26.11.2024

Пьезокристалл в домашних условиях: Пьезоэлектрический генератор своими руками » Изобретения и самоделки

Содержание

Пьезоэлектрический генератор своими руками » Изобретения и самоделки

Пьезоэлектрический генератор

Изображение пьезоэлектрического генератора

Я пришел с новой привлекательной, простой и умной идеей генерации энергии, которая полезна для вашего умного проекта и даст новый способ получения природного электричества.
Производство пьезоэлектрической энергии, которая полностью зависит от давления на пьезоэлектрический преобразователь,

Шаг 1: Нарежь фанеру в нужном размере 

Картина Собери Деревянную Фанеру, Как Ты хочешь сделать в своем размере
Вырезать по изображениям.

Шаг 2: Купите пьезоэлемент и подготовьте его 

Изображение Купить Piezo Electric Buzzer по 20 рупий за фото и изменить как изображение и получить пьезоэлектрический преобразователь

Шаг 3: Нарисуйте рамку

Начертите прямоугольную рамку, чтобы прикрепить кусочки картона, как показано на рисунке. Верхние элементы зуммера используют для изготовления верхней части.

Изображение прямоугольника для рисования, чтобы прикрепить коробку использования, как показано на изображениях ,, верхние части зуммера используют для изготовления верхней части для печатиИзображение прямоугольника для рисования, чтобы прикрепить коробку использования, как показано на изображениях ,, верхние части зуммера используют для изготовления верхней части для печатиИзображение прямоугольника для рисования, чтобы прикрепить коробку использования, как показано на изображениях ,, верхние части зуммера используют для изготовления верхней части для печати

Шаг 4: Выполните последовательное соединение пьезоэлектрического преобразователя 

Изображение Соединение серии Make пьезоэлектрического преобразователя

Шаг 5: Склейте, как показано на рисунке 

Наконец, склейте детали на последовательном соединении на нижней части, как показано на рисунке.

Изображение, наконец, склеить или (использовать пластиковый кран) на последовательном соединении на нижней части, как показано на рисунке

Шаг 6: Начните генерировать электричество, применяя давление пальца 

Картина начала генерировать электричество путем нажатия пальцем ,,,

Шаг 7: выработка электричества во время прогулки


Источник

Пьезоэлемент

Дмитрий Левкин


Пьезоэлемент — электромеханический преобразователь, изготавливаемый из пьезоэлектрических материалов, определенной формы и ориентации относительно кристаллографических осей, с помощью которого механическая энергия преобразуется в электрическую (прямой пьезоэффект), а электрическая в механическую (обратный пьезоэффект).

Конструктивно пьезоэлемент представляет из себя пьезокерамику с нанесенными электродами. Пьезоэлементы могут быть разнообразной формы: в виде дисков, колец, трубок, пластин, сфер и др. Для вибраторов и генераторов пьезоэлементы объединяют в пьезостек, чтобы достичь лучших характеристик.

Сменить цвет

Колебания пьезоэлемента
Диаметр: 10 мм
Толщина: 1 мм
Материал: ЦТС-26
Напряжение: 5В
Частота возбуждения: 1МГц
Масштаб колебаний: 30000:1

Посмотреть колебания

ПьезоэлементПьезоэлемент

Остановить колебания

Колебания пьезоэлементаКолебания пьезоэлемента

Рисунок — Колебание свободного пьезоэлемента под действием напряжения (обратный пьезоэффект)

Пьезоэлектрические вещества (пьезоэлектрики), в частности пьезокерамика, имеет то свойство, что при деформации под действием внешнего механического давления на их поверхности возникают электрические заряды. Этот эффект называется прямым пьезоэлектрическим эффектом и был открыт в 1880 г. братьями Кюри.

Справка: Первая статья Жака и Пьера Кюри о пьезоэлектричестве была представлена Минералогическому обществу Франции (Societe mineralogique de France) на сессии 8 Апреля 1880 года и позже Академии наук (Academie des Sciences) на сессии 24 августа 1880 года. Пьер и Жак Кюри впервые открыли прямой пьезоэлектрический эффект у кристалла турмалина. Они заметили, что если оказывать механическое давление на кристалл в определенном направлении, на противоположных сторонах кристалла возникают электрические заряды пропорциональные давлению и противоположной полярности. Позже они открыли подобный эффект у кварца и других кристаллов. В 1880 году Пьеру Кюри был только 21 год [9].

Вскоре после этого (в 1881 г.) был подтвержден и обратный пьезоэффект, а именно что такое вещество, расположенное между двумя электродами, реагирует на приложенное к нему электрическое напряжение изменением своей формы. Первый эффект в настоящее время используется для измерений, а второй – для возбуждения механических давлений, деформаций и колебаний.

Более детальные исследования пьезоэффекта показали, что он объясняется свойством элементарной ячейки структуры материала. При этом элементарная ячейка является наименьшей симметричной единицей материала, из которой путем ее многократного повторения можно получить микроскопический кристалл. Было показано, что необходимой предпосылкой для появления пьезоэффекта является отсутствие центра симметрии в элементарной ячейки.

Элементарная ячейка цирконата титоната свинца

Рисунок 1 – Элементарная ячейка цирконата титоната свинца (ЦТС) при температуре выше точки Кюри (слева) и при температуре ниже точки Кюри (справа)

Здесь можно кратко пояснить пьезоэлектрический эффект на примере титаната бария, часто применяемой пьезоэлектрической керамики со сравнительно простой конструкцией элементарной ячейки. Титанат бария ВаТiO3, как и многие другие пьезокерамические вещества, аналогичен по структуре перовскиту (СаТiО3), по которому и назван этот класс материалов. Элементарная ячейка при температурах выше, критической, которая называется также точкой Кюри, является кубической. Если температура ниже этой критической, то элементарная ячейка тетрагонально искажается по направлению к одной из кромок. В результате изменяются и расстояния между положительно и отрицательно заряженными ионами (рисунок 1, для ВаТiO3 вместо Pb — Ba). Смещение ионов из их первоначального положения очень мало: оно составляет несколько процентов параметра элементарной ячейки. Однако такое смещение приводит к разделению центров тяжести зарядов внутри ячейки, так что образуется электрический дипольный момент. По энергетическим условиям диполи соседних элементарных ячеек кристалла упорядочиваются по областям в одинаковом направлении, образуя так называемые домены.

Поляризация пьезоэлектриков
Рисунок 2 – Неупорядоченная поляризация (слева) и упорядоченная поляризация доменов при наложениии сильного электрического поля (справа)

Направления поляризации доменов распределяются в поликристаллической структуре по статическому закону. Таким образом, неупорядоченные скопления отдельных микрокристаллов в структуре вещества, образующиеся только в спеченной керамики, в макроскопическом смысле вообще не могут давать никакого пьезоэлектрического эффекта. Только после так называемого процесса поляризации, в котором при наложении сильного электрического поля на керамику происходит выравнивание возможно большего числа доменов параллельно друг другу, удается использовать пьезоэлектрические свойства элементарных ячеек. Поляризация обычно проводится при температуре немного ниже температуры Кюри, чтобы облегчить ориентацию доменов. После охлаждения это упорядоченное состояние остается стабильным.

Современные средства проектирования позволяют рассчитать / промоделировать отдельно пьезоэлемент или пьезоэлектрический преобразователь целиком. По согласованию с Инженерными решениями Вы можете заказать расчет парметров пьезоэлектрического преобразователя

Механическое сжатие или растяжение, действующее на пьезоэлектрическую пластину параллельно направлению поляризации, приводит к деформации всех элементарных ячеек. При этом центры тяжести зарядов взаимно смещаются внутри элементарных ячеек, которые расположены теперь преимущественно параллельно, и в результате получается заряд на поверхности [2].

Связь между приложенной силой и результирующим ответом пьезоэлемента зависит от: пьезоэлектрических свойств пьезокерамики, размера и форм образца, направления электрического и механического возбуждения.

По своей природе пьезоэлектрические материалы являются анизотропными кристаллами. Рисунок 3 показывает различные направления и оси ориентации пьезоэлектрического материала. Оси 1, 2 и 3 являются соответственными аналогами осей X, Y, Z классической ортогональной системы координат, в то время как оси 4, 5, и 6 определяют оси вращения. Направление оси 3 является направлением поляризации [1]. Это направление устанавливается во время производства посредством высокого постоянного напряжения, которое создается между электродами.

Направление и ориентация осей пьезоэлектрического материала

Рисунок 3 – Направление и ориентация осей пьезоэлектрического материала

Пьезоэлемент характеризуется следующими свойствами:

а) Относительные диэлектрические постоянные

Относительная диэлектрическая постоянная является отношением диэлектрической проницаемости материала (в этом случае E33T и E11T) к диэлектрической проницаемости вакуума (ε0)

E33T/E0 и E11T/E0, (1)

где ε0 = 8,85· 10-12, Ф/м

Верхний индекс показывает граничные условия действующие на материал в процессе определения значения относительной диэлектрической постоянной. В частности индекс T (в этом случае) говорит о том, что диэлектрическая постоянная измеряется на свободном (не зажатом) образце [3]. А индекс S показывает, что измерения происходят при постоянной деформации пьезокерамики (в зажатом состоянии). Первый нижний индекс показывает направление диэлектрического смещения, а второй – электрического поля [1]. Формула расчета относительной диэлектрической постоянной следующая:

Относительная диэлектрическая постоянная пьезокерамики, (2)

  • где EijT — диэлектрическая проницаемость (одна из двух E11T или E33T), Ф/м
  • t – расстояние между электродами, м,
  • S – площадь электрода, м2,
  • C – емкость, Ф

б) Резонансная частота

Собственная частота пластины по толщине f0 вычисляется по следующей формуле

формула собственной частоты, (3)

где с – скорость звука в материале, м/с [2]

Нажимайте сюда для просмотра колебаний пьезоэлемента!

Частота возбуждения f=25кГц
Масштаб колебаний 200000:1

Рабочий режим

Частота возбуждения f=73,6кГц
Масштаб колебаний 10000:1

Первый резонанс

Второй резонанс

Частота возбуждения f=280кГц
Масштаб колебаний 10000:1

Рисунок 4 — Амлитудно-частотная характеристика пьезоэлемента. Виды колебаний на разных частотах

в) Коэффициенты электромеханической связи

Коэффициенты электромеханической связи kp, k33, k15, kt и k31 описывают способность пьезоэлемента превращать энергию из электрической в механическую и наоборот. Квадрат коэффициента электромеханической связи определяется как отношение накопленной преобразованной энергии одного вида (механической или электрической) к входной энергии второго вида (электрической или механической). Индекс показывает относительные направления электрических и механических величин и вид колебаний. Они могут быть связанны с модой колебаний простого преобразователя определенной формы. kp означает взаимосвязь электрической и механической энергии в тонком круглом диске, поляризованном по толщине и колеблющемся в радиальном направлении – планарная мода (рисунок 5а). k31 относится к длинному тонкому бруску с электродами на длинной поверхности. Вид колебаний – растяжение сжатие по длине (рисунок 5б). kt связан с тонким диском или пластиной и определяет растяжения сжатия по толщине (рисунок 5в). k33 соответствует длинному тонкому бруску с электродами на его концах и поляризованному по длине. Вид колебаний – растяжения сжатия по длине (рисунок 5г). k15 описывает энергию преобразованную в сдвиговые колебания по толщине (рисунок 5д) [4].

Этот коэффициент может быть вычислен через резонансную и антирезонансную частоту по формуле.

формула коэффициента электромеханической связи, (4)

  • где fr – резонансная частота, Гц,
  • fa – антирезонансная частота, Гц [5]

Чтобы измерить эти частоты обычно используется анализатор импеданса, с помощью которого можно получить зависимость сопротивления от частоты пьезокерамики (рисунок 6).

По своей природе, резонансная частота возникает, когда система имеет очень маленькое сопротивление, в то время как антирезонанс происходит, когда система имеет очень большое сопротивление. На рисунке 6 частота которая имеет минимальное сопротивление считается резонансной ( fr), а частота с максимальным сопротивлением – антирезонансной ( fa).

Рисунок 5 – Виды колебаний образцов пьезокерамики разной формы

Зависимость сопротивления от частоты у пьезокерамики

Рисунок 6 – Зависимость сопротивления от частоты у пьезокерамики [6]

г) Упругие константы

Упругие свойства пьезоэлектрических материалов характеризуются упругими податливостями (упругие податливости) или упругими жесткостями (упругие жесткости). Упругая податливость определяет величину деформации возникающей под воздействием приложенного механического напряжения. Ввиду того, что под воздействием механического напряжения керамика порождает электрический ответ, который противодействует результирующей деформации, эффективный модуль Юнга при коротком замыкании электродов меньше чем при холостом ходе. В дополнение, жесткость различна в разных направлениях, поэтому для точного определения величины указываются электрические и механические условия. Верхний индекс E говорит о том, что замеры происходят при постоянном электрическом поле (короткое замыкание). В то время как, индекс D указывает на граничное условие – постоянное электрическое смещение (индукция), т.е. замеры происходят при холостом ходе. Первая нижняя цифра показывает направление деформации, вторая направление механического напряжения [4].

д) Пьезоэлектрические постоянные

Пьезоэлектрический модуль d – отношение механической деформации к приложенному электрическому полю (Кл/Н) [2]

d33 пьезоэлектрический модуль, (5)

  • где Δxs – изменение толщины пластины, м,
  • Us – приложенное напряжение, В

Полезно помнить, что большие значения dij приводят к большим механическим смещениям, что обычно добивается при проектировании ультразвуковых преобразователей. d33 применяют, когда сила направлена в направлении оси поляризации (рисунок 5г). d31 используют, когда сила прикладывается под прямым углом к оси поляризации, при этом заряд возникает на электродах, так же как и в предыдущем случае (рисунок 5б). d15 показывает, что заряд накапливается на электродах, которые находятся под прямым углом к изначальным поляризующим электродам и что получаемые механические колебания являются сдвиговыми (рисунок 5д).

Пьезоэлектрическая константа давления gij – отношение полученного напряжения к приложенному давлению.

Напряжение на пьезоэлементе, (6)

  • где Ue – полученное напряжение, В,
  • d — толщина, м,
  • px – приложенное давление, Па.

Индекс “33” показывает, что электрическое поле и механическое напряжение направлены по оси поляризации. Индекс “31” означает, что давление прикладывается под прямым углом к оси поляризации, при этом напряжение снимается с тех же самых электродов, что и в случае “33”. Индекс “15” подразумевает, что приложенное напряжение является сдвиговым и результирующее электрическое поле перпендикулярно к оси поляризации. Высокое значение gij ведет к большим выходным напряжениям, что является желательным для сенсоров.

е) Коэффициент Пуассона

Коэффициент Пуассона – это отношение относительного поперечного сжатия к соответствующему относительному продольному удлинению [7]

формула коэффициент Пуассона, (7)

  • где µ – коэффициент Пуассона,
  • Δa – абсолютное приращение толщины, м,
  • a – толщина после деформации, м,
  • Δl – абсолютное приращение длины, м,
  • l – длина после деформации, м

ж) Температурные коэффициенты

Температурный коэффициент показывает изменение различных свойств материала (резонансная частота, емкость, размеры) при изменение температуры [6]

ТКЧ, (8)

  • где ТКЧ – температурный коэффициент резонансной частоты, ppm/˚С,
  • f(t1) – резонансная частота при температуре t1, Гц,
  • f(t2) – резонансная частота при температуре t2, Гц,
  • f20 – резонансная частота при температуре 20˚С, Гц,
  • Δt – разница температур Δt = t2 — t1, ˚С

ТКЕ, (9)

  • где ТКЕ – температурный коэффициент емкости, ppm/˚С,
  • C(t1) – емкость при температуре t1, Ф,
  • C(t2) – емкость при температуре t2, Ф,
  • C20 — емкость при температуре 20˚С, Ф

ТКЛР, (10)

  • где ТКЛР – температурный коэффициент линейного расширения, ppm/˚С,
  • l(t1) – длина при температуре t1, м,
  • l(t2) – длина при температуре t2, м,
  • l20 – длина при температуре 20˚С, м

з) Скорость старения

Скорость старения это показатель изменения резонансной частоты и емкости со временем. Чтобы вычислить эту скорость, после поляризации электроды преобразователя соединяются вместе, и образец нагревается определенный период времени. Производятся замеры резонансной частоты и емкости каждые 2n (1,2,4 и 8) дня. Скорость старения вычисляется по следующей формуле [1]:

Скорость старения, (11)

  • где AR – скорость старения для резонансной частоты или емкости,
  • t1, t2 – число дней после поляризации,
  • Xt1, Xt2 – резонансная частота или емкость через t1 и t2 дней после поляризации

и) Механическая добротность

Добротность – количественная характеристика резонансных свойств колебательных систем, указывающая во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду вынужденных колебаний на частоте много ниже резонансной при одинаковой амплитуде возбуждающей силы [8]. Добротность равна отношению собственной частоты ω резонансной системы к ширине Δω частотной полосы, на границах которой энергия системы при вынужденных колебаниях вдвое меньше энергии на резонансной частоте [6].

Формула механической добротности, (12)

  • где Qm – механическая добротность,
  • fr – резонансная частота, Гц,
  • fa – антирезонансная частота, Гц,
  • Zr – сопротивление при резонансе, Ом,
  • С – емкость, Ф

Изделия, основанные на пьезоэлектрическом резонансе, требуют высокой механической добротности.

к) Температура Кюри

Температура Кюри – это температура при превышение которой пьезоэлектрический материал теряет свои свойства [2].

л) Плотность

Формула плотности, (13)

  • где ρ – плотность, кг/м3,
  • m – масса, кг,
  • V – объем, м3.

Большинство составов пьезокерамики основано на химических соединениях с формулой АВО3 (напр., BaTiO3, РbТiO3) с кристаллической структурой типа перовскита и различных твёрдых растворов на их основе (например, системы BaTiO3 — CaTiO3, BaTiO3 — CaTiO3 — CoCO3, NaNbO3 — KNbO3). Особенно широко используются в качестве пьезоэлектрических материалов составы системы РbТiO3 — PbZrO3 (т. н. система PZT, или ЦТС). Практический интерес представляет также ряд соединений с формулой АВ2О6, напр. PbNb2O6, имеющих весьма высокую Кюри точку (~570 °С), что позволяет создавать пьезоэлементы для работы при высоких температурах.

Порошок для изготовления пьезоэлемента
Рисунок 7 – Порошок для изготовления пьезоэлемента

Процесс изготовления пьезокерамики разделяется на несколько этапов. При осуществлении синтеза заданного сегнетоэлектрического соединения исходное сырье (окислы или соли, например, двуокись титана и окись бария) измельчается и смешивается в количествах, соответствующих стехиометрическому составу соединения, а затем подвергается термической обработке при температурах 900 – 1300 °С, в процессе которой происходит химический синтез. Используется также так называемый метод осаждения из водных растворов, при котором температура синтеза благодаря идеальному перемешиванию компонентов снижается до 750 – 1000 °С. Из порошкообразного синтезированного материала прессованием (а также литьём под давлением) получаются заготовки необходимой конфигурации и размеров для будущих пьезоэлементов, которые затем подвергаются обжигу по строго определенному температурному режиму, в большой степени определяющему свойства пьезокерамики. Механическая обработка детали после обжига обеспечивает ей точно заданную форму и размеры. На деталь наносятся электроды из серебра, никеля, платины и др., причем наибольшее распространение получил метод вжигания серебра. Для поляризации керамики к электродам подводится электрическое напряжение (напряжённость поля Е составляет от 0,5 до 3 кВ/мм в зависимости от химического состава и метода поляризации). С целью уменьшения напряженности поля Е при поляризации образец нагревают до температур, близких к точке Кюри (т. к. при этом домены обладают большей подвижностью), а затем медленно охлаждают в присутствии поля. Пьезокерамике свойственно т. н. старение, т. е. изменение её параметров (диэлектрической проницаемости, пьезомодулей) со временем, особенно заметное в первые несколько суток после изготовления и поляризации образцов, которое обусловлено изменением как механических напряжений на границах между зёрнами, так и величины остаточной поляризации [8].

Пьезоэлектрические материалы нашли применение в широком ряде областей, таких как медицинские инструменты, контроль промышленных процессов, системах производства полупроводников, бытовых электрических приборах, системах контроля связи, различных измерительных приборах и в других областях. Коммерческие системы, которые используют пьезоэлектрические материалы – помпы, швейные машины, датчики (давления, обледенения, угловых скоростей и т.д.), оптические инструменты, лазерные принтеры, моторы для автофокусировки камер и многие другие. При этом область применения данных материалов постоянно растет. Применение пьезоэлемента обычно сводится к четырем категориям: сенсоры, генераторы, силовые приводы, и преобразователи.

В генераторах, пьезоэлектрические материалы могут генерировать напряжение, которого достаточно для возникновения искры между электродами, и таким образом могут быть использованы как электроды для воспламенения топлива, для газовых плит и для сварочного оборудования. Альтернативно, электрическая энергия, генерируемая пьезоэлектрическими элементами, может накапливаться. Такие генераторы являются превосходными твердыми аккумуляторными батареями для электронных схем.

В сенсорах, пьезоэлектрические материалы преобразуют физические параметры, такие как ускорение, давление и вибрации в электрический сигнал.

