Настройка коэффициентов ПИД-регулятора. Пид регулятор настройка


Практические советы по настройке ПИД-регулятора

В данной статье приведены основные принципы и правила настройки коэффициентов ПИД-регулятора сточки зрения практического применения. Теоретические основы можно прочитать вот в этой статье.

Для простоты изложения рассмотрим настройку регулятора на примере. Допустим, необходимо поддерживать температуру в помещении с помощью обогревателя, управляемого регулятором. Для измерения текущей температуры используем термопару.

Задача настройки

Настройка регулятора производится с одной единственной целью: подобрать его коэффициенты для данной задачи таким образом, чтобы регулятор поддерживал величину физического параметра на заданном уровне. В нашем примере физическая величина — это температура.

Допустим текущая температура в помещении 10 °С, а мы хотим, чтобы было 25°С. Мы включаем регулятор и он начинает управлять мощностью обогревателя таким образом, чтобы температура достигла требуемого уровня. Посмотрим как это может выглядеть.

На данном рисунке красным цветом показана идеальная кривая изменения температуры в помещении при работе регулятора. Физическая величина плавно, без скачков, но в тоже время достаточно быстро подходит к заданному значению. Оптимальное время, за которое температура может достигнуть заданной отметки, определить довольно сложно. Оно зависит от многих параметров: размеров комнаты, мощности обогревателя и др. В теории это время можно рассчитать, но на практике чаще всего это определяется экспериментально.

Чёрным цветом показан график изменения температуры в том случае, если коэффициенты подобраны совсем плохо. Система теряет устойчивость. Регулятор при этом идёт «в разнос» и температура «уходит» от заданного значения.

Рассмотрим более благоприятные случаи.

На этом рисунке показаны графики, далёкие от идеального. В первом случае наблюдается сильное перерегулирование:  температура слишком долго «скачет» относительно уставки, прежде чем достичь её. Во втором случае регулирование происходит плавно, но слишком медленно.

А вот и приемлемые кривые:

Данные кривые тоже не идеальны, но могут быть сочтены за удовлетворительные.

В процессе настройки регулятора, пользователю необходимо стремиться получить кривую, близкую к идеальной. Однако, в реальных условиях сделать это не так-то просто — приходится долго и мучительно подбирать коэффициенты. Поэтому зачастую останавливаются на «приемлемой» кривой регулирования. Например, в нашем примере нас могли бы устроить коэффициенты регулятора, при которых заданная температура достигалась бы за 15-20 минут с максимальным перерегулированием (максимальными «скачками» температуры) 2 °С. А вот время достижение уставки более часа и максимальные «скачки» температуры 5 °С — нас бы не устроили.

Далее поговорим о том, как подобрать коэффициенты для достижения оптимального регулирования. Рекомендуется настраивать коэффициенты в том же порядке, в котором это описано.

Настраиваем пропорциональный коэффициент

Выставляем дифференциальный и интегральный коэффициенты в ноль, тем самым убирая соответствующие составляющие. Пропорциональный коэффициент выставляем в 1.

Далее нужно задать значение уставки температуры отличное от текущей и посмотреть, как регулятор будет менять мощность обогревателя, чтобы достичь заданного значения. Характер изменения можно отследить «визуально», если у вас получится мысленно представить этот график. Либо можно регистрировать в таблицу измеренное значение температуры каждые 5-10 секунд и по полученным значением построить график. Затем нужно проанализировать полученную зависимость в соответствии с рисунком:

При большом перерегулировании, необходимо уменьшать пропорциональный коэффициент, а если регулятор долго достигает уставки — увеличивать. Так убавляя-прибавляя коэффициент необходимо получить график регулирования как можно ближе к идеальному. Поскольку достичь идеала удастся вряд ли, лучше оставить небольшое перерегулирование (его можно будет скорректировать другими коэффициентами), чем длительное нарастание графика.

Настраиваем дифференциальный коэффициент

Постепенно увеличивая дифференциальную составляющую, необходимо добиться уменьшения или полного исчезновения «скачков» графика (перерегулирования) перед выходом на уставку. При этом кривая должна стать еще больше похожа на идеальную. Если слишком сильно завысить дифференциальный коэффициент, температура при выходе на уставку будет расти не плавно, а скачками (как показано на рисунке).

При появлении таких скачков необходимо прекратить увеличение дифференциального коэффициента.

Настраиваем интегральный коэффициент

При настройке двух предыдущих коэффициентов можно получить практически идеальную кривую регулирования или близкую к ней кривую, удовлетворяющую условиям задачи. Однако, как правило возникает так называемая «статическая ошибка». При этом в нашем примере температура стабилизируется не на заданном значении 25 °С, а на несколько меньшем значении. Дело в том, что если температура станет равной уставке (то есть разность текущей и заданной температур станет равна 0), то пропорциональная и дифференциальная составляющая будут равны нулю (см. функцию преобразования ПИД-регулятора). При этом мощность регулятора тоже станет равна 0 и он начнёт остывать.

Для того чтобы исключить этот эффект, используют интегральную составляющую. Её необходимо постепенно увеличивать до исчезновение статической ошибки. Однако, чрезмерное её увеличение тоже может привести к возникновению скачков температуры.

Заключение

Настройка ПИД-регулятора довольно сложный и трудоёмкий процесс. На практике достаточно тяжело достичь оптимального регулирования и зачастую в этом нет необходимости. Чаще всего достаточно добиться такого  вида переходного процесса, который устроит пользователя в условиях текущей задачи.

comments powered by HyperComments

lazysmart.ru

Настройка коэффициентов ПИД-регулятора. | MicroTechnics

В предыдущей статье мы разобрались с принципом работы ПИД-регулятора (ссылка). Теперь, как и обещал, рассмотрим основные методы настройки и подбора его коэффициентов ) Вообще, по большому счету, при использовании ПИД-регулятора необходимо построить модель всей системы в целом и математически вычислить необходимые значения коэффициентов. Так делать правильно. Но, естественно, так никто не делает 😉 На самом деле, математический расчет коэффициентов задача далеко не тривиальная, требует глубоких знаний теории автоматического управления, поэтому и используются другие, упрощенные, методы настройки.Наиболее часто использующимся методом настройки коэффициентов является метод Циглера-Никольса. Заключается он в следующем…

Метод Циглера-Никольса.

  • Для начала обнуляем все коэффициенты регулятора (пропорциональный, интегральный и дифференциальный)
  • Постепенно начинаем увеличивать пропорциональный коэффициент и следим за реакцией системы. При определенном значении возникнут незатухающие колебания регулируемой величины.
  • Фиксируем коэффициент  , при котором это произошло. Кроме того, замеряем период колебаний системы .

Собственно, на этом практическая часть метода заканчивается ) Из полученного коэффициента рассчитываем пропорциональный коэффициент ПИД-регулятора:

   

А из него получаем и остальные:

   

   

Метод довольно прост, но применить его можно далеко не всегда. Если честно, мне еще ни разу не приходилось настраивать регулятор таким образом 😉 Но тем не менее, этот метод является основным и, по большому счету, единственным широко известным. Просто подходит не всем и не всегда.

Что же делать, если метод Циглера-Никольса не сработал? Тут придет на помощь “аналитический” метод настройки =)

Опять же обнуляем все коэффициенты и начинаем увеличивать пропорциональный. Но теперь не ждем появления колебаний, а просто фиксируем поведение системы для каждого значения коэффициента (отличным вариантом будет построение графика величины, которую необходимо стабилизировать, для каждого значения коэффициента). Если видим, что, например, система очень медленно выходит на нужное значение, увеличиваем пропорциональный коэффициент. Система начинает сильно колебаться относительно нужной величины? Значит, коэффициент слишком велик, уменьшаем и переходим к настройке других составляющих.

Понимая, как работает ПИД-регулятор в целом, и представляя, как должна работать настраиваемая система, можно довольно-таки быстро и точно настроить коэффициенты регулятора. Особенно, если есть возможность построить графические зависимости и визуально следить за поведением системы.

Вот некоторые правила, которые могут помочь при настройке:

  • Увеличение пропорционального коэффициента приводит к увеличению быстродействия, но снижение устойчивости системы
  • Увеличение дифференциальной составляющей также приводит к значительному увеличению быстродействия
  • Дифференциальная составляющая призвана устранить затухающие колебания, возникающие при использовании только пропорциональной составляющей
  • Интегральная составляющая должна устранять остаточное рассогласование системы при настроенных пропорциональной и дифференциальной составляющих

Кстати, стоит добавить, что не всегда необходимо использовать все три составляющие ПИД-регулятора, порой хватает пропорциональной и дифференциальной, например (ПД-регулятор). В общем, все сводится к тому, что для каждой системы необходим свой собственный подход при настройке и использовании ПИД-регулятора.

На этом на сегодня все, возможно, как-нибудь рассмотрим практическую реализацию ПИД-регулятора 😉

microtechnics.ru

Простой метод настройки ПИД регулятора

Есть два похода к настройке ПИД регулятора. Первый – синтез регулятора, то есть вычисление параметров регулятора на основании модели системы. Данный метод позволяет очень точно рассчитать параметры регулятора, но он требует основательного погружения в ТАУ. Второй метод – ручной подбор параметров (коэффициентов). Это метод научного тыка проб и ошибок. Берем готовую систему, меняем один (или сразу несколько коэффициентов) регулятора, включаем регулятор и смотрим за работой системы. В зависимости от того, как ведет себя система с выбранными коэффициентами (недо/пере регулирование) опять меняем коэффициенты и повторяем эксперимент. И т. д. Ну, такой метод имеет право на жизнь, главное представлять как изменение того или иного коэффициента повлияет на систему (что бы не действовать совсем наугад).

Есть более «оптимизированный» метод подбора коэффициентов – метод Зиглера–Никольса.

Сразу скажу, что метод работает не для любой системы, результаты получаются не самыми оптимальными. Но, зато, метод очень простой и годится для базовой настройки регулятора в большинстве систем.

Суть метода состоит в следующем:

1. Выставляем все коэффициенты (Kp, Ki, Kd) в 0. 2. Начинаем постепенно увеличивать значение Kp и следим за реакцией системы. Нам нужно добиться, чтобы в системе начались устойчивые колебания (вызванные перерегулированием). Увеличиваем Kp, пока колебания системы не стабилизируются (перестанут затухать). 3. Запоминаем текущее значение Kp (обозначим его Ku) и замеряем период колебаний системы (Tu).

Все. Теперь используем полученные значения Ku и Tu для расчета всех параметров ПИД регулятора по формулам:

Kp = 0.6 * Ku Ki = 2 * Kp / Tu Kd = Kp * Tu / 8

Готово. Для дискретных регуляторов нужно еще учесть период дискретизации – T ( умножить на Ki та Т, разделить Kd на Т).

Еще раз повторюсь, ТАУ изучать нужно, синтез регуляторов рулит, описанный метод годится для базовой настройки, подходит не для всех систем и т. д. Но данный метод очень простой, и вполне годится для «бытового» уровня.

we.easyelectronics.ru

Настройка ПИД-регулятора

Содержание:

  1. Зачем настраивать ПИД-регулятор
  2. Метод настройки по отклику
  3. Метод с максимальным коэффициентом усиления
  4. Общие рекомендации для настроек ПИД-регуляторов
  5. Видео

Пид-регуляторы предназначены для того чтобы пропорционально, интегрально и дифференциально управлять различными процессами. Именно так расшифровывается аббревиатура этих устройств. Правильная настройка ПИД-регулятора обеспечивает быстрое достижение требуемых параметров для всей системы. Сигнал поступающий от какого-либо объекта, преобразуется определенным образом в регулирующем устройстве, а затем он возвращается и оказывает воздействие на управление этим объектом.

Наиболее характерным примером использования этих приборов являются термосистемы, связанные с изменениями или поддержанием на определенном уровне различной температуры. За счет тонких настроек удается существенно снизить энергетические потери при охлаждении или нагреве. Конкретные модификации ПИД-регуляторов подбираются в соответствии с индивидуальными особенностями той или иной термосистемы.

Зачем настраивать ПИД-регулятор

Необходимость тонких настроек рекомендуется рассматривать на примере работы обогревателя. Этот нагревательный прибор управляется ПИД-регулятором и должен поддерживать заданные температуры. Уровень температуры измеряется и контролируется термопарой. Конечная цель настроек заключается в подборе наиболее оптимального коэффициента, с помощью которого будет поддерживаться заданный температурный режим.

1.

На представленных графиках видны попытки увеличения температуры с 10 до 25 градусов. В этом случае возможны различные варианты. Общим для них является подключение регулятора к обогревающей установке, в результате, его работа начнет осуществляться в режиме управляемой мощности, а микроклимат в помещении достигнет нужного уровня.

Идеальная конфигурация температурной кривой обозначена красным цветом (рис. 1). То есть, данный физический параметр плавно движется к заданной отметке за максимально короткий промежуток времени. Оптимальный временной промежуток определяется достаточно сложно, поскольку на него оказывают влияние такие факторы как мощность обогревателя, размеры помещения и т.д. Эта величина определяется экспериментальным путем.

2.

Температурный график черного цвета указывает на неправильный выбор коэффициента при регулировании. Работа системы становится неустойчивой, регулятор функционирует неравномерно, а заданное значение не соблюдается.

В более благоприятных условиях температурные графики все так же далеки от стандартных значений (рис. 2). Черная кривая отображает сильные скачки относительно требуемого значения, а зеленая указывает на плавную, но слишком медленную регулировку.

3.

Наиболее приемлемые варианты всех трех кривых обозначены на рисунке 3. Идеальный температурный график, обозначенный красным цветом, возможен только в теории. На практике же выполняется длительный подбор коэффициентов, которые позволяют получить лишь приближенные значения, пригодные для использования. То есть, согласно представленных графиков, температура 250С достигается в среднем за 15-20 минут при максимальных скачках в 2 градуса.

Выбор необходимых коэффициентов, вычисления и настройка могут производиться с помощью различных методов.

Метод настройки по отклику

Данная методика настройки регулятора предполагает следующий порядок действий:

  • Прежде чем настраивать регулятор, он устанавливается в ручной рабочий режим. Затем необходимо дождаться стабилизации процесса и один раз изменить выходной сигнал Х, выведенный на регулировочный клапан. За счет этого можно добиться наиболее приемлемого отклика переменной Y, отвечающей за технологический процесс. Получается настраиваемая величина, влияющая на ход общих настроек.
  • После того как получен отклик, выходной параметр сигнала регулятора возвращается в исходное положение. В такое же состояние приходит и переменная технологического процесса. В норме разница между обоими показателями должна быть незначительная. Если же различие слишком существенное, попытку отклика следует повторить.
  • Далее устанавливается величина коэффициентов ПИД усиления процесса по формуле Кр = Y/Х, а также временная константа Т и время запаздывания d. Для этого верхний и нижний отклики берутся по усредненным значениям.
  • Расчет параметров ПИД-регулятора, в том числе настроечных коэффициентов выполняется по специальной формуле: К = 2Т + d/Кр (2Е + d). По ней вычисляется пропорциональный коэффициент. В свою очередь, постоянная интегрирования определяется по формуле: Ti = Т + d/2, а постоянная дифференцирования – Td = Т/(2Т + d). Здесь Кр является коэффициентом усиления процесса, d – временем запаздывания реакции процесса (мин), Т – временной константой процесса (мин), Е – заданной временной константой замкнутого контура (мин).
  • Минимально возможный промежуток времени, в течение которого процесс приводится к заданному, рассчитывается по формулам Кр = Y/Х и Е = Т + d. Чтобы сделать работу регулятора более устойчивой, временную константу Е необходимо увеличить.

Если используются каскадные регуляторы, то вначале следует настроить ведомый регулятор, а затем – ведущий. Разница между временными константами ведущего и ведомого регуляторов довольно существенная. У первого устройства она больше, чем у второго примерно в 5 раз.

Метод с максимальным коэффициентом усиления

В этом случае настройка ПИД-регулятора выполняется в определенной последовательности:

  • Устройство переводится в режим ручного функционирования при достаточно стабильном процессе. В этом случае не допускаются резкие отклонения от установленного режима. Постоянная дифференциального процесса Td и пропорциональный коэффициент данного регулятора приводятся в нулевое значение. Постоянная интегрирования Ti, наоборот, выставляется на максимум.
  • Исходное положение регулируемого клапана следует запомнить, оно может понадобиться во время настроек. После этого регулятор переключается в автоматический режим.
  • Коэффициент пропорциональной зависимости постепенно увеличивается до начала появления колебаний, которые должны иметь постоянную амплитуду. В случае возрастания амплитуды, нужно уменьшить значение пропорционального коэффициента, а при сильных перепадах регулятор переводится в ручной режим.
  • После этого выставляется зафиксированное исходное положение клапана, пропорциональный коэффициент уменьшается, а процесс настройки повторяется. В случае появления равномерных колебаний следует замерить их период (tc). Для этого нужно чтобы был отработан один полный цикл. Пропорциональный коэффициент, полученный в результате измерений, будет иметь максимальное значение для этой регулировочной системы (Кmax).
  • Коэффициент настройки ПИД-регулятора можно рассчитать на основании Кmax и tc по формулам: пропорциональный коэффициент К = 0,6 Кmax, постоянная интегрирования Ti = 0,5 tc, постоянная дифференцирования Td = 0,12 tc.

Общие рекомендации для настроек ПИД-регуляторов

  • Регулируемый клапан должен находиться примерно в среднем положении, иначе регулятор не будет работать.
  • Все настройки проводятся в зоне шкалы, которая будет использоваться для работы.
  • По завершении настроек проверяется устойчивость работы регулятора в разных режимах. При наличии скачков коэффициент усиления следует уменьшить.

electric-220.ru

Инструкция по настройке ПИД регулятора

Поскольку количество сочетаний трех параметров, предусмотренных для настройки регуляторов, весьма значительно, с течением времени было разработано много методик, облегчающих их правильную настройку. Некоторые из них требуют определенной дестабилизации технологического процесса, что зачастую неприемлемо на практике. Цель данной статьи – предложить ряд простых правил настройки регуляторов, позволяющих выполнять данную работу с минимальными отклонениями от режимных параметров.Основное правило: регулятор следует настраивать сообразно технологическому процессу. При высоком быстродействии процесса (например, в контуре расхода), регулятор также следует настроить на быстрое срабатывание. Скорость срабатывания регулятора определяется интегральным временем (интегральной составляющей), а не зоной пропорционального регулирования (усилением). Неправильное использование этих параметров значительно снижает эффективность настройки регуляторов. При низком быстродействии процесса (например, при регулировании температуры на тарелке в верхней части ректификационной колонны) регулятор следует настроить на медленное срабатывание СООБРАЗНО ПРОЦЕССУ. Если у Вас отсутствует информация о характеристиках процесса и не к кому обратиться за разъяснениями, Вам следует перепоручить настройку регуляторов специалисту, который сможет получить необходимую информацию.

Общие правила для стандартных контуров управления

Расход

Обычно более половины контуров управления на установке представляют собой контуры регулирования расхода. Установите интегральную составляющую (I) на 0,1 минуты. Отрегулируйте зону пропорционального регулирования так, чтобы предотвратить излишнюю зашумленность результатов измерения (как правило, около 300%, хотя, в некоторых случаях, при неправильном монтаже узла расходомера, требуемое значение может достигать 1000%). Установка зоны пропорционального регулирования для контура, в котором используется позиционер клапана, в два – три раза превышает значение для контура без позиционера. Для медленно срабатывающих или заедающих регулирующих клапанов может потребоваться установка 0,2 или 0,3 минуты, однако, обычно, такие значения являются исключением. Если эти настройки не работают, проверьте монтаж клапана и первичного измерительного элемента с целью определения неисправности. Устраните неисправность. Не следует устанавливать регулятор на неприемлемое значение интегральной составляющей, например, 10 минут. Если вы считаете, что требуемое значение интегральной составляющей равно 10 минут, следует использовать регулятор в ручном режиме или клапан с ручным приводом.Примечание: Регуляторы не будут нормально работать, если клапан или другой конечный регулирующий элемент почти полностью закрыт или почти полностью открыт. Настраивать регуляторы в этих условиях не следует. Попросите оператора открыть или закрыть байпас (при наличии байпаса) или дождитесь, пока технологические параметры не изменяться настолько, чтобы клапан вернулся в пределы рабочего диапазона. Предельные значения рабочего диапазона составляют от 5 до 95% рабочего хода, при этом более безопасный диапазон – от 10 до 90%. Не следует использовать воздействие дифференциальной составляющей для контуров регулирования расхода.

Уровень

Следующий за контуром расхода наиболее распространенный контур управления – контур уровня. не следует использовать малые значения интегральной составляющей в контуре регулировки уровня. При использовании подобного значения контур будет безостановочно работать в цикличном режиме, нередко с периодом (временем от пика одного цикла до пика следующего цикла) от 10 до 15 минут. Этот период обратно пропорционален интегральному времени. Установите интегральное время на 10 минут. Эта установка будет приемлемой для 80 — 90% регуляторов уровня. Если временная постоянная аппарата (объем/расход) составляет от 1 до 2 минут, то можно использовать более короткое интегральное время, однако следует помнить о том, что более продолжительное время является более надежным. При большом объеме аппарата и малом расходе следует использовать более продолжительное интегральное время.Если важна точность регулирования уровня, используйте наименьшее значение зоны пропорционального регулирования (10 — 50%), при котором отсутствует циклическое срабатывание. Если плавное изменение расхода на последующую установку важнее жесткого регулирования уровня, используйте более широкую зону пропорционального регулирования (100 — 200%). Не следует использовать воздействие дифференциальной составляющей в контуре регулирования уровня. Впрочем, имеются немногочисленные исключения. В очень редких случаях небольшая дифференциальная составляющая используется для компенсации на регулирующих клапанах уровня со значительным гистерезисом. Шумы по уровню вызывают дрожание клапана, что может способствовать более плавному регулированию. Более оптимальное решение – установить позиционер или, что еще лучше, регулятор расхода в каскаде с регулятором уровня.В контурах уровня, если регулятор управляет клапаном без позиционера, зачастую наблюдается предельный цикл. График предельного цикла имеет пилообразную форму, иногда с плоскими нижними и/или верхними участками. Контроль выходного сигнала в ходе предельного цикла показывает изменение, равное примерно 5%. Устранить подобный предельный цикл путем настройки практически невозможно. Настройка приводит к изменению периодичности цикла, но не влияет на его амплитуду. Если регулирование клапана осуществляется в пределах рабочего диапазона, то устранить данную проблему можно только путем установки позиционера или каскадированием уровня с расходом.Если уровень контролируется по расходу продукта, направляемого в парк хранения, то, как правило, циклическое срабатывание не имеет значения. Если же речь идет об орошении в ректификационной колонне, зацикливание, как правило, недопустимо. Следует отметить, что циклическое управление клапаном в почти полностью закрытом или почти полностью открытом положении приводит к возникновению предельного цикла, как правило, с плоским нижним участком, если клапан почти закрыт или с плоским верхним участком, если клапан почти полностью открыт.

Давление жидкости

Настройка осуществляется аналогично контурам расхода. Шумы могут быть не столь интенсивными, как при регулировании расхода, и значения зоны пропорционального регулирования, как правило, будут меньше.

Давление газа

Настройка осуществляется аналогично контурам уровня с использованием высокого значения интегральной составляющей. Регулятор, работающий только в пропорциональном режиме, обеспечивает адекватное регулирование, но с определенным изменением контрольной точки в зависимости от состояния процесса по причине пропорционального отклонения. Так как зона пропорционального регулирования может, как правило, оказаться очень небольшой (менее 100% и, нередко, примерно от 5 до 20%), то такое отклонение будет незначительным.Отрегулировав более 80% контуров стандартной установки, переходим к более труднорегулируемым контурам, а именно: температуре, давлению паров и составу. Сюда же относится температура, на основании которой определяется состав среды во многих колоннах дистилляции.

Труднорегулируемые контуры

Существует две способа настройки труднорегулируемых контуров. Первый способ заключается в использовании безопасных исходных настроек: зона пропорционального регулирования 100%, интегральное время 5 — 10 минут, без дифференциальной составляющей. Переключите регулятор в автоматический режим при результатах измерения, близких к требуемой уставке.При возникновении циклических колебаний определите время от одного пика до другого (от верхней точки до верхней точки или от нижней точки до нижней точки). Это – период контура управления. Если отклонение каждого пика от уставки будет больше отклонения предыдущего пика, увеличьте зону пропорционального регулирования (в два, три и более раз) до тех пор, пока увеличение амплитуды в цикле не прекратиться.Если исходное интегральное время составляет менее половины периода, оно слишком короткое, что, возможно, и вызывает циклическое срабатывание. Увеличьте интегральное время. По мере увеличения интегрального времени период должен сокращаться. Если период примерно в два раза превышает интегральное время и происходит затухание колебаний, это означает, что работа почти полностью закончена. При отсутствии помех измерения следует установить дифференциальную составляющую, равную четверти интегрального времени. Дождитесь изменения параметров или попросите оператора немного скорректировать уставку в безопасном направлении. Выполните повторную настройку зоны пропорционального регулирования, чтобы обеспечить приемлемое гашение колебаний после выхода из режима. Повторяйте эти действия, пока не получите нормальный отклик контура.Проконтролируйте контур в течение нескольких часов, чтобы убедиться в стабильности его работы. Некоторые контуры стабильны при небольших изменениях параметров, но начинают осциллировать при значительных изменениях. Увеличьте зону пропорционального регулирования, если это необходимо, чтобы обеспечить стабильность контура при значительных отклонениях от заданного режима.Если этот ускоренный метод оказался в вашем случае неэффективным или если вы хотите действовать более методично, следуйте приведенной ниже методике. Она работает во всех случаях и не оставляет сомнений относительно характеристик контура управления.

Стандартный метод настройки регуляторов

1. Переключите регулятор в ручной режим работы, когда процесс достаточно стабилен и на установке не ожидается резких отклонений от заданного режима. Установите D (производную отклонения или дифференциальную составляющую у некоторых регуляторов) на минимальное, а I (интегральное время или интегральное составляющую у некоторых регуляторов) на максимальное значение.2. Для начала выберите уставку, равную результатам измерения и установите зону пропорционального регулирования (P) на 100% (или коэффициент усиления на 1,0 у некоторых регуляторов). Немного измените выходной сигнал и переключите регулятор в автоматический режим. Зарегистрируйте исходное положение клапана на тот случай, если вам потребуется вернуться к нему в процессе настройки.3. При отсутствии колебаний повторите п. 2, уменьшая зону пропорционального регулирования (возможно, до половины первоначального значения). Продолжайте уменьшать зону пропорционального регулирования, пока не начнутся колебания. Если с первой попытки возникнут колебаний с возрастающей амплитудой, верните регулятор в ручной режим и установите клапан в исходное положение, зарегистрированное в п. 2. Удваивайте зону пропорционального регулирования и повторяйте попытки, пока не получите равномерные или почти равномерные колебания. Замерьте период (определяемый как время отработки одного полного цикла)4. Для ПИ-регулятора:Установите I = период х 0,82.Удвойте зону пропорционального регулирования.Период увеличится приблизительно на 43%. Каждый пик должен составлять примерно половину от амплитуды предыдущего пика. Это называется гашением амплитуды на четверть.Выполните повторную настройку зоны пропорционального регулирования, если необходимо большее или меньшее демпфирование.5. Для ПИД-регулятора:Установите I = период х 0,5.Установите D = период х 0,125.Удвойте зону пропорционального регулирования.Период уменьшится примерно на 15%.Выполните повторную настройку зоны пропорционального регулирования, если необходимо большее или меньшее демпфирование.6. Следует помнить о том, что безопасными являются большие значения I и малые значения D. Данные указания предназначены для регуляторов, настраиваемых в минутах на повтор . Некоторые изготовители используют обратное отношение I и D, при этом наибольшее значение соответствует наименьшему и наоборот.7. При зашумленных результатах измерения (в особенности это относится к контурам Ph) использование дифференциальной составляющей, как правило, невозможно. Ни в коем случае не устанавливайте дифференциальную составляющую, которая превышает интегральную.

Каскадирование и другие виды взаимодействия контуров управления

Сначала выполните настройку вторичного контура (т.е. расхода) в режиме локальной уставки. Уменьшите интегральную составляющую до минимально допустимого значения. Переключите вторичный контур в режим работы с удаленной уставкой и выполните настройку первичного контура (т.е. уровня). Значение интегральной составляющей первичного регулятора не должно быть меньше помноженного на 4 значения интегральной составляющей вторичного регулятора. Эти же правила применимы и для контуров, взаимодействующих через технологический процесс.Примером такого взаимодействия через технологический процесс является контур давления в колонне и температурный контур с компенсацией по давлению, используемые для управления ректификационной колонной. Настройте контур давления (который является самым быстрым контуром в данном примере) на минимальную интегральную составляющую, а затем установите интегральное время регулятора температуры, не менее, чем в 4 раза превышающее интегральное время контура давления. Для проверки взаимодействия этих двух контуров при их циклическом срабатывании с аналогичным периодом, переведите один из контуров в ручной режим. Прекращение цикла указывает на возможное наличие проблемы, вызванной взаимодействием. Переместите контуры или используйте описанную выше методику минимизации колебаний.

С дополнительными материалами по настройке ПИД регуляторов Вы можете ознакомиться здесь.

Узнать больше про регуляторы и алгоритмы работы регуляторов Вы можете здесь.

Для закрепления полученных знаний предлагаем Вам воспользоваться программой имитации контуров регулирования Перейти

kipia-portal.ru

описание, состав, настройка :: SYL.ru

Очень часто для системных процессов необходимо, чтобы контролируемый параметр (например, температура или скорость вращения) был способен мгновенно реагировать на воздействие извне и при этом поддерживать другие значения системных констант, таких как давление, поток и т. п. В качестве примера можно привести насосную систему, которая содержит несколько клапанов для отвода жидкости. Для поддержания постоянного равномерного потока на каждом клапане давление трубопровода должно иметь постоянное значение. Если насос системы управляется приводом, то в случае открытия одного или нескольких клапанов скорость мотора необходимо повышать, а в случае закрытия – понижать. Так в системе будет поддерживаться постоянное давление. Для обеспечения такой работы требуется ПИД-регулятор. Давление системы измеряется датчиком и сравнивается с заданным значением. По результатам сравнения ПИД-регулятор контролирует скорость мотора. В этой статье мы рассмотрим, что же представляет собой такое устройство.

Из чего состоит ПИД-регулятор

С целью устранения ошибок в системе в состав упомянутого устройства входят три составляющих: интегральный, дифференциальный и пропорциональный регуляторы. Пропорциональный прибор является основным там, где задание уровня скорости пропорционально ошибке. Однако если использовать только эту составляющую, то в системе всегда будет присутствовать ошибка. Высокие значения данного устройства приводят к колебаниям и нестабильности системы, а низкие - к «вялости». Интегральный прибор используют для исключения ошибок. Скорость растет до момента исключения погрешности (при отрицательной ошибке – уменьшается). Относительно малые величины интегральной составляющей оказывают существенное влияние на работу прибора в целом. Если установить слишком большое значение, то система начнет работать с перерегулированием. Дифференциальное устройство оценивает скорость изменения ошибок, оно применяется для увеличения скорости системы. Однако при повышении быстродействия регулятора увеличивается и уровень перерегулирования, что может привести к нестабильности системы. Чаще всего данная составляющая выставляется на значение, близкое нулю, однако она может оказаться весьма полезной в системе позиционирования. Свое название ПИД-регулятор получил по первым буквам этих трех компонентов. Как видно из описания прибора, важным требованием к правильной работе устройства является его отладка.

Настройка ПИД-регулятора

Для каждой системы настройка прибора проводится индивидуально, здесь мы рассмотрим основные рекомендации, общие для различных ситуаций:

1. Установить дифференциальную и интегральную составляющие в нуль. Задать максимальную скорость и наблюдать за реакцией.

2. Увеличить пропорциональную составляющую и повторить пункт первый. Продолжать эту процедуру до начала автоколебательного процесса.

3. Уменьшать эту составляющую до стабильности системы.

4. Выставить значение пропорциональной составляющей на 15 % ниже устойчивого.

5. Выставить ступенчато-максимальное значение скорости с помощью изменения интегральной составляющей.

6. Обычно дифференциальный регулятор в настройке не нуждается.

7. Проверить стабильность системы.

Заключение

Применение подобных устройств в технике весьма широко, используют их практически в любой сфере человеческой деятельности. Так, например, ПИД-регулятор температуры присутствует в электрочайнике или в персональном компьютере (в ПК он нужен для регулировки скорости вращения вентиляторов при увеличении температуры процессора).

www.syl.ru

Принцип работы ПИД-регуляторов

Опубликовано 24.05.2016

Принцип работы

Регуляторы процесса

Регуляторы процесса (Process Controllers) – это параметрируемые цифровые контроллеры со встроенным набором стандартных функций для регулирования технологических переменных (температуры, давления и т.п.).

В качестве сигналов задания (Reference) могут использоваться как фиксированные уставки (Fixed Setpoints), так и внешние (External).

Аналоговые входы используются для подключения датчиков обратной связи (термометров сопротивления, термопар, манометров и т.п.).

Дискретные входы используются для задания фиксированных уставок и переключения между режимами.

Дискретные выходы используются для сигнализации: готовности, аварий, состояния.

Релейные выходы используются для дискретного управления, а аналоговые выходы – для непрерывного управления.

Дискретное управление
  • 2-х позиционный регулятор использует только 2 состояния:
    • включено (открыто)
    • выключено (закрыто)
    • Пример: управление нагреванием или охлаждением.
  • 3-х позиционный регулятор использует 3 состояния:
    • выключено
    • вращение по часовой стрелке
    • вращение против часовой стрелки (реверс)
    • Пример: управление реверсивным электродвигателем.
  • 5-и позиционный регулятор использует 5 состояний:
    • выключено
    • вращение на первой скорости по часовой стрелке
    • вращение на второй скорости по часовой стрелке
    • вращение на первой скорости против часовой стрелки
    • вращение на второй скорости против часовой стрелки
    • Пример: управление 2-скоростным реверсивным двигателем.
Непрерывное управление

Для непрерывного управления используются ПИД-регуляторы. Возможна реализация каскадного (подчинённого) управления.

Замкнутая система управления

Переходный процесс

Переходный процесс – это реакция системы на внешнее воздействие (задание, возмущение).

Неустойчивый (расходящийся) переходный процесс
Устойчивый (сходящийся) переходный процесс
КолебательныйАпериодическийМонотонный

ПИД-регулятор

С помощью настройки ПИД-регулятора (PID-controller) мы можем скорректировать переходный процесс так, как нам нужно для решения своей задачи.

Хзад – заданное (желаемое) значение выходной переменнойXmax – верхний допустимый предел выходной переменнойXmin – нижний допустимый предел выходной переменнойТ – период колебанийТн – время нарастанияТр – время переходного процесса (последняя точка пересечения кривой с Xmin или Xmax)А1 – первое перерегулированиеА2 – второе перерегулированиеd=А1/A2 - степень (декремент) затухания переходного процесса (отношение первого перерегулирования ко второму)

Рассогласование, перерегулирование, время нарастания, время переходного процесса, степень затухания характеризуют качество регулирования.

Пример

ПИД-регулятор открывает и закрывает регулирующий вентиль на горячей трубе так, чтобы из крана текла вода с температурой +40°С с погрешностью плюс-минус 2 градуса. Регулятор вычисляет рассогласование (ошибку) - отклонение реальной температуры (например, +20°С) от заданного значения (+40°С) и решает – когда и насколько необходимо приоткрыть горячий вентиль, чтобы температура повысилась на 20С. Реальную (фактическую) температуру регулятор узнаёт с помощью датчика температуры (обратная связь), а заданную температуру (уставку) ему сообщает оператор, например, набирая число «40» на своём ПК.

Чтобы настроить ПИД-регулятор, необходимо подобрать правильную комбинацию трёх коэффициентов:

  • Пропорционального – Kp
  • Интегрального – Ki
  • Дифференциального – Kd

Могут использоваться и более простые - П и ПИ-регуляторы.

Формула ПИД-регулятора

где e(t) - ошибка (рассогласование), u(t) - выходной сигнал регулятора (управляющее воздействие).

Чем больше Пропорциональный коэффициент, тем выше быстродействие, но меньше запас устойчивости. Но! простой П-регулятор не может полностью отработать рассогласование, т.е. всегда работает с ошибкой.

ПИ-регулятор позволяет избавиться от статической (установившейся) ошибки, но, чем больше Интегральный коэффициент, тем больше перерегулирование (динамическая ошибка).

ПИД-регулятор позволяет нам уменьшить перерегулирование, но, чем больше Дифференциальный коэффициент, тем больше погрешность из-за влияния шумов.

Если шумы идут по каналу обратной связи, то мы можем их отфильтровать с помощью фильтра низкой частоты, но чем больше постоянная этого фильтра, тем медленнее регулятор будет отрабатывать возмущения.

Настройка ПИД-регулятора по методу Циглера-Николса

Циглер и Николс предложили свой вариант быстрой настройки ПИД-регулятора для периодического переходного процесса, в котором затухание примерно равно 4.

  • Обнуляем Ki и Kd
  • Постепенно увеличиваем Kp до критического значения Kc, при котором возникают автоколебания
  • Измеряем период автоколебаний Т
  • Вычисляем значения Kp, Ki и Kd по разным формулам для разных регуляторов:
    • для П-регулятора: Kp=0,50*Kc
    • для ПИ-регулятора: Kp=0,45*Kc, Ki=1,2*Kp/T
    • для ПИД-регулятора: Kp=0,60*Kc, Ki=2,0*Kp/T, Kd=Kp*T/8

Каскадный регулятор (подчинённое управление)

Продолжение примера

Теперь нам захотелось добавить комфорта и сделать так, чтобы уставка задания температуры воды менялась в зависимости от температуры воздуха на улице (на улице мороз – вода горячая, на улице жара – вода прохладная). Можно установить ещё один регулятор комфортной температуры, который по показаниям термометра узнаёт фактическую температура наружного воздуха и решает, что комфортная температура воды должна быть, например, +40°С, поэтому он выдаёт задание регулятору температуры воды – поддерживать температуру на уровне +40С (см. пример выше). Здесь мы имеем каскадное регулирование: контур регулирования температуры воды подчинён контуру регулирования комфортной температуры воды.

С помощью регуляторов процесса мы можем реализовать и более сложные связи. Например, поддерживать постоянный расход и температуру воды, независимо от давления и температуры горячего и холодного трубопроводов.

Упреждающее регулирование (Feedforward Control)

Не всегда простой ПИД-регулятор в системе с обратной связью может обеспечить требуемое быстродействие из-за возникновения нежелательных колебаний или недопустимо большого перерегулирования. Для улучшения характеристик регулирования применяют комбинированное управление – с обратной связью (closed-loop) и без обратной связи (open-loop). К управляющему воздействию (выходу регулятора) добавляется сигнал упреждающего воздействия, который не зависит от рассогласования, а значит, не может вызвать автоколебания в системе.

Продолжение примера
Если мы доверяем прогнозу погоды, то вместо каскадного управления мы можем реализовать упреждающее регулирование без измерения уличной температуры: читаем прогноз на завтра, задаём уставку +40°С по таймеру времени на завтра на 7 утра.

Если измерить возмущение, то можно подать упреждающее воздействие, которое компенсирует влияние этого возмущения на процесс до того, как начнёт изменяться регулируемый параметр.

www.maxplant.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.