;
ku — коэффициент трансформации ТН.
Или же по выражению Uc.р. = (0,25-0,4)*Uном
Уставка срабатывания пускового органа РМН по времени определяется также из двух условий:
tс.р.=t1+dt
tс.р.=t2+dt
где t1 — наибольшая выдержка времени защиты присоединений, отходящих от шин высокой стороны подстанции
t1 — наибольшая выдержка времени защиты присоединений, отходящих от шин низшей стороны подстанции
dt — ступень селективности. Для микропроцессорных 0,3с, а для простых реле в зависимости от шкалы.
Уставка срабатывания пускового органа минимального реле тока:
где Iнагр.мин. — минимальный ток нагрузки;
ki — коэффициент трансформации ТТ.
Уставка срабатывания реле контроля наличия напряжения на резервном источнике:
где kв — коэффициент возврата реле.
Или же по выражению Uc.р. = (0,6-0,65)*Uном
Если пуск происходит от органа минимальной частоты, то его уставка 48Гц. Подробнее можно почитать в книге — Шабад М.А. Расчеты релейной защиты и автоматики распределительных сетей.
Далее рассмотрим какие бывают схемы не на производстве.От простых до заводских схем исполнения.
Примеры схем
Начнем рассмотрение схем с одного пункта, который лучше сразу обозначить. Разница между схемами АВР “автомат+пускатель” и “автомат с электроприводом” в экономичности последнего варианта на токи начиная от 200 ампер, меньшем месте в шкафу и большей устойчивости к перегрузкам, возникающим при включениях. Но в зависимости от схем, это решение должно приниматься индивидуально. А так в любой схеме вместо автомата с пускателем можно установить автомат с электроприводом.
Схема для двух вводов на контакторе
Значит, тут у нас два ввода. У каждого ввода есть вводной автомат или рубильник. Также присутствует третий автомат, который отвечает за нагрузку потребителя. И главную роль в этом театре играет контактор, который я обозначил К1. У него есть обмотка и два контакта — нормально закрытый и нормально открытый. Принцип работы схемы в следующем: при пропадании напряжения пропадает питание с обмотки К1 и контакты перекидываются.
Недостатки данной схемы в том, что при моржках света питание будет кидать туда-обратно. Это конечно не даст Вам остаться без света, но сам контактор, а именно его контакты, потреплет знатно, вплоть до замены. Так как через них будет проходить весь ток. Поэтому токи при такой схеме должны быть небольшими. Да и для нагрузки такие режимы не есть хорошо.
Схема с магнитными пускателями
Пускай в этой схеме пускатели будут обозначены К1 и К2. Хотя обычно пускатели обозначают КМ, даже называю их “каэм’ы”. Данная схема может быть однофазная или трехфазная. Я нарисовал её однофазной, так проще и быстрее. Значит, принцип работы в следующем: включаем “ввод №1” и тут же размыкается контакт К1 в со стороны нуля обмотки К2. Затем включаем “Ввод №2”, обмотка К2 уже разомкнута и следовательно контакт К2 в схеме нуля К1 не разомкнется и не вызовет отключение К1. Далее, если пропадает питание на вводе №1, то контакт К1 в схеме нуля К2 обратно становится замкнутым, питание доходит до обмотки с двух сторон и пускатель К2 срабатывает. Пускатель К1 у нас отключен и следовательно питание происходит от второго ввода. Если вновь появится напряжение на вводе №1, то для возврата надо будет вручную отключать второй ввод и включать первый. Это не очень то удобно.
В данной схеме получается, что рабочим вводом будет тот, который включить в первую очередь. Тоже не вызывает сильного доверия, но на первое время сойдет. Чтобы питание переключалось обратно на первый ввод можно установить реле напряжения. Значит, его обмотка будет подключена параллельно цепочке “катушкаК1 — контактК2”, а его контакт замкнутый последовательно в цепочку “катушкаК2 — контактК1”. Не забываем следить за рабочим током нагрузки и контактов пускателей.
Схема на три ввода
В большинстве своем схема на три ввода представляет из себя два ввода плюс дизельгенератор. Суть её работы: при исчезновении питания на первом вводе, включается второй, а при исчезновении двух вводов сразу — включается ДГ. При повторном появлении электроэнергии на одном из двух вводов питание переходит от дизельгенератора на вновь включенный ввод. Данные схемы самому реализовать себе во вред, так как есть готовые решения — законфигурированные мозги, куда надо просто подключить провода и задать уставки. Нечто подобное рассматривалось в статье про БАВРы.
Сохраните в закладки или поделитесь с друзьями
Самое популярное
АВР
АВР (Автоматический ввод резерва) представляет собой систему обеспечения бесперебойной работы энергопотребителей. В случае пропадания основного источника питания АВР автоматически запускает резервный ввод.
Согласно ПУЭ все потребители электрической энергии делятся на три категории:
- I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, угрозу для безопасности государства, нарушение сложных технологических процессов и пр.
Все потребители, относящиеся к данной категории должны быть запитаны от двух независимых источников питания ( это могут быть две трансформаторные подстанции, либо ТП и дизель генератор). Электроснабжение, при отключении одного из источников, должно прерываться лишь на время автоматического переключения на второй ввод. Очевидно, что в данном случае без системы АВР просто не обойтись.
Также к первой категории относят особую группу потребителей, которые должны бесперебойно функционировать с целью безаварийного останова производств для предотвращения возможной опасности жизни людей, пожаров и взрывов. Для этой группы предусматривается три независимых источника питания ( две ТП и дизель генератор). Для данной группы также необходимо использовать АВР.
- II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта
Все объекты, попадающие в данную категорию, также должны быть запитаны от двух независимых источников питания, но в отличии от первой категории, допускается некоторое время простоя до восстановления электроснабжения. То есть в данном случае могут применяться автоматические системы ввода, но допускается и ручное переключение на резервный ввод.
- III категория — все остальные потребители электроэнергии.
И наконец третья категория энергопотребителей, для которой электроснабжение осуществляется от одного источника питания. При этом перерыв в электроснабжении не должен превышать одних суток. В данную категорию попадают магазины, офисные помещения, частные дома и т.д. Хотя для данной категории системы АВР вроде как и не предусмотрены, но согласитесь, что находиться без электричества в течении суток не очень-то комфортно, поэтому по мере возможности АВР находят применение и здесь.
Как видно из всего вышеперечисленного устройства АВР являются неотъемлемой частью систем обеспечения бесперебойного питания электроприемников.
По типу исполнения АВР разделяют на
- АВР одностороннего действия
— в данном исполнении присутствует два ввода — основной и резервный. Оба они подключены к одной секции, к которой подключена и нагрузка. В нормальном режиме в работе находится только основной ввод, а в случае неисправности устройство АВР отключает основной ввод и задействует в работу резервный ввод. Как только на основном вводе восстановится напряжение, система автоматически переключается на него. То есть система имеет приоритет основного ввода.
- АВР двухстороннего действия
— в данной схеме задействованы два ввода, каждый из которых подключен к отдельной секции. Соединение двух секций выполнено с помощью секционного выключателя. Если на одной секции пропадает питание, то она автоматически будет подключена к рабочей секции. По данной схеме оба ввода являются равноценными и не имеют приоритета.
- АВР двухстороннего действия + ввод от ДГУ.
В данном случае все работает также, как и в предыдущей схеме. Главное отличие — это присутствие третьего ввода от дизель генератора. Команда на запуск ДГУ дается при пропаже питания на обоих вводах.
В зависимости от типа исполнения система АВР может выполнять функции контроля состояния автоматических выключателей на вводе и выводе, защиту от повышенного напряжения, контроль последовательности чередования фаз, выбор автоматического или ручного запуска, задание временной выдержки на включение и отключение, индикацию состояния сети, дистанционную настройку и управление, передачу состояния устройства посредством SMS-сообщений по GSM связи и т.д. Функционал АВР может быть весьма обширным, здесь все зависит от реализованной схемы.
А схем исполнения устройств АВР много. В качестве коммутирующих устройств используются контакторы, автоматические выключатели либо рубильники с мотор-приводами, в качестве органов управления и контроля применяются реле контроля фаз, программируемые реле, блоки управления автоматическим переключением.
Несмотря на такое разнообразие, в основе всех устройств АВР лежит одинаковая логика работы — контроль параметров сети и автоматическое переключение на необходимый ввод.
Для начала рассмотрим самый простой пример с применением двух автоматических выключателей и двух контакторов.
При наличии напряжения на первом вводе питание через нормально-замкнутый контакт КМ2.1 приходит на катушку контактора КМ1. Силовые контакты КМ1 замыкаются и вся нагрузка таким образом будет подключена на 1 ввод. При исчезновении питания на 1 вводе контакт КМ1.1 вернется в исходное состояние, напряжение будет подано на катушку КМ2.1. Силовые контакты КМ2.1 замкнутся и питание потребителей будет осуществляться от 2 ввода. При восстановлении питания 1 ввода ничего происходить не будет, пока не пропадет питание со 2 ввода. То есть схема не имеет приоритета вводов и для того чтобы снова перейти на 1 ввод, придется вручную отключить автомат QF2.
На самом деле такая схема вряд ли может быть предложена для реализации, так как имеет целый ряд недостатков. Во первых контакторы не имеют механической блокировки, нет индикации состояния сети, отсутствует защита от повышенного — пониженного напряжения, в случае трехфазного исполнения данной схемы необходим контроль чередования фаз. Так что это скорее пример, показывающий общий принцип работы АВР, чем действительно рабочая схема.
Но если добавить в данную схему реле напряжения, то она примет уже вполне рабочий вид.
Во первых реле напряжения осуществляет защиту от повышенного — пониженного напряжения, а во вторых задает приоритет основного ввода. При появлении питания на 1 вводе, контакт реле KSV разомкнет цепь питания катушки КМ2 и произойдет автоматическое переключение со 2 ввода на основной 1 ввод.
Еще один пример, на этот раз трехфазной схемы АВР.
В отличии от предыдущего примера, данная схема имеет уже полностью законченный вид. Помимо контроля напряжения, здесь присутствует и индикация состояния вводов, за которую отвечают лампы HL1 и HL2 и механическая блокировка контакторов ( пунктирная линия с треугольником). Помимо автоматических выключателей QF1 и QF2, защищающих силовые цепи, добавлены автоматы защиты цепей управления SF1,SF2.
Помимо релейной логики в устройствах АВР для управления и контроля часто применяются специализированные блоки управления резервным питанием, такие как БУАВР от компании НПП ВЭЛ, МАВР Меандр, AVR-02G Евроавтоматика ФиФ, ATS022 ABB и другие.
Одним из наиболее популярных на рынке является блок БУАВР.
БУАВР осуществляет функции контроля за минимальным и максимальным напряжением, контроль чередования фаз, ассиметрии фаз, обрыва одной или нескольких фаз, управления контакторами либо автоматическими выключателями с мотор приводами, индикацию состояния входов — выходов.
В зависимости от выбора режима БУАВР может работать:
- В автоматическом режиме, с приоритетом 1 ввода
- В автоматическом режиме, с приоритетом 2 ввода
- В автоматическом режиме, без приоритета вводов
- С постоянно включенным 1 вводом
- С постоянно включенным 2 вводом
Для разных типов АВР выпускаются БУАВР различных исполнений — например одна из самых популярных моделей БУАВР1 применяется в схемах на два ввода с одной нагрузкой, БУАВР.С — в схемах на два ввода, две нагрузки с секционным выключателем, БУАВР.2С — на два ввода, две нагрузки с двумя секционными выключателями.
Ниже приведена схема АВР на два ввода с одной нагрузкой на контакторах с использованием блока БУАВР1.
В изначальном состоянии, в зависимости от режима работы, который задается переключателем на лицевой панели, блок БУАВР подключает нагрузку к одному из вводов. Если во время работы напряжение оказывается за пределами допустимых значений в течении заданного времени (уставки по напряжению и время выдержки выставляются с помощью шести переключателей Umin, t зад.откл, Umax, t восст, t зад.вкл, U min2), БУАВР отключает нагрузку от данного ввода и с заданной выдержкой времени переключается на второй ввод. Выходные реле блока БУАВР K1 и К2 используются для включения контакторов КМ1 и КМ2 соответственно. На лицевой панели БУАВР имеются светодиодные индикаторы, которые сигнализируют о наличии,отсутствии или недопустимых значениях напряжения на вводах 1 и 2 (верхние светодиоды) и состоянии выходов (нижние светодиоды).
Также в последнее время для различных схем АВР широко применяются программируемые реле, например Zelio Logic от Schneider Electric, Siemens Logo, Easy от Eaton.
Они позволяют расширить функционал стандартных схем АВР, более гибко настраивать алгоритм работы под собственные нужды, передавать информацию о состоянии устройства дистанционно и т.д. На основе программируемых реле можно строить различные схемы АВР, Schneider Electric даже издал брошюру с типовыми схемами с использованием Zelio Logic, но подробно останавливаться на них я не буду, возможно в будущем напишу отдельную статью.
Кстати надо заметить, что программируемые реле не имеют функции контроля напряжения, поэтому применение реле напряжения или контроля фаз необходимо.
Вообще различных решений АВР очень много и в рамках одной статьи не получится рассказать обо всем, поэтому в дальнейшем я планирую продолжить эту тему.
РД 34.35.512 Инструкция по эксплуатации оперативных блокировок безопасности в распределительных устройствах высокого напряжения
Нет рисунка 3 в
оригинале, а в тексте он упоминается (помечено красным)
МИНИСТЕРСТВО ЭНЕРГЕТИКИ И
ЭЛЕКТРИФИКАЦИИ СССР
ГЛАВНОЕ ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ПО ЭКСПЛУАТАЦИИ ЭНЕРГОСИСТЕМ
ИНСТРУКЦИЯ
ПО ЭКСПЛУАТАЦИИ
ОПЕРАТИВНЫХ БЛОКИРОВОК
БЕЗОПАСНОСТИ
В РАСПРЕДЕЛИТЕЛЬНЫХ
УСТРОЙСТВАХ
ВЫСОКОГО НАПРЯЖЕНИЯ
СОЮЗТЕХЭНЕРГО 1979
Составлено электроцехом
Южтехэнерго
Автор инж. Б.С. ГЕЛЬМАН
В
настоящей Инструкции приведено описание оперативных блокировок
в распределительных устройствах высокого напряжения, даны указания по их
монтажу и эксплуатации, испытаниям и профилактическим осмотрам.
Инструкция предназначена для руководящего, оперативного и
эксплуатационного персонала электростанций и подстанций.
СОГЛАСОВАНО
Начальник Отдела по технике
санитарии
Р.А. ГАДЖИЕВ
«3» октября 1979 г.
|
УТВЕРЖДАЮ
Заместитель начальника
К.М. АНТИПОВ
«5» октября 1979
|
СОДЕРЖАНИЕ
Важным средством
предупреждения неправильных операций, производимых оперативным персоналом,
является оснащение всех разъединителей и заземляющих ножей устройствами блокировки.
Оперативная блокировка должна рассматриваться как дополнительное
средство, препятствующее производству ошибочных операций. Персонал обязан знать
инструкции по производству переключений в электрических распределительных
устройствах и производить оперативные переключения сознательно, четко представляя очередность операций и конечную
цель переключений.
1.1. Оперативна
Общие требования / ПУЭ 7 / Библиотека / Элек.ру
4.2.17. Электрооборудование, токоведущие части, изоляторы, крепления, ограждения, несущие конструкции, изоляционные и другие расстояния должны быть выбраны и установлены таким образом, чтобы:
1) вызываемые нормальными условиями работы электроустановки усилия, нагрев, электрическая дуга или иные сопутствующие ее работе явления (искрение, выброс газов и т.п.) не могли причинить вред обслуживающему персоналу, а также привести к повреждению оборудования и возникновению короткого замыкания (КЗ) или замыканию на землю;
2) при нарушении нормальных условий работы электроустановки была обеспечена необходимая локализация повреждений, обусловленных действием КЗ;
3) при снятом напряжении с какой-либо цепи относящиеся к ней аппараты, токоведущие части и конструкции могли подвергаться безопасному техническому обслуживанию и ремонту без нарушения нормальной работы соседних цепей;
4) была обеспечена возможность удобного транспортирования оборудования.
4.2.18. При использовании разъединителей и отделителей при их наружной и внутренней установке для отключения и включения токов холостого хода силовых трансформаторов, зарядных токов воздушных и кабельных линий электропередачи и систем шин необходимо выполнять следующие требования:
1) разъединителями и отделителями напряжением 110-500 кВ независимо от климатических условий и степени промышленного загрязнения атмосферы при их наружной установке допускается отключать и включать ток холостого хода силовых трансформаторов и зарядные токи воздушных и кабельных линий, систем шин и присоединений, которые не превышают значений, указанных в табл.4.2.1;
2) разъединителями и отделителями напряжением 110, 150, 220 кВ при их внутренней установке со стандартными расстояниями между осями полюсов соответственно 2; 2,5 и 3,5 м допускается отключать и включать токи холостого хода силовых (авто) трансформаторов при глухозаземленной нейтрали соответственно не более 4, 2 и 2 А, а также зарядные токи присоединений не более 1,5 А;
3) указанные на рис.4.2.1 расстояния по горизонтали а, б, в от колонок и концов горизонтально-поворотных (ГП) подвижных контактов в отключенном положении до заземленных и токоведущих частей соседних присоединений должны быть не меньше расстояний между осями полюсов д, указанных в табл.4.2.1. и 4.2.2. Эти требования к расстояниям а, б, в по рис.4.2.1 применимы и к разъединителям и отделителям напряжением 110-220 кВ при их внутренней установке по п.2.
Рис.4.2.1. Границы расположения открытых подвижных контактов разъединителя (отделителя) по отношению к заземленным и токоведущим частям
Таблица 4.2.1. Наибольшие токи холостого хода и зарядные токи, отключаемые и включаемые разъединителями и отделителями 110-500 кВ
Номинальное напряжение, кВ | Тип отделителя, разъединителя | Расстояние между осями полюсов, δ м (рис.4.2.1) | Ток, А, не более | |
---|---|---|---|---|
холостого хода | зарядный | |||
2,0 | 6,0 | 2,5 | ||
ВР | 2,5 | 7,0 | 3,0 | |
110 | 3,0 | 9,0 | 3,5 | |
2,0 | 4,0 | 1,5 | ||
ГП | 2,5 | 6,0 | 2,0 | |
3,0 | 8,0 | 3,0 | ||
3,5 | 10,0 | 3,5 | ||
2,5 | 2,3 | 1,0 | ||
2,7 | 4,0 | 1,5 | ||
ВР | 3,0 | 6,0 | 2,0 | |
3,4 | 7,6 | 2,5 | ||
150 | 4,0 | 10,0 | 3,0 | |
3,0 | 2,3 | 1,0 | ||
ГП | 3,7 | 5,0 | 1,5 | |
4,0 | 5,5 | 2,0 | ||
4,4 | 6,0 | 2,5 | ||
3,5 | 3,0 | 1,0 | ||
ВР | 4,0 | 5,0 | 1,5 | |
220 | 4,5 | 8,0 | 2,0 | |
3,5 | 3,0 | 1,0 | ||
ГП | 4,0 | 5,0 | 1,5 | |
4,5 | 8,0 | 1,0 | ||
ГП | 6,0 | 5,0 | 2,0 | |
330 | ПН | 6,0 | 3,5 | 1,0 |
ПНЗ | 6,0 | 4,5 | 1,5 | |
ВР | 7,5 | 5,0 | 2,0 | |
500 | ГП | 8,0 | 6,0 | 2,5 |
ПН | 8,0 | 5,0 | 2,0 | |
ПНЗ | 7,5 | 5,5 | 2,5 |
Примечания: 1. ВР — вертикально-рубящий, ГП — горизонтально-поворотный, ПН — подвесной, ПНЗ — подвесной с опережающим отключением и отстающим включением полюса фазы В.
2. Приведены результирующие токи холостого хода с учетом взаимной компенсации индуктивных токов ненагруженных трансформаторов зарядными токами их присоединений и зарядных токов воздушных или кабельных присоединений индуктивными токами ненагруженных трансформаторов.
Таблица 4.2.2. Наибольшие токи холостого хода и зарядные токи, токи замыкания на землю, отключаемые и включаемые разъединителями и отделителями 6-35 кВ
Номинальное напряжение, кВ | Расстояние между осями полюсов δ, м (рис.4.2.1) | Ток, А, не более | ||
---|---|---|---|---|
холостого хода | зарядный | замыкания на землю | ||
6 | 0,4 | 2,5 | 5,0 | 7,5 |
10 | 0,5 | 2,5 | 4,0 | 6,0 |
20 | 0,75 | 3,0 | 3,0 | 4,5 |
35 | 1,0 | 3,0 | 2,0 | 3,0 |
35 | 2,0 | 5,0 | 3,0 | 5,0 |
Расстояния по вертикали г от концов вертикально-рубящих (ВР) и ГП подвижных контактов до заземленных и токоведущих частей должны быть на 0,5 м больше расстояний д;
4) разъединителями и отделителями 6-35 кВ при их наружной и внутренней установке допускается отключать и включать токи холостого хода силовых трансформаторов, зарядные токи воздушных и кабельных линий электропередачи, а также токи замыкания на землю, которые не превышают значений, указанных в табл.4.2.2. (см. рис.4.2.1) и табл.4.2.3 (рис.4.2.2, а и б).
Рис.4.2.2. Установка разъединителя (отделителя): а – вертикальная; б – наклонная; 1 – изолирующие перегородки
Таблица 4.2.3. Наибольшие токи холостого хода и зарядные токи, токи замыкания на землю, отключаемые и включаемые разъединителями и отделителями 6-35 кВ
Номинальное напряжение, кВ | Расстояние между осями полюсов Ж, м (рис.4.2.2) | Наименьшее расстояние до заземленных и токоведущих частей, м (рис.4.2.2.) | Ток, А, не более | ||||
---|---|---|---|---|---|---|---|
холостого хода | зарядный | замыкания на землю | |||||
А | Б | В | |||||
6 | 0,2 | 0,2 | 0,2 | 0,5 | 3,5 | 2,5 | 4,0 |
10 | 0,25 | 0,3 | 0,3 | 0,7 | 3,0 | 2,0 | 3,0 |
20 | 0,3 | 0,4 | 0,4 | 1,0 | 3,0 | 1,5 | 2,5 |
35 | 0,45 | 0,5 | 0,5 | 1,5 | 2,5 | 1,0 | 1,5 |
Примечание. При изолирующих перегородках между полюсами отключаемые и включаемые токи в 1,5 раза больше значений, указанных в табл.4.2.3.
Размеры изолирующих перегородок для стандартных трехполюсных разъединителей приведены в табл.4.2.4 в соответствии с рис.4.2.2, а и б;
Таблица 4.2.4. Размеры изолирующих перегородок
Номинальное напряжение, кВ | Размеры изолирующих перегородок, м (рис.4.2.2) | ||
---|---|---|---|
Г | Д | Е | |
6 | 0,1 | 0,5 | 0,05 |
10 | 0,65 | 0,65 | 0,05 |
20 | 0,2 | 1,1 | 0,05 |
35 | 0,25 | 1,8 | 0,05 |
5) у разъединителей и отделителей, установленных горизонтально, спуски из гибкого провода прокладывать полого во избежание переброски на них дуги, не допуская расположения, близкого к вертикальному. Угол между горизонталью и прямой, соединяющей точку подвеса спуска и линейный зажим полюса, должен быть не более 65°.
Ошиновку из жестких шин выполнять так, чтобы на расстоянии в (см. рис.4.2.1) шины подходили к разъединителям (отделителям) с подъемом или горизонтально. Недопустимое сближение шин с подвижными контактами у горизонтально-поворотных разъединителей и отделителей показано пунктиром;
6) для обеспечения безопасности персонала и защиты его от светового и теплового воздействия дуги над ручными приводами отделителей и разъединителей устанавливать козырьки или навесы из негорючего материала. Сооружение козырьков не требуется у разъединителей и отделителей напряжением 6-35 кВ, если отключаемый ток холостого хода не превышает 3 А, а отключаемый зарядный — 2 А;
7) приводы трехполюсных разъединителей 6-35 кВ при их внутренней установке, если они не отделены от разъединителей стеной или перекрытием, снабжать глухим щитом, расположенным между приводом и разъединителем;
8) в электроустановках напряжением 35, 110, 150 и 220 кВ с разъединителями и отделителями в одной цепи отключение ненагруженного трансформатора, автотрансформатора, системы шин, линий электропередачи производить дистанционно отделителем, включение — разъединителем.
4.2.19. Выбор аппаратов, проводников и изоляторов по условиям к.з. должен производиться в соответствии с гл.1.4.
4.2.20. Конструкции, на которых установлены электрооборудование, аппараты, токоведущие части и изоляторы, должны выдерживать нагрузки от их веса, тяжения, коммутационных операций, воздействия ветра, гололеда и КЗ, а также сейсмических воздействий.
Строительные конструкции, доступные для прикосновения персонала, не должны нагреваться от воздействия электрического тока выше 50 °С; недоступные для прикосновения — выше 70 °С.
Конструкции на нагрев могут не проверяться, если по токоведущим частям проходит переменный ток 1000 А и менее.
4.2.21. Во всех цепях РУ должна быть предусмотрена установка разъединяющих устройств с видимым разрывом, обеспечивающих возможность отсоединения всех аппаратов (выключателей, предохранителей, трансформаторов тока, трансформаторов напряжения и т.д.) каждой цепи со всех ее сторон, откуда может быть подано напряжение.
Видимый разрыв может отсутствовать в комплектных распределительных устройствах заводского изготовления (в том числе с заполнением элегазом — КРУЭ) с выкатными элементами и/или при наличии надежного механического указателя гарантированного положения контактов.
Указанное требование не распространяется на высокочастотные заградители и конденсаторы связи, трансформаторы напряжения, устанавливаемые на отходящих линиях, а также трансформаторы напряжения емкостного типа, присоединяемые к системам шин, разрядники и ограничители перенапряжений, устанавливаемых на выводах трансформаторов и шунтирующих реакторов и на отходящих линиях, а также на силовые трансформаторы с кабельными вводами.
В отдельных случаях, обусловленных схемными или конструктивными решениями, трансформаторы тока допускается устанавливать до разъединяющих устройств.
4.2.22. При расположении РУ и ПС в местах, где воздух может содержать вещества, ухудшающие работу изоляции или разрушающе действующие на оборудование и шины, должны быть приняты меры, обеспечивающие надежную работу установки:
- применение закрытых ПС и РУ, защищенных от проникновения пыли, вредных газов или паров в помещение;
- применение усиленной изоляции и шин из материала, стойкого к воздействию окружающей среды, или покраска их защитным покрытием;
- расположение ПС и РУ со стороны господствующего направления ветра;
- применение минимального количества открыто установленного оборудования.
При сооружении ПС и РУ вблизи морских побережий, соленых озер, химических предприятий, а также в местах, где длительным опытом эксплуатации установлено разрушение алюминия от коррозии, следует применять специальные алюминиевые и сталеалюминевые провода, защищенные от коррозии, в том числе полимерным покрытием, или провода из меди и ее сплавов.
4.2.23. При расположении РУ и ПС в сейсмических районах для обеспечения требуемой сейсмостойкости наряду с применением имевшегося сейсмостойкого оборудования следует предусматривать специальные меры, повышающие сейсмостойкость электроустановки.
4.2.24. В ОРУ, КРУ, КРУН и неотапливаемых ЗРУ, где температура окружающего воздуха может быть ниже допустимой для оборудования, должен быть предусмотрен подогрев в соответствии с действующими стандартами на оборудование.
4.2.25. Ошиновку РУ и ПС, как правило, следует выполнять из алюминиевых и сталеалюминевых проводов, полос, труб и шин из профилей алюминия и алюминиевых сплавов электротехнического назначения (исключения см. в 4.2.22).
При этом, когда деформации ошиновки, вызываемые изменениями температуры, могут вызывать опасные механические напряжения в проводах или изоляторах, следует предусматривать меры, исключающие возникновение таких напряжений.
Конструкция жесткой ошиновки должна предусматривать устройства для гашения вибрации шин и компенсирующие устройства для предотвращения передачи механических усилий на контактные выводы аппаратов и опорные изоляторы от температурных деформаций и неравномерной осадки опорных конструкций.
Токопроводы следует выполнять в соответствии с требованиями гл.2.2.
4.2.26. Обозначение фаз электрооборудования и ошиновки РУ и ПС должно выполняться в соответствии с требованиями гл.1.1.
4.2.27. Распределительные устройства должны быть оборудованы оперативной блокировкой неправильных действий при переключениях в электрических установках (сокращенно — оперативной блокировкой), предназначенной для предотвращения неправильных действий с разъединителями, заземляющими ножами*, отделителями и короткозамыкателями.
* В последующем тексте настоящей главы вместо слов «заземляющий нож» используется слово «заземлитель», под которым понимается как элемент аппарата, так и отдельно установленный аппарат.
Оперативная блокировка должна исключать:
- подачу напряжения разъединителем на участок электрической схемы, заземленной включенным заземлителем, а также на участок электрической схемы, отделенной от включенных заземлителей только выключателем;
- включение заземлителя на участке схемы, не отделенном разъединителем от других участков, которые могут быть как под напряжением, так и без напряжения;
- отключение и включение разъединителями токов нагрузки.
Оперативная блокировка должна обеспечивать в схеме с последовательным соединением разъединителя с отделителем включение ненагруженного трансформатора разъединителем, а отключение — отделителем.
На заземлителях линейных разъединителей со стороны линии допускается иметь только механическую блокировку с приводом разъединителя.
4.2.28. Распределительные устройства и ПС, как правило, должны быть оборудованы стационарными заземлителями, обеспечивающими в соответствии с требованиями безопасности заземление аппаратов и ошиновки.
В РУ 3 кВ и выше стационарные заземлители должны быть размещены так, чтобы были не нужны переносные заземления и чтобы персонал, работающий на токоведущих частях любых участков присоединений и сборных шин, был защищен заземлителями со всех сторон, откуда может быть подано напряжение.
На случай отключения в процессе ремонта разъединителя с заземлителями или только заземлителя этого разъединителя должны быть предусмотрены заземлители у других разъединителей на данном участке схемы, расположенные со стороны возможной подачи напряжения. Последнее требование не относится к заземлителям со стороны линейных разъединителей (при отсутствии обходной системы шин или ремонтной перемычки со стороны ВЛ), а также к заземлителям в цепи секционной связи КРУ.
На заземлителях линейных разъединителей со стороны линии следует, как правило, иметь привод с дистанционным управлением для исключения травмирования персонала при ошибочном включении их и наличии на линии напряжения, в ячейках КРУЭ эти заземлители, кроме того, рекомендуется иметь быстродействующими.
Каждая секция (система) сборных шин РУ 35 кВ и выше должна иметь, как правило, два комплекта заземлителей. При наличии трансформаторов напряжения заземления сборных шин следует осуществлять, как правило, заземлителями разъединителей трансформаторов напряжения.
Применение переносных защитных заземлений предусматривается в следующих случаях:
- при работе на линейных разъединителях и на оборудовании, расположенном со стороны ВЛ до линейного разъединителя;
- на участках схемы, где заземлители установлены отдельно от разъединителей, на время ремонта заземлителей;
- для защиты от наведенного напряжения.
4.2.29. Сетчатые и смешанные ограждения токоведущих частей и электрооборудования должны иметь высоту над уровнем планировки для ОРУ и открыто установленных трансформаторов 2 или 1,6 м (с учетом требований 4.2.57 и 4.2.58), а над уровнем пола для ЗРУ и трансформаторов, установленных внутри здания, 1,9 м; сетки должны иметь отверстия размером не более 25х25 мм, а также приспособления для запирания их на замок. Нижняя кромка этих ограждений в ОРУ должна располагаться на высоте 0,1-0,2 м, а в ЗРУ — на уровне пола.
Применение барьеров допускается при входе в камеры выключателей, трансформаторов и других аппаратов для их осмотра при наличии напряжения на токоведущих частях. Барьеры должны устанавливаться на высоте 1,2 м и быть съемными. При высоте пола камер над уровнем земли более 0,3 м необходимо оставить между дверью и барьером расстояние не менее 0,5 м или предусмотреть площадку перед дверью для осмотра.
Применение барьеров в качестве единственного вида ограждения токоведущих частей недопустимо.
4.2.30. Указатели уровня и температуры масла маслонаполненных трансформаторов и аппаратов и другие указатели, характеризующие состояние оборудования, должны быть расположены таким образом, чтобы были обеспечены удобные и безопасные условия для доступа к ним и наблюдения за ними без снятия напряжения (например, со стороны прохода в камеру).
Для отбора проб масла расстояние от уровня пола или поверхности земли до крана трансформатора или аппарата должно быть не менее 0,2 м или должен быть предусмотрен соответствующий приямок.
4.2.31. Электропроводка цепей защиты автоматики, измерения, сигнализации и освещения, проложенная по электротехническим устройствам с масляным наполнением, должна быть выполнена проводами с маслостойкой изоляцией.
4.2.32. Расчетный уровень высоких (паводковых) вод принимается с обеспеченностью: 2% (повторяемость 1 раз в 50 лет) для ПС 330 кВ и ниже и 1% (повторяемость 1 раз в 100 лет) для ПС 500 кВ и выше.
4.2.33. Распределительные устройства и ПС должны быть оборудованы электрическим освещением. Осветительная арматура должна быть установлена таким образом, чтобы было обеспечено ее безопасное обслуживание.
4.2.34. Распределительные устройства и ПС должны быть обеспечены телефонной и другими видами связи в соответствии с принятой системой обслуживания.
4.2.35. Размещение РУ и ПС, генеральный план и инженерная подготовка территории и защита их от затопления, оползней, лавин и т.п. должны быть выполнены в соответствии с требованиями СНиП Госстроя России.
4.2.36. Компоновка и конструктивное выполнение ОРУ и ЗРУ должны предусматривать возможность применения механизмов, в том числе специальных, для производства монтажных и ремонтных работ.
4.2.37. Расстояния между РУ (ПС) и деревьями высотой более 4 м должны быть такими, чтобы исключались повреждения оборудования и ошиновки при падении дерева (с учетом роста деревьев за 25 лет).
4.2.38. Для РУ и ПС, размещаемых в районе жилой и промышленной застройки, должны предусматриваться мероприятия по снижению шума, создаваемого работающим электрооборудованием (трансформаторами, синхронными компенсаторами и т.п.), до значений, допустимых санитарными нормами.
4.2.39. Подстанции с постоянным дежурством персонала, а также при наличии вблизи них жилых зданий должны быть обеспечены питьевой водой путем устройства хозяйственно-питьевого водопровода, сооружения артезианских скважин или колодцев.
4.2.40. Для РУ и ПС с постоянным дежурством персонала, имеющих водопровод, должны быть устроены утепленные уборные с канализацией. При отсутствии вблизи ПС канализационных магистралей допускается выполнение местных канализационных устройств (отстойники, фильтры). Для ПС без постоянного дежурства персонала допускается устройство неутепленных уборных с водонепроницаемыми выгребами.
При расположении ПС 110 кВ и выше без постоянного дежурства персонала вблизи существующих систем водоснабжения и канализации (на расстоянии до 0,5 км) в здании ОПУ должны предусматриваться санитарные канализационные узлы.
4.2.41. Территория ПС должна быть ограждена внешним забором в соответствии с требованиями норм технологического проектирования ПС.
На территории ПС следует ограждать ОРУ и силовые трансформаторы внутренним забором высотой 1,6 м (см. также 4.2.58).
ОРУ разных напряжений и силовые трансформаторы могут иметь общее ограждение.
При расположении ОРУ (ПС) на территории электростанций эти ОРУ (ПС) должны быть ограждены внутренним забором высотой 1,6 м.
Заборы могут не предусматриваться для закрытых ПС, а также для столбовых, мачтовых и комплектных ПС наружной установки с высшим напряжением до 35 кВ при условии соблюдения требований 4.2.132.
4.2.42. На территории ОРУ, ПС и электростанций следует предусматривать устройства по сбору и удалению масла (при наличии маслонаполненного оборудования) с целью исключения возможности растекания его по территории и попадания в водоемы.
4.2.43. Расстояния от электрооборудования до взрывоопасных зон и помещений следует принимать по гл.7.3.
4.2.44. На ПС применяются постоянный и переменный оперативные токи.
Переменный ток должен применяться во всех случаях, когда это возможно и ведет к упрощению и удешевлению электроустановок при обеспечении необходимой надежности их работы.
Ручной переключатель резерва | Удлинитель
Оригинальный комплект блокировки: доступный, надежный, продано более 50 000 комплектов!
Без дорогостоящего безобрывного переключателя невозможно безопасно подключить генератор к электрической панели дома. Поэтому при отключении электроэнергии ваши домашние системы и устройства не будут получать энергию от генератора через электрическую систему вашего дома. Это почти сводит на нет цель иметь генератор.
Вместо этого вам понадобятся удлинители для подключения домашних устройств к генератору; Проведение этих шнуров по дому создает опасность споткнуться, упасть и даже вызвать пожар.Другие машины, такие как печь или водонагреватель, нельзя подключить шнуром; эти устройства просто не будут работать, пока не будет восстановлено питание.
К счастью, есть решение — способ подключить генератор к панели без переключателя: комплект блокировки. Комплект блокировки — это менее дорогая альтернатива автоматическим выключателям и субпанелям генератора. Электрик может легко установить комплект на имеющуюся электрическую панель. После установки комплекта вы сможете безопасно и удобно подавать питание на бытовые системы и устройства через свою электрическую систему.
Комплект блокировки прост и гениален; он обеспечивает механическую блокировку, которая действует как ручной переключатель, поэтому выключатели электросети и генератора не могут быть включены одновременно. Комплект изолирует две системы, так что мощность от генератора никогда не будет подаваться обратно в электрические сети, и наоборот. Это безопаснее для вашего генератора, вашей электрической системы и коммунальных служб, которые могут получить электрошок при ремонте соседней линии.
Мы предлагаем комплекты для замены ручных переключателей для большинства марок электрических панелей, включая:
- Сименс
- ITE
- Мюррей
- Вестингауз
- Thomas & Betts
- Молоток ножничный
- Челленджер
- Квадрат D
- Брайант
- Крауз Хиндс
- General Electric (GE)
- Проходные панели
Вы можете доверять качеству, безопасности и эффективности наших комплектов блокировки.Наши комплекты соответствуют строгим требованиям Национального электротехнического кодекса (NEC) и Национального кодекса противопожарной защиты; они также протестированы и сертифицированы MET Laboratories — ведущей независимой лабораторией электрических испытаний и сертификации. Еще лучше: наши комплекты изготовлены в США из высококачественной нержавеющей стали; они не ломаются и не сгибаются, и они прослужат долгие годы.
Если вы хотите более эффективно использовать свой генератор — дешевле, чем покупка и установка безобрывного переключателя — свяжитесь с нами по поводу наших комплектов блокировки.Позвоните по телефону 804.726.2448, чтобы разместить заказ или узнать больше!
.
Описание блокировки клапана — Блокировки Alcatraz
Блокировка клапана — это блокирующий узел с защелкивающимся ключом, который блокирует клапан в одном или двух положениях — открытом и / или закрытом — с одним ключом, зажатым внутри узла замка, и одним свободным. Речь идет об управлении последовательностью событий, выполнении различных действий клапана.
Чтобы изменить положение клапана («открыт-закрыть» или «закрыть-открыть»), в замок необходимо вставить два ключа.Свободный ключ можно отпустить только тогда, когда клапан находится в открытом или закрытом положении. В качестве альтернативы «блокировка с одним ключом» позволяет удалить заблокированный открытый или закрытый ключ, только когда клапан находится в правильном положении блокировки.
Посетите наш канал Youtube, чтобы посмотреть видео с объяснениями.
Цель системы блокировки клапана
Клапаны
играют важную роль в обеспечении безопасности эксплуатации во многих перерабатывающих отраслях, особенно в химической и нефтяной промышленности.Открытие и закрытие клапанов, особенно запорных клапанов, например, на PSV, в неправильной последовательности, может привести к серьезным последствиям, таким как смертельные травмы, производственные потери и повреждение оборудования.
Таким образом, клапаны, критически важные для безопасности операций, могут быть оборудованы системой блокировки, чтобы гарантировать, что клапаны работают в безопасной последовательности и поддерживаются в безопасном положении. Блокировки клапанов не только контролируют последовательность открытия и закрытия технологических клапанов, но также предотвращают их несанкционированное срабатывание.
Типы систем блокировки основаны на принципе обмена ключами или принципе передачи ключей. Клапаны могут работать только в заранее определенной последовательности, которая предназначена для поддержания производительности, доступности и безопасности систем.
Встроенные механические запорные устройства
Ключевые блокировки представляют собой встроенные механические запорные устройства, прикрепленные к главному оборудованию. Типичные системы блокировки применяются к клапанам, запорным дверцам, поворотным переключателям или любому виду оборудования, управляемому вмешательством человека.Кроме того, ключи можно настроить в интеллектуальном формате: электронная маркировка отдельных ключей и управление с помощью системного программного обеспечения.
Механизм блокировки предназначен для обеспечения того, чтобы клапаны всегда были полностью открыты или полностью закрыты. Как правило, система основана на принципе работы: один ключ свободен, когда клапан заблокирован в закрытом состоянии, а другой ключ свободен, когда клапан заблокирован в открытом положении.
Контроль последовательности операций
Популярные процедуры разрешения на работу (PtW) или блокировки / маркировки обеспечивают возможность блокировки.Но они не обеспечивают никакого контроля над последовательностью операций или состоянием оборудования. По неосторожности это может создать опасные условия. Блокировки представляют собой эффективный передовой инструмент безопасности, который снижает риски человеческой ошибки.
Визуализация объяснения блокировки
Чтобы наглядно представить всю информацию выше, мы сделали для вас привлекательную инфографику.
Вы можете скачать эту инфографику ниже.
.
Что такое блокировка клапана?
Что такое блокировка клапана?
Блокировка клапана — это блокировка с защелкивающимся ключом, которая блокирует клапан в одном или двух положениях — открытом и / или закрытом — с одним ключом, зажатым внутри узла замка, и одним свободным. Это о контроле
последовательность событий, выполняющих различные действия клапана.
Для изменения положения клапана («открыт-закрыть» или «закрыть-открыть») в замок в сборе необходимо вставить два ключа. Свободный ключ можно отпустить только тогда, когда клапан находится в открытом или закрытом положении.В качестве альтернативы «блокировка с одним ключом» позволяет удалить заблокированный открытый или закрытый ключ, только когда клапан находится в правильном положении блокировки.
Пример (1): Использование системы блокировки клапана для переключения среды
В этом примере показано переключение с одной среды (правая труба) на другую (левая труба). Следует избегать любого смешивания обеих сред. Среда течет по правой трубе, где открыт клапан. Об этом свидетельствует свободный верхний шпоночный вал A (красный). Невозможно управлять клапаном; заперто.Нижняя шпонка B (синяя) застряла в валу. Клапан левой трубы закрыт, поэтому среда не может течь по этой трубе.
Уполномоченное лицо вставляет ключ A (красный) в правый замок. Блокировка снимается, и оператор может закрыть правый клапан. Как только клапан закроется, ключ B (синий) можно вынуть. После удаления ключа клапан снова блокируется и не может работать. Среда в правой трубе больше не может течь.
Теперь оператор вставляет ключ B (синий) в левую блокировку.Блокировка снимается, и оператор может открыть левый клапан. Как только клапан откроется, ключ C (зеленый) можно вынуть. Теперь среда может течь по левой трубе. После удаления ключа этот клапан также блокируется и больше не может работать.
Даже обширные системы блокировки с несколькими клапанами могут быть созданы, применяя этот принцип взаимозависимых ключей и замков. Детали таких приложений адаптированы к конкретному процессу.
требования.
Таким образом, системы блокировки, когда они установлены на клапанах, обеспечивают отказоустойчивую систему управления для обеспечения правильной последовательности открытия и закрытия предохранительных или критически важных для процесса клапанов в системе.
Ключи к системе
www.haake-technik.com
Блокираторы клапанов и ключи изготовлены из нержавеющей стали. Индивидуальное кодирование гарантирует высочайший уровень безопасности. Сделать копии ключей невозможно (как это можно сделать с
простые ключи навесного замка) благодаря уникальному дизайну и кодировке каждого ключа.
Кодированные клавиши были разработаны с учетом эргономики и просты в использовании благодаря своей форме даже при ношении прочных защитных перчаток.У клавиши нет верхнего или нижнего положения. Закодированные
поэтому ключи можно вставлять в замок с любого направления. Вставив ключ всего на несколько миллиметров в замок, достаточно знать, что ключ и замок совпадают правильно. Эти особенности
гарантируют быструю работу.
Цветная маркировка позволяет легко сопоставить ключи с соответствующими блокировками. Для гравюр по индивидуальному заказу заказчика доступно до четырех строк текста.
Пример (2): Безопасная изоляция предохранительного клапана для обслуживания
Тип системы блокировки, представленный ниже, предназначен для механической блокировки двух предохранительных клапанов, имеющих два запорных клапана на входе и два запорных клапана на выходе, чтобы предотвратить изоляцию обоих клапанов.
предохранительные клапаны одновременно и позволяют безопасно изолировать предохранительный клапан для обслуживания.
Рабочее состояние блокировки клапана
- Один PSV (PSV-A) в рабочем состоянии, а другой PSV (PSV-B) в режиме ожидания
- Ключ B взят из диспетчерской
Ввести ПСВ-Б в ТО:
- Вставьте ключ B в клапан №4 и закройте, отпустив ключ A
- Ключ A можно перенести в диспетчерскую, чтобы изолировать PSV-B для обслуживания
К переналадке ввода ПСВ-А и ПСВ-Б:
- Вставьте ключ B в клапан № 1 и откройте, отпустив ключ C (оба предохранителя включены)
- Вставьте ключ C в клапан № 2 и закройте, отпустив ключ D, который можно перенести в диспетчерскую.
PSV-B теперь работает, а PSV-A находится в режиме ожидания.
Для дополнительной изоляции PSV-A для обслуживания:
- Вставьте шпонку D в клапан №3 и закройте разблокирующую шпонку E
- Ключ E можно перенести в диспетчерскую, чтобы изолировать PSV-A для обслуживания
Оба PSV никогда не будут закрыты одновременно, что гарантирует, что хотя бы один PSV всегда доступен для защиты оборудования.
Ссылка (-а): www.alcatrazinterlocks.com и www.haake-technik.com
.