29.06.2024

Основная изоляция: основная изоляция — это… Что такое основная изоляция?

Содержание

основная изоляция — это… Что такое основная изоляция?

3.4.1 основная изоляция: Изоляция, применяемая к находящимся под напряжением частям для обеспечения основной защиты от поражения электрическим током.

Примечание — Основная изоляция не обязательно включает в себя изоляцию, используемую исключительно для функциональных целей.

2.1 основная изоляция: Изоляция токоведущих частей, предназначенная для обеспечения основной защиты от поражения электрическим током.

Примечание — Основная изоляция не обязательно должна состоять только из изоляции, необходимой для обеспечения нормальной работы оборудования.

2.2.11.



Основная изоляция — изоляция частей, находящихся под напряжением, предназначенная для основной защиты от поражения электрическим током.

Примечание. Основная изоляция не обязательно включает изоляцию, применяемую исключительно для функциональных целей.

3.4.1 основная изоляция (basic insulation): Изоляция частей, находящихся под напряжением и обеспечивающая основную защиту от поражения электрическим током, при этом она не обязательно включает в себя изоляцию, применяемую только для функциональных целей.

3.17 Основная изоляция — изоляция частей, находящихся под опасным напряжением, обеспечивающая основную защиту от поражения электрическим током.

2.24 Основная изоляция — изоляция токоведущих частей, обеспечивающая основную защиту от поражения электрическим током.

Примечание — Основная изоляция не обязательно является рабочей, то есть может не включать в себя изоляцию, используемую исключительно для обеспечения нормальной работы трансформатора.

50 Основная изоляция

[195-06-06] [826-12-14]

Изоляция опасных токоведущих частей, которая обеспечивает защиту от прямого прикосновения.

Примечание — Это не относится к изоляции, используемой исключительно для функциональных целей.

основная изоляция: Изоляция токоведущих частей, обеспечивающая основную защиту от поражения электрическим током.

[ГОСТ Р 52161.1-2004, пункт 3.3.1]

основная изоляция

(basic insulation):

Изоляция опасных токоведущих частей, которая обеспечивает защиту от прямого прикосновения.

усиленная изоляция

(reinforced insulation):

Изоляция опасных токоведущих частей, обеспечивающая степень защиты от поражения электрическим током, эквивалентную степени защиты, обеспечиваемой двойной изоляцией.

(электрически) защитная оболочка

((electrically) protective enclosure):

Электрическая оболочка, окружающая находящиеся внутри нее части оборудования для предотвращения доступа к опасным токоведущим частям с любого направления.

826-12-25

[195-06-17]

2.12 основная изоляция : Изоляция токоведущих деталей, обеспечивающая основную защиту от поражения электрическим током.

Примечание — Основная изоляция не обязательно включает изоляцию, используемую исключительно в функциональных целях.


3.52 основная изоляция: Рабочая изоляция под напряжением, дефект которой вызывает риск поражения электрическим током.

1.2.9.2 основная изоляция (basic insulation): Изоляция, обеспечивающая основную защиту от поражения электрическим током.

1.2.9.2 основная изоляция (basic insulation): Изоляция, обеспечивающая основную защиту от поражения электрическим током.

3.5 основная изоляция (basic insulation): Изоляция (необязательно включающая изоляцию, применяемую исключительно для функциональных целей) частей, находящихся под напряжением, обеспечивающая основную защиту от поражения электрическим током.

3.4.1 основная изоляция (basic insulation): Изоляция частей, находящихся под напряжением и обеспечивающая основную защиту от поражения электрическим током, при этом она не обязательно включает в себя изоляцию, применяемую только для функциональных целей.

Основная изоляция

Изоляция токовсдуших частей, предназначенная для основной защиты от поражения электрическим током. Основная изоляция не должна состоять только из изоляции, необходимой для обеспечения нормальной работы прибора.

1.2.9.2 ОСНОВНАЯ ИЗОЛЯЦИЯ: Изоляция, обеспечивающая основную защиту от поражения электрическим током.

3.3.1 основная изоляция (basic insulation): Изоляция токоведущих частей, обеспечивающая основную защиту от поражения электрическим током.

3.4.1 основная изоляция: Изоляция, применяемая для находящихся под напряжением частей для обеспечения основной защиты от поражения электрическим током.

Примечание — К основной изоляции не обязательно относят изоляцию, используемую исключительно для функциональных целей.

3.6.1. основная изоляция: Изоляция, повреждение которой может вызвать опасность поражения электрическим током.

Примечание — Основная изоляция может использоваться также по функциональному назначению.

1.2.16. основная изоляция: Изоляция токоведущих деталей, обеспечивающая основную защиту от поражения электрическим током.

Примечание — Основная изоляция не обязательно должна включать изоляцию, используемую только для функционального назначения.

1.2.16 основная изоляция (basic insulation): Изоляция токоведущих деталей, обеспечивающая основную защиту от поражения электрическим током.

Примечание — Основная изоляция необязательно должна включать в себя изоляцию, используемую только для функционального назначения.

3.6.1 основная изоляция: Изоляция, неисправность которой приводит к опасности поражения электрическим током.

Примечание: Основная изоляция может служить также целям обеспечения работы оборудования.

2.12 основная изоляция: Изоляция токоведущих деталей, которая обеспечивает основную защиту от поражения электрическим током.

Примечание — Основная изоляция не обязательно используется только для функциональных целей.

3.5.1 ОСНОВНАЯ ИЗОЛЯЦИЯ (BASIC INSULATION): Изоляция, неисправность которой может привести к опасности поражения электрическим током.

Примечание — ОСНОВНАЯ ИЗОЛЯЦИЯ может иметь также другие назначения.

Смотри также родственные термины:

15. Основная изоляция (рабочая)

Изоляция токоведущих частей, предназначенная для основной защиты от поражения электрическим током

Словарь-справочник терминов нормативно-технической документации.
academic.ru.
2015.

ОСНОВНАЯ ИЗОЛЯЦИЯ — это… Что такое ОСНОВНАЯ ИЗОЛЯЦИЯ?



ОСНОВНАЯ ИЗОЛЯЦИЯ

ОСНОВНАЯ ИЗОЛЯЦИЯ — изоляция, предназначенная для нормального функционирования изделия и основной защиты от поражения электрическим током.

См. также Двойная изоляция.

Российская энциклопедия по охране труда. — М.: НЦ ЭНАС.
Под ред. В. К. Варова, И. А. Воробьева, А. Ф. Зубкова, Н. Ф. Измерова.
2007.

  • ОСВЕЩЕННОСТЬ
  • ОСНОВНЫЕ ПОЛОЖЕНИЯ НАДЕЖНОСТИ СТРОИТЕЛЬНЫХ СООРУЖЕНИЙ

Смотреть что такое «ОСНОВНАЯ ИЗОЛЯЦИЯ» в других словарях:

  • основная изоляция — Изоляция токоведущих частей, обеспечивающая основную защиту от поражения электрическим током. [ГОСТ Р 52161.1 2004 (МЭК 60335 1:2001)] основная изоляция Изоляция, повреждение которой может вызвать опасность поражения электрическим током.… …   Справочник технического переводчика

  • основная изоляция — 3.4.1 основная изоляция: Изоляция, применяемая к находящимся под напряжением частям для обеспечения основной защиты от поражения электрическим током. Примечание Основная изоляция не обязательно включает в себя изоляцию, используемую исключительно …   Словарь-справочник терминов нормативно-технической документации

  • Основная изоляция — 1.7.39. Основная изоляция изоляция токоведущих частей, обеспечивающая в том числе защиту от прямого прикосновения… Источник: Приказ Минэнерго РФ от 08.07.2002 N 204 Об утверждении глав Правил устройства электроустановок (вместе с Правилами… …   Официальная терминология

  • Основная изоляция — English: Main isolant Изоляция токоведущих частей, предназначенная для основной защиты от поражения электрическим током (по ГОСТ 16703 79 СТ СЭВ 2418 80) Источник: Термины и определения в электроэнергетике. Справочник …   Строительный словарь

  • Основная изоляция (рабочая) — 15. Основная изоляция (рабочая) Изоляция токоведущих частей, предназначенная для основной защиты от поражения электрическим током Источник: СТ СЭВ 2186 80: Соединители электрические цилиндрические пром …   Словарь-справочник терминов нормативно-технической документации