В силовых приводах, пьезоэлектрические материалы преобразуют электрический сигнал в точно контролируемое физическое смещение, четко устанавливая точность механических инструментов, линз и зеркал.

В преобразователях, пьезоэлектрические преобразователи могут, как генерировать ультразвуковой сигнал из электрической энергии, так и конвертировать приходящие механические колебания в электрические. Пьезоэлектрические приборы проектируются для измерения расстояний, скорости потока, и уровня жидкости. Преобразователи так же используются, чтобы генерировать ультразвуковые вибрации для очистки, сверления, сварки, размельчения керамики и для медицинской диагностики [1].

    Библиографический список

  • Ranier Clement Tjiptoprodjo. On a Finite Element Approach to Modeling of Piezoelectric Element Driven Compliant Mechanisms.- Saskatchewan, Canada.: University of Saskatchewan Saskatoon, April 2005
  • Й.Крауткремер, Г.Крауткремер. Справочник. Ультразвуковой контроль материалов.-Москва.: Металлургия, 1991.
  • David H. Johnson. Simulation of an ultrasonic piezoelectric transducer for NASA/JPL Mars rover.- PA, USA.: Cybersonic, Inc. of Erie, 2003.
  • www.piezo.com
  • ОСТ 11 0444-87 «Материалы пьезокерамические»
  • Tokin. Multilayer Piezoelectic Actuators. User’s Manual, Tokin Corporate Publisher.: 1996.
  • Д.В.Сивухин. Общий курс физики. Т.I. Механика.- Москва.:1979.
  • Голямина И.П. Ультразвук.-Москва.: из-во «Советская энциклопедия», 1979
  • Jan Tichy, Jiry Erhart, Erwin Kittinger, Jana Privratska. Fundamentals of Piezoelectric Sensorics.- Heidelberg, Dordrecht, London, New York.: Springer, 2010

Выращивание кристаллов в домашних условиях

На чтение 12 мин. Просмотров 2k. Опубликовано Обновлено

Производители современных игрушек, предназначенных для организации познавательного детского досуга, сегодня часто предлагают готовые наборы для выращивания кристаллов в домашних условиях. Но было бы ошибочно думать, что это занятие является разработкой нашего времени и достижением современной химической промышленности.

Выращивание кристаллов

Научившись выращивать кристаллы, с их помощью можно создавать красивые декоративные элементы, которые могут стать оригинальным елочным украшением или частью праздничного декора интерьера.

Общие правила выращивания кристаллов

  • Перед тем как приступить к практической части, хочется предупредить: выращивание кристаллов не терпит суеты: красота их формы напрямую зависит от условий, в которых находится раствор. Сосуд, где происходит рост кристаллов, необходимо убрать в такое место, где его никто не потревожит и не сможет случайно задеть, толкнуть, опрокинуть. Любое неосторожное движение может привести к тому, что кристалл получится не таким крупным, ровным и красивым, как хотелось бы.
  • Чтобы получить крупные кристаллы, количество воды нужно увеличить: чем больше по размеру должен быть кристалл, тем больше воды необходимо брать для растворения исходного ингредиента. Большинство компонентов чувствительны к качеству воды и могут вступать в реакцию с примесями, входящими в ее состав, поэтому желательно брать фильтрованную или дистиллированную воду.
  • Чем меньше нагревают раствор — тем лучше для кристаллов, т.к. в нагретой и отстоявшейся воде получаются более крупные и более ровные образования. Как только на дне сосуда появляются кристаллы, следует отобрать и вынуть самые мелкие, оставив одни крупные. Оставшиеся кристаллы каждое утро очень осторожно тонкой палочкой переворачивают на другую сторону — так нарастание слоев получается равномерным.

Что нужно знать?

Выращивание кристаллов — процесс очень интересный, но бывает достаточно длительным. Полезно знать, какие процессы управляют его ростом; почему разные вещества образуют кристаллы различной формы, а некоторые их вовсе не образуют; что надо сделать, чтобы они получились большими и красивыми.

Если кристаллизация идёт очень медленно, получается один большой кристалл (или монокристалл, например при выращивании искусственных камней), если быстро — то множество мелких (или поликристалл, например металлы).

Выращивание кристаллов в домашних условиях производят разными способами. Например, охлаждая насыщенный раствор. С понижением температуры растворимость веществ уменьшается (в основном, это касается безводной соли), и они, как говорят, выпадают в осадок. Сначала в растворе и на стенках сосуда появляются крошечные кристаллы-зародыши.

Когда охлаждение медленное, а в растворе нет твёрдых примесей (скажем, пыли), зародышей образуется немного, и постепенно они превращаются в красивые кристаллики правильной формы. При быстром охлаждении возникает много мелких кристалликов, почти никакой из них не имеет правильную форму, ведь их растёт множество и они мешают друг другу.

Выращивание кристаллов можно осуществить и другим способом — постепенным удалением воды из насыщенного раствора. И в этом случае чем медленнее удаляется вода, тем лучше получается результат. Оставьте открытым сосуд с раствором при комнатной температуре на длительный срок, накрыв его листом бумаги, — вода при этом будет испаряться медленно, и пыль в раствор попадать не будет.

Растущий кристаллик можно либо подвесить в насыщенном растворе на тонкой прочной нитке, либо положить на дно сосуда. В последнем случае кристаллик периодически надо поворачивать на другой бок. По мере испарения воды в сосуд следует подливать свежий раствор.

Даже если наш исходный кристаллик имел неправильную форму, он рано или поздно сам выправит все свои дефекты и примет форму, свойственную данному веществу, например превратится в октаэдр, если используете соль хромокалиевых квасцов, ромб — если используете медный купорос.

Выращивание кристаллов — процесс занимательный, но требующий бережного и осторожного отношения к своей работе. Теоретически размер кристалла, который можно вырастить в домашних условиях таким способом, неограничен. Известны случаи, когда энтузиасты получали кристаллы такой величины, что поднять их могли только с помощью товарищей.

Но, есть некоторые особенности их хранения (конечно каждая соль и вещество имеют свои особенности).
Например, если кристаллик квасцов оставить открытым в сухом воздухе, он, постепенно теряя содержащуюся в нём воду, превратится в невзрачный серый порошок.

Чтобы предохранить его от разрушения, можно покрыть бесцветным лаком. Медный купорос и поваренная соль — более стойки и Вы смело можете с ними работать.

Как вырастить кристалл?

Вырастить кристалл можно из разных веществ: например из сахара, даже каменные — искусственное выращивание камней, с соблюдением строгих правил по температуре, давлению, влажности и других факторов (искусственные рубины, аметисты, кварц, цитрины, морионы).

В домашних условиях, конечно, всего этого у нас не получится, поэтому поступим другим образом. Будем выращивать кристаллы соли. У всех у нас есть дома обычная пищевая соль (как наверное, знаете, что её химическое название хлорид натрия NaCl). Подойдёт и любая другая соль (соль — с химической точки зрения), например, можно получить красивые синие кристаллы из медного купороса или или любого другого купороса (например железного).

Можно использовать квасцы (двойные соли металлов серной кислоты), тиосульфата натрия (раньше использовался для изготовления фотографий).
Для всех этих солей (да и вообще для соли) не требуется особых каких-то условий: сделали раствор, опустили туда «зародыш» (всё это подробно описано ниже) и растёт он себе, каждый день прибавляя в росте.

Да, не следует раскрашивать раствор, где растёт Ваш кристалл, например красками или чем нибудь подобным, — это лишь испортить сам раствор, а кристалл всё же не покрасит!

Лучший способ получить цветные кристаллы — это подобрать нужную по цвету соль! Но будьте внимательными: например кристаллы жёлтой кровной соли имеют красно-оранжевый цвет — а раствор получается жёлтым. Вот теперь можем приступить!

Выращивание кристаллов поваренной соли

Кристаллы поваренной соли — процесс выращивания не требует наличия каких-то особых химических препаратов. У нас всех есть пищевая соль (или поваренная соль), которую мы принимаем в пищу. Её также можно назвать и каменной — всё одно и то же. Кристаллы поваренной соли NaCl представляют собой бесцветные прозрачные кубики.

Начнём. Разведите раствор поваренной соли следующим образом: налейте воды в ёмкость (например стакан) и поставьте его в кастрюлю с тёплой водой (не более 50°С — 60°С). Конечно, в идеальном варианте, если вода не будет содержать растворённых солей (т.е. дистиллированная), но в нашем случаем можно воспользоваться и водопроводной.

Насыпьте пищевую соль в стакан и оставьте минут на 5, предварительно помешав. За это время стакан с водой нагреется, а соль растворится. Желательно, чтобы температура воды пока не снижалась. Затем добавьте ещё соль и снова перемешайте. Повторяйте этот этап до тех пор, пока соль уже не будет растворяться и будет оседать на дно стакана.

Мы получили насыщенный раствор соли. Перелейте его в чистую ёмкость такого же объёма, избавившись при этом от излишек соли на дне.Выберите любой понравившийся более крупный кристаллик поваренной

соли и положите его на дно стакана с насыщенным раствором. Можно кристаллик привязать за нитку и подвесить, чтобы он не касался стенок стакана.
Теперь нужно подождать.

Уже через пару дней можно заметить значительный для кристаллика рост. С каждым днём он будет увеличиваться. А если проделать всё то же ещё раз (приготовить насыщенный раствор соли и опустить в него этот кристаллик), то он будет расти гораздо быстрее (извлеките кристаллик и используйте уже приготовленный раствор, добавляя в него воды и необходимую порцию пищевой соли).

Помните, что раствор должен быть насыщенным, то есть при приготовлении раствора на дне стакана всегда должна оставаться соль (на всякий случай).

Для сведений: в 100г воды при температуре 20°С может раствориться приблизительно 35 г поваренной соли. С повышением температуры растворимость соли растёт. Так выращивают кристаллы поваренной соли (или кристаллы соли, форма и цвет которых Вам больше нравится)

Выращивание кристаллов медного купороса

Кристаллы медного купороса — выращиваются подобным образом, также, как с поваренной солью: сначала готовится насыщенный раствор соли, затем в этот раствор опускается понравившийся маленький кристаллик соли медного купороса.

Медный купорос- — химически активная соль! Поэтому для удачности опыта в этом случае воду нужно взять дистиллированную, т.е. не содержащую других растворённых в ней солей. Из под крана воду тоже лучше не брать, так как она во-первых содержит растворённые соли, во-вторых может быть сильно хлорированной. Примеси (особенно карбонаты в жёсткой вроде) вступают в химические реакции с медным купоросом, из-за чего раствор сильно портится

Если всё в порядке, — продолжим. Если Вы решили не переливать раствор из ёмкости, в которой первоначально рос маленький кристаллик, тогда подвесьте кристаллик, что бы он не касался других кристалликов, оставшихся на дне!

Выращивание кристаллов производят не только из растворов, но и из расплавов соли. Ярким примером могут служить жёлтые непрозрачные кристаллы серы, имеющие форму ромба или вытянутых призм. Но с серой, особо, работать не советую. Газ, образующийся при её испарении,
вреден для здоровья.

Можно избежать роста отдельных граней кристаллика. Для этого эти грани надо нанести раствор вазелина или жира.

Выращивание кристаллов меди

Теперь вырастим красные кристаллы меди. Нам необходимы медный купорос, поваренная соль, стальная пластинка по форме сечения ёмкости (немного меньшего периметра. Можно использовать стальную стружки или кнопки), где будут расти кристаллы меди и кружок из промокательной бумаги в форме сечения.

Итак, положите немного медного купороса на дно пузырька (желательно равномерно по площади). Сверху насыпьте поваренной соли и закройте всё это вырезанным кружком бумаги. На неё положите железную пластинку (или засыпьте стальной стружкой).

Всё это вместе надо залить насыщенным раствором поваренной соли (такой раствор мы готовили из поваренной соли). Оставьте ёмкость приблизительно на неделю. За это время вырастут иглоугольные красные кристаллы меди.

Когда идёт процесс роста старайтесь не переносить ёмкость, а также очень нежелательно изымать кристаллики из раствора.

Можно вырастить кристалл разноцветным и многослойным. Их получают путём приготовления растворов квасцов (двойные соли серной кислоты) и переносят поочерёдно выращиваемый кристаллик из одного раствора в другой.

Если смешать горячие концентрированные растворы сульфатов алюминия Al2(SO4)3 и калия K2(SO4), а полученный раствор охладить, то из него начнут кристаллизоваться квасцы — двойной сульфат калия и алюминия 2KAl(SO4)2•12Н2О. Квасцы растворяются в воде так: 5,9 г на 100 г воды при 20 °С, но уже 109 г — при 90 °С в пересчёте на безводную соль.

При хранении на воздухе квасцы выветриваются. При температуре 92,5 °С они плавятся в своей кристаллизационной воде, а при нагревании до 120 °С обезвоживаются, переходя в жжёные квасцы, которые разлагаются лишь при температуре выше 700 °С.

Молекулы воды, входящие в состав квасцов, связаны химической связью с ионами калия и алюминия, поэтому соли квасцов имеют формулу, которую правильнее записывать в виде комплексной соли [K(h3O)6][Al(h3O)6](SO4)2.

Кое-что о жидких кристаллах

Жидкие кристаллы — это вещества, которые ведут себя одновременно как жидкости и как твёрдые тела. Молекулы в жидких кристаллах, с одной стороны, довольно подвижны, с другой — расположены регулярно, образуя подобие кристаллической структуры (одномерной или двумерной).

Часто уже при небольшом нагревании правильное расположение молекул нарушается, и жидкий кристалл становится обычной жидкостью. Напротив, при достаточно низких температурах они замерзают, превращаясь в твёрдые тела.

Регулярное расположение молекул в жидких кристаллах обусловливает их особые оптические свойства. Их свойствами можно управлять, подвергая действию магнитного или электрического поля. Это используется в жидкокристаллических индикаторах часов, калькуляторов, компьютеров и последних моделей телевизоров.

Итак, процесс выращивание кристаллов в домашних условиях разделим на основные этапы:

  1. Растворить соль, из которой будет расти кристалл, в подогретой воде (подогтерть нужно для того, чтобы соль растворилось немного больше, чем может раствориться при комнатной температуре). Растворять соль до тех пор, пока будете уверены, что соль уже больше не растворяется (раствор насыщен!). Рекомендую использовать дистиллированную воду (т.е. не содержащую примесей других солей)
  2. Насыщенный раствор перелить в другую ёмкость, где можно производить выращивание кристаллов (с учётом того, что он будет увеличиваться). На этом этапе следите, чтобы раствор не особо остывал.
  3. Привяжите на нитку кристаллик соли, нитку привяжите например к спичке и положите спичку на края стакана (ёмкости), где налит насыщенный раствор (этап 3). Кристаллик опустите в насыщенные раствор.
  4. Перенесите ёмкость с насыщенным раствором и кристалликом в место, где нет сквозняков, вибрации и сильного света (выращивание кристаллов требует соблюдение этих условий).
  5. Накройте чем-нибудь сверху ёмкость с кристалликом (например бумагой) от попадания пыли и мусора. Оставьте раствор на пару дней.

Важно:

  • кристаллик нельзя при росте без особой причины вынимать из раствора
  • не допускать попадание мусора в насыщенные раствор, наиболее предпочтительно использовать дистиллированную воду
  • следить за уровнем насыщенного раствора, периодически (раз в неделю или две) обновлять при испарении раствор

Пьезодатчик для акустической гитары: виды и особенности

Пьезодатчик для акустической гитары в последние годы получил широкое распространение. Ранее для озвучивания инструмента использовали микрофон. Однако современные технологии позволяют снимать звук качественно. Оборудование функционально, позволяет даже самой недорогой акустической гитаре звучать профессионально.

Что такое пьезодатчик и его назначение для акустической гитары

Пьезодатчик — это небольшая пластинка, устанавливающаяся сверху или внутрь корпуса. Обычные звукосниматели для электрогитары работают по принципу магнитного снятия звука. Пластинка состоит из нескольких магнитов. Вокруг них используется обмотка. Пьезоэлементы снимают вибрацию струн.

Пьезо-звукосниматель преобразует механическое передвижение струн в магнитном поле в электрические сигналы. Те пропускаются через усилитель. Простая акустическая гитара при помощи такого элемента превращается в электрическую. Звук ее можно обрабатывать звуковыми эффектами посредством подключения к усилителю педалей и процессоров.

Виды пьезодатчиков

По своему строению пьезоэлектрические устройства достаточно просты. Сущность преобразования в электрический сигнал у них сложнее, чем у магнитных звукоснимателей.

В виде таблеток

Самые популярные звукосниматели — это датчики в виде таблетки. Также они напоминают присоску. Широкое распространение получили за счет относительно небольшой цены и легкости размещения на инструменте. Их устанавливают как внутри, так и снаружи на липучки. По большей части пластинки регистрируют вибрацию корпуса. Чтобы добиться звучания, придется пробовать менять месторасположение устройства по всему корпусу гитары.

В виде узких палочек

 

Электрозвукосниматели, изготовленные в форме палочки, не слишком дешевые. Но это компенсируется их качественным звучанием, так как датчик полностью снимает вибрацию струн. Место их установки — под нижний порожек. Установить новичку такой элемент непросто, поэтому следует обратиться за помощью к профессиональному музыканту.

Принципы работы

Сердце устройства — пьезокристалл. Окружен проводниками, преобразующими сигнал не только из вибрации струн, но и из резонирования корпуса инструмента. Устройство имеет один характерный параметр — емкость. Электрическая схема — напряжение с емкостью, которая имеет последовательность, причем ее величина составляет всего 100-500 пикофарад. Пьезодатчик используют с другой электроникой, например, с эквалайзером.

Устройство является электромеханическим. За счет малой емкости и отсутствия индуктивности, он не образует фонов и шумов.

На заметку! Пьезокристалл имеет свойство генерировать напряжение, если к нему приложить механические силы.

Основное преимущество устройства — способен снимать звук колебания по двум пространственным направлениям, а также вибрации корпуса из дерева, чем не могут похвастаться синглы и хамбакеры. Пьезодатчики используются для акустических гитар, так как принцип их работы похож на работу микрофона. Способны взаимодействовать с любым видом струн: металлическими или нейлоновыми.

Отличие пьезодатчиков от других звукоснимателей

По техническим характеристикам и принципу работы пьезодатчики отличаются от других звукоснимателей. Несмотря на то что синглы и хамбакеры наиболее актуальны у гитаристов, они имеют ряд недостатков при сравнении. Популярными они стали из-за того, что являются частью электрического инструмента.

  1. Звукоснимателя для электрогитар представляют собой магнитные устройства с обмоткой. Они реагируют только на колебания струн, тогда как съемные датчики для акустики взаимодействуют еще и с корпусом.
  2. Обычные звукосниматели взаимодействуют только со струнами из ферромагнитных материалов (металлические с обмоткой из никеля или стали). Пьезо-элементы «видят» любой тип струн.

 

Основное преимущество «таблеток» и «палочек» состоит в том, что они легко снимаются и устанавливаются. При идеальном музыкальном слухе можно установить устройство в нужном месте для качественного звучания инструмента.

Обзор современных пьезодатчиков

На рынке существует широкий ассортимент съемных электрических и контактных звукоснимателей. Разработчики совершенствуют элементы. Некоторые хотят добиться натурального мягкого звучания классической гитары, а другие стремятся привнести новый необычный звук.

Компания из Финляндии B-Band выпускает датчики, а также усилители к ним. Для акустических гитар они производят два вида звукоснимателей. UST выполнен в виде тонкой полоски, которая размещается в углублении около нижнего порожка. Устройство ATS устанавливается внутри корпуса при помощи липкой пленки. Реагирует на вибрации деки. Электродатчики имеют широкий звуковой диапазон и могут использовать с любыми струнами.

Компания L. R. Brass производит качественные звукосниматели, которые выражают все нюансы звучания инструмента. Можно сравнить со студийными профессиональными микрофонами. Модель iBeam подойдет для гитаристов, которые предпочитают исполнять соло-партии и джазовые композиции. LB6 умеет подавлять обратную связь. Подходят для громкой игры. Не меняют звук  — изготовлены из тех же материалов, что и порожки гитары.

Компания Scheltler выпускает качественные модели звукоснимателей для многих инструментов. Датчики сочетаются с реверберацией и фейзером. Серия STAT идеальна для тех, у кого набита рука по игре джаза и рока.

Как установить пьезодатчик на акустическую гитару

Теперь рассмотрим, как установить пьезодатчик на акустическую гитару. Установка некоторых моделей не занимает много времени. Например, «таблетку» можно разместить на любом месте деки. Крепится она за счет клейкой основы.

 

Намного сложнее с линейными пьезоэффектами. Новичкам лучше обратиться к профессиональным гитаристам. Но также можно сделать это самостоятельно в домашних условиях. Как правило, в комплекте с пьезодатчиками идут: блок питания, гнездо для провода и фурнитура.

На заметку! Нельзя использовать другие клеящие компоненты — скотч или клей. Можно повредить корпус инструмента. Специальная пленка датчиков разработана для размещения ее на деке.

Последовательность действий:

  1. Снимите задний порожек, просверлите отверстие для размещения там пьезокристалла.
  2. Разметьте место, где будет находиться термоблок. Сделайте для него отверстие и поместите туда блок.
  3. Просверлите третье отверстие для выхода провода. Оно должно располагаться там, где находится разъем для джека в электрогитарах. Установите припаянное гнездо для провода.

Внимание! Действуйте аккуратно и точно, чтобы не испортить корпус или гриф акустической гитары. Заранее разметьте все отверстия, длину провода рассчитайте, измерив линейкой.

С появлением новых технологий можно усовершенствовать любой акустический инструмент. Но прежде чем заняться установкой пьезодатчика на акустическую гитару, точно определите, что вам нужно и зачем: мягкий живой звук или электрический. Подзвученная классическая гитара не заменит электрогитару, так как датчики используются для озвучивания инструмента, а не для экспериментов со звуковыми эффектами.

Кристаллы в домашних условиях — пошаговая инструкция как создать ровный кристалл

Кристаллы окружают нас повсюду. Мы их едим, ходим по ним, использует для изготовления различных инструментов и приборов. Можно провести интересный эксперимент и вырастить их дома. Рассмотрите фото самодельных кристаллов, можно получить большие и маленькие, прозрачные и цветные экземпляры. Все зависит от вашего желания и терпения.

Краткое содержимое статьи:

Кристаллы из соли

К простому эксперименту можно привлечь детей. Для него понадобится лишь соль и вода. Нет необходимости использовать дополнительные реактивы, поэтому это безопасный процесс. Это увлекательное занятие, ежедневно можно наблюдать, как кристалл постепенно увеличивается в размерах.


Подготовка к эксперименту

Перед началом работы определитесь с местом, где будет располагаться емкость с кристаллом. Во время роста нельзя сдвигать или наклонять посуду. Лучше брать морскую соль, так как она не содержит посторонних примесей.

Возьмите дистиллированную воду или прокипятите и отфильтруйте ее. Можно использовать и обычную поваренную соль для эксперимента.

Не стоит наливать раствор в металлическую посуду. Начинающие исследователи интересуются, какие кристаллы можно сделать самостоятельно.

Размер кристалла зависит от длительности эксперимента, объема емкости. В качестве основы выбирают нить, проволоку, веточки или кусок соли.

Выращивание

Возьмите полстакана воды, вылейте в кастрюлю. Затем посуда ставится на огонь и доводится до кипения. Рассмотрим, из чего можно вырастить кристаллы в домашних условиях.

На формирование поделки из поваренной соли уйдет несколько дней. Морская соль образует кристалл за 2 дня. Если выбрать йодированную соль, то результата придется ждать долго.

Необходимо приготовить насыщенный раствор. В теплую воду добавляют соль, пока она не перестанет растворяться. Готовим нить для основы, к ней привязываем маленький кристаллик соли.

Веревка не должна касаться дна или стенок посуды. Второй конец нити привязывается к карандашу, который располагают сверху на емкости. Теперь нужно наблюдать за ростом.

Кристаллы из сахара

Сладкие и разноцветные изделия порадуют детей. Чтобы получить их, достаточно воспользоваться инструкцией для выращивания кристаллов на дому. Для опыта необходимо 2 стакана воды, 5 стаканов сахара, деревянные шпажки, кастрюля, прозрачные емкости, бумага.

В первую очередь готовим сахарный сироп. Для него понадобится четверть стакана воды и две столовые ложки сахара. Данную смесь ставим в кастрюле на огонь.

После этого шпажки поочередно макаем в сироп, а затем обсыпаем сахаром. Заготовки необходимо хорошо высушить, лучше оставить их до утра.

Процесс выращивания

В кастрюлю налить 2 стакана воды и всыпать постепенно 5 стаканов сахара. Раствор постоянно помешиваем. Если сахар полностью растворился, снимаем сироп с огня. Оставляем его на 15 минут, чтобы остыл. Вырезаем кружки из бумаги. Они должны быть больше диаметра емкостей.

Чтобы разобраться, как правильно выращивать кристаллы своими руками, необходимо внимательно изучить последовательность действий. Это поможет получить желаемый результат.


Остывший сироп разливаем по стеклянным емкостям, можно добавить в них пищевые красители. Затем в стаканы опускаются заготовки с кружками из бумаги на них. Шпажки не должны прикасаться к дну и стенкам. Для выращивания сладких кристаллов понадобится неделя.

Обратите внимание!

Кристалл из медного купороса

Данный эксперимент требует строгого соблюдения техники безопасности. Нам понадобится вода, стеклянная емкость, медный купорос. Приобретать в магазине нужно однородный порошок ярко-синего цвета. В банку нужно высыпать 100 г и залить горячей водой, постоянно помешивая. Получаем насыщенный раствор, его фильтруем и ставим в холодильник.

На следующий день выбираем самый большой кристалл, закрепляем его на нитке и помещаем в банку с отфильтрованным раствором.

Емкость необходимо накрыть бумагой, чтобы туда не попадала пыль. Процесс роста длится несколько недель. После кристалл вынимаем и покрываем бесцветным лаком для ногтей.

Заключение

Выращивание кристаллов является увлекательным процессом. Для получения отличного результата важно соблюдать технологию. Чтобы потренироваться, можно купить специальный набор для выращивания кристаллов в домашних условиях. Сладкие изделия можно попробовать на домашнем чаепитии.


В определенный момент кристаллы перестают расти. На этом можно закончить эксперимент, либо приготовить еще раз насыщенный раствор и опустить туда кристалл. Он вырастит еще больше. Выращивание кристаллов – это интересный и познавательный процесс.

Фото кристаллов в домашних условиях

Обратите внимание!

Обратите внимание!


Также рекомендуем просмотреть:

Помогите проекту, поделитесь в соцсетях 😉

 

Пьезоэлектрические материалы — Студопедия

Обратный пьезоэлектрический эффект ныне широко используется в науке и технике. Приложенное к пьезоэлектрическим кристаллам переменное напряжение вынуждает их совершать колебания и излучать звуковые волны, что находит применение в ультразвуковых устройствах (преобразователях) и т.д.

Явление изменения размеров пластинки под действием электрического поля называется обратным пьезоэлектрическим эффектом.

Явление возникновения электрических зарядов на поверхности пластинки при ее деформации называется прямым пьезоэлектрическим эффектом.

В 1881 году Габриэль Липман сформулировал общую теорему, в которой утверждал, что, зная о существовании некоторого физического явления, можно предсказать существование и величину обратного эффекта, применимого к этому явлению. Эту теорему он применил к явлению пьезоэлектричества. Его утверждение представлено было так, при сжатии или растяжении некоторых кристаллов, например кварца, на его обкладках возникают электрические заряды. Так как механические силы, порождая заряды, изменяют размеры кристалла (изменение размеров приводит к возникновению напряжения), Липман предсказал, что если к кристаллу приложить напряжение, то это вызовет изменение его размеров. Пьер и Жак Кюри подтвердили предположение Липмана экспериментально, тем самым открыв явление обратного пьезоэффекта, который проявлялся тогда, когда быстро изменяющийся электрический потенциал применялся к кристаллу кварца, вызывая его вибрацию (сжатие и растяжение) в зависимости от полярности приложенного напряжения.



Начиная с 1882 г. Европейское научное сообщество интенсивно изучало кристаллы с несимметричной структурой, обладающие пьезосвойствами. Исследовался взаимный обмен электрической и механической энергии в этих материалах, термодинамические соотношения, измерялись механические, электрические и температурные константы.

К 1910 г. было обнаружено 20 классов кристаллических решеток, обладающих пьезосвойствами. В этом же году немецкий ученый Волдемар Войгт выпустил учебник «Lerbuch der Kristallphysik», который стал стандартом в понимании анизотропии физических свойств материалов и в частности пьезоэффекта.

Материалы, обладающие пьезоэффектом, условно можно разбить на группы:

  • – природные и синтетические материалы;
  • – монокристаллы, пьезокерамика и полимеры.

Как уже упоминалось ранее, сущность прямого пьезоэффекта состоит в том, что при сжатии пластинки, вырезанной с получением определенной кристаллографической ориентации из кристалла, вызывает образование электрических зарядов на его гранях: положительного заряда на одной грани и отрицательного – на другой. При растяжении кристаллической пластинки также происходит образование зарядов, но если заряд на этой грани при сжатии был положительным, то при растяжении заряд на этой грани – отрицательный, и наоборот.


Прямой пьезоэлектрический эффект возникает в том случае, когда упругая деформация кристалла с таким ассиметричным искажением распределения положительных и отрицательных зарядов в структуре твердого тела, что возникает общий дипольный момент, т.е. твердое тело поляризуется.

Обратный пьезоэлектрический эффект возникает в том случае, когда внешнее электрическое поле вызывает такое искажение распределения зарядов, которое вызывает геометрические искажения, проявляющиеся в виде деформаций.

Пьезоэлектрическими свойствами обладают только ионные кристаллы, у которых отсутствует центр симметрии в кристаллической решетке. Из известных 32 кристаллических классов не имеет центра симметрии 21 класс. Однако у одного из них сочетание других элементов симметрии делает пьезоэффект невозможным. Таким образом, пьезоэлектрические свойства могут наблюдаться у 20 кристаллических классов.

Рисунок 46 – Кристалл кварца  

Всего известно более 1500 веществ, у которых проявляются пьезоэлектрические свойства. Остановимся на свойствах кварца. Кристаллы кварца SiO2 (рисунок 46) существуют в различных кристаллографических модификациях. Интересующие нас кристаллы (α-кварц) принадлежат к так называемой тригональной кристаллографической системе и обычно имеют форму, показанную на рисунках 46 и 47, а. Они напоминают шестигранную призму, ограниченную двумя пирамидами, однако имеют еще ряд дополнительных граней. Такие кристаллы характеризуются четырьмя кристаллическими осями, определяющими важные направления внутри кристалла. Одна из этих осей – Z соединяет вершины пирамид. Три другие X1X2X3 перпендикулярны к оси Z и соединяют противолежащие ребра шестигранной призмы. Направление, определяемое осью Z, пьезоэлектрически неактивно: при сжатии или растяжении по этому направлению никакой поляризации не происходит. Напротив, при сжатии или растяжении в любом направлении, перпендикулярном к оси Z, возникает электрическая поляризация. Ось Z называется оптической осью кристалла, а оси X1X2X3 – электрическими или пьезоэлектрическими осями и расположены под углом 120 градусов друг к другу.

Оси Y1Y2Y3называются нейтральными или механическими и направлены перпендикулярно к каждой площадке призмы через середины противолежащих граней, этих осей в кристалле также три (рисунок 47, в). Оси и перпендику­лярны оси Z.

Рисунок 47 – а) кристалл кварца; б), в) изготовление пластины х-среза; г) кварцевая пластинка, вырезанная перпендикулярно к пьезоэлектрической оси

Вырезанный из кварцевого кристалла прямоугольный параллелепипед (пластина), грани которого перпендикулярны осям Y и X, обладает пьезоэлектрическими свойствами (рисунок 47, в). Различают продольный и поперечный пьезоэлектрические эффекты (рисунок 47, г).

Продольный пьезоэффект заключается в том, что при сжатии или растяжении пластины вдоль оси Х на гранях пластины ABCD и EFGH, перпендикулярных к оси Х, получаем разноименные заряды. Т.е., при продольном пьезоэффекте заряды или механическая деформация возникают на противоположных гранях пьезопластинки в направлении приложенного механического усилия или электрического поля соответственно.

Поперечный пьезоэффект заключается в том, что прикладывая механические напряжения вдоль оси Y возникает поляризация вдоль оси Х и на тех же гранях АВСD и ЕFGН появляются поляризационные заряды. Т.е., при поперечном пьезоэффекте заряды или деформация возникают в направлении, перпендикулярном направлению механических усилий или приложенного электрического поля соответственно.

Пьезоэффект наблюдается лучше всего в случае, когда пластинки выре­заны в плоскости, при которой широкие стороны (длина и ширина) пластинок параллельны оси и одной из осей Y, а толщина пластинок параллельна оси Х. Такую пластинку называют Х-срезом. Если пластинку, вырезанную та­ким способом, деформировать в на­правлении оси Х, то на ее поверхнос­ти возникнут электрические заряды. Если пластину поместить в перемен­ное электрическое поле, направлен­ное вдоль оси Х, то пластина будет совершать толщинные колебания (рисунок 48, а). Пластинки X-среза обладают продольным пьезоэффектом, при котором образуются волны сжатия-растяжения (продольные волны).

В некоторых случаях из­готавливают пластины Y-среза, то есть такие, у которых толщина совпадает с направлением оси Y, а длина и ширина параллельны осям X и Z. При помещении такой пластинки в переменное электрическое поле она будет совершать поперечные колеба­ния (рисунок 48, а). Пластинки Y-среза обладают поперечным пьезоэффектом, при котором образуются сдвиговые (поперечные) волны (рисунок 48, б).

а) б)

Рисунок 48 – Колебания пьезоэлектрической пластины в переменном электрическом поле: а) Х-среза и Y-среза; б) ПЭП поперечных волн, ориентированных нормально к поверхности на основе пьезопластины Y-среза.

 

2.2 Природа пьезоэлектричества на монокристаллах

Пьезоэлектрический эффект объясняется следующим образом. В ионных кристаллах вследствие несовпадения центров положительных и отрицательных ионов имеется электрический момент и в отсутствие электрического поля. Однако эта поляризация обычно не проявляется, так как она компенсируется зарядами на поверхности. При деформации кристалла положительные и отрицательные ионы решетки смещаются относительно друг друга и поэтому, изменяется электрический момент кристалла, т.е. проявляется поляризация, вызванная изменением расстояния между центрами тяжести разноименных зарядов.

 

Рисунок 49 поясняет возникновение пьезоэффекта в кварце – двуокиси кремния Si02. Здесь схематически показаны проекции положительных ионов Si – знаком , и отрицательных ионов О – знаком в плоскости, перпендикулярной оси Z. Ион кремния имеет заряд (+4), ион кислорода – заряд (-2). Этот рисунок не соответствует фактической конфигурации ионов в элементарной ячейке кварца, в которой ионы не лежат в одной плоскости, а их число больше показанного. Однако, он правильно передает симметрию взаимного расположения ионов, что уже достаточно для качественного объяснения.

Рисунок 49, а соответствует недеформированному кристаллу, элементарная ячейка кварца является электрически нейтральной. Заряд иона кремния компенсируется зарядами ионов кислорода 2 и 6, расположенных от плоскости А дальше, чем ион 1, и т.д.

При действии внешней силы в направлении электрической оси Х1(сжатии пластины) элементарная ячейка деформируется и приобретает вид, изображенный на рисунке 49, б. При этом положительный ион кремния 1 и отрицательный ион кислорода 2 «вдавливаются» внутрь ячейки, отчего выступающие заряды (положительный на плоскости А и отрицательный на плоскости В) уменьшаются, что эквивалентно появлению избыточного отрицательного заряда на плоскости А и соответственно избыточного положительного заряда на плоскости В.

При изменении направления деформации вдоль оси Х1 (растяжении) полярность заряда поверхностей А и В меняется на противоположную (рисунок 49, в). Ионы 1 и 2 «выталкиваются» из элементарной ячейки, поэтому на грани А возникает дополнительный положительный заряд, а на грани В – отрицательный заряд.

Рисунок 49 – Принципиальная схема возникновения пьезоэффекта в двуокиси кремния: а) нейтральное состоянии ячейки; б) пластина сжата в продольном направлении (или в поперечном направлении растянута;

в) пластина растянута в продольном направлении (или в поперечном направлении сжата)

Анализ симметрии в теории твердого тела показывает, что пьезоэлектрический эффект может существовать только в кристаллах, в которых элементарная ячейка не имеет центра симметрии.

Ацентричные монокристаллы, обладающие пьезоэффектом, подразделяются на природные и синтетические.

К природным пьезоэлектрическим материалам относятся кварц и его производные: бесцветный кварц – горный хрусталь, фиолетовый – аметист, дымчатый – раухтопаз, черный – морион, золотистый – цитрин и др. Различные окраски обычно обусловлены наличием примесных атомов. Встречаются также сложно окрашенные кристаллы кварца за счет микровключений посторонних минералов: зеленый празем – включения микрокристалликов актинолита или хлорита; золотистый мерцающий авантюрин – включения слюды или гематита, и др.

Природные кристаллы кварца содержат в себе примеси, образующие структурные дефекты, снижающие их ценность. К числу дефектов относятся включение инородных минералов, трещины, пузыри, фантомы, голубые иглы и т.д. Природный пьезокварц являлся весьма редким и дорогим минеральным сырьем. Его месторождения имеются в небольшом числе России. В связи с этим потребности бурно развивающейся электроники в настоящее время удовлетворяются синтетическими монокристаллами кварца, которые выращиваются в автоклавах при повышенных температуре и давлении из насыщенных диоксидом кремния щелочных растворов.

Выращенные кристаллы разрезают на блоки и заготовки на специальных станках алмазным пилами при интенсивном жидкостном охлаждении. Вырезанные заготовки должны иметь точную ориентацию граней (от 1 до 5 угловых минут) по отношению к кристаллографическим осям кристалла. Вырезанные заготовки кристаллических пластин подвергаются механической обработке для придания им окончательной формы и размеров, а также нужной чистоты обработки поверхностей. Форма и размеры пластины определяют (при соблюдении точности ориентации) частоту и другие электрические характеристики, а чистота обработки – уровень потерь при колебаниях и стабильность частоты во времени. Чистота обработки в самом худшем случае определяется классом 9, достигая для высокостабильных и высокочастотных резонаторов самого высшего класса (13… 14) и выполняется шлифовкой пластин абразивными порошками карбида бора, наждака и корунда, в несколько переходов.

Затем производят очистку заготовок промывкой различными растворителями и водой. Последней операцией обработки заготовок является травление. Кварц травят в плавиковой кислоте или ее соединениях. Травлением удаляют остатки продуктов обработки, а также нарушенный процессами шлифовки поверхностный слой. Пластины подвергают прокаливанию при температуре 450 °С и медленному охлаждению с целью уменьшения механических напряжений. Для очистки широко используют ультразвуковые моечные установки. Качество очистки пластин существенно определяют характеристики стабильности частоты резонаторов.

Протравленные, тщательно очищенные от возможных загрязнений пластины поступают на участок металлических покрытий. Электродные покрытия наносят на кристаллические пластины различными методами. На низкочастотные пьезоэлементы наносят никелевые покрытия химическим способом. Для повышения адгезии покрытия никелированные пластины подвергают отжигу в вакууме при температуре 400 °С. Никелевые покрытия позволяют применять непосредственную припайку к ним проволочных держателей. На высокочастотные пьезоэлементы перед нанесением электродных покрытий наносят контактные площадки, к которым присоединяются держатели. Обычно контактные площадки осуществляют вжиганием специальной пасты, представляющей смесь дисперсного серебра с порошком легкоплавкой эмали и органической связкой. Выжигание этой пасты производят в туннельных или муфельных печах при температуре 470… 500 °С, что обеспечивает прочное соединение выжженного серебра с кварцем. Далее на пластины наносят электродные покрытия испарением металла в вакууме. Нанесение электродных покрытий вызывает изменение частоты пьезоэлемента, поэтому эта операция контролируется (по времени или непрерывным измерением частоты). После этого пластины прокаливают, чтобы стабилизировать структуру электродных покрытий.

В качестве материалов для электродных покрытий высокочастотных пьезоэлементов используют преимущественно серебро, а на частотах выше 30 МГц – алюминий.

Затем производится окончательная настройка частоты и монтаж пьезоэлемента в корпус. Окончательную настройку низкочастотных резонаторов чаще осуществляют подшлифовкой граней или ребер пьезоэлемента абразивным бруском. Широко используется также способ, известный как способ настроечных масс. На поверхность пьезоэлемента напаивают небольшие частицы припоя, массу которых затем можно либо уменьшать, либо увеличивать, изменяя тем самым частоту пьезоэлемента. Иногда используют способ настройки, основанный на увеличении или уменьшении массы нанесенных электродных покрытий. Указанные способы позволяют как повышать, так и понижать частоту пьезоэлемента.

Высокочастотные пьезоэлементы настраивают изменением массы тонких электродных покрытий. На многих предприятиях для этого используют гальванический способ, при котором на электродные покрытия наращивают (или удаляют) тонкий слой металла (серебра, золота, никеля).

Более совершенным является способ вакуумной настройки, при котором на специальных вакуумных установках наносят тонкую пленку проводящего, плохо проводящего (резистивного) или непроводящего (диэлектрического) материала. При этом пьезоэлемент включают в схему генератора, что позволяет контролировать изменение частоты в течение всего процесса настройки, прекращая его в тот момент, когда частота окажется в пределах нужного допуска. Нанесение резистивных или диэлектрических пленок при настройке более предпочтительно, так как не сопровождается изменением и ухудшением спектральных характеристик, как это имеет место при нанесении проводящих пленок.

Широко используется также способ настройки частоты в газовом разряде, основанный на воздействии на поверхность электрода ионизированных частиц газа (ионная бомбардировка), вследствие чего частота резонаторов повышается. Этим способом возможна настройка частоты после герметизации резонаторов. Он используется также для настройки частоты вакуумных резонаторов. Для окончательной настройки частоты (чаще резонаторов в стеклянных баллонах) используют воздействие лазерного луча на электродные или специальные настроечные покрытия. Лазерная настройка широко применяется в производстве микро резонаторов.

Турмалин. Название от сингальского «турмали», что означает «камень, притягивающий пепел». В Европу с острова Цейлон (Шри-Ланка) был привезен голландскими купцами около 1703 г. По химическому составу турмалин представляет собой сложный алюмоборосиликат с примесями магния, железа или щелочных металлов (NaLiK). Цвет от чёрного до зелёного, также красный до розового, реже бесцветный. Турмалин является пироэлектриком, у которого при нагревании или охлаждении появляются электрические заряды на поверхности кристалла. При нагревании один конец пироэлектрика заряжается положительно, а при охлаждении он же – отрицательно. Появление зарядов связано с изменением существующей поляризации при изменении температуры кристаллов. При трении электризуется, обладает сильным пьезоэлектрическим эффектом. Турмалин широко распространён в природе, однако в большинстве случаев кристаллы изобилуют трещинами. Бездефектные кристаллы, годные для пьезоэлектрических резонаторов, встречаются редко. Основным преимуществом турмалина является большая механическая прочность, поэтому из него возможно изготовление резонаторов на более высокие частоты. В настоящее время турмалин почти не используется для изготовления пьезоэлектрических резонаторов и имеет ограниченное применение для измерения гидростатического давления.

Сегнетова соль. Кристаллы сегнетовой соли получают из отходов виноделия. Сегнетоэлектричество впервые было открыто на кристаллах сегнетовой соли в 1920 г., поэтому класс, в который входит сегнетова соль и еще более 100 веществ, называется сегнетоэлектриками. Все сегнетоэлектрики обнаруживают резкую анизотропию свойств (сегнетоэлектрические свойства могут наблюдаться только вдоль одной из осей кристалла). Причиной таких свойств является спонтанная поляризация сегнетиков. Из-за особо сильного взаимодействия частиц сегнетик можно разделить не на отдельные молекулы, а на целые области, электрические домены. Домен – область кристалла с однородной атомно-кристаллической, магнитной или электрической структурами, закономерным образом повернутыми и (или) сдвинутыми друг относительно друга. Внутри домена возникает большой электрический момент даже в отсутствии внешнего поля. Однако ориентированы они весьма хаотически, и суммарная поляризованность близка к нулю (рисунок 50). Во внешнем поле

поляризованность доменов становится со направленной с ним, а если убрать поле, то сохраняется остаточная поляризация.

Сегнетова соль гигроскопична. Для предохранения от воздействия влаги пьезоэлементы из сегнетовой соли покрывают тонкими пленками лака. Пьезоэлементы из сегнетовой соли широко использовались в аппаратуре, работающей в сравнительно узком температурном интервале, в частности, в звукоснимателях. Однако в настоящее время они почти полностью вытеснены керамическими пьезоэлементами.

Естественные пьезоэлектрические кристаллы в своем большинстве очень хрупки и не выдерживают больших механических нагрузок или имеют низкую температуру плавления, при которой они теряют пьезоэлектрические свойства и больше не восстанавливают их. Поэтому в науке и технике получили применение синтетические пьезоэлектрические материалы.

Ниобат лития. Ниобат лития (рисунок 51) – синтетический монокристалл – соединение ниобия, лития и кислорода. Ниобат лития не растворяется в воде, не разлагается при высоких температурах, отличается высокой механической прочностью. По электрическим свойствам он представляет собой сегнетоэлектрик с температурой Кюри около 1200 градусов Цельсия.

Рис. 51 Кристаллическая решетка ниобата лития

Благодаря своим высоким пьезоэлектрическим и механическим свойствам, в том числе и низкой добротности, ниобат лития является перспективным материалом для изготовления преобразователей различного назначения. Тонкие пленки ниобата лития, получаемые катодным распылением в вакууме, представляют собой ориентированные поликристаллические текстуры, которые могут быть использованы в качестве излучателей и приемников ультразвуковых колебаний СВЧ-диапазона.

Также в настоящее время все важные пьезоэлектрические монокристаллы, такие как дигидрофосфат аммонияортофосфат галлия и сложные оксиды лантана и галлия, выращиваются искусственно.

Хотя новые монокристаллические пьезоматериалы продолжают разрабатывать и сейчас, наиболее широко применяемым классом пьезоэлектрических материалов являются поликристаллические пьезокерамические материалы. Они обладают гораздо более богатым набором полезных характеристик, а также способны функционировать в более широком диапазоне рабочих условий.

По физическим свойствам пьезокерамика – поликристаллические сегнетоэлектрики (сегнетоэлектрики – монокристаллические и поликристаллические вещества, которые способны поляризоваться под воздействием внешнего электрического поля при температуре ниже фазового перехода – точки Кюри), представляющий собой химическое соединение или твердый раствор (порошок) зерен (кристаллитов). По химическому составу это сложный оксид, состоящий из ионов свинца или бария, а также ионов титана или циркония. Кристаллическая структура пьезокерамики показана на рисунке 52, каждая частица которой состоит из «малого» иона четырехвалентного металла (обычно титана или циркония) в кристаллической решетке, «большого» иона двухвалентного металла (обычно свинца или бария), а также ионов кислорода О2 (рисунок 52, а). При определенных условиях кристаллы приобретают тетрагональную или ромбогедральную симметрию, в результате чего кристалл получает дипольный момент (рис. 52, б). Путем изменения основного соотношения исходных материалов и введения добавок

синтезируют разные составы пьезокерамики, обладающие определенными электрофизическими и пьезоэлектрическими характеристиками.

Наибольшее распространение получила группа пьезокерамических материалов типа ЦТС (цирконата-титаната свинца). Вместе с тем используется керамика на основе титаната бария (ТБ) и титаната свинца (ТС). В последние годы разрабатываются новые пьезокерамические материалы со свойствами, позволяющими в некоторых случаях использовать их вместо более дорогостоящих пьезоэлектрических кристаллов. В частности, разработана и производится группа материалов на основе ниобата свинца, которая уже нашла практическое применение благодаря возможности ее использования в диапазоне частот до 30 и более МГц. Значительные исследования проводятся по созданию пьезокерамических композитных материалов, а также многослойной керамики. Зарубежные производители в зависимости от пьезоэлектрических свойств делят ее на сегнетожесткую и сегнетомягкую. В отечественной практике существует дополнительное деление на керамику средней сегнетожесткости, а также выделяются высокостабильные, высокотемпературные и т. п. материалы.

Керамическая технология изготовления пьезоэлементов не накладывает принципиальных ограничений на их форму и размеры. Эти обстоятельства, а также высокие значения пьезоэлектрических характеристик обусловили широкое применение керамических пьезоэлементов в технике, в особенности в устройствах для излучения и приема ультразвуковых колебаний. Пьезокерамические элементы изготавливаются путем смешивания нескольких составляющих, последующего прессования или литья, затем обжигаются на воздухе при температуре 1000–1400 градусов по Цельсию. С целью уменьшения пористости обжиг может проводиться в среде кислорода. По специальной технологии на поверхность заготовок наносятся электроды, состоящие обычно из серебра, которые предназначены для формирования в теле пьезопластины электрического поля (при подаче на них электрического напряжения). Эти же электроды используются для снятия электрического заряда с пьезопластины при регистрации ультразвуковых волн. После изготовления элемента он еще не является пьезоэлектриком, так как диполи в нем оказываются параллельны только внутри каждого домена, в то время как сами области поляризованы хаотически. Упругая деформация набора хаотически поляризованных диполей не может привести к ассиметричному искажению распределения зарядов и поэтому не может вызвать пьезоэлектрический эффект. Поэтому последняя стадия производства пьезоэлектрической керамики всегда заключается в наложении сильного электрического поля при повышенной температуре. Электрическое поле выбирается из расчета 1000 В на 1 мм толщины пластины при температуре ниже точки Кюри в течение не менее 4 часов. Поляризация обычно является окончательным процессом при изготовлении пьезокерамических элементов, хотя за ним следует термостабилизация и контроль параметров. Под влиянием постоянного электрического поля все домены ориентируются в направлении приложенного поля. После снятия внешнего поля большая часть доменов удерживается в своем новом положении из-за внутреннего поля, которое возникает в результате параллельной ориентации направлений поляризации доменов. Благодаря этому керамика становится полярной текстурой, которая обладает пьезоэффектом (рисунок 53).

Пьезоэлектрическая керамика представляет собой твердый, химически инертный материал, совершенно нечувствительный к влажности и другим атмосферным воздействиям. По механическим качествам она подобна керамическим изоляторам.

В зависимости от предназначения пьезоэлементы могут иметь самую разнообразную конфигурацию (рисунок 54) – от плоской до объемной (сферы, полусферы и т.п.), следовательно, такие преобразователи могут излучать упругие колебания с одинаковой эффективностью в любом направлении. Для направленного излучения и приема ультразвука применяют плоские пьезоэлементы.

Рисунок 54 – Пьезокерамические элементы

Особенность пьезопластин, изготовленных из пьезокерамики состоит в том, что при работе их при повышенной температуре снижается их эффективность преобразования. Допустимая температура нагрева пьезопластины на 20–50 °С ниже температуры аллотропического превращения для кварца, точек Кюри для пьезокерамики, температуры размягчения для ПВДФ.

Титанат бария. Титанат бария является сегнетоэлектриком. Пьезокерамика титаната бария (ТБ-1) широко применяется для изготовления преобразователей, к которым не предъявляют жесткие требования по температурной и временной стабильности характеристик. Отсутствие в рецептуре титаната бария летучих при обжиге компонентов и простота технологии изготовления пьезоэлементов делают этот материал по-прежнему распространенным в технике. У титаната бария пьезоэлектрический эффект в 50 раз больше, чем у кварца при очень небольшой стоимости. Недостатком титаната бария являются большие механические и диэлектрические потери, что приводит его к перегреву. Кроме того, при температуре свыше 90 °С (точки Кюри) существенно снижается пьезоэлектрический эффект, его часто приходиться поляризовать повторно.

Титанат цирконат свинца. Твердые растворы титаната свинца обладают очень высокими значениями пьезоэлектрических характеристик. Они не растворимы в воде и имеют точку Кюри до 330 °С. На основе твердых растворов титаната свинца разработаны серии технологических пьезокерамических материалов, условное наименование ЦТС (за рубежом PZT) – ЦТС-19ЦТС-23ЦТБС-3ЦТСНВ-1РZT-5HPZT-8 и др.

Технология изготовления изделий из материалов типа ЦТС усложнена тем, что они содержат в своем составе оксид свинца, который частично улетучивается при высокотемпературном обжиге, что приводит к плохой воспроизводимости свойств. Поэтому обжиг заготовок пьезоэлементов проводят в атмосфере паров оксида свинца, для чего заготовки помещают в плотно закрытые капсели, содержащие засыпку из оксидных соединений свинца. Тем не менее, высокие характеристики этого типа материалов делают их весьма распространенными для изготовления пьезоэлектрических преобразователей различного назначения: для электроакустических приборов, ультразвуковой техники, пьезометрии, а также и некоторых видов радиотехнических фильтров. Если температура ЦТС поднимается выше 290 ºС (точка Кюри), он располяризуется.

Метаниобат свинца. Твердые растворы метаниобатов свинца и бария имеют высокую температуру точки Кюри. Материалы на их основе имеют стабильные в широком температурном интервале значения пьезмодулей и резонансных частот. Технология изготовления изделий из них проще, чем из материалов ЦТС, так как входящие в состав ниобатной керамики оксид свинца практически не летуч при обжиге.

2.4 Пьезоэлектрики – полимеры

Некоторые полимерные материалы в виде механически ориентированных и поляризованных в электрическом поле пленок являются полярными текстурами, в которых наблюдается пьезоэлектрический эффект. В настоящее время единственно выпускаемыми промышленностью пьезоэлектрическими полимерами являются поливинилденфторид (ПВДФ) и его сополимеры с трифторэтиленом и тетрафторэтиленом.

ПВДФ – частично кристаллический синтетический полимер с химической формулой (СН2СF2)n. Он производится в виде тонких пленок, растянутых вдоль плоскости пленки и поляризованных перпендикулярно этой плоскости для создания пьезосвойств.

Рисунок 55 – Обработка ПВДФ

Обработка ПВДФ для придания ему пьезосвойств (рисунок 55). В отлитой из расплава пленке полимера кристаллиты размером от десятков до сотен нанометров хаотически распределены между аморфными областями (вверху на рисунке). Растяжение полимерной пленки (в центре на рисунке) приводит к выпрямлению полимерных цепей в аморфных областях в плоскости пленки и способствует однородному вращению кристаллитов при наложении электрического поля. Поляризация по толщине пленки (например, с использованием осажденных металлических электродов) придает пленке пьезоэлектрические свойства (внизу на рисунке).

ПВДФ – эластичная полимерная пленка, которой можно придавать практически любую форму. У нее небольшое удельное сопротивление, что облегчает согласование с иммерсионной жидкостью. Радиальные колебания близки к нулю, механическая добротность очень низкая. Существуют пленки на очень высокие частоты (до 100 МГц).

Некоторые технические характеристики пьезоматериалов приведены в таблице 3.

Таблица 3 – Технические характеристики пьезоматериалов.

Пьезоматериал

Кварц

ЦТС-19

Метаниобат свинца

ПВДФ

Ниобат лития

Свойства

     

Скорость, с×103, м/с

5,76

3…3,6

3,3

1,5…2,5

7,32

Плотность, ρ×103, кг/м3

2,65

7,4

6,2

1,3…1,8

4,64

Допустимая температура t, °С

 

 

 

 

 

Как вырастить кристалл в домашних условиях

Выращивание кристаллов – процесс в чем-то схожий с искусством. В небольшом созданном вами лично куске кристалла таится частичка вашего вдохновения. Впрочем, сам процесс не столь поэтичен и требует соблюдения определенных инструкций. О том, как вырастить кристаллы своими руками и что для этого потребуется, читайте далее.

Материалы

Перед началом всего процесса подготовьте:

  • кристаллический порошок – 100 гр;
  • дистиллированную воду – 100 мл;
  • чистые банки – 2 шт.;
  • бумагу для фильтра.

Шаг 1. Смешайте кристаллический порошок и дистиллированную воду. Если в итоге вы хотите получить кристалл большого размера, порошка вам придется взять больше. Указанное количество рассчитано на мелкие кристаллы.

Шаг 2. Размешивайте порошок в воде до тех пор, пока он не перестанет растворяться.

Шаг 3. Используя бумагу для фильтра, процедите весь состав. Оставшиеся не растворившиеся частицы обратно в воду отправлять не нужно.

Шаг 4. Оставьте весь состав в покое на несколько недель или месяцев. Время роста кристалла зависит от состава порошка.

Шаг 5. Спустя время, когда в банке появятся несколько кристаллов, выберите один, понравившийся вам. Остальные уберите.

Шаг 6. Воду из-под кристалла еще раз пропустите через фильтр, отправьте в нее выбранный ранее кристалл.

Шаг 7. Спустя время ваш кристалл вырастет. Если размер кажется вам недостаточно большим, вы можете переложить кристалл в новый раствор, сделанный так же, как и было описано ранее. Процесс взращивания кристаллов очень долгий, а потому запаситесь терпением.

Советы

Накройте банку с составом бумагой для фильтра. Из воздуха могут попадать пылинки и примеси, которые могут навредить росту кристалла.

Ускорить рост маленьких кристаллов можно, подогревая воду. Выращивая большие кристаллы, не делайте этого.

Скорость роста кристалла можно немного увеличить, добавив в воду порошок других мелких кристаллов.

Не ставьте банку с составом рядом с постоянным источником тепла.

С кристаллом обращайтесь аккуратно, чтобы не разбить его.

Ни в коем случае кристаллы нельзя брать в рот, есть их и глотать. Некоторые составы очень токсичны и могут привести к серьезным проблемам со здоровьем!

Из нетоксичных кристаллов вы можете создавать украшения ручной работы.

Примеры кристаллов из разных составов

Принцип выращивания этих кристаллов такой же, как и в инструкции выше. С единственным «но». Здесь используются разные порошки.

Медный купорос. Токсичен. Кристалл растет три месяца.

Алюминиевый кварц. Не токсичен. Кристалл растет три месяца.

Бихромат калия. Очень токсичен. Брать в руки без перчаток нельзя. Первые кристаллы появляются уже через несколько дней.

Сульфат никеля. Токсичен. Кристалл меняет цвет в зависимости от подогрева воды. При 30 градусах цвет получается бирюзовый, свыше 30 градусов – зеленый, полупрозрачный.

Сегнетовая соль. Кристалл обладает пьезоэлектрическими свойствами.

Хромокалиевые квасцы. Кристалл токсичен.

Квасцы алюминия и хрома. Кристалл токсичен.

Иодид свинца или «золотой дождь». Токсичен.

Звезды кристаллов в желатине. Вода + желатиновый гель + хлорид магния (2 мл) + концентрированный аммиак. Время роста кристаллов – 2 недели.

Готовим пьезокристаллы дома

piezo_crystal

[Коллин] любит пьезо — а почему бы и нет?

По его словам, они настолько близки к магии, насколько это возможно в мире. Мы не можем не согласиться с этим — в пьезоэлектрических материалах есть что-то странно очаровательное.

Большинство имеющихся в продаже пьезоэлектрических устройств, которые вы найдете сегодня, построены из искусственных керамических материалов, таких как цирконат титанат свинца, и их можно найти в стартерах для гриля, газовых водонагревателях и т. Д.Хотя они широко распространены, синтезировать такие керамические материалы в домашних условиях непросто.

Однако вы можете создавать пьезоэлектрические кристаллы на своей кухне, используя всего несколько простых ингредиентов. В своем видео [Коллин] показывает нам, как создать соль Рошель, один из первых известных материалов, демонстрирующих пьезоэлектричество. В рецепте используются три ингредиента: винный камень, карбонат натрия (кальцинированная сода) и вода — вот и все. Процедура довольно проста, вам нужно нагреть раствор воды и зубного камня, добавляя кальцинированную соду понемногу, когда она достигнет нужной температуры.После того как раствор станет прозрачным, его фильтруют и оставляют на ночь, пока не образуются кристаллы.

Взгляните на видео, вложенное ниже, чтобы увидеть, как получились его кристаллы Rochelle, и обязательно попробуйте это со своими детьми, если они интересуются электроникой. Делать кристаллы, которые генерируют электричество при прикосновении, намного круче, чем готовить леденцы в любой день, поверьте нам.

.

Создание контактного микрофона с использованием самодельных пьезокристаллов

homemade_piezo_contact_mic

[Leafcutter] — большой музыкант, который на протяжении многих лет собирает всевозможные музыкальные инструменты и инструменты. Недавно он был вдохновлен на создание своих собственных пьезокристаллов и написал нам, чтобы поделиться с нами результатами своих экспериментов.

[Leafcutter] не привыкать возиться с пьезоэлементами, и, увидев учебник [Коллина] по изготовлению собственных пьезокристаллов в домашних условиях, он понял, что должен попробовать.Он зашел в продуктовый магазин, чтобы принести все ингредиенты, затем в точности выполнил инструкции [Коллина]… ну, почти. Похоже, он мог слишком быстро охладить раствор, поэтому он обнаружил, что у него есть банка, полная крошечных, почти не пригодных для использования пьезокристаллов, вместо более крупных, которые [Коллин] смог произвести.

Не испугавшись, он решил проверить, насколько хорош этот материал, и соорудил импровизированный контактный микрофон, используя проводящую фольгу и зажим. Он подключил выход к своему усилителю, и вы бы не знали… это сработало!

У него есть небольшой фрагмент звука микрофона на его сайте, и он работал чертовски хорошо, несмотря на крошечный размер кристалла.Он собирается дать этому процессу еще одну попытку, поэтому мы надеемся увидеть больше экспериментов с более крупными кристаллами в ближайшем будущем.

.

Китай PZT, пьезокристалл, пьезоэлектрический преобразователь, производитель и поставщик керамики PZT

С обновлением технологии производства и постоянным расширением области применения пьезокерамика PZT стала широко привлекать внимание людей, и их популярность также растет.

Пьезоэлектрическая керамика PZT имеет обратный пьезоэлектрический эффект, то есть микроперемещение соответствующего сигнала напряжения может генерироваться при подаче сигнала напряжения.Кроме того, они имеют характеристики высокого разрешения на нанометровом уровне и скорости отклика на микросекундном уровне, чтобы обеспечить точность оптической фазовой модуляции. Пьезоэлектрический керамический фазовращатель PZT также является основным компонентом различных интерференционных приборов, его точность будет напрямую влияют на точность измерения интерферометра.

В зависимости от разницы в оптических интерференционных путях количество и типы используемых пьезокерамических элементов PZT различаются, и их можно разделить на одиночные и множественные.В соответствии с различными сценариями использования клиентов, ядро ​​будет обеспечивать множество схем пьезокерамики для фазовой модуляции / фазового сдвига завтра.
Когда оптическое волокно используется в качестве среды передачи света, например, волоконно-оптический дифференциальный интерферометр и перестраиваемый волоконно-оптический лазер, битовый контакт света изменяется в зависимости от длины распространения.
Например, волокно намотано на пьезокерамику PZT. При подаче сигнала напряжения пьезоэлектрическая керамика будет немного деформироваться, что изменит длину и показатель преломления волокна, намотанного на PZT.Когда пьезоэлектрическая керамика подвергается периодической микродеформации, длина волокна периодически изменяется, а также периодически изменяется фаза проходящего света.
Для этого сценария типы пьезокерамики PZT, которые могут быть выбраны, очень разнообразны и зависят от ряда факторов, таких как размер, время задержки и режим регулировки.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *