Основные единицы СИ. Основная единица измерения си


Основные единицы измерения в системе СИ — МегаЛекции

Наименование физической величины Единица Обозначение
русское между народное
Длина метр м m
Масса килограмм кг kg
Время секунда с s
Сила электрического тока ампер A A
Термодинамическая температура кельвин К K
Количество вещества моль моль mol
Сила света кандела кд cd
Плоский угол радиан рад rad
Телесный угол стерадиан ср sr

Определения основных и дополнительных единиц в системе СИ

Метр равен длине пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.

Килограмм равен массе международного прототипа килограмма.

Секунда равна 9 192 631 770 периодам излучения, соответсвующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным в вакууме на расстоянии 1м один от другого, вызвал бы силу взаимодействия, равную 2*10-7 Н.

Кельвин равен 1/273,16 части термодинамической температуре тройной точки воды.

Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг.

Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540*1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Радиан равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.

Производные единицы электрических и магнитных величин в системе СИ

Наименование величины Единица
Наименование Обозначение
русское между- народное
Плотность электрического тока ампер на квадратный метр А/м2 A/m2
Количество электричества; электрический заряд кулон Кл C
Поверхностная плотность электрического заряда кулон на квадратный метр Кл/м2 C/m2
Электрическое напряжение; электрический потенциал, разность электрических потенциалов; ЭДС вольт В V
Напряженность электрического поля вольт на метр В/м V/m
Электрическая емкость фарад Ф F
Абсолютная диэлектрическая проницаемость; диэлектрическая постоянная фарад на метр Ф/м F/m
Электрическое сопротивление ом Ом W
Удельное электрическое сопротивление ом.метр Ом.м W.m
Электрическая проводимость сименс См S
Удельная электрическая проводимость сименс на метр См/м S/m
Магнитный поток вебер Вб Wb
Магнитная индукция тесла Тл T
Индуктивность генри Гн H
Абсолютная магнитная проницаемость; магнитная постоянная генри на метр Гн/м H/m
Энергия джоуль Дж J
Активная мощность ватт Вт W
Полная мощность вольт-ампер В.А V.A

Множители и приставки в системе СИ

Приставка Обозначение приставки Множитель Натменование множителя
русское между народное
экса Э E 1018=1000000000000000000 квинтиллион
пета П P 1015=1000000000000000 квадриллион
тера Т T 1012=1000000000000 триллион
гига Г G 109=1000000000 миллиард
мега М M 106=1000000 миллион
кило к k 103=1000 тысяча
гекто г h 102=100 сто
дека да da 101=10 десять
- - - 100=1 единица
деци д d 10-1=0,1 одна десятая
санти с c 10-2=0,01 одна сотая
милли м m 10-3=0,001 одна тысячная
микро мк m 10-6=0,000001 одна миллионная
нано н n 10-9=0,000000001 одна миллиардная
пико п p 10-12=0,000000000001 одная триллионная
фемто ф f 10-15=0,000000000000001 одна квадриллионная
атто а a 10-18=0,000000000000000001 одна квинтиллионная

Обозначения буквенные в электрических схемах

Буквенные коды видов элементов представляют собой группы, которым присвоены обозначения одной буквой (Таблица 1).

Таблица 1. Буквенные коды наиболее распространенных элементов электрических схем элементов в соответствии с ГОСТ 2.710–81

Первая буква кода (обязательная) Группа видов элементов Примеры видов элементов
A Устройства Усилители, приборы телеуправления, лазеры, мазеры
B Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот аналоговые или многоразрядные преобразователи или датчики для указания или измерения Громкоговорители, микрофоны, термоэлектрические чувствительные элементы, детекторы ионизирующих излучений, звукосниматели, сельсины
C Конденсаторы -
D Схемы интегральные, микросборки Схемы интегральные аналоговые цифровые, логические элементы, устройства памяти, устройства задержки
E Элементы разные Осветительные устройства, нагревательные элементы
F Разрядники, предохранители, устройства защитные Дискретные элементы защиты потоку и напряжению, плавкие предохранители, разрядники
G Генераторы, источники питания, кварцевые осцилляторы Батареи, аккумуляторы, электрохимические и электротермические источники
H Устройства индикационные и сигнальные Приборы звуковой и световой сигнализации, индикаторы
K Реле, контакторы, пускатели Реле токовые и напряжения, реле электротепловые, реле времени, контакторы, магнитные пускатели
L Катушки индуктивности, дроссели Дроссели люминесцентного освещения
M Двигатели Двигатели постоянного и переменного тока
P Приборы, измерительное оборудование Показывающие, регистрирующие и измерительные приборы, счетчики, часы
Q Выключатели и разъединители в силовых цепях Разъединители, короткозамыкатели, автоматические выключатели (силовые)
R Резисторы Переменные резисторы, потенциометры, варисторы, терморезисторы
S Устройства коммутационные в цепях управления, сигнализации и измерительных Выключатели, переключатели, выключатели, срабатывающие от различных воздействий
T Трансформаторы, автотрансформаторы Трансформаторы тока и напряжения, стабилизаторы
U Преобразователи электрических величин в электрические, устройства связи Модуляторы, демодуляторы, дискриминаторы, инверторы, преобразователи частоты, выпрямители
V Приборы электровакуумные, полупроводниковые Электронные лампы, диоды, транзисторы, тиристоры, стабилитроны
W Линии и элементы сверхвысокой частоты, антенны Волноводы, диполи, антенны
X Соединения контактные Штыри, гнезда, разборные соединения, токосъемники
Y Устройства механические с электромагнитным приводом Электромагнитные муфты, тормоза, патроны
Z Устройства оконечные, фильтры, ограничители Линии моделирования, кварцевые фильтры

Для уточнения вида элементов допускается применять двухбуквенные или даже многобуквенные коды. Элемент может быть обозначен не только одной буквой (общим кодом вида элемента), но и двумя буквами (кодом данного элемента).

При применении двухбуквенных кодов первая буква должна соответствовать группе видов, к которой принадлежит элемент (Таблица 2).

Таблица 2. Примеры двухбуквенных кодов элементов электрических схем элементов в соответствии с ГОСТ 2.710–81

Первая буква кода (обязательная) Группа видов элементов Примеры видов элементов Двухбуквенный код
A Устройство (общее обозначение)    
B Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот аналоговые или многоразрядные преобразователи или датчики для указания или измерения Громкоговоритель BA
Магнитострикционный элемент BB
Детектор ионизирующих элементов BD
Сельсин - приемник BE
Телефон (капсюль) BF
Сельсин - датчик BC
Тепловой датчик BK
Фотоэлемент BL
Микрофон BM
Датчик давления BP
Пьезоэлемент BQ
Датчик частоты вращения (тахогенератор) BR
Звукосниматель BS
Датчик скорости BV
C Конденсаторы    
D Схемы интегральные, микросборки Схема интегральная аналоговая DA
Схема интегральная, цифровая, логический элемент DD
Устройство хранения информации DS
Устройство задержки DT
E Элементы разные Нагревательный элемент EK
Лампа осветительная EL
Пиропатрон ET
F Разрядники, предохранители, устройства защитные Дискретный элемент защиты по току мгновенного действия FA
Дискретный элемент защиты по току инерционного действия FP
Предохранитель плавкий FU
Дискретный элемент защиты по напряжению, разрядник FV
G Генераторы, источники питания Батарея GB
H Элементы индикаторные и сигнальные Прибор звуковой сигнализации HA
Индикатор символьный HG
Прибор световой сигнализации HL
K Реле, контакторы, пускатели Реле токовое KA
Реле указательное KH
Реле электротепловое KK
Контактор, магнитный пускатель KM
Реле времени KT
Реле напряжения KV
L Катушки индуктивности, дроссели Дроссель люминесцентного освещения LL
M Двигатели - -
P Приборы, измерительное оборудование Примечание. Сочетание PE применять не допускается Амперметр PA
Счётчик импульсов PC
Частотометр PF
Счётчик активной энергии PI
Счётчик реактивной энергии PK
Омметр PR
Регистрирующий прибор PS
Часы, измеритель времени действия PT
Вольтметр PV
Ваттметр PW
Q Выключатели и разъединители в силовых цепях Выключатель автоматический QF
Короткозамыкатель QK
Разъединитель QS
R Резисторы Терморезистор RK
Потенциометр RP
Шунт измерительный RS
Варистор RU
S Устройства коммутационные в цепях управления, сигнализации и измерительных. Примечание. Обозначение SF применяют для аппаратов не имеющих контактов силовых цепей Выключатель или переключатель SA
Выключатель кнопочный SB
Выключатель автоматический SF
Выключатели, срабатывающие от различных воздействий: – от уровня SL
– от давления SP
– от положения (путевой) SQ
– от частоты вращения SR
– от температуры SK
T Трансформаторы, автотрансформаторы Трансформатор тока TA
Электромагнитный стабилизатор TS
Трансформатор напряжения TV
U Устройства связи. Преобразователи электрических величин в электрические Модулятор UB
Демодулятор UR
Дискриминатор UI
Преобразователь частоты, инвертор, генератор частоты, выпрямитель UZ
V Приборы электровакуумные, полупроводниковые Диод, стабилитрон VD
Прибор электровакуумный VL
Транзистор VT
Тиристор VS
W Линии и элементы СВЧ Антенны Ответвитель WE
Короткозамыкатель WK
Вентиль WS
Трансформатор, неоднородность, фазовращатель WT
Аттенюатор WU
Антенна WA
X Соединения контактные Токосъёмник, контакт скользящий XA
Штырь XP
Гнездо XS
Соединение разборное XT
Соединитель высокочастотный XW
Y Устройства механические с электромагнитным приводом Электромагнит YA
Тормоз с электромагнитным приводом YB
Муфта с электромагнитным приводом YC
Электромагнитный патрон или плита YH
Z Устройства оконечные Фильтры. Ограничители Ограничитель ZL
Фильтр кварцевый ZQ

Таблица 3. Буквенные коды для, обозначающие функциональные назначения элементов элементов в соответствии с ГОСТ 2.710–81

Буквенный код Функциональное назначение Буквенный код Функциональное назначение
A Вспомогательный P Пропорциональный
B Направление движения (вперед, назад, вверх, вниз, по часовой стрелке, против часовой стрелки) Q Состояние (старт, стоп, ограничение)
C Считающий R Возврат, сброс
D Дифференцирующий S Запоминание, запись
F Защитный T Синхронизация, задержка
G Испытательный V Скорость (ускорение, торможение)
H Сигнальный W Сложение
I Интегрирующий X Умножение
K Толкающий Y Аналоговый
M Главный Z Цифровой
N Измерительный    

 

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

©2015- 2018 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.

megalektsii.ru

Основные единицы СИ — википедия орг

Семь основных единиц и зависимость их определений

Основные единицы Международной системы единиц (СИ) — семь единиц измерения основных величин Международной системы величин (фр. International Système de grandeurs, англ. International System of Quantities, ISQ), принятые Генеральной конференцией по мерам и весам. Основными величинами Международной системы величин являются длина, масса, время, электрический ток, термодинамическая температура, количество вещества и сила света. Единицы измерения для них — основные единицы СИ — метр, килограмм, секунда, ампер, кельвин, моль и кандела, соответственно[1][2].

Полное официальное описание основных единиц СИ, а также СИ в целом вместе с её толкованием, содержится в действующей редакции Брошюры СИ (фр. Brochure SI, англ. The SI Brochure) и в дополнении к ней, опубликованных Международным бюро мер и весов (МБМВ) и представленных на сайте МБМВ[1][3].

Остальные единицы СИ являются производными и образуются из основных с помощью уравнений, связывающих друг с другом физические величины Международной системы величин.

Основная единица может использоваться и для производной величины той же размерности. Например, количество осадков определяется как частное от деления объёма на площадь и в СИ выражается в метрах. В этом случае метр используется в качестве когерентной производной единицы[2][4].

Наименования и обозначения основных единиц, так же как и всех других единиц СИ, пишутся маленькими буквами (например, метр и его обозначение м). У этого правила есть исключение: обозначения единиц, названных фамилиями учёных, пишутся с заглавной буквы (например, ампер обозначается символом А).

Основные единицы

В таблице представлены все основные единицы СИ вместе с их определениями, обозначениями, физическими величинами, к которым они относятся, а также с кратким обоснованием их происхождения.

Основные единицы СИ Единица Обозначение Величина Определение[5] Историческое происхождение, обоснование
Метр м Длина Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.XVII Генеральная конференция по мерам и весам (ГКМВ) (1983 г, Резолюция 1) 1⁄10 000 000 расстояния от экватора Земли до северного полюса на меридиане Парижа.
Килограмм кг Масса Килограмм есть единица массы, равная массе международного прототипа килограмма.I ГКМВ (1899 г.) и III ГКМВ (1901 г.) Масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря.
Секунда с Время Секунда есть время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.XIII ГКМВ (1967 г., Резолюция 1)«В покое при 0 К при отсутствии возмущения внешними полями»(Добавлено в 1997 году) Солнечные сутки разбиваются на 24 часа, каждый час разбивается на 60 минут, каждая минута разбивается на 60 секунд.Секунда — это 1⁄(24 × 60 × 60) часть солнечных суток.
Ампер А Сила электрического тока Ампер есть сила не изменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2·10−7ньютонов.Международный комитет мер и весов (1946 г., Резолюция 2, одобренная IX ГКМВ в 1948 г.) Устаревшая единица измерения электрического тока «Международный Ампер» определялся электрохимически как ток, необходимый для осаждения 1,118 миллиграммов серебра в секунду из раствора нитрата серебра. По сравнению с ампером Международной системе единиц (СИ) разница составляет 0,015%.
Кельвин К Термодинамическая Температура Кельвин есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды.XIII ГКМВ (1967 г., Резолюция 4)В 2005 г. Международный комитет мер и весов установил требования к изотопному составу воды при реализации температуры тройной точки воды: 0,00015576 моля 2H на один моль 1Н, 0,0003799 моля 17О на один моль 16О и 0,0020052 моля 18О на один моль 16О[1]. Шкала Кельвина использует тот же шаг, что и шкала Цельсия, но 0 кельвинов — это температура абсолютного нуля, а не температура плавления льда. Согласно современному определению ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15[5]: °C = K — 273,15.
Моль моль Количество вещества Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы (оговорены) и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.XIV ГКМВ (1971 г., Резолюция 3) Атомный вес или молекулярный вес, деленный на постоянную молярной массы, 1 г / моль.
Кандела кд Сила света Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 герц, энергетическая сила света которого в этом направлении составляет (1/683) Вт/ср.XVI ГКМВ (1979 г., Резолюция 3) Сила света (англ. Candlepower, устар. Британская единица силы света), испускаемая горящей свечой.

Совершенствование системы единиц

С момента принятия Метрической конвенции в 1875 году определения основных единиц измерения несколько раз изменялись. С переопределения метра (1960 год) килограмм остался последней единицей, которая определяется не как свойство природы, а как физический артефакт. Тем не менее, поскольку моль, ампер и кандела привязаны к килограмму, то и они оказываются привязанными к изготовленному людьми эталону килограмма. Длительное время метрология искала пути для определения килограмма на основе фундаментальных физических констант, так же, как метр определяется через скорость света.

XXI Генеральная конференция по мерам и весам (1999 год) рекомендовала в XXI веке «Национальным лабораториям продолжить исследования для привязки массы к фундаментальным или массовым константам для определения массы килограмма». Большинство ожиданий при этом связывалось с постоянной Планка и числом Авогадро.

В 2005 году Международный комитет мер и весов (МКМВ), утвердив подготовку к новым определениям килограмма, ампера и кельвина, также отметил возможность нового определения моля, основанного на числе Авогадро[6]. В 2007 году 23-я Генеральная конференция по мерам и весам (ГКМВ) решила отложить узаконивание любых изменений до следующей конференции в 2011 году[7].

В пояснительной записке, адресованной МКМВ в октябре 2009 года[8], президент консультативного совета МКМВ по единицам перечислил неопределённости физических фундаментальных констант при использовании текущих определений и тех, какими эти неопределённости станут при использовании новых предложенных определений единиц. Он рекомендовал МКМВ принять предложенные изменения в «определении килограмма, ампера, кельвина и моля, чтобы они выражались через величины фундаментальных констант h[9], e[10], k[11], и NA[12]».

XXIV Генеральная конференция по мерам и весам

На XXIV Генеральной конференции по мерам и весам 17—21 октября 2011 года была принята Резолюция, в соответствии с которой предполагается в будущей ревизии Международной системы единиц переопределить основные единицы таким образом, чтобы они были основаны не на созданных человеком артефактах (эталонах), а на фундаментальных физических константах или свойствах атомов, численные значения которых фиксируются и полагаются точными по определению[13][14].

Килограмм, ампер, кельвин, моль

В соответствии с решениями XXIV ГКМВ наиболее важные изменения должны затронуть четыре основные единицы СИ: килограмм, ампер, кельвин и моль. Новые определения этих единиц будут базироваться на фиксированных численных значениях следующих фундаментальных физических постоянных: постоянной Планка, элементарного электрического заряда, постоянной Больцмана и числа Авогадро, соответственно. Всем этим величинам будут приписаны точные значения, основанные на результатах наиболее точных измерений, рекомендованных Комитетом по данным для науки и техники (CODATA).

В Резолюции сформулированы следующие положения, касающиеся этих единиц[13]:

  • Килограмм останется единицей массы; но его величина будет устанавливаться фиксацией численного значения постоянной Планка равным в точности 6,626 06X·10−34, когда она выражена единицей СИ м2·кг·с−1, что эквивалентно Дж·с.
  • Ампер останется единицей силы электрического тока; но его величина будет устанавливаться фиксацией численного значения элементарного электрического заряда равным в точности 1,602 17X·10−19, когда он выражен единицей СИ с·А, что эквивалентно Кл.
  • Кельвин останется единицей термодинамической температуры; но его величина будет устанавливаться фиксацией численного значения постоянной Больцмана равным в точности 1,380 6X·10−23, когда она выражена единицей СИ м−2·кг·с−2·К−1, что эквивалентно Дж·К−1.
  • Моль останется единицей количества вещества; но его величина будет устанавливаться фиксацией численного значения постоянной Авогадро равным в точности 6,022 14X·1023 моль−1, когда она выражена единицей СИ моль−1.

Выше и далее Х заменяет одну или более значащих цифр, которые будут определены в дальнейшем на основании наиболее точных рекомендаций CODATA.

Метр, секунда, кандела

Определения метра и секунды уже в настоящее время связаны с точными значениями таких постоянных, как скорость света и величина расщепления основного состояния атома цезия, соответственно. Существующее определение канделы хотя и не привязано к какой-либо фундаментальной постоянной, тем не менее, также может рассматриваться как связанное с точным значением инварианта природы. Исходя из сказанного, изменять по существу определения метра, секунды и канделы не предполагается. Однако для поддержания единства стиля планируется принять новые, полностью эквивалентные существующим, формулировки определений в следующем виде:

  • Метр, символ м, является единицей длины; его величина устанавливается фиксацией численного значения скорости света в вакууме равным в точности 299 792 458, когда она выражена единицей СИ м·с−1.
  • Секунда, символ с, является единицей времени; её величина устанавливается фиксацией численного значения частоты сверхтонкого расщепления основного состояния атома цезия-133 при температуре 0 К равным в точности 9 192 631 770, когда она выражена единицей СИ с−1, что эквивалентно Гц.
  • Кандела, символ кд, является единицей силы света в заданном направлении; её величина устанавливается фиксацией численного значения световой эффективности монохроматического излучения частотой 540·1012 Гц равным в точности 683, когда она выражена единицей СИ м−2·кг−1·с3·кд·ср или кд·ср·Вт−1, что эквивалентно лм·Вт−1.

Новый облик СИ

Предполагается, что после реализации сформулированного подхода в своём окончательном виде СИ будет системой единиц, в которой[13]:

  • частота сверхтонкого расщепления основного состояния атома цезия-133 в точности равна 9 192 631 770 Гц[15];
  • скорость света в вакууме c в точности равна 299 792 458 м/с[15];
  • постоянная Планка h в точности равна 6,626 06X·10−34 Дж·с;
  • элементарный электрический заряд e в точности равен 1,602 17X·10−19 Кл;
  • постоянная Больцмана k в точности равна 1,380 6X·10−23 Дж/К;
  • число Авогадро NA в точности равно 6,022 14X·1023 моль−1;
  • световая эффективность kcd монохроматического излучения частотой 540·1012 Гц в точности равна 683 лм/Вт[15];

См. также

Примечания

  1. ↑ 1 2 3 The SI Brochure Описание СИ на сайте Международного бюро мер и весов (англ.)
  2. ↑ 1 2 Международный словарь по метрологии: основные и общие понятия и соответствующие термины / Пер. с англ. и фр.. — 2-е изд., испр. — СПб.: НПО «Профессионал», 2010. — С. 20. — 82 с. — ISBN 978-5-91259-057-3.
  3. ↑ Supplement 2014: Updates to the 8th edition (2006) of the SI Brochure (фр.) (англ.)
  4. ↑ Когерентные производные единицы — производные единицы, которые образуются по уравнениям, не содержащим коэффициент пропорциональности. Благодаря отсутствию коэффициента при расчётах, если выражать значения всех величин в единицах СИ, в формулы не требуется вводить коэффициенты, зависящие от выбора единиц. БСЭ-3.
  5. ↑ 1 2 ГОСТ 8.417—2002. Межгосударственный стандарт. Государственная система обеспечения единства измерений (ГСИ). Единицы величин. М.: Стандартинформ (2010). — ГОСТ введён в действие с 1 сентября 2003 года.
  6. ↑ 94-е заседание Международного комитета мер и весов (2005 год). Рекомендации 1: Подготовительные шаги к определению килограмма, ампера, кельвина и моля через фундаментальные константы
  7. ↑ 23-я Генеральная конференция по мерам и весам (2007 год). Решение 12: О возможном переопределении определенных основных единиц Международной системы единиц (СИ).
  8. ↑ Ian Mills, President of the CCU. Thoughts about the timing of the change from the Current SI to the New SI. CIPM (октябрь 2009). Проверено 23 февраля 2010. Архивировано 8 мая 2012 года.
  9. ↑ h — постоянная Планка.
  10. ↑ e — заряд электрона.
  11. ↑ k — постоянная Больцмана.
  12. ↑ NA — число Авогадро.
  13. ↑ 1 2 3 On the possible future revision of the International System of Units, the SI Resolution 1 of the 24th meeting of the CGPM (2011)
  14. ↑ Towards the «New SI»… (англ.) на сайте Международного бюро мер и весов
  15. ↑ 1 2 3 Это определение уже введено и действует в настоящее время.

Ссылки

www-wikipediya.ru

Какая единица измерения скорости в СИ?

физика! 7 класс! м/с

МЕЖДУНАРО́ДНАЯ СИСТЕ́МА ЕДИНИ́Ц, система единиц (см. СИСТЕМА ЕДИНИЦ) физических величин, принятая 11-й Генеральной конференцией по мерам и весам (1960). Сокращенное обозначение — SI (франц. Systeme International, в русской транскрипции — СИ) . Международная система единиц содержит 7 основных единиц: длины метр, массы — килограмм, времени — секунда, силы электрического тока — ампер, термодинамической температуры — кельвин, силы света — кандела, количества вещества — моль. При расчетах, если значения всех величин выражены в единицах СИ, в формулы не требуется вводить переводные коэффициенты, зависящие от выбора единиц.

конечно метр в сек

touch.otvet.mail.ru

Основные единицы СИ - это... Что такое Основные единицы СИ?

Семь основных единиц и зависимость их определений

СИ (SI, фр. Le Système International d'Unités), (Система Интернациональная) — международная система единиц, современный вариант метрической системы. Она определяет семь основных единиц измерения, являющихся основой для остальных единиц СИ. Основные единицы измерения СИ и их величины[1]:

Названия всех единиц СИ пишутся маленькими буквами (например , метр и его символ м). У этого правила есть исключение: название единиц, названных фамилиями учёных пишутся с большой буквы (например, ампер обозначается символом А).

Многие другие единицы измерения, такие как литр, формально не входят в СИ, но они «допускаются для использования совместно с СИ».

Основные единицы СИ Единица Обозначение Величина Определение Исторические происхождения / Обоснование
Метр м Длина «Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.»17я Конференция по мерам и весам (1983г, Резолюция 1) 1⁄10 000 000 расстояния от экватора Земли до северного полюса на меридиане Парижа.
Килограмм кг Масса «Килограмм есть единица массы, равная массе международного прототипа килограмма»3я Конференция по мерам и весам (1901г) Масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря.
Секунда с Время «Секунда это — интервал времени, равный 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного (квантового) состояния атома цезия-133»13я Конференция по мерам и весам (1967/68г, Резолюция 1)«В покое при 0 К при отсутствии возмущения внешними полями.»(Добавлено в 1997году) День делится на 24 часа, каждый час делится на 60 минут, каждая минута делится на 60 секунд.Секунда это — 1⁄(24 × 60 × 60) часть Дня
Ампер А Сила тока «Ампер - это сила постоянного тока, текущего в каждом из двух параллельных бесконечно длинных бесконечно малого кругового сечения проводников в вакууме на расстоянии 1 метр, и создающая силу взаимодействия между ними 2·10−7ньютонов на каждый метр длины проводника.»9я Конференция по мерам и весам(1948г)
Кельвин К Термодинамическая Температура «Один кельвин равен 1/273,16 термодинамической температуры тройной точки воды.»13th Конференция по мерам и весам (1967/68г, Резолюция 4)"В обязательном Техническом приложении к тексту МТШ-90 Консультативный комитет по термометрии в 2005 г. установил требования к изотопному составу воды при реализации температуры тройной точки воды.

0,00015576 моля 2H на один моль 1Н 0,0003799 моля [2].

Шкала Кельвина использует тот же шаг градуса, что и шкала Цельсия, но 0 градусов это температура абсолютного нуля, а не температура плавления льда. Согласно современному определению ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15[3]: °C = K — 273,15
Моль моль Количество вещества «Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц»[3]14я Конференция по мерам и весам (1971г, Резолюция 3)
Кандела кд Сила света «равна силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540·1012 герц, энергетическая сила света которого в этом направлении составляет (1/683) Вт/ср.»16я Конференция по мерам и весам (1979, Резолюция 3)

Будущие изменения

С момента принятия Метрической конвенция в 1875 г. определения основных единиц измерения несколько раз изменялись. С переопределения метра 1960, килограмм остался последней единицей, которая определяется не как свойство природы, а как физический артефакт. Тем не менее, моль, ампер и кандела тоже привязаны к платиново-иридиевым эталонам, которые находятся в хранилище. Длительное время метрология искала пути для определения килограмма фундаментальными константами, также, как метр определяется через скорость света.

В 21-м веке Конференция по мерам и весам (1999 г.) предложил официально приложить все усилия и рекомендовала «Национальным лабораториям продолжить исследования для привязки массы к фундаментальным или массовым константам для определения массы килограмма.» Большинство ожиданий связывают с постоянной Планка и числом Авогадро.

В 2005 году Международный комитет мер и весов (CIPM) утвердив подготовку к новым определениям килограмма, ампера и кельвина, также отметил возможность нового определения моля основанное на числе Авогадро[4] 23-я Генеральная конференция по мерам и весам (CGPM) в 2007 году решила отложить узаконивание любых изменений до следующей конференции в 2011 году.[5]

В пояснительной записке, адресованной CIPM, в октябре 2009 года,[6] президент консультативного совета CIPM по единицам перечислил неопределенности физических фундаментальных констант при использовании текущих определений и тех, какими эти неопроеделенности станут при использовании новых предложенных определений единиц. Он рекомендовал CIPM принять предложенные изменения в «определении килограмма, ампера, кельвина и моля, чтобы они выражались через величины фундаментальных констант h[7], e[8], k[9], и NA».[10]

См. также

Примечания

Ссылки

dis.academic.ru

Основные единицы СИ - это... Что такое Основные единицы СИ?

Семь основных единиц и зависимость их определений

СИ (SI, фр. Le Système International d'Unités), (Система Интернациональная) — международная система единиц, современный вариант метрической системы. Она определяет семь основных единиц измерения, являющихся основой для остальных единиц СИ. Основные единицы измерения СИ и их величины[1]:

Названия всех единиц СИ пишутся маленькими буквами (например , метр и его символ м). У этого правила есть исключение: название единиц, названных фамилиями учёных пишутся с большой буквы (например, ампер обозначается символом А).

Многие другие единицы измерения, такие как литр, формально не входят в СИ, но они «допускаются для использования совместно с СИ».

Основные единицы СИ Единица Обозначение Величина Определение Исторические происхождения / Обоснование
Метр м Длина «Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.»17я Конференция по мерам и весам (1983г, Резолюция 1) 1⁄10 000 000 расстояния от экватора Земли до северного полюса на меридиане Парижа.
Килограмм кг Масса «Килограмм есть единица массы, равная массе международного прототипа килограмма»3я Конференция по мерам и весам (1901г) Масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря.
Секунда с Время «Секунда это — интервал времени, равный 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного (квантового) состояния атома цезия-133»13я Конференция по мерам и весам (1967/68г, Резолюция 1)«В покое при 0 К при отсутствии возмущения внешними полями.»(Добавлено в 1997году) День делится на 24 часа, каждый час делится на 60 минут, каждая минута делится на 60 секунд.Секунда это — 1⁄(24 × 60 × 60) часть Дня
Ампер А Сила тока «Ампер - это сила постоянного тока, текущего в каждом из двух параллельных бесконечно длинных бесконечно малого кругового сечения проводников в вакууме на расстоянии 1 метр, и создающая силу взаимодействия между ними 2·10−7ньютонов на каждый метр длины проводника.»9я Конференция по мерам и весам(1948г)
Кельвин К Термодинамическая Температура «Один кельвин равен 1/273,16 термодинамической температуры тройной точки воды.»13th Конференция по мерам и весам (1967/68г, Резолюция 4)"В обязательном Техническом приложении к тексту МТШ-90 Консультативный комитет по термометрии в 2005 г. установил требования к изотопному составу воды при реализации температуры тройной точки воды.

0,00015576 моля 2H на один моль 1Н 0,0003799 моля [2].

Шкала Кельвина использует тот же шаг градуса, что и шкала Цельсия, но 0 градусов это температура абсолютного нуля, а не температура плавления льда. Согласно современному определению ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15[3]: °C = K — 273,15
Моль моль Количество вещества «Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц»[3]14я Конференция по мерам и весам (1971г, Резолюция 3)
Кандела кд Сила света «равна силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540·1012 герц, энергетическая сила света которого в этом направлении составляет (1/683) Вт/ср.»16я Конференция по мерам и весам (1979, Резолюция 3)

Будущие изменения

С момента принятия Метрической конвенция в 1875 г. определения основных единиц измерения несколько раз изменялись. С переопределения метра 1960, килограмм остался последней единицей, которая определяется не как свойство природы, а как физический артефакт. Тем не менее, моль, ампер и кандела тоже привязаны к платиново-иридиевым эталонам, которые находятся в хранилище. Длительное время метрология искала пути для определения килограмма фундаментальными константами, также, как метр определяется через скорость света.

В 21-м веке Конференция по мерам и весам (1999 г.) предложил официально приложить все усилия и рекомендовала «Национальным лабораториям продолжить исследования для привязки массы к фундаментальным или массовым константам для определения массы килограмма.» Большинство ожиданий связывают с постоянной Планка и числом Авогадро.

В 2005 году Международный комитет мер и весов (CIPM) утвердив подготовку к новым определениям килограмма, ампера и кельвина, также отметил возможность нового определения моля основанное на числе Авогадро[4] 23-я Генеральная конференция по мерам и весам (CGPM) в 2007 году решила отложить узаконивание любых изменений до следующей конференции в 2011 году.[5]

В пояснительной записке, адресованной CIPM, в октябре 2009 года,[6] президент консультативного совета CIPM по единицам перечислил неопределенности физических фундаментальных констант при использовании текущих определений и тех, какими эти неопроеделенности станут при использовании новых предложенных определений единиц. Он рекомендовал CIPM принять предложенные изменения в «определении килограмма, ампера, кельвина и моля, чтобы они выражались через величины фундаментальных констант h[7], e[8], k[9], и NA».[10]

См. также

Примечания

Ссылки

3dic.academic.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.