  • основная — 3.2 основная общеобразовательная школа: Школа, организуемая как самостоятельное общеобразовательное учреждение с 1 по 9 класс включительно. Источник: ТСН 31 328 2004: Общеобразовательные школы. Республика Саха (Якутия) Смотри также родственные… …   Словарь-справочник терминов нормативно-технической документации

  • изоляция — 3.6 изоляция (containment): Состояние, достигаемое в изолирующем устройстве с высокой степенью разделения между процессом и оператором. Источник …   Словарь-справочник терминов нормативно-технической документации

  • изоляция (основная, дополнительная, двойная, усиленная) — 3.17 изоляция (основная, дополнительная, двойная, усиленная): 1) основная изоляция: Изоляция, применяемая для частей оборудования, находящихся под напряжением, с целью обеспечения защиты от поражения электрическим током; 2) дополнительная… …   Словарь-справочник терминов нормативно-технической документации

  • основная деталь — 1.2.16 основная деталь: Изоляция токоведущих деталей, обеспечивающая основную защиту от поражения электрическим током. Примечание Основная изоляция не обязательно должна включать изоляцию, используемую только для функционального назначения.… …   Словарь-справочник терминов нормативно-технической документации

  • ИЗОЛЯЦИЯ (ПОПУЛЯЦИИ) — (от франц. isolation отделение, разобщение), один из основных факторов эволюции, важный в том отношении, что при возникновении барьеров, ограничивающих панмиксию, размножение происходит в пределах изолята и прекращается обмен генетической… …   Экологический словарь

изоляция (основная, дополнительная, двойная, усиленная)



изоляция (основная, дополнительная, двойная, усиленная)

3.17 изоляция (основная, дополнительная, двойная, усиленная):

1) основная изоляция: Изоляция, применяемая для частей оборудования, находящихся под напряжением, с целью обеспечения защиты от поражения электрическим током;

2) дополнительная изоляция: Независимая изоляция, применяемая в дополнение к основной изоляции для того, чтобы гарантировать защиту от поражения электрическим током в случае отказа основной изоляции;

3) двойная изоляция: Изоляция, включающая основную и дополнительную изоляцию;

4) усиленная изоляция: Отдельная система изоляции, применяемая для частей под напряжением, которая обеспечивает степень защиты от поражения электрическим током, эквивалентную двойной изоляции в условиях, определенных в настоящем стандарте.

Примечание — Термин «система изоляции» не подразумевает, что изоляция должна быть однородной.


Она может иметь несколько уровней, которые по отдельности не могут быть проверены как дополнительная или основная изоляция.

Словарь-справочник терминов нормативно-технической документации.
academic.ru.
2015.

  • изоляция (containment)
  • изоляция (рабочая изоляция)

Смотреть что такое «изоляция (основная, дополнительная, двойная, усиленная)» в других словарях:

  • изоляция — 3.6 изоляция (containment): Состояние, достигаемое в изолирующем устройстве с высокой степенью разделения между процессом и оператором. Источник …   Словарь-справочник терминов нормативно-технической документации

  • усиленная изоляция — 3.4.4 усиленная изоляция: Одна изоляционная система, примененная к находящимся под напряжением частям, которая обеспечивает степень защиты от поражения электрическим током, эквивалентную двойной изоляции. Примечание Термин «изоляционная система»… …   Словарь-справочник терминов нормативно-технической документации

  • усиленная изоляция — Единая система изоляции токоведущих частей, которая в условиях, предусмотренных настоящим стандартом, обеспечивает такую же степень защиты от поражения электрическим током, как и двойная изоляция. Примечание. Это не означает, что усиленная… …   Справочник технического переводчика

  • Двойная изоляция — изоляция в электроустановках напряжением до 1 кВ, состоящая из основной и дополнительной изоляций. Основная изоляция изоляция токоведущих частей, обеспечивающая защиту от прямого прикосновения. Дополнительная изоляция независимая изоляция,… …   Российская энциклопедия по охране труда

  • ГОСТ Р 51841-2001: Программируемые контроллеры. Общие технические требования и методы испытаний — Терминология ГОСТ Р 51841 2001: Программируемые контроллеры. Общие технические требования и методы испытаний оригинал документа: 3.15 аналоговый вход: Вход, который преобразует непрерывный сигнал в дискретный, представляемый в виде… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 52161.1-2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования — Терминология ГОСТ Р 52161.1 2004: Безопасность бытовых и аналогичных электрических приборов. Часть 1. Общие требования оригинал документа: 3.4.2 безопасное сверхнизкое напряжение (safety extra low voltage): Напряжение, не превышающее 42 В между… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р МЭК 60745-1-2009: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования — Терминология ГОСТ Р МЭК 60745 1 2009: Машины ручные электрические. Безопасность и методы испытаний. Часть 1. Общие требования оригинал документа: 3.45 безопасное сверхнизкое напряжение (safety extra low voltage): Номинальное напряжение, не… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 51350-99: Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования — Терминология ГОСТ Р 51350 99: Безопасность электрических контрольно измерительных приборов и лабораторного оборудования. Часть 1. Общие требования оригинал документа: 3.5.3 высокая надежность: Пренебрежимо малая вероятность возникновения… …   Словарь-справочник терминов нормативно-технической документации

  • защита — 3.25 защита (security): Сохранение информации и данных так, чтобы недопущенные к ним лица или системы не могли их читать или изменять, а допущенные лица или системы не ограничивались в доступе к ним. Источник: ГОСТ Р ИСО/МЭК 12207 99:… …   Словарь-справочник терминов нормативно-технической документации

  • СТ СЭВ 2186-80: Соединители электрические цилиндрические промышленные от 16 до 200 А, 660 V. Технические требования. Методы испытаний — Терминология СТ СЭВ 2186 80: Соединители электрические цилиндрические промышленные от 16 до 200 А, 660 V. Технические требования. Методы испытаний: 19. Вилка Часть электрического соединителя со штыревыми контактами Определения термина из разных… …   Словарь-справочник терминов нормативно-технической документации

Основная изоляция — это… Что такое Основная изоляция?



Строительный словарь.

  • Осветительная арматура
  • Остаточное напряжение конденсатора

Смотреть что такое «Основная изоляция» в других словарях:

  • основная изоляция — Изоляция токоведущих частей, обеспечивающая основную защиту от поражения электрическим током. [ГОСТ Р 52161.1 2004 (МЭК 60335 1:2001)] основная изоляция Изоляция, повреждение которой может вызвать опасность поражения электрическим током.… …   Справочник технического переводчика

  • ОСНОВНАЯ ИЗОЛЯЦИЯ — изоляция, предназначенная для нормального функционирования изделия и основной защиты от поражения электрическим током. См. также Двойная изоляция …   Российская энциклопедия по охране труда

  • основная изоляция — 3.4.1 основная изоляция: Изоляция, применяемая к находящимся под напряжением частям для обеспечения основной защиты от поражения электрическим током. Примечание Основная изоляция не обязательно включает в себя изоляцию, используемую исключительно …   Словарь-справочник терминов нормативно-технической документации

  • Основная изоляция — 1.7.39. Основная изоляция изоляция токоведущих частей, обеспечивающая в том числе защиту от прямого прикосновения… Источник: Приказ Минэнерго РФ от 08.07.2002 N 204 Об утверждении глав Правил устройства электроустановок (вместе с Правилами… …   Официальная терминология

  • Основная изоляция (рабочая) — 15. Основная изоляция (рабочая) Изоляция токоведущих частей, предназначенная для основной защиты от поражения электрическим током Источник: СТ СЭВ 2186 80: Соединители электрические цилиндрические пром …   Словарь-справочник терминов нормативно-технической документации

  • основная — 3.2 основная общеобразовательная школа: Школа, организуемая как самостоятельное общеобразовательное учреждение с 1 по 9 класс включительно. Источник: ТСН 31 328 2004: Общеобразовательные школы. Республика Саха (Якутия) Смотри также родственные… …   Словарь-справочник терминов нормативно-технической документации

  • изоляция — 3.6 изоляция (containment): Состояние, достигаемое в изолирующем устройстве с высокой степенью разделения между процессом и оператором. Источник …   Словарь-справочник терминов нормативно-технической документации

  • изоляция (основная, дополнительная, двойная, усиленная) — 3.17 изоляция (основная, дополнительная, двойная, усиленная): 1) основная изоляция: Изоляция, применяемая для частей оборудования, находящихся под напряжением, с целью обеспечения защиты от поражения электрическим током; 2) дополнительная… …   Словарь-справочник терминов нормативно-технической документации

  • основная деталь — 1.2.16 основная деталь: Изоляция токоведущих деталей, обеспечивающая основную защиту от поражения электрическим током. Примечание Основная изоляция не обязательно должна включать изоляцию, используемую только для функционального назначения.… …   Словарь-справочник терминов нормативно-технической документации

  • ИЗОЛЯЦИЯ (ПОПУЛЯЦИИ) — (от франц. isolation отделение, разобщение), один из основных факторов эволюции, важный в том отношении, что при возникновении барьеров, ограничивающих панмиксию, размножение происходит в пределах изолята и прекращается обмен генетической… …   Экологический словарь

Основная и дополнительная изоляция.




⇐ ПредыдущаяСтр 16 из 18Следующая ⇒

Основная изоляция-изоляция опасных токоведущих частей, предназначенных для обеспечения основной защиты. Предназначена для изоляции опасных токоведущих частей для обеспечения основной защиты, электрозащитные меры которой направлены на предотвращение поражения электрическим током в нормальном режиме электроустановки здания. В том случае, когда основная изоляция опасных токоведущих частей находится в неповрежденном состоянии, не может произойти прямого прикосновения, так как основная изоляция препятствует препятствует прикосновению к опасным токоведущим частям. В этом случае не может быть и косвенного прикосновения, потому что открытые проводящие части отделены от опасных токоведущих частей неповрежденной основной изоляцией и, следовательно, они не могут оказаться под напряжением. Дополнительная изоляция-независимая изоляция, применяемая совместно с основной изоляцией и предназначенная для обеспечения защиты при повреждении. Назначение дополнительной изоляции-обеспечение защиты от поражения электрическим током при повреждении основной изоляции какой-либо опасной токоведущей части. В случае повреждения основной изоляции опасных токоведущих частей дополнительная изоляция исключает возможность появления прямого и косвенного прикосновений.

 

 

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №20

Группа: Электромонтеры 3-го разряда по ремонту и обслуживанию электрооборудования ВОПРОСЫ 1.Принцип работы защитного зануления.Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока. 2. Распределительное устройства напряжением до 1000В.

 

ОБЩИЕ ТРЕБОВАНИЯ

4.1.2. Выбор проводов, шин, аппаратов, приборов и конструкций должен производиться как по нормальным условиям работы (соответствие рабочему напряжению и току, классу точности и т. п.), так и по условиям работы при КЗ (термические и динамические воздействия, коммутационная способность).


4.1.3. Распределительные устройства должны иметь четкие надписи, указывающие назначение отдельных цепей и панелей.

Надписи должны выполняться на лицевой стороне устройства, а при обслуживании с двух сторон — также на задней стороне устройства. См. также гл. 3.4.

4.1.4. Относящиеся к цепям различного рода тока и различных напряжений части РУ должны быть выполнены и размещены так, чтобы была обеспечена возможность их четкого распознавания.

4.1.5. Взаимное расположение фаз и полюсов в пределах всего устройства должно быть, как правило, одинаковым. Шины должны иметь окраску, предусмотренную в гл. 1.1.

В РУ должна быть обеспечена возможность установки переносных защитных заземлений.

4.1.6. Все металлические части РУ должны быть окрашены или иметь другое антикоррозийное покрытие.

4.1.7. Заземление должно быть выполнено в соответствии с гл. 1.7.

УСТАНОВКА ПРИБОРОВ И АППАРАТОВ

4.1.8. Аппараты и приборы следует располагать так, чтобы возникающие в них при эксплуатации искры или электрические дуги не могли причинить вреда обслуживающему персоналу, воспламенить или повредить окружающие предметы, вызвать КЗ или замыкание на землю.

4.1.9. Аппараты рубящего типа должны устанавливаться так, чтобы они не могли замкнуть цепь самопроизвольно, под действием силы тяжести. Подвижные токоведущие части их в отключенном состоянии, как правило, не должны быть под напряжением.

4.1.10. Рубильники с непосредственным ручным управлением (без привода), предназначенные для включения и отключения тока нагрузки и имеющие контакты, обращенные к оператору, должны быть защищены несгораемыми кожухами без отверстий и щелей. Указанные рубильники, предназначенные лишь для снятия напряжения, допускается устанавливать открыто при условии, что они будут недоступны для неквалифицированного персонала.



4.1.11. На приводах коммутационных аппаратов должны быть четко указаны положения «включено» и «отключено».

4.1.12. Должна быть предусмотрена возможность снятия напряжения с каждого автоматического выключателя на время его ремонта или демонтажа. Для этой цели в необходимых местах должны быть установлены рубильники или другие отключающие аппараты.

Отключающий аппарат перед выключателем каждой отходящей от РУ линии предусматривать не требуется в электроустановках:

с выдвижными выключателями;

со стационарными выключателями, в которых на время ремонта или демонтажа данного выключателя допустимо снятие напряжения общим аппаратом с группы выключателей или со всего распределительного устройства;

со стационарными выключателями, если обеспечена возможность безопасного демонтажа выключателей под напряжением с помощью изолированного инструмента.

Для указанных отключающих аппаратов специальный привод (например, рычажный) предусматривать не требуется.

4.1.13. Резьбовые (пробочные) предохранители должны устанавливаться так, чтобы питающие провода присоединялись к контактному винту, а отходящие к электроприемникам — к винтовой гильзе.

 

ШИНЫ, ПРОВОДА, КАБЕЛИ

4.1.14. Между неподвижно укрепленными неизолированными токоведущими частями разной полярности, а также между ними и неизолированными нетоковедущими металлическими частями должны быть обеспечены расстояния не менее: 20 мм по поверхности изоляции и 12 мм по воздуху. От неизолированных токоведущих частей до ограждений должны быть обеспечены расстояния не менее: 100 мм при сетках и 40 мм при сплошных съемных ограждениях.

4.1.15. В пределах панелей, щитов и шкафов, установленных в сухих помещениях, незащищенные изолированные провода с изоляцией, рассчитанной на рабочее напряжение не ниже 660 В, могут прокладываться по металлическим, защищенным от коррозии поверхностям и притом вплотную один к другому. В этих случаях для силовых цепей должны применяться снижающие коэффициенты на токовые нагрузки, приведенные в гл. 1.3.

4.1.16. Заземленные неизолированные провода и шины могут быть проложены и без изоляции.

4.1.17. Электропроводки цепей управления, измерения и т. п. должны соответствовать требованиям гл. 3.4. Прокладка кабелей должна соответствовать требованиям

КОНСТРУКЦИИ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ 4.1.18. Корпуса панелей должны быть выполнены из несгораемых материалов, а конструкции кожухов и других частей устройств из несгораемых или трудносгораемых материалов. Это требование не распространяется на диспетчерские и им подобные пульты управления.

4.1.19. Распределительные устройства должны быть выполнены так, чтобы вибрации, возникающие при действии аппаратов, а также от сотрясений, вызванных внешними воздействиями, не нарушали контактных соединений и не вызывали разрегулировки аппаратов и приборов.

4.1.20. Поверхности гигроскопических изоляционных плит, на которых непосредственно монтируются неизолированные токоведущие части, должны быть защищены от проникновения в них влаги (пропиткой, окраской и т. п.).

В устройствах, устанавливаемых в сырых и особо сырых помещениях и открытых установках, применение гигроскопических изоляционных материалов (например, мрамора, асбестоцемента) не допускается.

В помещениях пыльных, сырых, особо сырых и на открытом воздухе следует устанавливать распределительные устройства, надежно защищенные от отрицательного воздействия окружающей среды.

 

УСТАНОВКА РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ

В ЭЛЕКТРОПОМЕЩЕНИЯХ

4.1.21. В электропомещениях (см. 1.1.5) проходы обслуживания, находящиеся с лицевой или с задней стороны щита, должны соответствовать следующим требованиям:

1. Ширина проходов в свету должна быть не менее 0,8 м; высота проходов в свету — не менее 1,9 м. В проходах не должны находиться предметы, которые могли бы стеснять передвижение людей и оборудования. В отдельных местах проходы могут быть стеснены выступающими строительными конструкциями, однако ширина прохода в этих местах должна быть не менее 0,6 м.

2. Расстояния от наиболее выступающих неогражденных неизолированных токоведущих частей (например, отключенных ножей рубильников), расположенных на доступной высоте (менее 2,2 м) по одну сторону прохода, до противоположной стены или оборудования, не имеющего неогражденных неизолированных токоведущих частей, должны быть не менее: при напряжении ниже 660 В — 1,0 м при длине щита до 7 м и 1,2 м при длине щита более 7 м; при напряжении 660 В и выше — 1,5м. Длиной щита в данном случае называется длина прохода между двумя рядами сплошного фронта панелей (шкафов) или между одним рядом и стеной.

3. Расстояния между неогражденными неизолированными токоведущими частями, расположенными на высоте менее 2,2 м по обе стороны прохода, должны быть не менее: 1,5 м при напряжении ниже 660 В; 2,0 м при напряжении 660 В и выше.

4. Неизолированные токоведущие части, находящиеся на расстояниях, меньших приведенных в п. 2 и 3, должны быть ограждены.

5. Неогражденные неизолированные токоведущие части, размещаемые над проходами, должны быть расположены на высоте не менее 2,2 м.

6. Ограждения, размещаемые над проходами, должны быть расположены на высоте не менее 1,9 м.

4.1.22. В качестве ограждения неизолированных токоведущих частей могут служить сетки с размерами ячеек не более 25х25 мм, а также сплошные или смешанные ограждения.

Высота ограждений должна быть не менее 1,7 м.

4.1.23. Проходы обслуживания щитов при длине щита более 7 м должны иметь два выхода. Выходы из проходов с монтажной стороны щита могут быть выполнены как в щитовое помещение, так и в другие помещения. При ширине прохода обслуживания более 3 м и отсутствии маслонаполненных аппаратов второй выход не обязателен.

Двери из помещений РУ должны открываться в сторону других помещений (за исключением помещений РУ выше 1 кВ переменного тока и выше 1,5 кВ постоянного тока) или наружу и иметь самозапирающиеся замки, отпираемые без ключа с внутренней стороны помещения.

Ширина дверей должна быть не менее 0,75 м, высота — не менее 1,9 м.

 

УСТАНОВКА РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ

В ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЯХ

 

4.1.24. Распределительные устройства, установленные в помещениях, доступных для неинструктированного персонала, должны иметь токоведущие части, закрытые сплошными ограждениями.

В случае применения РУ с открытыми токоведущими частями оно должно быть ограждено. При этом ограждение должно быть сетчатым, сплошным или смешанным высотой не менее 1,7 м. Расстояние от сетчатого ограждения до неизолированных токоведущих частей устройства должно быть не менее 0,7 м, а от сплошных — в соответствии с 4.1.14. Ширина проходов принимается в соответствии с требованиями, приведенными в 4.1.21.

4.1.25. Оконцевание проводов и кабелей должно быть выполнено так, чтобы оно находилось внутри устройства.

4.1.26. Съемные ограждения должны укрепляться так, чтобы их удаление было невозможно без применения инструмента. Дверцы должны запираться на ключ.

4.1.27. Установка комплектных распределительных устройств и подстанций (КРУ, КТП) должна соответствовать требованиям, приведенным в гл. 4.2 для КРУ и КТП выше 1 кВ.

 

УСТАНОВКА РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ

НА ОТКРЫТОМ ВОЗДУХЕ

4.1.28. При установке распределительных устройств на открытом воздухе необходимо соблюдать следующие требования:

1. Устройство должно быть расположено на спланированной площадке на высоте не менее 0,2 м от уровня планировки и должно иметь конструкцию, соответствующую условиям окружающей среды. В районах, где наблюдаются снежные заносы высотой 1 м и более, шкафы следует устанавливать на повышенных фундаментах.

2. В шкафах должен быть предусмотрен местный подогрев для обеспечения нормальной работы аппаратов, реле, измерительных приборов и приборов учета в соответствии с требованиями ГОСТ.

 



Рекомендуемые страницы:

Требования к изоляции бытовых и промышленных выключателей

Безопасная эксплуатация всех видов электротехнического оборудования напрямую зависит от фактического состояния изоляционных материалов, которые заложены в конструкцию токоведущих частей каждого установочного изделия. Если будет нарушена изоляция выключателей, возможен сбой электроподачи, пожар и даже несчастный случай.

Мы расскажем все о видах изоляции, обеспечивающих полноценную безопасность пользования коммутирующими приборами. В предложенной нами статье подробно описаны природные и синтетические, обычные и усиленные варианты. Приведены особенности маркировки, даны советы покупателям.

Содержание статьи:

Изоляционная защита электрооборудования

Изоляционные материалы обеспечивают защиту окружающих людей и животных от электроударов. Условие одно: нужно правильно подобрать расходный диэлектрик, его форму, толщину, параметры рабочего напряжения (оно может быть разным, как и конструкция прибора).

Кроме того, существенное влияние на качество изоляторов могут оказывать производственные или бытовые условия эксплуатации сложного электротехнического устройства. Качество изоляции, толщина и степень электросопротивления должны соответствовать фактическому влиянию окружающей среды и стандартным условиям эксплуатирования.

Проверка изоляцииПроверка изоляции

Для проверки изоляционных свойств по кабелю подают испытательное напряжение, а затем с помощью мультиметра или тестера снимают показания сопротивления изоляции электроустройства

Информация о том, как проверяют напряжение в электрической розетке, содержится в , с которой мы рекомендуем ознакомиться.

В состав электрической изоляции может входить как определенной толщины слой диэлектрика, так и конструкционная форма (корпус), выполненная из диэлектрического материала. Диэлектриком покрывается вся поверхность токоведущих элементов оборудования или же только те токоведущие элементы, которые изолированы от других частей конструкции.

Виды изоляционных материалов

Производители, выпускающие современные электрические выключатели, которые используются в жилых, офисных и промышленных зданиях, различают следующие виды электротехнической изоляции: рабочую (основную), дополнительную, двойную, усиленную.

Рабочая (основная) изоляция

Это, по своей сути, главная защита электрических установок, которая обеспечивает им нормальную и стабильную работу, без возникновения коротких замыканий, защищает потребителей от прямого контактирования с токоведущими частями.

Рабочей изоляцией, согласно нормативам, должна быть покрыта вся поверхность проводов, кабелей, других элементов, по которым проходит электрический ток. Например, шнуры электрических приборов всегда покрыты изоляцией.

Изоляционные кембрикиИзоляционные кембрики

Поливинилхлоридные трубки-кембрики применяют в качестве недорогого и быстрого способа по изоляции токоведущих частей проводов, подходящих к электрическим приборам

Она должна гарантировать устойчивость против всех потенциальных, внешних воздействий, которые могут возникнуть в процессе эксплуатирования электровыключателей в случае синхронного воздействия силовых полей, термического нагрева, механического трения, агрессивных проявлений окружающей среды.

Перечисленные факторы негативно влияют на электрические характеристики диэлектрических (изоляционных) материалов, также из-за них может состояться необратимое ухудшение полезных качеств, то есть изоляция будет подвержена быстрому износу.

Популярный диэлектрик изолентаПопулярный диэлектрик изолента

Недорогой и доступный всем изоляционный материал. Производится из ПВХ, имеет разные размеры как по длине, так и по ширине. Цветовая гамма может быть разной, клеевой состав стойкий, сцепление крепкое и устойчивое к истиранию

Если речь идет о промышленной эксплуатации выключателей, то персонал предприятия должен периодически проверять интенсивность изнашивания изоляционных конструкций, своевременно проводить профилактические мероприятия по контролю их защитных свойств.

Ответственное поддержание высокого уровня сопротивления изоляции уменьшает потенциально возможные замыкания на землю, корпус, сводит к нулю удары током.

Контроль сопротивления изоляции мегаомметром на производстве Контроль сопротивления изоляции мегаомметром на производстве

Показатель сопротивления характеризует текущее состояние качества изоляции между 2 проводящими элементами, дает указание по риску протечек тока. Щадящий, неразрушающий характер такого контроля полезен при отслеживании износа и состаривания слоев изоляции

В небольших, мало разветвленных электросетях сопротивление изоляции – это основной фактор безопасности. Контроль основной изоляции бывает приемо-сдаточным, проведенным сразу после монтажных работ или ре­монта, или периодическим, проводимым в ходе эксплуатации оборудования не реже 1 раза в год.

В очень влажных цехах контроль осуществляется от 2 до 4 раз за год в постоянном режиме. Замеры выполняют цифровым измерительным прибором по контролю изоляции – мегаомметром.

Мегаомметр для проверки изоляцииМегаомметр для проверки изоляции

Прибор измерительный, универсальный. Предназначен не только в качестве определителя фактического состояния сопротивления изоляции, но и для проверки ее электрической прочности. С ним специалисты испытывают изоляционные слои оборудования на пробои электричества

Периодический контроль сопротивления изоляции на установленных выключателях выполняется на производственных площадках, где оборудование с течением времени подвергается негативному воздействию едких паров химических веществ, влаги, пыли и повышенных температур. При этом изоляция выключателей может нарушена. Приборы с поврежденной изоляцией опасны для жизни человека.

Отраслевые ПУЭ (Правила  устройства электроустановок), принятые в России,  требуют осуществлять регулярный замер показаний сопротивления изоляции, которая присутствует в се­тях электропитания от 1кВ и выше.

Сопротивление диэлектрических материалов в сети осветительных установ­ок на участке между 2-мя смежными предохранителя­ми, между любым про­водом и землей, а также между любыми двумя  проводами должно быть не < 0,5 МОм.

Данный показатель не применим на практике к воздушным проводам внешних электроустройств, к установкам, которые находятся в предельно влажных помещениях, потому что сопротивление в них непостоянно и зависит от показателей влажности воздуха.

Следует особо отметить, что если для таких установок нет норм по изоляции, то такой фактор руководство предприятий должно учитывать и принять все меры по безопасной эксплуатации устройств и более внимательно контролировать текущее состояние материалов изоляции.

Проверка мультиметромПроверка мультиметром

Если вы используете в работе электроинструмент с двойной изоляцией, то потребуется ежемесячно испытывать его изоляцию мегаомметром. Если инструмент выдается на предприятии работникам, то проверку на отсутствие короткого замыкания на корпус следует выполнять специальным прибором – мультиметром

Согласно ПУЭ, измерение сопро­тивления электроизоляции следует проводить напряжением не менее 500 В, а испытание изоляции многожильных кабелей напряжением 6—10 кВ.

Определение целостности токоведущих жил кабеля, проверку мегомметром на их соответствие фазам, должны проводить не менее 2 человек. Правила требуют, что один из них должен иметь допуск не ниже IV группы, а второй: не ниже III группы.

Причины устройства дополнительной защиты

Дополнительную изоляцию помещают в электро­установках, имеющих рабочее напряжение до 1 кВ. Это независимая изоляция, которая будет смонтирована вместе с основной изоляцией оборудования, чтобы в сложных и опасных случаях эксплуатации защитить выключатели при косвенном прикосновении с повреждающими элементами.

Главным образом, она выполняет функцию противодействия электроударам, если случится повреждение основного слоя изоляции. Практический пример дополнительной изоляции – это пластмассовый корпус выключателя, втулки-изоляторы, кембрики, пластиковые трубки и другие типы диэлектриков.

Для этого вида изоляции применяются материалы, которые отличаются по своим физическим свойствам от стандартных форм диэлектриков, являющихся основной изоляцией электроприборов.

Стеклолакоткань изоляционнаяСтеклолакоткань изоляционная

Для пропитки стеклолакоткани применяют лаки на масляной, полиэфирной, полиэфирно-эпоксидной, кремний-органической основе или же с применением фторопласта или резины. Все они отлично создают на ткани лаковые, диэлектрические поверхности

Это производится с учетом того, что даже в самых неблагоприятных условиях работы или способах хранения электрооборудования были бы маловероятны повреждения основной, рабочей и дополнительной изоляции одновременно.

Преимущество двойной изоляции

Такая потенциальная опасность для людей, как поражение электрическим током в момент косвенного контакта с элементами оборудования, может быть существенно снижена посредством монтажа двойной изоляции.

Эти прочные защитные материалы используются в электротехнических устройствах, где имеется напряжени­е до 1 кВ. Здесь ставят 2 степени защиты – основную и дополнительную. Двойную изоляцию производители устанавливают в разные электротехни­ческие приборы: ручные светильники, ручной электрический инструмент, в разделительные трансформаторы.

Изоляция электровыключателейИзоляция электровыключателей

На производстве находятся в эксплуатации много типов выключателей, которые по ГОСТу должны иметь как двойную, так и усиленную изоляцию, конкретный случай зависит от сложности технологии производства

Практический смысл двойной изоляции заключен в том, что кроме основного, диэлектрического слоя. помещают второй изоляционный слой на токоведущие части выключателей. Он предохраняет человека от касания к металлическим, проводящим ток которые вполне могут оказаться под высоким напряжением.

Чтобы избежать этого, металлические корпуса высокотехнологичного электрооборудования покрывают слоем изолятора, рукоятки, кнопки и панели управления делают на основе диэлектриков.

В бытовых приборах изолируют также кнопки, провода и корпусную оболочку, изготовленную из металла. Недостатком такого рода покрытий считается относительно высокая механическая хрупкость: существует теоретическая возможность разрушения изоляционного слоя от многократных механи­ческих воздействий.

Из-за этого металли­ческие, нетоковедущие части электрических устройств могут оказаться под напряжением. Поэтому очень важно производить замеры физического состояния изоляции соответствующими приборами, в соответствии с электрической схемой.

Измерение тока утечки в однофазной сетиИзмерение тока утечки в однофазной сети

Принципиальная схема электрической цепи, приведенная для измерения утечки тока в изоляции, согласно ГОСТ МЭК 60335-1-2008, с учетом потребностей национальной экономики РФ

Следует отметить тот факт, что разрушение второго слоя изоляции никак не сможет повлиять на основную работу приборов и, как правило, в момент проверки не выявляется. Двойную изоляцию имеет смысл применять для тех видов электрического оборудования, которые в бытовой эксплуатации не будут подвергаться механическим ударам и давлению на токоведущие части.

Наиболее надежную защиту людей будет обеспечивать способ двойной изоляции на том оборудовании, у которого корпус выполнен из непроводящего, изоляционного материала: он служит гарантией от опасного поражения электрическим током.

Токонепроводящий корпус приборов защитит от тока не только при пробоях диэлектрика внутри изделия, но при случайном контакте человека с токонесущими элементами. В случае разруше­ния корпуса будет нарушено конструктивное расположение деталей и элементов, и прибор перестанет работать.

Если в нем есть защита, то она сработает автоматически и отключит неисправное изделие от сети. В ме­таллическом корпусе устройств функцию дополнительной изоляции выполняют специальные втулки.

Через них сетевой кабель проходит в корпус, а изолирующие прокладки отделяют электродвигатель оборудования от корпуса. Паспортная табличка электротехнического прибора с двойной изоляцией несет изображение специального знака: квадрат, находящийся внутри другого квадрата.

Для чего нужна усиленная изоляция?

В условиях производства бывают моменты, когда двойную изоляцию достаточно проблематично применить по конструктивным особенностям электроустройств. Например, в выключателях, щёткодержателях и др. Тогда приходится использовать другой вид защиты – это усиленная изоляция.

Усиленная изоляция ставится на электроустановки с номинальным напряжением до 1 кВ. Она способна обеспечить такую степень защиты от поражения электротоком, которая  равноценна свойствам двойной изоляции.

Согласно требованиям ГОСТ Р 12.1.009-2009 ССБТ, усиленная изоляция может иметь несколько слоев диэлектрика, каждый из которых нельзя испытывать отдельно на пробой КЗ, а только в целой форме.

Схема измерения токов утечки в трехфазной сетиСхема измерения токов утечки в трехфазной сети

Соответствие изоляции нормативным требованиям по предельным значениям, установленным в результате проведения испытаний. Порядок проведения и предельные значения регламентированы ГОСТ МЭК 60335-1-2008

Природные и синтетические диэлектрики

Изоляционные материалы, а иначе, диэлектрики, по своему происхождению подразделяются на естественные (слюда, дерево, латекс) и синтетические:

  • пленочные и ленточные изоляторы на основе полимеров;
  • электроизоляционные лаки, эмали – растворы плёнкообразующих веществ, изготовляемые на основе органических растворителей;
  • изоляционные компаунды, в жидком состоянии твердеющие сразу после нанесения на токопроводящие элементы. Данные вещества не содержат в своем составе растворителей, по своему назначению подразделяются на пропиточные (обработка обмоток электроприборов) и заливочные составы, которыми заливают кабельные муфты и полости приборов и электроагрегатов с целью герметизации;
  • листовые и рулонные изоляционные материалы, которые состоят из непропитанных волокон как органического, так и неорганического происхождения. Это могут быть бумага, картон, фибра или ткань. Их изготавливают древесины, натурального шелка или хлопка;
  • лакоткани с изоляционными свойствами – особые пластичные материалы на тканевой основе, пропитанные электроизоляционным составом, который после затвердевания формирует пленку-изолятор.

Синтетические диэлектрики имеют важные для надежной работы приборов электрические и физико-химические характеристики, заданные конкретной технологией их производства.

Они широко используются в современной электротехнике и электронной промышленности для выпуска на рынок следующих видов изделий:

  • диэлектрические оболочки кабельной и проводниковой продукции;
  • каркасы электротехнических изделий, таких как катушки индуктивности, корпуса, стойки, панели и т.п.;
  • элементы электроустановочной арматуры – распределительные короба, розетки, патроны, кабельные разъемы, переключатели и др.

Также производятся радиоэлектронные печатные платы, включая панели, используемые под расшивку проводников.

Классификация изоляционных материалов

Электротехническая изоляция в бытовых приборах подразделяется на соответствующие классы:

Приборы с классом изоляции «0» имеют рабочий изоляционный слой, но без применения элементов для заземления. В их конструкции нет зажима для соединения защитного проводника.

Приборы с изоляцией класса «0I» имеют изоляцию + элемент для зануления, но в них содержится провод для соединения с источником питания, у которого нет зануляющей жилы.

Изоляционная защита, имеющая класс защиты выше «0»Изоляционная защита, имеющая класс защиты выше «0»

Изоляция имеет специальную маркировку. Заземление указывается в виде отдельного значка в месте подключения проводника. Это делается для того, чтобы выравнивать потенциалы. Проводник желто-зеленого цвета присоединяется к контактам розетки, люстры и т. п

Приборы с изоляцией класса «I» содержат 3-х жильный шнур и вилку с 3 контактами. Электроустанововчные устройства этой категории подлежат .

Электроприборы, имеющие изоляцию класса «II», то есть двойную или усиленную, часто встречаются в бытовой эксплуатации. Подобная изоляция надежно защитит потребителей от поражения электрическим током, если в приборе случится повреждение основной изоляции.

Изделия, укомплектованные прочной двойной изоляцией, обозначается в силовом оборудовании знаком В, означающим: «изоляция в изоляции». Приборы, содержащие такой знак, нельзя занулять и заземлять.

Все современные электрические приборы, имеющие изоляцию класса «III», могут осуществлять свою работу в сетях электропитания, где есть номинальное напряжение не выше 42 В.

Абсолютную безопасность при активизации электрооборудования предоставляют , с особенностями устройства, принципом работы и видами которых ознакомит рекомендуемая нами статья.

Выводы и полезное видео по теме

Видеоролик содержит инструктаж по использованию популярной марки мегаомметра:

Небольшой видеообзор изоляционных материалов и способы защиты токонесущих частей электроустановочной фурнитуры:

Особые виды изоляции применяются при оборудовании промышленных выключателей, например, воздушного или масляного типа. В быту они не используются. Если пришлось столкнуться с нарушением работы изоляции выключателей на производстве, следует обратиться к специалистам, обслуживающим электроустановки.

Пишите, пожалуйста, комментарии, в расположенном ниже блоке. Делитесь полезной информацией по теме статьи, которая пригодится посетителям сайта. Задавайте вопросы по спорным и неясным моментам, размещайте фотоснимки.

ПУЭ, глава 1.7: терминология, часть 4: y_kharechko — LiveJournal

Продолжение. Начало см. https://y-kharechko.livejournal.com/62558.html , https://y-kharechko.livejournal.com/62764.html , https://y-kharechko.livejournal.com/63208.html .

ПУЭ: «1.7.34. Защитный (РЕ) проводник − проводник, предназначенный для целей электробезопасности.
Защитный заземляющий проводник − защитный проводник, предназначенный для защитного заземления.
Защитный проводник уравнивания потенциалов − защитный проводник, предназначенный для защитного уравнивания потенциалов.
Нулевой защитный проводник − защитный проводник в электроустановках до 1 кВ, предназначенный для присоединения открытых проводящих частей к глухозаземленной нейтрали источника питания».
Стандарт МЭК 60050-195 определил термин «защитный проводник (обозначение: PE)» следующим образом: проводник, предусмотренный для целей безопасности, например, для защиты от поражения электрическим током.
В главе 1.7 следует использовать термин из п. 3.16.4 ГОСТ IEC 61140 (см. http://y-kharechko.livejournal.com/1016.html ):
«защитный проводник (PE)»: «Проводник, предназначенный для целей безопасности, например для защиты от поражения электрическим током».
Определения терминов «защитный заземляющий проводник» и «защитный проводник уравнивания потенциалов» соответствуют определениям этих терминов в стандарте МЭК 60050-195. Однако в главе 1.7 целесообразно использовать следующие, более точные определения из п. 20.22 и 20.24 ГОСТ 30331.1 (см. http://y-kharechko.livejournal.com/4077.html , http://y-kharechko.livejournal.com/7044.html ):
«защитный заземляющий проводник: Защитный проводник, предназначенный для выполнения защитного заземления»;
«защитный проводник уравнивания потенциалов: Защитный проводник, предназначенный для выполнения защитного уравнивания потенциалов».
Определение термина «нулевой защитный проводник» имеет ряд недостатков.
Во-первых, это определение нельзя применять для электрических систем постоянного тока, в которых нет нейтралей, а также для электрических систем переменного тока с трёхфазными источниками питания, соединёнными треугольником, и с однофазными источниками питания без средней части.
Во-вторых, в определении использован некорректный термин «электроустановка до 1 кВ».
Нулевой защитный проводник применяют в системах TN-C, TN-S, TN-С-S. В системах TT и IT нулевого защитного проводника не бывает по определению.
В документах МЭК используют термин «защитный проводник» и не применяют термин «нулевой защитный проводник». Поэтому его следует исключить из ПУЭ и другой национальной нормативной документации.

ПУЭ: «1.7.35. Нулевой рабочий (нейтральный) проводник (N) − проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в сетях постоянного тока».
Процитированное определение имеет ошибки и недостатки.
Во-первых, в нём неправомерно упомянуты однофазный и трёхфазный токи.
Во-вторых, в определении рассматриваемого термина указан глухозаземлённый вывод источника однофазного тока. Однако стандартом МЭК 60364-1 и ГОСТ 30331.1 установлено, что к выводам однофазного источника питания подключают линейные проводники.
В-третьих, в определении термина упомянута глухозаземлённая точка источника в сетях постоянного тока. Согласно требованиям стандарта МЭК 60364-1 и ГОСТ 30331.1 к средней части источника постоянного тока присоединяют средний проводник, а к заземлённому полюсу источника питания – линейный проводник.
В-четвертых, Нулевые рабочие проводники применяют не только в электрических сетях, но и в электрических цепях низковольтных электроустановок. Поэтому использование в определении термина «сеть», а также термина «электроустановка до 1 кВ» является ошибкой.
В-пятых, в стандарте МЭК 60050-195 рассматриваемый термин назван нейтральным проводником и определён так: проводник, электрически присоединённый к нейтральной точке и способный к содействию в распределении электрической энергии.
В главе 1.7 следует использовать термин из п. 20.34 ГОСТ 30331.1:
«нейтральный проводник (N): Проводник, электрически присоединенный к нейтрали и используемый для передачи электрической энергии».
В электрических системах постоянного тока применяют средние проводники. В стандарте МЭК 60050-195 термин «проводник средней точки» определён так: проводник, электрически присоединённый к средней точке и способный к содействию в распределении электрической энергии.
В главу 1.7 следует включить термин «средний проводник» из п. 20.72 ГОСТ 30331.1:
«средний проводник (M): Проводник, электрически присоединенный к средней части электрической системы постоянного тока, находящейся под напряжением, и используемый для передачи электрической энергии».

ПУЭ: «1.7.36. Совмещенный нулевой защитный и нулевой рабочий (PEN) проводник − проводник в электроустановках напряжением до 1 кВ, совмещающий функции нулевого защитного и нулевого рабочего проводников».
Полное наименование термина состоит из названий терминов «нулевой защитный проводник» и «нулевой рабочий проводник», которые следует исключить из ПУЭ и другой национальной нормативной документации.
В документах МЭК используют только краткое наименование термина «PEN-проводник», который определён в стандарте МЭК 60050‑195 так: проводник, объединяющий функции защитного заземляющего проводника и нейтрального проводника.
В главе 1.7 следует использовать термин из п. 20.70 ГОСТ 30331.1:
«совмещенный защитный заземляющий и нейтральный проводник (PEN-проводник, PEN): Проводник, выполняющий функции защитного заземляющего и нейтрального проводников».
В электрических системах постоянного тока применяют PEM-проводники, которые присоединены к средним частям источников питания. В электрических системах переменного и постоянного тока также могут использовать PEL-проводники.
В главу 1.7 следует включить термины из п. 20.71 и 20.69 ГОСТ 30331.1:
«совмещенный защитный заземляющий и средний проводник (PEM-проводник, PEM): Проводник, выполняющий функции защитного заземляющего и среднего проводников»;
«совмещенный защитный заземляющий и линейный проводник (PEL-проводник, PEL): Проводник, выполняющий функции защитного заземляющего и линейного проводников».
В главу 1.7 также следует включить термины из п. 20.29, 20.91, 20.47, 20.12 ГОСТ 30331.1:
«линейный проводник (L): Проводник, находящийся под напряжением при нормальных условиях и используемый для передачи электрической энергии, но не нейтральный проводник или средний проводник»;
«фазный проводник (L): Линейный проводник, используемый в электрической цепи переменного тока»;
«полюсный проводник (L): Линейный проводник, используемый в электрической цепи постоянного тока»;
«заземленный линейный проводник (LE): Линейный проводник, имеющий электрическое присоединение к локальной земле».

ПУЭ: «1.7.37. Главная заземляющая шина – шина, являющаяся частью заземляющего устройства электроустановки до 1 кВ и предназначенная для присоединения нескольких проводников с целью заземления и уравнивания потенциалов».
В стандарте МЭК 60050‑195 термины «главный заземляющий зажим» и «главная заземляющая шина» определены так: зажим или шина, которые являются частью заземляющего устройства установки, создающие возможность электрического присоединения нескольких проводников для целей заземления.
Главная заземляющая шина является частью заземляющего устройства. С её помощью к заземляющему устройству присоединяют защитные и функциональные заземляющие проводники, используемые в электроустановке, в здании или сооружении.
В главе 1.7 следует использовать термин из п. 20.5 ГОСТ 30331.1:
«главная заземляющая шина: Шина, являющаяся частью заземляющего устройства электроустановки и предназначенная для электрического присоединения проводников к заземляющему устройству».

ПУЭ: «1.7.38. Защитное автоматическое отключение питания − автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.
Термин автоматическое отключение питания, используемый в главе, следует понимать как защитное автоматическое отключение питания».
Процитированное определение имеет недостатки.
Во-первых, здесь ошибочно использован термин «фазный проводник». Автоматическое отключение питания выполняют в электрических цепях и переменного, и постоянного тока, в которых используют соответственно фазные проводники и полюсные проводники. Поэтому в определении следует применять общий термин «линейный проводник».
Во-вторых, рассматриваемый термин в стандарте МЭК 60050‑195 назван автоматическим отключением питания и определён так: прерывание одного или более линейных проводников, производимое посредством автоматического оперирования защитного устройства в случае повреждения.
В главе 1.7 следует использовать термин из п. 3.18 ГОСТ IEC 61140:
«автоматическое отключение питания»: «Прерывание одного или более линейных проводников, осуществляемое посредством автоматического срабатывания защитного устройства в случае повреждения».

ПУЭ: «1.7.39. Основная изоляция − изоляция токоведущих частей, обеспечивающая в том числе защиту от прямого прикосновения».
Это определение имеет недостатки.
Во-первых, в нём использован устаревший термин «токоведущая часть».
Во-вторых, в определении указана защита от прямого прикосновения, требования к которой отсутствуют в современной международной и национальной нормативной документации.
В-третьих, оно не соответствует определению в стандарте МЭК 60050‑195: изоляция опасных частей, находящихся под напряжением, которая обеспечивает основную защиту.
Согласно требованиям п. 414 стандарта МЭК 60364-4-41 и ГОСТ Р 50571.3 (см. http://y-kharechko.livejournal.com/4965.html ) основную изоляцию применяют в электрических цепях сверхнизкого напряжения, в которых нет опасных частей, находящихся под напряжением.
В главе 1.7 следует использовать термин из п. 3.10.1 ГОСТ IEC 61140:
«основная изоляция»: «Изоляция частей, находящихся под напряжением, которая обеспечивает основную защиту».

ПУЭ: «1.7.40. Дополнительная изоляция − независимая изоляция в электроустановках напряжением до 1 кВ, выполняемая дополнительно к основной изоляции для защиты при косвенном прикосновении».
Определение имеет недостатки.
Во-первых, в нём использован некорректный термин «электроустановка напряжением до 1 кВ».
Во-вторых, в определении указана защита при косвенном прикосновении, требования к которой отсутствуют в современной международной и национальной нормативной документации.
В-третьих, оно не соответствует определению в стандарте МЭК 60050-195: независимая изоляция, применяемая дополнительно к основной изоляции для защиты при повреждении.
В главе 1.7 следует использовать термин из п. 3.10.2 ГОСТ IEC 61140:
«дополнительная изоляция»: «Независимая изоляция, применяемая дополнительно к основной изоляции для защиты при повреждении».

ПУЭ: «1.7.41. Двойная изоляция − изоляция в электроустановках напряжением до 1 кВ, состоящая из основной и дополнительной изоляции».
Это определение не соответствует определению в стандарте МЭК 60050-195: изоляция, включающая основную изоляцию и дополнительную изоляцию.
В главе 1.7 следует использовать термин из п. 3.10.3 ГОСТ IEC 61140:
«двойная изоляция»: «Изоляция, включающая в себя основную и дополнительную изоляцию».

ПУЭ: «1.7.42. Усиленная изоляция − изоляция в электроустановках напряжением до 1 кВ, обеспечивающая степень защиты от поражения электрическим током, равноценную двойной изоляции».
Приведённое определение не соответствует определению в стандарте МЭК 60050-195: изоляция опасных частей, находящихся под напряжением, которая обеспечивает степень защиты от поражения электрическим током, эквивалентную двойной изоляции.
В главе 1.7 следует использовать термин из п. 3.10.4 ГОСТ IEC 61140:
«усиленная изоляция»: «Изоляция опасных частей, находящихся под напряжением, которая обеспечивает степень защиты от поражения электрическим током, эквивалентную двойной изоляции».

Продолжение см. https://y-kharechko.livejournal.com/63605.html .

В чем разница между базовой и двойной (или усиленной) изоляцией?

Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Файлы cookie, которые мы используем, можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
Аналитические / рабочие файлы cookie:
Эти файлы cookie позволяют нам проводить веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
Целевые / профилирующие файлы cookie:
Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.

Отклонить файлы cookie.

Классификация систем изоляции

Класс A

Класс A Изоляция состоит из таких материалов, как хлопок, шелк и бумага при соответствующей пропитке или покрытии или при погружении в диэлектрическую жидкость, например масло. Другие материалы или комбинации материалов могут быть включены в этот класс, если опыт или испытания могут показать их способность работать при температуре класса А.

Максимально допустимая температура: (IEC60034-1 и NEMA MG1-12.43): 105C, 221F.

Класс B

Класс B Изоляция состоит из материалов или комбинаций таких материалов, как слюда, стекловолокно, асбест и т. Д., С подходящими связующими, пропитывающими или покрывающими веществами (остерегайтесь некоторых старых применений, где использовался асбест). Другие материалы или комбинация материалов, не обязательно неорганических, могут быть включены в этот класс, если опыт или испытания могут показать их способность работать при температуре класса B.

Максимально допустимая температура: (IEC60034-1 и NEMA MG1-12.43): 130C, 266F.

Класс C

Изоляция класса C состоит из материалов или комбинаций таких материалов, как слюда, фарфор, стекло, кварц с неорганическим связующим или без него (остерегайтесь некоторых старых применений, где использовался асбест). Другие материалы или комбинации материалов могут быть включены в этот класс, если опыт или испытания могут показать, что они способны работать при температурах выше предела класса H.Конкретные материалы или комбинации материалов этого класса будут иметь температурный предел, который зависит от их физических, химических и электрических свойств.

Максимально допустимая температура: (только IEC60034-1):> 180 ° C, 356 ° F.

Класс E

Класс E Изоляция состоит из материалов или комбинаций материалов, которые, как показывает опыт или испытания, могут работать при температуре класса E (материалы, обладающие степенью термостойкости, позволяющей эксплуатировать их при температуре 15 градусов по Цельсию. выше, чем у материалов класса А).

Максимально допустимая температура: (только IEC60034-1): 120 ° C, 248 ° F.

Класс F

Класс F Изоляция состоит из материалов или комбинаций материалов, таких как слюда, стекловолокно, асбест и т. Д., С подходящими связующими, пропиточными или покрывающими веществами, а также других материалов или комбинаций материалов, не обязательно неорганических, которые опыт или испытания могут продемонстрировать способность работать при температуре класса F (материалы, обладающие степенью термической стабильности, позволяющей им работать при температуре на 25 градусов по Цельсию выше, чем материалы класса B).

Максимально допустимая температура: (IEC60034-1 и NEMA MG1-12.43): 155 ° C, 311 ° F.

Класс H

Класс H Изоляция состоит из таких материалов, как силиконовый эластомер и комбинации материалов, таких как слюда, стекловолокно, асбест и т. Д., С подходящими связующими, пропитывающими или покрывающими веществами, такими как соответствующие силиконовые смолы. Другие материалы или комбинации материалов могут быть включены в этот класс, если опыт или испытания могут показать их способность работать при температуре класса H.

Максимально допустимая температура: (IEC60034-1 и NEMA MG1-12.43): 180 ° C, 356F .

.

Базовое испытание изоляции электродвигателя

Для обнаружения и диагностики неисправностей электродвигателей можно использовать различные измерительные приборы. В частности, тестер сопротивления изоляции (или мегомметр), обычно известный под своим торговым названием Megger, может предоставить важную информацию о состоянии изоляции двигателя. На промышленном объекте рекомендуется проводить периодические испытания и регистрировать результаты, чтобы можно было обнаружить и исправить тенденции к разрушению, чтобы предотвратить простои и длительные простои.

megger Тестер сопротивления изоляции похож на обычный омметр. Но вместо типичного испытательного напряжения в три вольта, получаемого от внутренней батареи и присутствующего на пробниках, Megger обеспечивает гораздо более высокое напряжение. Применяется в течение запрещенного периода времени. Ток утечки через изоляцию, выраженный в сопротивлении, отображается в виде графика. Это испытание может проводиться на установленном или катушечном кабеле, инструментах, приборах, трансформаторах, подсистемах распределения энергии, конденсаторах, двигателях и любом типе электрического оборудования или проводки.

Испытание может быть неразрушающим для оборудования, находящегося в эксплуатации, или продолжаться при повышенном напряжении для испытания прототипов до точки разрушения. Использование Megger требует некоторого обучения. Необходимо соблюдать правильные настройки, процедуры подключения, продолжительность испытаний и меры предосторожности, чтобы избежать повреждения оборудования или поражения электрическим током оператора или коллег.

Тестируемый двигатель должен быть выключен и отключен от всего оборудования и проводки, которые не должны быть включены в тест.Помимо признания теста недействительным, такое постороннее оборудование может быть повреждено приложенным напряжением. Кроме того, ничего не подозревающие люди могут подвергнуться воздействию опасной электрической энергии. Это потому, что приложенные напряжения обязательно высокие.

Вся проводка и оборудование имеют определенную емкость, которая обычно имеет значение для больших двигателей. Поскольку оборудование фактически является накопительным конденсатором, важно, чтобы оставшаяся электрическая энергия разряжалась до и после каждого испытания.Для этого перед повторным подключением источника питания зашунтируйте соответствующий провод (и) на землю и друг на друга. Устройство должно быть разряжено минимум в четыре раза до тех пор, пока подавалось испытательное напряжение.

Megger может подавать различные напряжения, и уровень должен быть согласован с типом тестируемого оборудования и объемом запроса. Испытание обычно выполняется в диапазоне от 100 до 5000 В или более. Протокол с указанием уровня напряжения, продолжительности времени, интервалов между тестами и методов подключения должен быть составлен с учетом типа и размера оборудования, его стоимости и роли в производственном процессе, а также других факторов.

Очень ценное руководство с замечательным названием « Стежок во времени » доступно бесплатно на сайте www.biddlemegger.com/biddle/Stitch-new.pdf. Еще один полезный текст — это IEEE Recommended Practice for Testing Resistance of Rotating Machinery .

.Система изоляции

— Повторная публикация в Википедии // WIKI 2

Система классификации электрической изоляции на основе максимальной безопасной рабочей температуры

Система электрической изоляции для проводов, используемых в генераторах, электродвигателях, трансформаторах и других электрических компонентах с проволочной обмоткой, подразделяется на различные классы по температуре и повышению температуры. Система электрической изоляции иногда обозначается как класс изоляции или термическая классификация .Различные классы определены стандартами NEMA, [1] Underwriters Laboratories (UL), [2] и IEC.

Для укомплектованных электроприводов «система изоляции» — это общая конструкция электрической изоляции компонентов, находящихся под напряжением, для обеспечения правильной работы устройства и защиты пользователя от поражения электрическим током.

Энциклопедия YouTube

  • 1/3

    Просмотры:

    1198

    163 645

    10 053

  • ✪ Электродвигатели: класс изоляции

  • ✪ Типы систем заземления для источников питания (Великобритания)

  • ✪ Tech Talk 7: Основные уровни изоляции

Содержание

Температурные классы

IEC 60085
Температурный класс [3]
Старый IEC 60085
Температурный класс [3]
Класс NEMA [4] NEMA / UL
Буквенный класс
Максимально допустимая температура горячей точки Относительный термический
Индекс выносливости (° C) [3]
Типовые материалы
90 Y 90 ° С> 90–105 Бумага без пропитки, шелк, хлопок, вулканизированный натуральный каучук, термопласты, размягчающиеся выше 90 ° C [5]
105 А 105 А 105 ° С> 105–120 Органические материалы, такие как хлопок, шелк, бумага, некоторые синтетические волокна [6]
120 E 120 ° С> 120–130 Полиуретан, эпоксидные смолы, полиэтилентерефталат и другие материалы, показавшие полезный срок службы при этой температуре
130 B 130 B 130 ° С> 130–155 Неорганические материалы, такие как слюда, стекловолокно, асбест, с высокотемпературными связующими или другие материалы, срок службы которых может использоваться при этой температуре
155 F 155 F 155 ° С> 155–180 Материалы класса 130 со связующими веществами, устойчивыми при более высоких температурах, или другие материалы, срок службы которых может использоваться при этой температуре.
180 H 180 H 180 ° С> 180–200 Силиконовые эластомеры и неорганические материалы класса 130 с высокотемпературными связующими или другие материалы со сроком службы при этой температуре
200 N 200 ° С> 200–220 Как для класса B, включая тефлон
220 220 R 220 ° С> 220–250 Как для класса 200 МЭК
S 240 ° С Полиимидная эмаль или полиимидные пленки
250 250 ° С> 250 Как для класса 200 МЭК.Другие классы IEC обозначаются численно с шагом 25 ° C.

Максимальная рабочая температура горячей точки достигается путем сложения номинальной температуры окружающей среды машины (часто 40 ° C), повышения температуры и допуска на горячую точку 10 ° C. Электрические машины обычно проектируются со средней температурой ниже номинальной температуры горячей точки, чтобы обеспечить приемлемый срок службы. Изоляция не выходит из строя внезапно при достижении температуры горячей точки, но срок полезной службы быстро снижается; Практическое правило — сокращение срока службы наполовину на каждые 10 ° C повышения температуры.

В более ранних редакциях стандартов перечислены материалы, которые следует использовать для различных температурных классов. Современные редакции стандартов носят предписывающий характер и указывают только на то, что система изоляции должна обеспечивать приемлемый срок службы при указанном повышении температуры.

В больших машинах могут использоваться разные системы в соответствии с прогнозируемым повышением температуры машины; например, в больших гидроэлектрических генераторах обмотки статора могут относиться к классу B, но более трудная для охлаждения обмотка ротора может относиться к классу F.

Категории изоляции

В стандартах МЭК система изоляции — это классификация, основанная на уровне защиты от поражения электрическим током, предоставляемой пользователю. Функциональная изоляция необходима для предотвращения коротких замыканий внутри оборудования. Основная изоляция — это любой материал, добавленный для защиты пользователя от случайного контакта с частями под напряжением. Дополнительная изоляция рассчитана на напряжение 1500 В переменного тока. Двойная изоляция — это концепция дизайна, при которой отказ одной системы изоляции не подвергает пользователя опасности поражения электрическим током из-за наличия второго независимого слоя изоляции. «Понимание классов изоляции устройств IEC: I, II и III». Фидус Пауэр . 6 июля 2018.

Дополнительная литература

  • Грег Стоун (ред.), Электроизоляция для вращающихся машин: проектирование, оценка, старение, испытания и ремонт , Wiley-IEEE, 2004 ISBN 0-471-44506-1


Эта страница последний раз была отредактирована 18 апреля 2020 в 20:33

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *