Подключение асинхронного двигателя к однофазной сети (видео, схема)
После своего изобретения трехфазные двигатели успешно используются до сих пор без каких-либо существенных изменений. Подключение асинхронного двигателя к однофазной сети было лишь делом времени, так как они намного проще в эксплуатации и обслуживании, чем их коллекторные собратья. А ведь в домашних условиях используется именно однофазная сеть, а хороший двигатель нужен не только на производстве. Какие электрические машины можно использовать дома или на даче, и как правильно их запустить в работу от обычных 220 В?
Одна фаза вместо трех
Самый распространенный вариант – трехфазный асинхронный двигатель. В пазах неподвижного статора уложены три обмотки со сдвигом 120 электрических градусов. Для пуска необходимо через них пропустить трехфазный ток, который, проходя по каждой обмотке в разное время, создает вращающий момент, раскручивающий ротор. При подключении однофазной сети такого не происходит. Поэтому здесь необходимы дополнительные элементы, такие как фазосдвигающий конденсатор. Это самый простой способ.
На скорость вращения ротора это не повлияет, а вот мощность такой электрической машины упадет. В зависимости от нагрузки на валу, емкости конденсатора, схемы подключения, потери составляют 30–50 %.
Стоит сразу отметить, что аппараты не всех марок работают по однофазной схеме. Но все-таки большинство позволяет проводить с собой подобные манипуляции. Всегда стоит обращать внимание на прикрепленные таблички. Там есть все характеристики, глядя на которые можно увидеть, какая это модель и где она будет работать.
Из первой картинки (А) можно сделать вывод, что данный двигатель рассчитан на два напряжения – 220 и 380 В. Включение обмоток – треугольник и звезда. От обычной домашней сети его запустить можно (есть соответствующее напряжение), и желательно треугольником.
Вторая (Б) показывает: электрическая машина рассчитана на 380 В, включение звездой. Теоретически, на меньшее напряжение переключиться возможно, но для этого нужно разбирать корпус, искать соединение обмоток и переключать их на треугольник. Можно, конечно, ничего не переключать просто поставив конденсатор. Однако потери мощности будут колоссальными.
Если на табличке написано: Δ/Ỵ 127/220, то к сети 220 В такой аппарат можно включать только звездой, иначе он сгорит!
Подключение фазосдвигающего конденсатора
Оптимальный вариант подключения трехфазной машины в работу от 220 вольт, это треугольником. Так потери составят около 30%. Два конца в борне идут непосредственно к сети, а между третьим концом и любым из этих двух включают конденсатор.
Такой пуск возможен если нет никакой серьезной нагрузки: например, при подключении вентилятора. Если будет нагрузка, то ротор либо не будет крутиться вообще, либо запуск будет происходить очень долго. В этом случае стоит добавить пусковой конденсатор.
При этом будет хорошо использовать выключатель, у которого один контакт замыкался бы и фиксировался, пока его не отключишь, а другой отключался, когда его отпускают. Так можно на непродолжительное время подсоединять в работу пусковой конденсатор. Направление вращения изменяется переключением конденсатора в схеме на другую фазу.
На практике это может выглядеть так:
Схема для пуска в работу трехфазного двигателя к однофазной цепи звездой тоже несложная. Потери будут больше, но иногда другого выхода просто нет.
Расчет конденсатора
Вполне естественный вопрос о том, конденсатор с какими параметрами нужно использовать для запуска и работы такого аппарата. Все зависит от того, звездой или треугольником соединены обмотки на трехфазной машине.
- Для звезды существует такой расчет: Cр = 2800•I/U.
- Треугольник:Cр = 4800•I/U.
Cр– емкость рабочего конденсатора в микрофарадах, I – ток в амперах, U – напряжение сети в вольтах.
- Ток можно посчитать таким образом: I = P/(1.73•U•n•cos ф).
Р – это мощность асинхронного аппарата, написанная на его бирке,n – его КПД. Он указан там же, рядом написан и cos ф.
Есть и упрощенный вариант расчета. Он выглядит таким образом: C = 70•Pн, где Pн – это номинальная мощность, кВт (на бирке). Из этой формулы можно сделать вывод, что на каждые 100 Вт должно быть около 7 мкФ емкости.
При завышенной емкости конденсатора обмотки будут сильно греться, при заниженной ротор будет тяжело раскручиваться. Поэтому идеальным вариантом является, когда после всех расчетов делается своеобразная «подгонка»: замеряется ток при помощи клещей и добавляются или убираются дополнительные конденсаторы.
Если нужен пусковой конденсатор, то необходимо подобрать его так, чтобы общая емкость (Ср+Сп) в 2–3 раза превышала рабочую(Ср).
Постепенный разгон
Как можно осуществить плавный пуск асинхронного двигателя в однофазной сети? Стоит сразу оговориться, что для домашнего использования это обойдется дорого. Сама схема очень сложна и пробовать собрать ее самостоятельно не имеет смысла. Существуют специальные устройства плавного пуска, которые успешно используются для этой цели. Суть их заключается в том, что первые секунды включения напряжение питания подается заниженным, вследствие чего занижен пусковой момент.
Но так как частота вращения роторатаких аппаратов зависит от частоты питающего напряжения, а не от его величины, то такой вариант подходит только тогда, когда нет значительной нагрузки на валу: насосы, вентиляторы. Если есть нагрузка, тогда лучше всего использовать частотный преобразователь. Он также обеспечит плавный запуск, а также много других замечательных возможностей. Правда, стоит он дороже. Из этого следует вывод: такие устройства больше подходят для использования на производстве, пусть даже небольшом. Для дома это дорого.
Как видно, этот частотник можно питать как трехфазным напряжением, так и одной фазой.
Одна фаза
Для того чтобы выполнить подключение однофазного асинхронного двигателя, достаточно двух кнопок: одна с фиксатором, другая без него. Стандартная схема: две обмотки, включенные последовательно (хотя, в зависимости от модели, могут быть варианты). Та, у которой большее сопротивление – пусковая, другая – рабочая.
Каждая модель электрической машины имеет свои характеристики, а значит, и варианты подключения могут различаться. У некоторых для запуска используется два конденсатора, у других – один.
Следовательно, начинать необходимо с выяснения модели и ее технических характеристик.
Как видно, запуск короткозамкнутых электрических машин возможен по-разному. Подключение возможно как в домашних условиях, так и на производстве, что сделало их такими популярными. И, по большому счету, более чем за сто лет не было придумано ничего лучше.
Схема подключения электродвигателя на 220в через конденсатор: рассчитываем необходимую емкость
Автор Aluarius На чтение 6 мин. Просмотров 9.5k. Опубликовано
Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.
Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.
Что при этом получается?
- Скорость вращения не изменяется.
- Мощность сильно падает. Конечно, говорить о конкретных цифрах здесь не приходиться, потому что падение мощности будет зависеть от разных факторов. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Но в любом случае потери будут составлять от 30 до 50 процентов.
Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.
Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.
Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.
И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.
Схемы подключения
Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:
- Два контакта подсоединяются к сети.
- Один через конденсатор к обмотке.
Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться. Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой. На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.
В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.
Как рассчитать емкость
Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.
Соединение звездой:
Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.
Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:
I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.
Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:
C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.
Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.
- Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой.
- Низкая мощность двигателя, значит, емкость занижена.
Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).
Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.
Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.
В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.
схема и правильное подключение к трехфазному асинхронному электродвигателю, принципы использования
Частотные преобразователи используются для подключения различных электродвигателей и позволяют регулировать такие характеристики, как скорость вращения ротора, момент силы вала и защищают от перегрузок и перегрева. Также такие устройства дают возможность подключать трехфазное оборудование в однофазную систему без потери мощности и перегрева обмоток двигателя.
Разновидности частотных преобразователей
Современные частотные преобразователи различаются многообразием схем, которые можно сгруппировать в несколько категорий:
- Высоковольтные двухтрансформаторные
Принцип работы такого прибора заключается в последовательном преобразовании напряжения при помощи понижающего и повышающего трансформатора, преобразования частоты низковольтным преобразователем, а также сглаживание пиковых перенапряжений на выходе с помощью синусоидального фильтра. Схема работы выглядит следующим образом: питающее напряжение 6000 В подается на понижающий трансформатор и на его выходе получают 400 (660) В, далее оно подается на низковольтный преобразователь и после изменения частоты подается на повышающий трансформатор для увеличения значения напряжения до начального.
- Тиристорные преобразователи
Такие устройства состоят из многоуровневых частотных преобразователей на основе тиристоров. Конструктивно они состоят из трансформатора (обеспечивающего понижение питающего напряжения), диодов (для выпрямления) и конденсаторов (для сглаживания). Также для уменьшения уровня высших гармоник применяют многопульсные схемы.
Тиристорные преобразователи имеют высокий КПД до 98 % и большой диапазон выходных частот 0-300 Гц, что для современного оборудования является положительной и востребованной характеристикой.
- Транзисторные частотные преобразователи
Такие частотные преобразователи являются высокотехнологичными устройствами, которые собираются на транзисторах различного типа. Конструктивно они имеют транзисторные инверторные ячейки и многообмоточный сухой трансформатор специальной конструкции. Управляют таким преобразователем с помощью микропроцессора, что позволяет тонко настраивать работу оборудования и контролировать весь процесс работы различных двигателей. Транзисторные частотные преобразователи, так же, как и тиристорные, имеют высокий КПД и широкий диапазон регулирования частоты.
Как подключить частотный преобразователь
Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем. Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь.
При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.
Схема подключения ПЧ
Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».
Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.
Обратите внимание! Частотный преобразователь может иметь дополнительные настройки, выполняемые с помощью DIP-переключателей, а также встроенным программным обеспечением.
Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.
Для трехфазного электродвигателя
Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».
Для однофазного электродвигателя
Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.
Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств. Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки.
Однофазный двигатель с конденсатором — советы электрика
Однофазные электродвигатели 220в: особенности подключения
В наше время трудно найти человека, который бы не знал что такое однофазный электродвигатель. Однофазные электродвигатели 220 в выпускаются серийно уже довольно много лет. Они востребованы в сельском хозяйстве, быту человека, на производстве, в частных и государственных мастерских. Однофазные двигатели 220 В пользуются высокой популярностью.
Общие понятия
Асинхронный двигатель 220 вольт, однофазный, требует питания переменным электрическим током, сеть для подключения такого агрегата должна быть однофазной. Однофазные двигатели 220 в работают при напряжении в сети 220 вольт, частоте 50 герц.
Эти электрические величины поддерживаются во всех бытовых электрических сетях, в домах, квартирах, дачах, коттеджах, по всей территории России, а в США напряжение в бытовой электрической сети составляет 110 вольт.
На производстве же в нашей стране сетевое напряжение имеется однофазное, трёхфазное, и другие виды электрических сетей.
Применение однофазных моторов
Такой тип моторов применяют для работы устройств с малой мощностью.
- Бытовая техника.
- Вентиляторы небольшого размера.
- Электронасосы.
- Станки, предназначенные для обработки сырья.
Заводы производят электродвигатели однофазные 220 В малой мощности различных моделей, с разным числом оборотов и мощностью. Стоит отметить, что однофазные моторы уступают трёхфазным в нескольких параметрах.
- Эти моторы имеют меньшие значения КПД.
- Пускового момента.
- Мощности.
- Способность выдерживать перегрузку у трёхфазных электромоторов выше, чем у однофазных.
Эти параметры меньше при условии, когда трёхфазные моторы имеют такой же размер.
Устройство электродвигателя
Однофазные двигатели 220 В имеют две фазы, но основная работа выполняется одной, и такие моторы стали называть однофазными. В состав мотора входят следующие детали.
- Статор, или неподвижная часть мотора.
- Ротор, или подвижная (вращающаяся) часть мотора.
Однофазный электромотор можно охарактеризовать как асинхронный электрический мотор, в котором имеется рабочая обмотка на его неподвижной части, она подключается к сети переменного однофазного тока.
Пусковая катушка
Для того чтобы однофазный мотор мог самостоятельно запускаться и начинать вращение, на них устанавливается ещё одна катушка. Она разработана для запуска двигателя.
Пусковая катушка устанавливается по отношению к рабочей со смещением на 90 градусов. Для того чтобы получить сдвиг токов, следует установить в цепь звено, которое будет сдвигать фазы.
В качестве фазосдвигающего звена могут выступать несколько средств.
- Активный резистор.
- Конденсатор.
- Катушка индуктивности.
Ротор и статор мотора металлические. Для того чтобы изготовить ротор или статор, нужна специальная электротехническая сталь марки 2212.
Двух и трёхфазные моторы
Существует возможность 2 или 3-фазный мотор подключить к однофазному источнику питания. Иногда по ошибке такие моторы называют однофазными. Это заблуждение, правильно будет называть это «двух (или трёх) фазный электромотор, подключённый в однофазную сеть питания переменного тока». Просто подключить двух или трёхфазный мотор в однофазную сеть не получится. Нужна схема согласования.
Таких схем есть несколько, согласование можно реализовать при помощи конденсаторов. После подключения к мотору конденсаторов согласно схеме, мотор будет работать, причём все фазы мотора будут работать, они всё время будут находиться под напряжением и выполнять работу по вращению ротора.
Принцип действия
Переменный электроток создаёт магнитное поле в статоре, которое имеет два поля, они одинаковы по амплитуде, частоте, но разнонаправленны.
Эти поля воздействуют на неподвижный ротор, и, вследствие того, что поля разнонаправленны, ротор начинает вращение. При отсутствии в моторе пускового механизма, то ротор будет стоять на месте.
Ротор, начав вращение в одну сторону, будет вращаться далее в этом же направлении.
Запуск мотора
Посредством магнитного поля производится запуск мотора, магнитное поле, воздействуя на ротор, принуждает его вращаться. Создают магнитное поле главная и дополнительная катушки, пусковая имеет меньший размер, подключается она к дополнительной через конденсатор, катушку индуктивности или активный резистор.
Если мотор низкой мощности, пусковая фаза замкнута. Чтобы запустить такой двигатель, подключать электричество к пусковой катушке можно лишь временно, не более чем на три секунды. Для этого существует пусковая кнопка. Кнопка вставлена в пусковое устройство.
Когда происходит нажатие пусковой кнопки, происходит подача электроэнергии на рабочую и на пусковую катушку одновременно, двигатель в эти первые секунды запуска работает как двухфазный, но через три секунды ротор уже набрал обороты, мотор запустился, и кнопка отпускается. Прекращается подача электроэнергии на пусковую катушку, но подача электричества на рабочую обмотку не прекращается, так устроено пусковое устройство, затем устройство работает уже как однофазное.
Важно помнить, что не следует долго держать пусковую кнопку, так как пусковая катушка может перегреться и выйти со строя, она рассчитана на работу несколько секунд. Для обеспечения безопасности в корпусе однофазного силового агрегата может быть встроено тепловое реле, центробежный выключатель.
Центробежный выключатель устроен таким образом, что когда ротор набрал обороты, центробежный выключатель выключается сам, без вмешательства человека. Пусковой ток однофазного двигателя выше рабочего, после запуска ток снижается до уровня рабочего.
Схему подключения однофазного двигателя смотрите здесь.
Тепловое реле
Тепловое реле действует следующим образом: при нагревании обмоток до установленного на реле предела, реле производит прекращение подачи электроэнергии на обе фазы, таким образом, исключается выход из строя при перегрузке или другой причине, это не даст возникнуть пожару.
Достоинства
К положительным качествам такого мотора можно отнести простоту его устройства, ротор в этой конструкции короткозамкнутый, обмотка статора не представляет собой большой сложности.
Недостатки
Кроме достоинств, в этом моторе имеются и некоторые недостатки.
- Невысокий пусковой момент мотора.
- Низкий КПД электродвигателя.
- Электродвигатель не способен генерировать магнитное поле, которое выполняет вращение.
По этой причине такой двигатель сам не может начать вращение. Дело в том что для того, чтобы мотор начал вращение, он должен иметь не менее двух обмоток, а следовательно, и двух фаз, но мотор имеет одну фазу изначально, таково его устройство. Кроме наличия двух фаз, требуется чтобы одна обмотка была смещена по отношению к другой на определённый угол.
Подключение двигателя
Подключать двигатель нужно в однофазную сеть переменного напряжения 220 вольт, частотой 50 герц. Эти номиналы электроэнергии имеются во всех жилых помещениях нашей страны, и вследствие этого однофазные моторы имеют огромную популярность. Они установлены во всей бытовой технике, такой как.
- Холодильник.
- Пылесос.
- Соковыжималка.
- Триммер.
- Кусторез электрический.
- Швейная машинка.
- Электродрель.
- Миксер кухонный.
- Вентилятор.
- Насос водяной.
Разновидности подключения
- Подключение с пусковой катушкой.
- Подключение с рабочим конденсатором.
Электродвигатели однофазные 220 В малой мощности с пусковой катушкой имеют включённый в цепь конденсатор во время старта. После разгона ротора катушка отключается. Если мотор сделан с рабочим конденсатором, цепь пуска не размыкается, идёт постоянная работа пусковой обмотки через конденсатор.
Существует возможность использовать один электромотор для разных целей. Один и тот же мотор можно снять с одной техники и установить на другую. Включать однофазный двигатель можно тремя схемами.
- Происходит временное включение электричества на пусковую обмотку через конденсатор.
- Происходит кратковременная подача напряжения на пусковое устройство через резистор, без конденсатора.
- Электричество подаётся через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.
При использовании в цепи пуска резистора, обмотка будет иметь активное сопротивление выше. Произойдёт сдвиг фаз, достаточный для начала вращения. Можно использовать пусковую обмотку, в которой большее сопротивление и меньшая индуктивность. Чтобы обмотка соответствовала своим параметрам, она должна иметь меньше витков, тоньше провод.
Конденсаторный пуск представляет собой подключение конденсатора к пусковой обмотке и временную подачу электроэнергии.
Обратите внимание
Чтобы достичь максимального значения момента пуска, нужно круговое магнитное поле, оно должно выполнить вращение. Для этого нужно расположение обмоток под углом 90 градусов. Такого сдвига резистором добиться невозможно.
Если ёмкость конденсатора рассчитать правильно, то удастся сдвинуть обмотки под угол 90 градусов.
Вычисление принадлежности проводов
Чтобы вычислить провода, подключающие пусковую обмотку и рабочую, нужно иметь прибор, измеряющий омы или тестер. Нужно замерять сопротивления обмоток.
Сопротивление рабочей обмотки должно быть меньше, чем пусковой. Например, если замеры показали у одной обмотки 12 Ом, а у другой 30 Ом, то первая из них рабочая, а вторая пусковая.
Рабочая обмотка будет иметь большее сечение чем пусковая.
Подборка ёмкости конденсатора
Чтобы подобрать ёмкость конденсатора, нужно знать, какой ток потребляет электромотор. Если он потребляет ток 1,4 ампера, то нужен конденсатор, ёмкость которого составляет 6 микрофарад.
Проверка работоспособности
Начать проверку следует с визуального осмотра.
- Если у агрегата была отломана опора, то вследствие этого он тоже мог работать плохо.
- В случае если потемнел корпус посередине, это говорит о том что он чрезмерно перегревался.
- Возможно, что в разрез корпуса попали разные посторонние вещи, это будет замедлять его и способствовать перегреву.
- Если подшипники загрязнены, будет происходить перегревание.
- Износ подшипников будет причиной перегревания.
- Если к пусковой обмотке 220v подключён конденсатор завышенной ёмкости, то он будет перегреваться. При подозрении на конденсатор нужно отключить его от пусковой обмотки, включить двигатель в сеть, вручную прокрутить вал, произойдёт запуск и начнётся вращение. Нужно дать мотору поработать около пятнадцати минут, затем проверить, не нагрелся ли он. Если мотор не нагрелся, то причина была в повышенной ёмкости конденсатора. Нужно установить конденсатор меньшей ёмкости.
Электродвигатели однофазные 220 в малой мощности выпускаются совершенно разных моделей и для разных целей, и, прежде чем купить изделие, нужно чётко понимать, какова нужна мощность, тип крепления, количество оборотов в минуту, и прочие характеристики.
Источник: https://obrabotkametalla.info/elektrik/odnofaznye-elektrodvigateli-220v
Схема подключения однофазного двигателя с пусковой обмоткой
Как определить рабочую и пусковую обмотки у однофазного двигателя
Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.
Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.
У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.
У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.
То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.
Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.
Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.
Рис. 1. Рабочая и пусковая обмотки однофазного двигателя
А теперь несколько примеров, с которыми вы можете столкнуться:
Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в.
Важно
И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку.
Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.
Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов.
Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.
Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.
Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только.
В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя.
также осуществляется через конденсатор.
Источник: http://studvesna73.ru/07/23/5772/
Трехфазный асинхронный двигатель – подключение на 220 вольт
Бытовых ситуаций много, особенно у тех, кто проживает в своем собственном частном доме. К примеру, необходимо установить в гараже точильный станок с асинхронным электродвигателем, который работает от трехфазной сети переменного тока.
А на участок проведена лишь однофазная сеть на 220 В. Что делать? В принципе, это не проблема, потому что любой трехфазный электрический движок можно подключить и к однофазной сети, главное знать, как это сделать.
Итак, наша задача в этой статье разобраться в позиции – асинхронный двигатель подключение на 220 вольт.
Совет
Существуют две классические схемы такого подключения, в которых присутствуют конденсаторы. То есть, сам электродвигатель становится не асинхронным, а конденсаторным. Вот эти схемы:
Конечно, это не единственные варианты, но в этой статье будем говорить именно о них, как о самых простых и часто используемых.
На схемах хорошо видно, что в них установлены конденсаторы: рабочий и пусковой, которые в свою очередь называются фазосдвигающими. А так как в данной схеме эти элементы являются основными, то самый важный момент – это правильно подобрать конденсатор по емкости, которая бы соответствовала мощности мотора.
Выбираем конденсаторы
Существует формула, по которой емкость можно рассчитать. Правда, для схемы звезда и треугольника она отличается коэффициентом. Для схемы звезда формула вот такая:
С=2800*I/U, где I – это ток, который можно замерить в питающем проводе клещами, U – это напряжение однофазной сети – 220 В.
https://www.youtube.com/watch?v=Ne4ccjbUY9M
Формула для треугольника:
С=4800*I/U.
Здесь загвоздка может быть только в определение силы тока, просто клещей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:
С=66*Р, где Р – это мощность электродвигателя, которая наносится на шильдик мотора или в его паспорте. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя.
Обычно электрики берут именно это соотношение, когда перед ними ставиться вопрос, как подключить асинхронный двигатель с 380 на 220 В. И еще один момент – конденсатор контролирует силу тока, поэтому так важно правильно подобрать его емкость.
И самое главное в подключении двигателя добиться того, чтобы значение тока при эксплуатации электродвигателя не поднималось выше номинальной величины.
Что касается пускового конденсатора, то его обязательно устанавливают в схему, если при пуске мотора действует хотя бы минимальная нагрузка. Включается он обычно буквально на пару секунд, пока ротор не наберет свои обороты. После чего он просто отключается. Если по каким-то причинам пусковой конденсатор не отключится, то произойдет перекос фаз, и двигатель перегреется.
Есть еще один показатель, на который необходимо обратить внимание при выборе. Это напряжение. Правило здесь одно: напряжение конденсатора должно быть больше напряжения в однофазной сети на 1,5.
Тип конденсаторов
Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе.
Правда, есть у них один существенный недостаток – большие габаритные размеры.
Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.
Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.
Полезные советы
- Обращаем ваше внимание на тот факт, что при подключении трехфазного двигателя к однофазной сети можно говорить и снижении мощности электрического агрегата. В общем, его фактический показатель не будет превышать номинальный 70-80%. При этом скорость вращения ротора не уменьшится.
- Если используемый движок имеет схему переключения 380/220, это обязательно указывается на шильдике, то в однофазную сеть его надо подключать только треугольником.
- В том случае, если на шильдике указаны схема подключения звездой и только трехфазное подключение на 380 вольт, то вам придется вскрыть клеммную коробку и добраться до соединения концов обмоток двигателя. Потому что внутри агрегата уже установлена схема звезда, ее-то и придется разобрать и вывести наружу шесть концов обмотки статора.
Установка реверса
Иногда возникает необходимость провести подключение так, чтобы трехфазный двигатель, подсоединенный к однофазной сети, вращался то в одну, то в другую стороны. Для этого необходимо установить в схему любой управляющий прибор. Это может быть тумблер, кнопка или ключи управление. Но здесь есть два основных требования:
- Обращайте внимание на силу тока, которую этот управляющий прибор может выдержать. Чтобы он был больше нагрузки, создаваемой электродвигателем.
- В конструкции управляющего прибора должно быть две пары контактов: нормально замкнутые и нормально разомкнутые.
Вот схема, по которой подключается этот элемент в питание электродвигателя:
Здесь видно, что реверс осуществляется подачей электроэнергии на разные полюса конденсаторов.
Заключение по теме
Схема трехфазного асинхронного двигателя с подключением к 220 вольт – дело реальное. Проблем с ним быть не должно. Здесь главное, и это было показано в статье, правильно подобрать конденсаторы (рабочие и пусковые) и правильно выбрать схему подключения. Особое внимание придется уделить правилам соединения, где в основе будет лежать сам двигатель, а, точнее, его возможности.
Источник: http://OnlineElektrik.ru/eoborudovanie/edvigateli/trexfaznyj-asinxronnyj-dvigatel-podklyuchenie-na-220-volt.html
Как подключить однофазный электродвигатель через конденсатор – особенности разных схем
Главная » Электрооборудование » Электродвигатели » Однофазные » Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения
Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения
В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.
Такое поле легко создается при наличии трехфазной сети. В этом случае в статоре двигателя достаточно расположить три обмотки, размещенные под углом 120 градусов друг от друга и подключить к ним соответствующее напряжение. И круговое вращающееся поле начнет вращать статор.
Однако бытовые приборы обычно используются в домах, в которых чаще всего имеется только однофазная электрическая сеть. В этом случае обычно применяются однофазные двигатели асинхронного типа.
Почему применяют запуск однофазного двигателя через конденсатор?
Если на статоре двигателя поместить одну обмотку, то при протекании переменного синусоидального тока в ней образуется пульсирующее магнитное поле. Но это поле не сможет заставить ротор вращаться. Чтобы запустить двигатель надо:
- на статоре разместить дополнительную обмотку под углом около 90° относительно рабочей обмотки;
- последовательно с дополнительной обмоткой включить фазосдвигающий элемент, например, конденсатор.
В этом случае в двигателе возникнет круговое магнитное поле, а в короткозамкнутом роторе возникнут токи.
Взаимодействие токов и поля статора приведет к вращению ротора. Стоит напомнить, что для регулировки пусковых токов — контроль и ограничение их величины — используют частотный преобразователь для асинхронных двигателей .
Варианты схем включения — какой метод выбрать?
- пусковым,
- рабочим,
- пусковым и рабочим конденсаторами.
Наиболее распространенной методом является схема с пусковым конденсатором .
В этом случае конденсатор и пусковая обмотка включаются только на момент старта двигателя. Это связано со свойством продолжения агрегатом своего вращения даже после отключения дополнительной обмотки. Для такого включения чаще всего используется кнопка или реле .
Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время.
Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле.
Обратите внимание
Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.
Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.
Это связано с принципом работы асинхронного двигателя. когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД.
Есть несколько вариантов подключения асинхронных двигателей под рабочее напряжение. Соединение звездой и треугольником (а также комбинированный способ) имеют свои преимущества и недостатки. Выбранный метод включения влияет на пусковые характеристики агрегата и его рабочую мощность.
Принцип действия магнитного пускателя основан на возникновении магнитного поля при прохождении электричества через втягивающую катушку. Подробнее об управлении двигателем с реверсированием и без читайте в отдельной статье.
Более хорошие рабочие характеристики можно получить при использовании схемы с рабочим конденсатором .
В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики.
Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.
Важно
При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся.
В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения.
Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами. Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.
В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.
Подключение конденсаторов для запуска однофазных электродвигателей
Перед подключением к двигателю можно проверить конденсатор мультиметром на работоспособность.
При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.
Наличие трехжильной проводки в частном доме предполагает использование системы заземления. которую можно сделать своими руками. Как заменить электропроводку в квартире по типовым схемам, можно узнать здесь .
При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового.
При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.
Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.
- Однофазный асинхронный двигатель широко используется в бытовых приборах.
- Для запуска такого агрегата необходима дополнительная (пусковая) обмотка и фазосдвигающий элемент — конденсатор.
- Существуют различные схемы подключения однофазного электродвигателя через конденсатор.
- Если надо иметь больший пусковой момент, то используется схема с пусковым конденсатором, при необходимости получения хороших рабочих характеристик двигателя используется схема с рабочим конденсатором.
Подробное о том, как подключить однофазный двигатель через конденсатор
http://elektrik24.net
Источник: http://legkoe-delo.ru/remont-avtomobilya/avto/82223-kak-podklyuchit-odnofaznyj-elektrodvigatel-cherez-kondensator-osobennosti-raznykh-skhem
Подключение однофазного двигателя
Прежде чем приступить к подключению любого электродвигателя, необходимо быть полностью уверенным, что двигатель рабочий. Провести полную ревизию для проверки качества подшипников, отсутствия люфтов на посадочных местах ротора и в крышках двигателя. Провести проверку обмоток на замыкание между собой и на корпус.
Так-же при подключении необходимо соблюдать технику безопасности, быть предельно внимательным и работать без спешки.
Для подключения однофазного электродвигателя с пусковой обмоткой нам понадобится включатель с пусковым контактом – ПНВС. Число после букв означает силу тока на которую рассчитан данный выключатель.
Совет
В предыдущей статье я рассказал как определить тип двигателя, трёхфазный он или однофазный.
И если вы сомневаетесь в том, конденсаторный это двигатель или с пусковой обмоткой, то вам необходимо сначала подключить двигатель как с пусковой обмоткой и если он не запустится значит он конденсаторный.
Для того, чтобы узнать какая из двух обмоток является рабочей, необходимо измерить их сопротивление. Та катушка, которая будет иметь меньшее сопротивление является рабочей. Исключение составляет очень небольшой процент конденсаторных двигателей, у которых и рабочая обмотка и конденсаторная одинаковы и имеют одно сопротивление.
Пусковая обмотка подключается только для запуска двигателя и после того как двигатель набрал обороты – отключается. В работе остаётся только рабочая обмотка. Правильно намотанный двигатель, с проведённой ревизией без нагрузки на валу выходит на положенные обороты не больше чем за несколько секунд, но чаще – мгновенно. Поэтому при пробном пуске двигатель должен быть надёжно закреплён.
Чтобы запустить двигатель с пусковой обмоткой необходимо подключить его по такой схеме:
Один конец рабочей и пусковой соединяем вместе и подключаем к одной из крайних клейм кнопки. Это будет общий провод. Второй конец рабочей обмотки подключаем ко второй крайней клейме кнопки. А оставшийся провод пусковой катушки соединяем со средней клеймой кнопки.
При этом мы задействуем клеймы только с одной стороны кнопки. Три клеймы с другой стороны пока остаются свободными. К двум крайним из них подключаем сетевой шнур. А к центральной клейме подводим перемычку от той крайней клеймы, напротив которой подсоединён один рабочий провод.
Закрываем крышку кнопки, закрепляем двигатель, делаем пробное включение-выключение кнопки чтобы убедится в её работоспособности и знать что она находится в выключенном состоянии. Включаем вилку в розетку, нажимаем кнопку пуск и удерживаем до набора двигателем оборотов.
Но не более нескольких секунд. Затем кнопку отпускаем. Если двигатель гудит, но вращаться не начинает, значит двигатель конденсаторный и подключать его нужно по другой схеме.
Для подключения конденсаторного двигателя пусковая кнопка не нужна.
Обратите внимание
Поэтому подойдёт любой подходящий по мощности пускатель, тумблер или выключатель который может смыкать и размыкать одновременно два контакта.
Соединяем один конец рабочей и один конец пусковой обмоток вместе и подводим к одной из клейм выключателя. Вторые концы обмоток подключаем к разным выводам конденсатора и при этом провод от рабочей катушки подводим ещё и к второй клейме выключателя. На противоположенные клеймы выключателя подключаем сетевой шнур.
Переключаем тумблер в положение выключено, проверяем надёжность закрепления двигателя, включаем вилку в розетку и включаем тумблер. Двигатель без нагрузки на валу должен запуститься мгновенно.
Для того, чтобы однофазный двигатель вращался в другую сторону, необходимо поменять выводы одной из обмоток местами.
Если нам необходимо чтобы двигатель вращался и в одну и в другую стороны, то необходимо поставить тумблер реверса. Причём поставить его так, чтоб мы не могли переключить его во время работы двигателя. Это касается конденсаторного двигателя. Тумблер должен быть на 2 или 3 положения и иметь шесть выводов.
В одном положении два средних вывода замыкаются с двумя крайними, а в другом с двумя другими крайними. Подключаем два провода одной из катушек двигателя к центральным клеймам переключателя, а крайнии клеймы соединяем по диагонали и отводим от них два провода которые подключаем туда, откуда отключили концы обмотки. Теперь при переключении тумблера двигатель будет запускаться в другую сторону.
Схема реверса однофазного двигателя с пусковой обмоткой и кнопкой ПНВ.
О том как подобрать конденсатор к конденсаторному двигателю я расскажу в одной из следующих статей.
Источник: http://shenrok.blogspot.com/p/blog-page_18.html
Как подключить однофазный электродвигатель
Электричество сегодня является основным источником, обеспечивающим работу большого количества механизмов. Для выполнения таких процессов применяют несколько видов двигателей.
Они могут быть, как одно-, так и трехфазными и отличаться принципом подключения. Более подробно узнать о подобных конструкциях можно на сайте http://ovk.dp.ua/odnofaznyye-elektrodvigateli/.
Варианты подключения
Пуск однофазных асинхронных двигателей зачастую осуществляется с помощью конденсатора. Для таких целей можно использовать несколько основных вариантов, которые отличаются способом подключения ранее указанного элемента:
- Пусковая схема предполагает применение конденсатора в качестве системы для запуска. Следует отметить, что такой способ, хотя и обеспечивает неплохие пусковые параметры, но рабочие характеристики при этом несколько ухудшаются.
- Схемы с рабочим конденсатором. Отличительной особенностью такой конструкции является то, что он не отключается после запуска двигателя. Данный вариант запуска уже наоборот снижает пусковые показатели.
- Оптимальной схемой подключения является применение пускового и рабочего конденсатора. Это позволит добиться усредненных показателей, как при запуске, так и рабочей мощности.
Подключение конденсатора
Следует понимать, что такой способ подключения не является единственным. Существуют и другие варианты, зависящие в основном от типа двигателя.
Но если все же вы выбрали схемы с конденсаторами, тогда вам следует выполнить несколько простых рекомендаций:
- В первую очередь следует произвести расчеты всех параметров подобных конструкций. Выполняется это согласно определенным схемам, которые желательно тщательно изучить, чтобы понимать весь принцип расчета.
- Затем покупается конкретный конденсатор, который желательно проверять на работоспособность с помощью специальных мультиметров.
- Также ранее следует определить конкретную схему, которая может меняться в зависимости от ваших потребностей. Обратите внимание, что из обмотки двигателя может выходить несколько проводов, что и позволяет варьировать все параметры и способы соединения.
Не следует выполнять подобные операции, если вы не разобрались с работой двигателя. Это может привести к выходу его из строя (перегорание обмотки и т.д.). Альтернативным вариантом подключения является доверие подобных работ опытному электрику, который сделает все качественно и надежно.
Источник: http://stroybud.com/kak-podklyuchit-odnofaznyiy-elektrodvigatel/
Подключение трёхфазного двигателя к однофазной сети
Автор: admin, 31 Мар 2013
В этой статье рассмотрим подключение трёхфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего конденсатора, а также расчёт ёмкости пускового и рабочего конденсаторов, подключение трёхфазного двигателя «звездой» и «треугольником».
Самый простой пуск трёхфазного двигателя в однофазной цепи возможен с помощью фазосдвигающего конденсатора, включённого в третью обмотку двигателя. КПД(коэффициент полезного действия) двигателя в этом случае будет около 60% (по сравнению с трёхфазным включением).
При пуске маломощного асинхронного электродвигателя ( до 500 Вт), или при пуске двигателя без нагрузки на его вал, можно ограничится использованием только, так называемого, рабочего конденсатора.
При пуске более мощных двигателей нужно использовать ещё и пусковой конденсатор, необходимый для разгона двигателя.
Схема включения двигателя в однофазную сеть
Подключение трёхфазного двигателя
В схеме обозначено:
- FU1, FU2 — предохранители.
- S1 — двухполюсный выключатель.
- S2 — переключатель направления движения вала двигателя (реверс).
- S3 — кнопка подключения пускового конденсатора (разгон двигателя).
- Сп — пусковой конденсатор.
- Ср — рабочий конденсатор.
- R1 — разрядный резистор.
- М — электродвигатель.
После включения выключателя S1 необходимо сразу нажать кнопку S3, после разгона двигателя (2-3 сек) кнопку отпустить.
Расчёт элементов схемы включения двигателя
Ёмкость рабочего конденсатора для данной схемы (соединение обмоток электродвигателя «треугольником») рассчитывается по следующей формуле:
Ср = 4800*I/U, где
Ср — ёмкость рабочего конденсатора в мкФ;
I — ток электродвигателя, А;
U — сетевое напряжение(220 В).
При соединении обмоток электродвигателя «звездой» ёмкость рабочего конденсатора определяется по формуле:
Ср = 2800*I/U , обозначения те же.
Если неизвестен ток электродвигателя, но известна мощность, то ток можно рассчитать по формуле:
I = P/(√3*U*ɳ*cosφ) , где
P — мощность электродвигателя, Вт;
ɳ — КПД электродвигателя;
cosφ — коэффициент мощности.
Важно
Приблизительно можно принять ɳ=0,6, cosφ = 0,8. Тогда формула упростится и примет вид:
I = P/(0,83*U).
Ёмкость пускового конденсатора должна быть в 2-3 раза больше ёмкости рабочего.
Нужную ёмкость конденсатора можно собрать из нескольких, имеющихся в наличии конденсаторов, как это сделать описано здесь. Лучше всего применять металлобумажные или плёночные конденсаторы. Рабочее напряжение конденсаторов не ниже 300В.
В некоторых статьях предлагают использовать электролитические конденсаторы, соединив пару конденсаторов минусовыми выводами и зашунтировав их диодами.
Я не рекомендую этого делать, так как при выходе из строя диода (при его электрическом пробое), через электролитический конденсатор потечёт переменный ток и он скорее всего взорвётся из-за нагрева.
Разрядный резистор R1 служит для разряда пускового конденсатора после его отключения. Можно обойтись и без него, но тогда следует помнить, что на устройстве может остаться опасное напряжение, даже после его выключения. Можно взять резистор сопротивлением 0,5 — 1 мОм, на мощность рассеяния не ниже 0,5 Вт.
Все выключатели и предохранители должны выдерживать рабочий ток электродвигателя.
Советы: лучше всего использовать соединение «треугольником», при соединении обмоток «звездой» значительная часть мощности двигателя теряется.
На шильдике двигателя указывается схема соединения обмоток, возможность её изменения и рабочее напряжение обмоток. Например: ∆/Ү 220/380 обозначает, что обмотки электродвигателя могут быть подсоединены либо «треугольником» на 220 В, либо «звездой» на напряжение 380В.
Обозначение Ү 380 — говорит о том, что обмотки подсоединены по схеме «звезда» и рассчитаны на 380 В и в распредкоробку двигателя выведено всего три провода. Тут придётся подключать по схеме «звезда», потеряв мощность.
Можно конечно залезть внутрь двигателя и вывести недостающие концы в распредкоробку, но это работа уже для специалиста.
Совет
Ёмкость рабочего конденсатора (в мкФ) можно приблизительно рассчитать умножив мощность двигателя (в кВт) на 100. Ёмкость пускового конденсатора можно уменьшить, подобрав экспериментальным путём.
Если вам помогла эта статья, то вы можете поделиться ей со своими друзьями, нажав кнопки социальных сетей, расположенные ниже.
Источник: https://elektricvdome.ru/podklyuchenie-tryokhfaznogo-dvigatelya/
Как поменять направление вращения однофазного двигателя, схема включения асинхронного электродвигателя
Вариант 3: смена пусковой обмотки на рабочую, и наоборот
Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.
На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.
В этом случае поступают так:
- Снимают конденсатор с начального вывода А;
- Подсоединяют его к конечному выводу D;
- От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).
Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.
Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:
- Длина пусковой и рабочей намоток одинакова;
- Площадь их поперечного сечения соответствует друг другу;
- Эти провода изготовлены из одного и того же материала.
Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.
Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.
Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.
Типовые конфигурации и принципы действия электродвигателей
Есть два наиболее распространенных вида моторов, подключение которых можно выполнить без дополнительных деталей. Это асинхронные двигатели с однофазным или трехфазным питанием и коллекторные устройства.
В асинхронных однофазных двигателях обмотка на роторе короткозамкнутая, по конструкции напоминающая колесо для белки. Замкнутые на кругах стержни входят в пазы сердечника, где при индукции тока создается поле уравновешивающее электромагнитное поле катушки. Для того, чтобы после подключения к сети мотор заработал, нужен стартовый толчок. В некоторых случаях, например на точильном станке двигатель можно запустить вручную, простым вращательным движением вала.
Можно также снабдить самодельный инструмент дополнительной стартовой обмоткой или частотным преобразователем, который обеспечит плавный запуск мотора. Начало вращения в асинхронных двигателях с трехфазной обмоткой статора происходит автоматически, благодаря чередованию фаз
Как видно на структурной схеме, в коллекторном электродвигателе имеются рабочая и пусковая обмотки. Переключение обмотки на роторе происходит при помощи графитовых щеток, единовременно под напряжением находится только одна из рамок, с магнитным полем, перпендикулярным полю статорной обмотки.
Разница полюсов сдвигает ротор по кругу, достигая определенного угла, контакт с щетками перебрасывается на вторую рабочую обмотку, что обеспечивает непрерывное вращательное движение.
Способы подключения асинхронных двигателей
Различные модели асинхронных двигателей используются в бытовых кондиционерах, в насосных системах и аппаратуре промышленного назначения. Они, как правило, оснащаются преобразователями частоты, которые в зависимости от предназначения, выполняют постепенный набор оборотов при включении, или плавное, не ступенчатое, переключение скоростей.
Схема подключения обычно дается прямо на корпусе, где маркируются выводящие провода пусковой и рабочей обмотки. В других случаях их можно определить при помощи замеров сопротивления. Величина в Омах в двух вариантах последовательного соединения должна в сумме быть равной показателю сопротивления пары обмоток ротора и статора.
Рабочая обмотка может отличаться и визуальной толщиной в сечении. Она подключается к конденсатору, а вывод от статора напрямую к 220В.
Конденсаторы могут быть установлены по схеме подключения к статорной обмотке, для обеспечения пуска электродвигателя, или в качестве рабочего устройства, подсоединенного к основной обмотке. Возможен и комбинированный вариант с двумя конденсаторами.
Емкость теплообменника зависит от мощности мотора в расчете 7мкФ на 100Вт. Чрезмерный нагрев корпуса после запуска свидетельствует о недостаточной емкости подключенных конденсаторов. Если наблюдается спад мощности и замедление оборотов, следует уменьшить емкость.
Трехфазными двигателями, отличающимися большой мощностью и возможностью автоматического старта оборудуют деревообрабатывающие и токарные станки. К трехфазной сети питания такие моторы подсоединяются в двух конфигурациях: треугольной или в виде звезды.
Для подключения к сети с одной фазой необходимо наличие переходного конденсатора, но в этом случае будут потери мощности и скорости оборотов двигателя.
Частотные преобразователи – важный элемент системы управления двигателем, могут быть заменены симисторами для плавного пуска, которые подключаются по трехфазной схеме. Это позволяет снизить расход электроэнергии и износ мотора, предотвращает перегрев и дает ряд дополнительных возможностей для подключения автоматики.
Подготовка асинхронного электродвигателя к включению
Виды электродвигателей
На самом первом этапе нам следует определиться с типом двигателя, который мы собрались подключать. Это может быть трехфазный асинхронный двигатель с короткозамкнутым или фазным ротором, двух- или однофазный двигатель, а может быть и вовсе синхронная машина.
Помочь в этом может бирка на электродвигателе, на которой указана нужная информация. Иногда это можно сделать чисто визуально — так как мы рассматриваем подключение трехфазных электрических машин, то двигатель с короткозамкнутым ротором не имеет коллектора, а машина с фазным ротором имеет таковой.
Определение начала и конца обмотки
Трехфазный асинхронный электродвигатель имеет шесть выводов. Это три обмотки, каждая из которых имеет начало и конец.
Для правильного подключения мы должны определить начало и конец каждой обмотки. Существует множество вариантов того, как это сделать — мы остановимся на наиболее простых из них, применимых в домашних условиях.
Обмотки статора электродвигателя
- Для того чтоб определить начало и конец обмотки трехфазного двигателя своими руками, мы должны для начала определить выводы каждой отдельной обмотки, то есть определить каждую отдельную обмотку.
- Сделать это достаточно просто. Между концом и началом одной обмотки у нас обязательно будет цепь. Определить цепь нам помогут либо двухполюсный указатель напряжения с соответствующей функцией, либо обычный мультиметр.
- Для этого один конец мультиметра подключаем к одному из выводов и другим концом мультиметра касаемся поочередно остальных пяти выводов. Между началом и концом одной обмотки у нас будет значение близкое к нулю, в режиме измерения сопротивления. Между остальными четырьмя выводами значение будет практически бесконечным.
- Следующим этапом будет определение их начала и конца.
ЭДС при различных вариантах соединения обмоток электродвигателя
- Для того чтоб определить начало и конец обмотки, давайте немного погрузимся в теорию. В статоре электродвигателя имеется три обмотки. Если подключить конец одной обмотки к концу другой обмотки, а на начало обмоток подать напряжение, то в месте подключения ЭДС будет равен или близок к нулю. Ведь ЭДС одной обмотки компенсирует ЭДС второй обмотки. При этом в третьей обмотке ЭДС не будет наводиться.
- Теперь рассмотрим второй вариант. Вы соединили один конец обмотки с началом второй обмотки. В этом случае ЭДС наводится в каждой из обмоток, в результате получается их сумма. За счет электромагнитной индукции ЭДС наводится в третьей обмотке.
Схема определения начала и конца обмоток электродвигателя
- Используя этот метод, мы можем найти начало и конец каждой из обмоток. Для этого к выводам одной обмотки подключаем вольтметр или лампочку. А любых два вывода других обмоток соединяем между собой. Два оставшихся вывода обмоток подключаем к электрической сети в 220В. Хотя можно использовать и меньшее напряжение.
- Если мы соединили конец и конец двух обмоток, то вольтметр на третьей обмотке покажет значение близкое к нулю. Если же мы подключили начало и конец двух обмоток правильно, то, как говорит инструкция, на вольтметре появится напряжение от 10 до 60В (данное значение является весьма условным и зависит от конструкции электродвигателя).
- Подобный опыт повторяем еще дважды, пока точно не определим начало и конец каждой из обмоток. Для этого обязательно подписывайте каждый полученный результат, дабы не запутаться.
Выбор схемы подключения электродвигателя
Практически любой асинхронный электродвигатель имеет два варианта подключения – это звезда или треугольник. В первом случае обмотки подключаются на фазное напряжение, во втором на линейное напряжение.
Электродвигатель асинхронный трехфазный и подключение звезда–треугольник зависит от особенностей обмотки. Обычно оно указано на бирке двигателя.
Номинальные параметры на бирке электродвигателя
- Прежде всего, давайте разберемся, в чем отличие этих двух вариантов. Наиболее распространенным является соединение «звезда». Оно предполагает соединение между собой всех трех концов обмоток, а напряжение подается на начала обмоток.
- При соединении «треугольник» начало каждой обмотки соединятся с концом предыдущей обмотки. В результате каждая обмотка у нас получается стороной равностороннего треугольника – откуда и пошло название.
Разница между схемами соединения «звезда» и «треугольник»
- Отличие этих двух вариантов соединения состоит в мощности двигателя и условий пуска. При соединении «треугольником» двигатель способен развивать большую мощность на валу. В то же время момент пуска характеризуется большой просадкой напряжения и большими пусковыми токами.
- В бытовых условиях выбор способа подключения обычно зависит от имеющегося класса напряжения. Исходя из этого параметра и номинальных параметров, указанных на табличке двигателя, выбирают способ подключения к сети.
Подключение асинхронного электродвигателя
Электродвигатель асинхронный трехфазный и схема подключения зависят от ваших потребностей. Наиболее распространенным вариантом является схема прямого включения, для двигателей, подключенных схемой «треугольника», возможна схема включения на «звезде» с переходом на «треугольник», при необходимости возможен вариант реверсивного включения.
В нашей статье мы рассмотрим наиболее популярные схемы прямого включения и прямого включения с возможностью реверса.
Схема прямого включения асинхронного электродвигателя
В предыдущих главах мы подключили обмотки двигателя, и вот теперь пришло время включения его в сеть. Двигатели должны включаться в сеть при помощи магнитного пускателя, который обеспечивает надежное и одновременное включение всех трех фаз электродвигателя.
Пускатель в свою очередь управляется кнопочным постом – те самые кнопки «Пуск» и «Стоп» в одном корпусе.
Трехполюсный автоматический выключатель | Но прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя. |
Номинальные параметры пускателей | Следующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя. |
Кнопочный пост на две кнопки | Пускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот. |
Таблица выбора сечения провода | Кроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя. |
Обратите внимание! Вместо автомата вполне возможно применение предохранителей. Только их номинальный ток должен соответствовать номинальному току двигателя. А также должен учитывать пусковой ток, который у разных типов двигателей колеблется от 6 до 10 крат от номинального.
- Теперь приступаем непосредственно к подключению. Его условно можно разделить на два этапа. Первый это подключение силовой части, и второй — подключение вторичных цепей. Силовые цепи – это цепи, которые обеспечивают связь двигателя с источником электрической энергии. Вторичные цепи необходимы для удобства управления двигателем.
- Для подключения силовых цепей нам достаточно подключить вывода двигателя с первыми выводами пускателя, выводы пускателя с выводами автоматического выключателя, а сам автомат с источником электрической энергии.
Обратите внимание! Подключение фазных выводов к контактам пускателя и автомата не имеют значения. Если после первого пуска мы определим, что вращение неправильное, мы сможем легко его изменить. Цепь заземления двигателя подключается помимо всех коммутационных аппаратов.
Схема подключения первичных и вторичных цепей схемы включения электродвигателя
Теперь рассмотрим более сложную схему вторичных цепей. Для этого нам, прежде всего, как на видео, следует определиться с номинальными параметрами катушки пускателя. Она может быть на напряжение 220В или 380В.
- Так же следует разобраться с таким элементом, как блок-контакты пускателя. Данный элемент имеется практически на всех типах пускателей, а в некоторых случаях он может приобретаться отдельно с последующим монтажом на корпус пускателя.
Расположение элементов пускателя
- Эти блок-контакты содержат набор контактов – нормально закрытых и нормально открытых. Сразу предупредим – не пугайтесь в этом нет нечего сложного. Нормально закрытым называется контакт, который при отключенном положении пускателя – замкнут. Соответственно нормально открытый контакт в этот момент разомкнут.
- При включении пускателя нормально закрытые контакты размыкаются, а нормально открытые контакты замыкаются. Если мы говорим за электродвигатель трехфазный асинхронный и подключение его к электрической сети, то нам необходим нормально открытый контакт.
Нормально закрытые и нормально открытые контакты
- Такие контакты есть и на кнопочном посту. Кнопка «Стоп» имеет нормально закрытый контакт, а кнопка «Пуск» нормально открытый. Сначала подключаем кнопку «Стоп».
- Для этого соединяем один провод с контактами пускателя между автоматическим выключателем и пускателем. Его подключаем к одному из контактов кнопки «Стоп». От второго контакта кнопки должно отходить сразу два провода. Один идет к контакту кнопки «Пуск», второй к блок-контактам пускателя.
Подключение кнопки «Пуск» и «Стоп»
- От кнопки «Пуск» прокладываем провод к катушке пускателя, туда же подключаем провод от блок-контактов пускателя. Второй конец катушки пускателя подключаем либо ко второму фазному проводу на силовых контактах пускателя, при использовании катушки на 380В, либо он подключается к нулевому проводу, при использовании катушки на 220В.
- Все, наша схема прямого включения асинхронного двигателя готова к использованию. После первого включения проверяем направление вращения двигателя и если вращение неправильное, то просто меняем местами два силовых провода на выводах пускателя.
Схема реверсивного включения электродвигателя
Распространенным вариантом подключения асинхронного электродвигателя является вариант с использованием реверса. Такой режим может потребоваться в случаях, когда необходимо изменять направление вращения двигателя в процессе эксплуатации.
- Для создания такой схемы нам потребуются два пускателя из-за чего цена такого подключения несколько возрастает. Один будет включать двигатель в работу в одну сторону, а второй в другую. Тут очень важным моментом является недопустимость одновременного включения обоих пускателей. Поэтому нам необходимо во вторичной схеме предусмотреть блокировку от таких включений.
- Но сначала давайте подключим силовую часть. Для этого, как и приведенном выше варианте, подключаем от автомата пускатель, а от пускателя — двигатель.
- Единственным отличием будет подключение еще одного пускателя. Его подключаем к вводам первого пускателя. При этом важным моментом будет поменять местами две фазы, как на фото.
Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В
- Вывода второго пускателя просто подключаем к выводам первого. Причем здесь уже ничего не меняем местами.
- Ну, а теперь, переходим к подключению вторичной схемы. Начинается все опять с кнопки «Стоп». Ее подключаем к одному из приходящих контактов пускателя – неважно первого или второго. От кнопки «Стоп» у нас вновь идут два провода. Но теперь один к контакту 1 кнопки «Вперед», а второй к контакту 1 кнопки «Назад».
Схема реверсивного подключения электродвигателя с катушкой пускателя на 220В
- Дальнейшее подключение приводим по кнопке «Вперед» — по кнопке «Назад» оно идентично. К контакту 1 кнопки «Вперед» подключаем контакт нормально открытого контакта блок-контактов пускателя. Каламбур, но точнее не скажешь. К контакту 2 кнопки «Вперед» подключаем провод от второго контакта блок-контактов пускателя.
- Туда же подключаем провод, который пойдет к нормально закрытому контакту блок-контактов пускателя номер два. А уже от этого блок-контакта он подключается к катушке пускателя номер 1. Второй конец катушки подключается к фазному или нулевому проводу в зависимости от класса напряжения.
- Подключение катушки второго пускателя производится идентично, только ее мы подводим к блок-контактам первого пускателя. Именно это обеспечивает блокировку от включения одного пускателя, при подтянутом положении второго.
С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем
Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.
На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.
Важное предупреждение
Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.
Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.
В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).
Как состояние подшипников влияет на работу двигателя
Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.
Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.
Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.
Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.
Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.
Обращайте особое внимание на состояние подшипников, выполнение нормативов по допускам и посадкам, качество смазки. Сухую и старую смазку обязательно необходимо заменять свежей.
Что надо учитывать в конструкции статорных обмоток и как их подготовить
Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.
Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.
Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.
Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.
Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.
Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.
Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.
Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.
Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.
Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.
Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.
Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:
- у трехфазных двигателей из статора могут выводиться:
- три жилы при внутренней сборке схемы треугольника;
- или четыре — для звезды;
- однофазный электродвигатель может иметь:
- три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
- или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.
Как видите, судить о конструкции асинхронного двигателя по количеству выведенных проводов на клеммнике от обмоток статора можно, но вероятность ошибки довольно высока. Нужен более тщательный анализ его устройства.
Техническое состояние изоляции обмоток
Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.
В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.
Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.
Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице
Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.
Как видите, промышленностью массово выпущены модели с:
- повышенным сопротивлением пусковой обмотки;
- пусковым конденсатором;
- рабочим конденсатором;
- пусковым и рабочим конденсатором;
- экранированными полюсами.
А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:
- значительное снижение реактивной мощности;
- повышение КПД;
- уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.
Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.
Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.
Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.
Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки
Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.
Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.
Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.
Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.
Помечаем эти 3 конца уже понятной нам маркировкой:
- О — общий;
- П — пусковой;
- Р — рабочий.
Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.
Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.
Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.
Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.
С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.
При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.
Тогда кнопку запуска отпускают:
- пусковая обмотка отключается самовозвратом среднего контакта;
- главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.
Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.
Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.
Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.
Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они предотвратят развитие аварийных ситуаций при возникновении любых случайных ошибок.
С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.
Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии
Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.
Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.
Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.
2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.
Конденсатор подключают к выводам пусковой и рабочей обмоток.
В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.
Здесь получается, что:
- главная обмотка работает напрямую от 220 В;
- вспомогательная — только через емкость конденсатора.
Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.
Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.
Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.
Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.
Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.
Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.
При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.
В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.
Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.
Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.
Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.
Добавление резисторов в схему пуска электродвигателя повышает безопасность его эксплуатации, автоматически ограничивает протекание емкостного тока разряда заряженного конденсатора через тело человека.
Где взять номиналы главного и вспомогательного конденсаторов?
Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.
Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.
Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.
Владелец
видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.
Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы
Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.
Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.
Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.
В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.
Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.
Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.
Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.
Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.
Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.
Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.
Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.
Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.
Со всеми этими
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Изменение направления движения мотора
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.
Как все может выглядеть на практике
Основная информация
Синхронный однофазный двигатель переменного тока работает от общественной сети
Итак, особенностью однофазного двигателя является то, что он способен запитываться от стандартной электрической сети с частотой 50 Гц и напряжением 220 В.
- Ставят такие электромоторы в основном в устройствах небольшой мощности, так как по эффективности они существенно уступают двухфазным и трехфазным аналогам.
- Мощность данных агрегатов варьируется от 5 Вт до 10 кВт.
- Однофазная схема подключения двигателя существенно влияет на его КПД, который приблизительно равен 70% от показателей такого же по мощности двигателя, но трехфазного. Также у них меньше пусковой момент, а перегрузочная способность выше.
Электрический двигатель в разрезе
- На самом деле, если разобрать строение такого двигателя, то он будет иметь 2 фазы, но так как задействуется, фактически, лишь одна из них, то и называют его однофазным.
- Строение мотор имеет самое что ни наесть классическое – подвижная часть (ротор или якорь) и неподвижная часть (статор).
- Вращение подвижных частей двигателя происходит за счет взаимодействия магнитных полей – подробнее об этом чуть дальше.
- Несомненным плюсом такого мотора можно считать простую и надежную конструкцию с короткозамкнутым ротором.
- А главным минусом можно посчитать неспособность самостоятельно выработать магнитное поле, что не позволяет ему самостоятельно запускаться при подключении к сети питания.
- Считается, что для того чтобы ротор пришел в движение требуется минимум 2 обмотки, а также смещение одной относительно второй на определенный градус.
Асинхронный двигатель переменного тока
- Если сопоставить все эти моменты, то можно понять следующее.
- На статоре однофазного электромотора располагается пусковая обмотка, которая смещена по отношению к рабочей, основной обмотке на 90 градусов.
- В цепь, питающую обмотку, включаю фазосдвигающее устройство – конденсаторы, катушки индуктивности, резисторы активного типа.
- То есть, фактически мы говорим про те же моторы двух- и трехфазного типа, только сдвиг фазы достигается не за счет подключения, а за счет схем согласования.
Принцип действия однофазного двигателя
Однофазный синхронный двигатель переменного тока
Теперь давайте попробуем систематизировать то, что мы понаписали в предыдущей главе, чтобы принцип работы таких устройств стал понятен каждому.
Как работает асинхронный электродвигатель однофазный
- Итак, при подключении питания, ток начинает бежать по обмоткам статора. Движение тока порождаем пульсирующее магнитное поле. Почему пульсирующее, да потому что ток в общественных сетях имеет частоту в 50 Гц, то есть за секунду 50 раз меняет направление своего движения. Соответственно меняются и параметры магнитного поля
- Мы все знаем про такое явление, как электромагнитная индукция. Если кто-то не знает, то бегом читать – вкратце, это явление порождает электрический ток в проводнике, который перемещается поперек магнитного поля, причем нет никакой разницы, что будет двигаться – проводник или поле.
- Если устройство не будет иметь пусковых механизмов, то ротор останется неподвижным, так как в нем до сих пор нет тока, а значит и магнитного поля, а магнитные поля от тока в статора равнозначны, и тянут, так сказать, в разных направлениях, как лебедь, рак и щука.
- Но если ротору дать толчок в любую из сторон, в нем моментально начнет расти электродвижущая сила (ЭДС), которая начнет генерировать свое магнитное поле. В результате взаимодействия этих полей двигатель продолжит вращаться в туже сторону, несмотря на то, что основное магнитное поле постоянно меняет свое направление.
Однофазный коллекторный электродвигатель переменного тока – принцип работы
- Заставляет сдвинуться с места ротор пусковая обмотка, которую мы уже упоминали. Точнее делает это результирующее магнитное поле от основной и пусковой обмоток.
- Эта обмотка требует включения только при пуске мотора.
Интересно знать! В маломощных моторах пусковая обмотка является короткозамкнутой.
- Момент включения пусковой обмотки связан с пусковой кнопкой – обычно ее необходимо удерживать на протяжении нескольких секунд, пока двигатель не начнет вращаться с нормальной скоростью.
- Когда контакт на кнопке размыкается, двигатель переходит полностью в однофазный режим.
- Важно помнить, что пусковая фаза не предназначается для долгой работы – обычно время ее активного состояния составляет около 3 секунд. Если попытаться превысить данное значение обмотка начнет перегреваться, что может привести к выходу элемента из строя.
- Становится понятным, что ручной контроль за пуском двигателя неэффективен и малонадежен, поэтому данный процесс в современных устройствах автоматизирован. В них устанавливаются тепловые реле и центробежные выключатели.
- Первый элемент контролирует нагрев обеих обмоток и отключает питание, если температура достигает критического значения.
- Второй отключает питание пусковой фазы, как только ротор разгонится до нужных оборотов.
Подключение двигателя
Как подключается коллекторный однофазный электродвигатель переменного тока
Итак, мы уже поняли, что для работы такому мотору требуется всего одна фаза на 220 В, то есть включается он в обыкновенную розетку, что, собственно, и делает эти устройства такими популярными несмотря на низкий КПД и прочие недостатки.
Интересно знать! Практически все бытовые приборы оборудованы именно такими двигателями.
Различные варианты подключения
- Однофазные двигатели переменного тока по подключению делят на три типа: вариант с пусковой обмоткой и рабочим конденсатором.
- В первом пусковая обмотка запитана через конденсатор только во время старта – собственно, его мы описали в предыдущей главе.
- Во втором она подключена через конденсатор постоянно.
- В третьем вместо конденсатора используется сопротивление.
Коллекторный однофазный двигатель переменного тока от стиральной машины
- Для последнего типа подключения может использоваться пусковой резистор, который подключается к пусковой обмотке последовательно. За счет этого удается получить сдвиг фаз на 30 градусов, чего вполне хватает для раскрутки двигателя.
- Также дополнительная обмотка может сама по себе иметь высокое активное сопротивление.
- Сдвиг фаз также может быть получен за счет того, что пусковая фаза будет иметь высокое сопротивление и меньшую индуктивность.
Конденсаторный пуск имеет следующие особенности:
- Чтобы достигнуть максимального значения пускового момента, достаточного для старта двигателя, нужно вращающееся круговое магнитное поле. Таковое возникает, когда обмотки сдвинуты относительно друг друга на 90 градусов – сразу становится понятно, что ни резистор, ни дроссель не смогут задать такое значение. А вот если правильно подобрать емкость конденсатора – ну вы поняли…
- Конденсатор необходимо подбирать по потребляемому току.
Конденсатор и переменный ток
Интересно знать! На нашем сайте есть очень познавательная статья про то, как конденсаторы ведут себя в цепи переменного тока. Если интересно, обязательно ознакомьтесь.
Кстати, если вы пытаетесь самостоятельно подключить такой двигатель в сеть, но не знаете, какие выводы к какой обмотке относятся, просто замерьте их сопротивление. Для основной оно составит где-то 12 Ом, а для пусковой – 30.
Строение асинхронного однофазного двигателя
Однофазный коллекторный двигатель переменного тока
Итак, мы вами в первой части статьи разобрали общие понятия об однофазных двигателях, принципе их работы и подключении. Такой информации хватило бы для поверхностного изучения, но нас такой подход не совсем устраивает. Для любителей технических подробностей, давайте разберем теперь все детальнее.
Асинхронный двигатель
Электрические моторы бывают синхронными и асинхронными. Разница между ними состоит в том, что в синхронном, скорость вращения якоря совпадает с вращением магнитного поля, а в асинхронном ротор несколько отстает.
- Последний вариант является самым распространенным, так как имеет более простую конструкцию и очень надежен. Синхронные применяются лишь в тех сферах, где очень важен контроль за оборотами двигателя.
- Вы уже, наверное, обратили внимание на то, что словом фаза называются разные понятия – и количество питающих проводов, и обмотки на статоре и сдвиг по углам. И мы даже сказали, что однофазные двигатели, фактически имеют две фазы, но называются они таковыми именно по количеству питающих проводов.
- Мы также писали, что мотор имеет подвижную и неподвижную части. Давайте разберем их строение подробнее.
Коллекторные электродвигатели переменного тока однофазные
- Ротор агрегата представляет собой вал, который держится в корпусе двигателя при помощи подшипников вращения. За счет них же он свободно крутится вокруг своей оси. Строение этого элемента будет отличаться в зависимости от того является двигатель коллекторным или бесколлекторным. Давайте начнем со второго.
- На валу бесколлекторного фазного ротора закреплен магнитопровод, который набирается из шихтованных стальных пластин.
- Снаружи магнитопровода имеются пазы, в которых находятся стержни обмоток – обычно из меди.
Двигатель с ротором фазного типа
- С концов стержни соединяются с кольцами, которые накоротко их замыкают – их называют замыкающими кольцами.
Строение фазного ротора
- Внутри данной обмотки будет течь ток, который индуктируется магнитным полем статора – никаких внешних подключений он не имеет.
- Магнитопровод служит для лучшего прохождения магнитного поля, которое создается в роторе.
- Для таких устройств характерна высокая надежность, так как они не имеют трущихся деталей. Управление скоростью вращения двигателя осуществляется только за счет тока на основной обмотке статора.
- Коллекторный двигатель переменного тока однофазный по своему строению мало чем отличается от ротора двигателя постоянного тока. Собственно, такие двигатели являются универсальными и могут запитываться как переменным, так и постоянным током.
- Фазы ротора подключаются к питающей сети через коллектор, который контактирует со щетками, которые в свою очередь уже соединяются с питающей цепью.
- Строение таких двигателей более сложное, также их надежность будет ниже, но они являются более гибкими в управлении.
На фото – статор электродвигателя
- Статор является пассивной частью электромотора – он неподвижен и состоит из магнитопровода и обмотки.
- Назначение этого элемента – генерирование неподвижного или вращающегося магнитного поля.
- У однофазного двигателя от статора будет отходить четыре вывода – два для рабочей обмотки и два для пусковой. Как их отличить мы уже писали.
Помимо этих элементов двигатели имеют следующие составляющие:
- Станина и корпус устройства, которые удерживают в себе все рабочие части и позволяют закрепить устройство на поверхности;
- Внешняя электрическая цепь – кнопка включения, устройство регулировки оборотов, провода и устройства для шунтирования дополнительной обмотки;
- Крыльчатка – активное охлаждение двигателя, располагается также на валу;
- Подшипники вращения.
Что происходит в обмотках при включении
Чтобы лучше понять принцип взаимодействия магнитных полей, давайте представим, что у нашего двигателя обмотка имеет всего один виток. Провод при этом уложен в магнитопроводе так, что его части разведены на 180 градусов, то есть уложены друг напротив друга.
- Подключаем питание, и по нашему проводу начинает течь синусоидальный или переменный ток.
Полный период синусоидального тока
- Период синусоидального тока состоит из двух полупериодов, при которых ток двигается в разных направлениях. Именно это изображено на схеме выше.
- Как вы можете видеть, изначально значение тока равно нулю, затем он растет, достигая пика, после чего падает до нулевой отметки и опять возрастает, но уже в другом направлении.
- Давайте представим, что ток и магнитное поле от него замерли в какой-то точке. Представьте, что смотрите на виток сбоку – он будет похож на букву «С».
- Ток протекает в верхней горизонтальной части обмотки влево, соответственно, в нижней – вправо. При этом ток одинаков и получается так, что создаваемое им магнитное поле противодействует друг другу. Почему ротор и находится в неподвижном состоянии.
- Итак, ток течет, меняется его величина и направление, как и у магнитного поля, но они всегда остаются в противовесном состоянии, поэтому ротор так и продолжает стоять.
Как же создается сила, заставляющая ротор вращаться?
Инструкция по работе однофазного двигателя переменного тока
- Как вариант можно толкнуть его рукой и этого будет достаточно, чтобы совершить пуск, но мы же говорим про техническое решение вопроса!
- Ну ладно, мы уже знаем, что нам потребуется еще одна обмотка.
- Обмотка сделана из более толстого провода, чтобы она смогла пропустить большие токи. Фаза тока в этой обмотке отстает от основной на 90 градусов, то есть когда ток в основной обмотке уже опустился до нуля, здесь он буден на пике (отстает на четверть периода). В итоге разница магнитных полей придает ротору первый вращающий импульс. Направление вращения зависит от полярности подключения концов пусковой обмотки.
- Как только ротор начинает вращаться, в нем создается ЭДС.
- Направление тока в стержнях будет противоположно направленным, так как на них воздействуют разные магнитные поля.
- За счет возникновения вращающего момента двигатель моментально подхватит направление вращения и начнет раскручивать ротор до достижения им максимальных оборотов. Но почему не происходит торможения, когда ток в статоре меняет свое направление на обратное?
- Дело в том, что, по сути ничего не меняется. Просто подталкивающая вращение сила будет переходить с верхней части обмотки на нижнюю и обратно. А так как двигатель уже получил смещение в одну из сторон, а противодействующая сила может лишь уравновесить, то коэффициент ускорения будет несколько сильнее торможения.
То есть, в роторе будут наводиться токи с разной частотой, которые будут создавать моменты сил с разными направлениями, именно поэтому якорь продолжит вращаться в том же направлении.
На этом закончим наш материал. Мы узнали, как устроены электродвигатели переменного тока однофазные, если тема вам интересно, то посмотрите следующее увлекательное видео.
Однофазный асинхронный двигатель: принцип работы
Однофазный двигатель работает за счет вращающегося магнитного поля, которое возникает при смещении в пространстве двух обмоток статора, соединенных параллельно, относительно друг друга. Важным условием работы однофазного двигателя является сдвиг по фазе токов обмоток. Для этого в конструкции двигателя предусмотрен фазосмещающий элемент (как правило, это конденсатор), он подключен последовательно одной из статорных обмоток. Роль фазосмещающего сетевого элемента может выполнять активное сопротивление или индуктивность.
В том случае если при работе двигателя цепь обмотки разрывается, прекращается движение магнитного потока (Ф) статора. Происходит инерционное вращение ротора, поэтому, поток остается вращающимся по отношению к обмотке ротора и наводит ЭДС, силу тока (I) и собственный магнитный поток (Ф), при этом движение магнитного потока (Ф) ротора совпадает со статорным магнитным потоком.
Магнитный поток ротора изменяется. Данное действие основывается на синусоидальном законе согласно которому, изменяя направление на противоположное, ротор остается в состоянии вращения. В связи с этим запуск мотора возможен в том случае если наличествует внешний фактор, который способен осуществить возвратное вращательное движение ротора в первоначальное направление.
Так как при запуске однофазного двигателя применяется пусковая катушка с применением фазосмещающего элемента. Сопротивление активного типа используется в этом роде очень часто, в связи с дешевизной.
После запуска двигателя возникает отключение обмотки действующей для запуска. Обмотка пуска работает в кратковременном режиме, и для ее изготовления применяется более тонкий провод, чем идет на изготовление рабочей обмотки.
Подключение однофазного асинхронного двигателя
Рис. №1.Схемы подключения асинхронного двигателя к однофазной сети
Для подключения однофазного асинхронного двигателя к однофазной сети прибегают к помощи резистора, используемого для запуска, и присоединенного к пусковой катушке (обмотке) последовательным методом, таким образом, между токами, которые присутствуют в обмотке двигателя, наблюдается сдвиг фаз на 30 о. этого хватает для запуска асинхронной машины в работу. В конструкции двигателя, в котором присутствует сопротивление пуска, наличие фазового угла объясняется неодинаковым комплексным сопротивлением в электрических цепях двигателя.
Рис. №2. Схема включения асинхронного однофазного двигателя с распределенной статорной обмоткой, используемой в качестве привода активатора стиральных машин бытового назначения.
Кроме, использования сопротивления пуска применяется подключение однофазного двигателя к однофазной цепи с конденсаторным пуском. Двигатель, выполняющий эту операцию, будет использовать расщепленную фазу. Особенность этого способа в том, что вспомогательная катушка, в которую встроен конденсатор используется в момент времени запуска. Чтобы достигнуть максимально возможного эффекта сдвиг токов относительно обмоток должен достигать максимально высокого значения угла – 90 о .
Среди разнообразия элементов, используемых для сдвига фаз, только использование конденсатора дает возможность получения максимально лучшего пускового эффекта однофазного асинхронного двигателя .
Однофазный двигатель с расщепленной фазой и экранированными полюсами
При рассмотрении однофазных электродвигателей нельзя забыть о моделях двигателей в конструкции, которых применяются экранированные полюса, в такой машине присутствует расщепленная фаза и короткозамкнутая вспомогательная обмотка. Статор такого двигателя имеет явно выраженные полюса, каждый из которых разделен аксиальным пазом на две неодинаковые части, на меньшей части находится короткозамкнутый виток.
При присоединении статора двигателя в электрическую сеть, магнитный поток, для которого характерно пульсирующее действие и созданный в магнитопроводе машины, делится на 2 части. Движение одной из них идет по части полюса без экрана, вторая следует по части полюса покрытой экраном. Индуктивность витка приводит к отставанию тока по фазе от наведенной магнитным потоком ЭДС. Магнитный поток короткозамкнутой обмотки создает результирующий поток, который движется в экранированной части полюса. В разноименных частях полюсов наблюдается сдвиг разных магнитных потоков на определенное значение угла, а также на разницу во времени.
Недостаток этих моделей заключается в значительных электрических потерях, которые присутствуют в витках обмотки замкнутой накоротко.
Используется в конструкции тепловентиляторов и вентиляторов.
Преобразователь частоты для однофазного двигателя
Помимо распространенных 3-х фазных асинхронных двигателей, на рынке предлагают однофазные моторы. Чаще всего ими являются насосы и вентиляторы. Самые популярные агрегаты в промышленности и в быту. И тут возникает вопрос? Как же ими управлять и регулировать скорость. Способов великое множество. Но самый эффективный, это когда подключают преобразователь частоты для однофазного двигателя.
Из этой статьи вы узнаете:
Однофазный асинхронный двигатель
Способы подключения мотора
Подключение преобразователя частоты и однофазного двигателя
Всем привет! С вами Гридин Семён, и в этом посте мы поговорим с вами о нюансах управления асинхронными однофазными двигателями. Какой способ управления лучше? Разберём такой вопрос — частотное управление двигателем более подробно.
Однофазный асинхронный двигатель
Наибольшее применение такие моторы нашли в быту и малом бизнесе. Они необходимы там, где нет трёхфазной сети. Мощность их ограничивается лишь частотой сети. Сами по себе аппараты маломощные, в диапазоне от 500 Ватт до 2 килоВатт.
Принцип работы однофазного двигателя заключается в смещении обмоток в пространстве относительно друг друга. Ключевым моментом является сдвиг фазы в обмотках на 120 градусов. Главным «фазосдвигателем» у нас является конденсатор. Как правило, он подключён последовательно в цепи статорной обмотки.
По конструкции моторы могут различаться. Так что, не к любому можно подключить преобразователь частоты, нужно обращать внимание прежде всего на схему подключения обмоток. Двухфазный двигатель с рабочей и пусковой обмоткой точно не сможет запуститься, совсем другой принцип работы. Мы к этому ещё вернёмся…
Способы подключения мотора
А теперь давайте рассмотрим несколько способов подключений:
- конденсаторный способ;
- частотный способ;
- фазовое управление с помощью симистора;
Какой из способов лучше всего? Знаете, всё зависит от задачи, которую нужно решить… А так на вкус и цвет, сами знаете…
Если вы мало знакомы с преобразователем частоты, можете ознакомиться в статье «Чего вы не знаете о преобразователе частоты?»
Конденсаторный способ подключений
Бюджетное подключение трехфазных моторов к однофазной сети. Просто цепляем конденсатор последовательно в цепи обмотки и превращаем аппарат из трехфазного в однофазный. Вот схема:
Сп — пусковой конденсатор, а Ср — рабочий конденсатор. Как подбирать ёмкость в этом случае я расписывать не буду. В просторах интернета есть полно информации по этому поводу.
Фазовое управление с помощью симистора
Это один из самый старых способов управления. Две обмотки двигателя подключаются параллельно, одна из них с конденсатором. К точкам обмоток соединяем симисторный регулятор. Их актуальность, по-моему мнению, ещё не пропала. Лучше всего использовать для не тяжёлых нагрузок (вентиляторы, насосы).
Важно! Учитывайте, что сим. блоки в основном предназначены для активной нагрузки. Так как мотор — это индуктивная нагрузка, поэтому активный ток делим примерно на 10. Если ток активной нагрузки равен 50, то индуктивный будет 5.
На выходе устройства формируется напряжение сетевой частоты 50 Гц и настраивается среднеквадратичное число. Таким образом мы меняем время открытого состояния симистора за период следования напряжения. Единственный недостаток: момент на валу падает относительно снижения напряжения. Вот вам пример Autonics SPK1:
Входы для регулировки скорости универсальные. Сюда можно подключить и потенциометр 1 кОм, и датчик с токовым сигналом 4-20 мА, и напряжение 0-5 В.
Частотный способ
О популярности преобразователя частоты нет смысла говорить. Так как это устройство давно известно всем. Частотный способ является основным в нашем 21 веке. Скорость регулируется с помощью ШИМ-модуляции. Достаточно сложный девайс, требующий отдельной статьи. По входному напряжению существуют как и 380 В, так и 220В. Но что же получается по выходу?
На рынке есть готовые варианты и на однофазный, и на трёхфазный электродвигатель. Просто нужно подобрать схемное решение.
Но, бывают случаи когда ПЧ с однофазным выходом не по карману. Или у вас на полке лежит трёхфазный ПЧ. Давайте рассмотрим вариант подключения мотора к преобразователю частоты.
Подключение преобразователя частоты и однофазного двигателя
В такой схеме есть ряд существенных недостатков:
- Запуск двигателя происходит при минимальной частоте 30 Гц;
- Частоту ниже 30 Гц можно регулировать, но не рекомендуется, очень вредно для движка;
- Есть нюанс с настройкой пускового напряжения, требуется немного загрублять параметр;
Для решения вопроса с подключением двух устройств поможет нам обычный дроссель. Катушка индуктивности поможет нам подавить ёмкость в схеме, таким образом давая возможность частотнику спокойно подавать синусоиду на движок. Да, вот схема:
Всё элементарно, правда. Видео, к сожалению не сохранилось. Выкладываю фото с ПЧ Eaton и однофазным насосом.
Производителей ПЧ в мире очень много. Поэтому из настроек я могу направить вас примерно и в общих чертах, если будут возникать проблемы с подключениями. Основная мысль заключается в том, что при пуске двигателя минимальное напряжение и частоту поднять вверх. Но делать это нужно осторожно и аккуратно, есть шанс спалить мотор.
И еще рекомендую ограничить минимальную частоту на 30 Гц, чтобы не допустить запуска вхолостую и перегрева. Двигатель начинает сильно греться, при пуске на низких частотах.
На этом у меня всё, друзья…
Мне очень нравится кататься на велосипеде. Ещё больше — модернизировать, добавлять что-то новое и интересное. Я совсем недавно в просторах интернета нашёл комплект электромотора для заднего колеса. Комплекты существуют, как и для переднего колеса, так и для заднего:
Загорелся идеей поставить и на свой велобайк. Может кто сталкивался? Кто-то ставил? Хочу увидеть ваше мнение… Пишите в комментариях.
Надеюсь моя статья помогла вам определиться с выбором подключения однофазного двигателя? Если что-то не дописал, напишите в комментариях, исправлю…)
P.S. Небольшой анонс следующей статьи:
Широкая доступность фотоустройств породила новую проблему — потребность в эффективных инструментах цифрового монтажа. На этом рынке традиционно доминирует профессиональный графический пакет Adobe Photoshop. Но, не стоит ограничивать свой кругозор только им. Существует огромное количество достойных фоторедакторов, покрывающих 90% повседневных нужд фотографов-любителей.
Спасибо за то, что читаете мои статьи! Всего вам доброго!!
С уважением, Гридин Семён
Однофазный асинхронный двигатель по выгодной цене — отличные предложения на однофазный асинхронный двигатель от мировых продавцов однофазных асинхронных двигателей
Отличные новости !!! Вы находитесь в нужном месте для однофазного асинхронного двигателя. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях.Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший однофазный асинхронный двигатель вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели однофазный асинхронный двигатель на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в однофазном асинхронном двигателе и думаете о выборе аналогичного продукта, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. , а также ожидаемую экономию.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз.Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress.Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести однофазный асинхронный двигатель по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
Реализация однофазного асинхронного двигателя привода
Блок однофазного асинхронного двигателя моделирует векторное управление
однофазный привод машины. Конфигурация привода состоит из полумостового выпрямителя,
разделенная шина постоянного тока с двумя фильтрующими конденсаторами и двухполюсный инвертор, который питает
обмотки двигателя.
Однофазная индукционная машина (СПИМ) без пусковых и рабочих конденсаторов,
трактуется как асимметричная двухфазная машина.Вспомогательная и основная обмотки
доступны и находятся в квадратуре. Эта конфигурация обеспечивает хорошие характеристики и
работа в режиме регенерации.
Уравнения
Однофазный асинхронный двигатель асимметричен из-за неравных сопротивлений
и индуктивности основной и вспомогательной обмоток. Для получения математической модели
двигателя с постоянными параметрами (напряжение, ток и магнитный поток) необходимо
чтобы преобразовать все переменные в стационарную систему отсчета
( d — q ) закреплен на статоре.
Математическая модель
На этой диаграмме показана математическая модель станка.
N a и
N м представляют собой количество
вспомогательная и основная обмотки статора соответственно.
Напряжение
Уравнения, определяющие напряжение для модели (в стационарном
опорная рамка d — q ) составляют:
и
где:
V qs — это
q — напряжение статора оси.R с — главный статор
сопротивление.i qs — это
q — ток статора по оси.ϕ qs — это
q — потокосцепление статора оси.V DS это
d — напряжение статора оси.R a вспомогательный
сопротивление статора.i DS это
d — ток статора по оси.ϕ DS — это
d — потокосцепление статора оси.R ‘ r — обмотка ротора
сопротивление относительно основной обмотки статора.i ‘ qr это
q — ток ротора оси отнесен к основному
обмотка статора.ϕ ‘ qr — это
q — потокосцепление осей ротора, относящееся к
основная обмотка статора.k — передаточное число
N a к
N м .ω r — ротор
электрическая угловая скорость.i ‘ dr это
d -осевой ток ротора относительно основного
обмотка статора.ϕ ‘ dr — это
d — потокосцепление ротора, относящееся к
основная обмотка статора.N a — количество
вспомогательные обмотки статора.N м — количество основных
обмотки статора.
Flux
Уравнения, которые определяют поток для модели (в стационарной ссылке
рама d — q ) являются:
где:
L ls это утечка
индуктивность основной обмотки статора.L la — утечка
индуктивность вспомогательной обмотки статора.L мс — намагничивание
индуктивность основной обмотки статора.L ‘ lr — утечка
индуктивность обмотки ротора по отношению к главному статору
обмотка.
Электромагнитный крутящий момент, выраженный как функция магнитопроводов ротора
и токов
где:
Field-Oriented Control
Использование токов статора и потокосцеплений ротора в качестве переменных пространства состояний для
В модели SPIM уравнение электромагнитного момента равно
Используя следующее изменение переменной,
и
Следовательно, уравнение электромагнитного момента можно переписать как
При непрямом управлении потоком ротора ось d
система отсчета ориентирована по вектору потокосцепления ротора
ϕ ‘ r , затем
и
Электромагнитный крутящий момент приводит к
Отсюда составляющая тока оси q составляет
Результирующая скорость скольжения ω с составляет
Отсюда составляющая тока оси d —
, где надстрочный индекс e означает, что
переменная относится к синхронной системе отсчета.
На этой блок-схеме показано управление, ориентированное на поля.
Прямое управление крутящим моментом
Этот тип управления выбирает вектор напряжения из таблицы переключения на
управлять переключателями мощности в инверторе, чтобы получить требуемый поток статора
и соответствующий крутящий момент двигателя. Из уравнений двигателя в стационарном
опорная рамка d — q , оценить статор
поток и крутящий момент:
и
В приближении
и используя переменные статора (потокосцепления и токи)
как переменные в пространстве состояний модели SPIM, электромагнитный момент задается
Используя произведение, крутящий момент равен
, то есть
где:
| ϕ с | а также
| ϕ r | являются
величины пространственных векторов потокосцепления статора и ротора,
соответственно.δ — угол между пространством
векторов.
Изменение относительного движения
ϕ с и
ϕ r (определяется углом,
δ ) влияет на мгновенный крутящий момент двигателя. Если напряжение
падение сопротивления статора исключено, потокосцепление статора напрямую
зависит от выходного напряжения инвертора.
На следующей диаграмме показаны доступные векторы напряжения, соответствующие
возможные состояния инвертора, и четыре отдельных сектора в
d — q Плоскость для двуногого инвертора.
Выбор соответствующих векторов напряжения инвертора может напрямую изменить
магнитудой ϕ с (контроль потока) и
скорость вращения ϕ с (контроль крутящего момента)
как показано на этой диаграмме сектора 1.
На этой блок-схеме показано управление прямым крутящим моментом.
Расчетные поток и крутящий момент сравниваются с эталонными с использованием
гистерезисный контроль. Оцифрованные выходные переменные и поток статора
сектор положения используются для выбора соответствующего вектора напряжения из
таблица переключения. В этой таблице показан соответствующий вектор напряжения для
инвертор, где H ϕ и
H Te являются выходом флюса
и блоки гистерезиса крутящего момента
H ϕ | H Te | Сектор 1 | Сектор 2 | Сектор 3 | Сектор 3 | Сектор 3 (поток увеличивается) | 1 (крутящий момент увеличивается) | V 1 | V 2 | V 3 | V 4 |
---|---|---|---|---|---|---|---|---|---|---|---|
0 (крутящий момент снижен) | V 4 | V 1 | V 2 | V 3 | |||||||
( Поток снижен) | 1 (Крутящий момент повышен) | В 2 | В 3 | В 4 | V 1 | ||||||
0 (момент снижен) | V 3 | V 4 | V 1 | 2 |
Разница между асинхронным двигателем и синхронным двигателем
Разница между асинхронным двигателем и синхронным двигателем объясняется с помощью различных факторов, например типа возбуждения, используемого в машине.Скорость двигателя, запуск и работа, эффективность обоих двигателей, его стоимость, использование и применение. частота.
ОСНОВА РАЗЛИЧИЯ | СИНХРОННЫЙ ДВИГАТЕЛЬ | ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ |
---|---|---|
Тип возбуждения | Синхронный двигатель - это машина с двойным возбуждением. | Асинхронный двигатель - это машина с одним возбуждением. |
Система питания | Обмотка якоря питается от источника переменного тока, а обмотка возбуждения - от источника постоянного тока. | Его обмотка статора запитана от источника переменного тока. |
Скорость | Он всегда работает с синхронной скоростью. Скорость не зависит от нагрузки. | Если нагрузка увеличилась, скорость асинхронного двигателя уменьшается. Это всегда меньше синхронной скорости. |
Запуск | Это не самозапуск. Перед синхронизацией с источником переменного тока его необходимо каким-либо образом довести до синхронной скорости. | Асинхронный двигатель имеет самозапускающийся момент. |
Эксплуатация | Синхронный двигатель может работать с запаздывающей и опережающей мощностью путем изменения его возбуждения. | Асинхронный двигатель работает только с отстающим коэффициентом мощности. При высоких нагрузках коэффициент мощности становится очень низким. |
Использование | Его можно использовать для коррекции коэффициента мощности в дополнение к передаче крутящего момента для привода механических нагрузок. | Асинхронный двигатель используется только для привода механических нагрузок. |
КПД | Он более эффективен, чем асинхронный двигатель той же мощности и номинального напряжения. | Его КПД ниже, чем у синхронного двигателя той же мощности и номинального напряжения. |
Стоимость | Синхронный двигатель дороже, чем асинхронный двигатель с той же мощностью и номинальным напряжением | Асинхронный двигатель дешевле, чем синхронный двигатель с той же мощностью и номинальным напряжением. |
Асинхронный двигатель также известен как асинхронный двигатель . Он так называется, потому что никогда не работает с синхронной скоростью.то есть N с = 120f / P. Асинхронный двигатель является наиболее широко используемым двигателем во всех домашних и коммерческих двигателях. Синхронный двигатель всегда следует синхронной скорости. Скорость вращения ротора поддерживается или синхронизируется с током питания
.
Разница между трехфазным асинхронным двигателем и синхронным двигателем
- Трехфазный синхронный двигатель - это машина с двойным возбуждением, тогда как асинхронный двигатель - это машина с одним возбуждением.
- Обмотка якоря синхронного двигателя питается от источника переменного тока, а его обмотка возбуждения - от источника постоянного тока.Обмотка статора асинхронного двигателя питается от источника переменного тока.
- Синхронный двигатель всегда работает с синхронной скоростью, и скорость двигателя не зависит от нагрузки, но асинхронный двигатель всегда работает со скоростью меньше синхронной. Если нагрузка увеличилась, скорость асинхронного двигателя уменьшается.
- Асинхронный двигатель имеет самозапускающийся крутящий момент, тогда как синхронный двигатель не самозапускается. Перед синхронизацией с источником переменного тока его необходимо каким-либо образом довести до синхронной скорости.
- Синхронный двигатель может работать с запаздывающей и опережающей мощностью, изменяя его возбуждение. Асинхронный двигатель работает только с отстающим коэффициентом мощности. При высоких нагрузках коэффициент мощности асинхронного двигателя становится очень низким.
- Синхронный двигатель может использоваться для коррекции коэффициента мощности в дополнение к подаче крутящего момента для привода механических нагрузок, тогда как асинхронный двигатель используется только для привода механических нагрузок.
- Синхронный двигатель более эффективен, чем асинхронный двигатель той же мощности и номинального напряжения.
- Синхронный двигатель дороже, чем асинхронный двигатель с такой же мощностью и номинальным напряжением.
Асинхронный конденсаторный двигатель
| Статья об асинхронном конденсаторном двигателе по бесплатному словарю
(1) Асинхронный электродвигатель с однофазной сетью, имеющий две обмотки на статоре; одна обмотка подключена непосредственно к источнику питания, а другая подключена последовательно с конденсатором для создания вращающегося магнитного поля.Конденсаторы вызывают фазовый сдвиг между токами, протекающими через обмотки A, и B, (рисунок 1), оси которых смещены в пространстве. Максимальный крутящий момент достигается, когда фазовый сдвиг между двумя токами составляет 90 °, а амплитуда токов выбирается так, что вращающееся поле становится круговым.
Для запуска асинхронного конденсаторного двигателя оба конденсатора ( C 1 и C 2 ) подключаются к цепи; после разгона один конденсатор (например, C 1 ) отключается, поскольку для работы на номинальной скорости требуется значительно меньшая емкость, чем при запуске.Пусковые и рабочие характеристики асинхронного конденсаторного двигателя близки к характеристикам трехфазного асинхронного двигателя. Асинхронные конденсаторные двигатели используются в электроприводах малой мощности; если номинальная мощность превышает 1 киловатт
Рисунок 1 . Схема (а) и векторная диаграмма (б) асинхронного конденсаторного двигателя: напряжения ( U ), ( U B ) и ( U C ); ( I A ) и ( I B ) токи; ( A ) и ( B ) обмотки статора; ( S ) центробежный выключатель, отключающий конденсатор C 1 после пуска двигателя; Конденсаторы (C 1 ) и (C 2 )
Рисунок 2 .Схема подключения трехфазного асинхронного двигателя к однофазной сети: а - обмотки статора, соединенные звездой, б) обмотки статора, соединенные треугольником; (S 1 ) и (S 2 ) переключатели, ( C op ) рабочий конденсатор, ( C s ) пусковой конденсатор, ( M ) асинхронный электродвигатель
они редко б / у из-за стоимости и размера конденсаторов.
(2) Трехфазный асинхронный электродвигатель, подключенный через конденсатор к однофазной сети.Рабочая емкость конденсатора для трехфазного двигателя определяется по формуле C op = 2800 ( I / U ) (микрофарад), если обмотки соединены звездой, и по формуле C op = 4800 ( I / U ) (микрофарад), если обмотки соединены треугольником (рисунок 2). Емкость пускового конденсатора C с составляет (2,5–3,0) C op . Рабочее напряжение конденсаторов должно быть в 1,5 раза больше напряжения сети; бумажные конденсаторы необходимо использовать.
Большая Советская Энциклопедия, 3-е издание (1970-1979). © 2010 The Gale Group, Inc. Все права защищены.
Однофазные асинхронные двигатели
ЦЕЛИ
• описать основные операции следующих типов асинхронных двигателей:
- Двухфазный двигатель (одно- и двухполярный)
- конденсаторный пуск, асинхронный двигатель (одинарное и двойное напряжение)
- конденсаторный пуск, конденсаторный двигатель с одним конденсатором
- конденсаторный пуск, конденсаторный двигатель с двумя конденсаторами
- конденсаторный пуск, конденсаторный двигатель с автотрансформатором с
один конденсатор
• сравните двигатели в списке цели 1 в отношении запуска
крутящий момент, скоростные характеристики и коэффициент мощности при номинальной нагрузке.
Два основных типа однофазных асинхронных двигателей - это двухфазные
двигатель и конденсаторный двигатель. Оба типа однофазных асинхронных двигателей
обычно имеют дробную оценку мощности. Используется двигатель с расщепленной фазой
для работы с такими устройствами, как стиральные машины, небольшие водяные насосы, масляные горелки и другие типы небольших нагрузок, не требующие сильного пускового момента.
Конденсаторный двигатель обычно используется с устройствами, требующими сильного пуска.
крутящий момент, например, в холодильниках и компрессорах.Оба типа однофазных
асинхронные двигатели относительно невысоки в стоимости, имеют прочную конструкцию; и демонстрируют хорошие производственные показатели.
КОНСТРУКЦИЯ ИНДУКЦИОННОГО ДВИГАТЕЛЯ РАЗДЕЛЕННОЙ ФАЗЫ
Асинхронный двигатель с расщепленной фазой в основном состоит из статора, ротора,
центробежный выключатель, расположенный внутри двигателя, корпус с двумя торцевыми щитками
подшипники, поддерживающие вал ротора, и стальная литая рама в
к которому прижимается сердечник статора.Два торцевых щита прикручены к
стальной литой каркас. Подшипники, размещенные в торцевых щитках, удерживают ротор.
центрируется внутри статора, так что он будет вращаться с минимальным трением, без ударов и трения сердечника статора.
Статор двигателя с расщепленной фазой состоит из двух удерживаемых на месте обмоток.
в пазах многослойного стального сердечника. Обе обмотки состоят из изолированных
катушки распределены и соединены в две обмотки, разнесенные на 90 электрических
градусы друг от друга.Одна обмотка - это бегущая обмотка, а вторая обмотка
это пусковая обмотка.
Ходовая обмотка состоит из изолированного медного провода. Он находится по адресу
дно пазов статора. Сечение провода в пусковой обмотке
меньше, чем у бегущей обмотки. Эти катушки размещены сверху
катушек ходовой обмотки в ближайших к ротору пазах статора.
Пусковая и рабочая обмотки подключены параллельно к
однофазная линия при пуске двигателя.После того, как мотор разгоняется
до скорости, равной примерно от двух третей до трех четвертей номинальной
скорости, пусковая обмотка автоматически отключается от линии
с помощью центробежного переключателя.
Ротор электродвигателя с расщепленной фазой имеет такую же конструкцию, как и
трехфазного асинхронного двигателя с короткозамкнутым ротором. То есть ротор состоит
цилиндрического сердечника, собранного из стальных пластин. Медные прутки
устанавливается возле поверхности ротора.Прутки припаиваются или привариваются к
два медных концевых кольца. В некоторых двигателях ротор выполнен из литого алюминия.
Блок.
илл. 1 показан типичный короткозамкнутый ротор для однофазной индукции.
мотор. Этот тип ротора требует минимального обслуживания, так как нет
обмотки, щетки, контактные кольца или коммутаторы. Обратите внимание на рисунок, что
роторные вентиляторы являются частью ротора с короткозамкнутым ротором. Эти ротор
вентиляторы поддерживают циркуляцию воздуха через двигатель, чтобы предотвратить сильное увеличение
по температуре обмоток.
ил. 1 Литой алюминиевый ротор с короткозамкнутым ротором.
Центробежный выключатель установлен внутри двигателя. Центробежный переключатель
отключает пусковую обмотку после достижения ротором заданного
скорость, обычно от двух третей до трех четвертей номинальной скорости. Переключатель
состоит из неподвижной части и вращающейся части. Стационарная часть
установлен на одном из торцевых щитов и имеет два контакта, которые действуют как
однополюсный однонаправленный переключатель.Вращающаяся часть центробежного
переключатель установлен на роторе.
Простая схема работы центробежного выключателя приведена в
Рисунок 2. Когда ротор остановлен, давление пружины
на волоконном кольце вращающейся части удерживает контакты замкнутыми. когда
ротор достигает примерно трех четвертей своей номинальной скорости,
центробежное действие ротора заставляет пружину сбросить давление
на оптоволоконном кольце и контакты размыкаются.В результате пусковая обмотка
цепь отключена от линии. ill 3 - типичный центробежный
переключатель, используемый с асинхронными двигателями с расщепленной фазой.
ил. 2 На схеме показана работа центробежного выключателя:
ротор при остановке центробежный выключатель замкнут; ротор с нормальной скоростью центробежный
усилие, установленное в механизме переключателя, заставляет воротник двигаться и позволяет переключать
контакты для открытия. ил. 3 Центробежный выключатель с
переключатель удален.
Принцип работы
Когда цепь к асинхронному двигателю с расщепленной фазой замкнута, оба
пусковая и ходовая обмотки запитываются параллельно. Потому что бег
обмотка состоит из провода относительно большого сечения, его сопротивление составляет
низкий. Напомним, что ходовая обмотка размещена внизу прорезей.
сердечника статора. В результате индуктивное сопротивление этой обмотки
сравнительно высока из-за массы окружающего его железа.Поскольку
бегущая обмотка имеет низкое сопротивление и высокое индуктивное сопротивление,
ток бегущей обмотки отстает от напряжения примерно на 90
электрические степени.
Пусковая обмотка состоит из проволоки меньшего сечения; поэтому его
сопротивление высокое. Поскольку обмотка размещена в верхней части статора
пазов, масса железа, окружающего его, сравнительно мала, а индуктивная
реактивное сопротивление низкое. Следовательно, пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление.В результате ток пускового
обмотка почти синфазна с напряжением.
Ток ходовой обмотки отстает от тока пусковой обмотки.
примерно на 30 электрических градусов. Эти два тока разнесены на 30 электрических
градусы друг от друга проходят через эти обмотки и вращающееся магнитное поле
разработан. Это поле движется по внутренней части сердечника статора.
Скорость магнитного поля определяется с использованием той же процедуры.
дано для трехфазного асинхронного двигателя.
Если асинхронный двигатель с расщепленной фазой имеет четыре полюса на обмотках статора и подключен к однофазному источнику с частотой 60 Гц, синхронная скорость
Оборотного поля:
S = 120 x f / 4
S = синхронная скорость
f = частота в герцах
S = 120 x 60/4 = 1800 об / мин
Когда поле вращающегося статора движется с синхронной скоростью, оно сокращает
медные шины ротора и индуцирует напряжение в стержнях беличьей клетки
обмотка.Эти наведенные напряжения создают токи в стержнях ротора. Как
в результате создается поле ротора, которое реагирует с полем статора на
развивают крутящий момент, который заставляет ротор вращаться.
Когда ротор разгоняется до номинальной скорости, центробежный выключатель отключается.
пусковая обмотка от линии. Затем двигатель продолжает работать.
используя только ходовую обмотку. На рисунке 4 показаны соединения
центробежного выключателя в момент запуска двигателя (выключатель замкнут) и когда двигатель достигает своей нормальной скорости вращения (выключатель разомкнут).
Двигатель с расщепленной фазой должен иметь под напряжением как пусковая, так и рабочая обмотки.
при запуске мотора. Двигатель похож на двухфазный асинхронный двигатель.
в котором токи этих двух обмоток составляют примерно 90 электрических
градусов не в фазе. Однако источник напряжения однофазный; следовательно,
двигатель называется двухфазным двигателем, потому что он запускается как двухфазный
двигатель от однофазной сети. Как только двигатель разгонится до значения, близкого к
его номинальная частота вращения, он работает на ходовой обмотке как однофазный индукционный
мотор.
Если контакты центробежного переключателя не замыкаются при остановке двигателя,
тогда цепь пусковой обмотки все еще разомкнута. Когда цепь двигателя снова запитана, двигатель не запускается. Двигатель должен иметь как
пусковая и рабочая обмотки находятся под напряжением в момент замыкания цепи двигателя для создания необходимого пускового момента. Если мотор не
запускается, но просто издает низкий гудящий звук, а затем цепь пусковой обмотки размыкается. Либо контакты центробежного переключателя не замкнуты, либо есть
обрыв катушек пусковых обмоток.Это небезопасное состояние.
Бегущая обмотка потребляет чрезмерный ток и, следовательно, двигатель
должен быть отключен от сети.
ил. 22-4 Подключения центробежного переключателя при пуске и работе. Асинхронный двигатель с расщепленной фазой: центробежный переключатель размыкается примерно при
При 75% номинальной скорости пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление. Ходовая обмотка имеет низкое сопротивление и высокое
индуктивное сопротивление.(обеспечивает фазовый угол 45-50 градусов для запуска
крутящий момент.)
Если механическая нагрузка слишком велика при запуске двигателя с расщепленной фазой,
или если напряжение на клеммах двигателя низкое, двигатель
может не достичь скорости, необходимой для работы центробежного переключателя.
Пусковая обмотка предназначена для работы от сетевого напряжения в течение
всего три или четыре секунды, пока двигатель ускоряется
к его номинальной скорости.Важно, чтобы пусковая обмотка была отключена.
от линии центробежным выключателем, как только двигатель разгонится
до 75 процентов номинальной скорости. Работа двигателя при его запуске
обмотка более 60 секунд может привести к сгоранию изоляции на обмотке
или вызвать перегорание обмотки.
Чтобы изменить направление вращения двигателя, просто поменяйте местами провода
пусковая обмотка (5). Это приводит к тому, что направление поля
устанавливается обмотками статора на обратное.В результате направление
вращения обратное. Направление вращения двигателя с расщепленной фазой
также можно изменить местами, поменяв местами два провода ходовой обмотки. Как обычно,
пусковая обмотка используется для реверса.
Однофазные двигатели часто имеют двойное номинальное напряжение: 115 и 230 вольт.
вольт. Для получения этих номиналов ходовая обмотка состоит из двух секций.
Каждая секция обмотки рассчитана на 115 вольт. Один участок бега
обмотка обычно обозначается T и T, а другая часть обозначается T и T. Если двигатель должен работать от 230 В, две обмотки по 115 В.
соединены последовательно через линию 230 В.Если мотор должен быть
работает от 115 вольт, затем две 115-вольтовые обмотки подключаются в
параллельно линии 115 В.
ил. 5 Изменение направления вращения при двухфазной индукции
мотор.
Пусковая обмотка, как правило, состоит только из одной обмотки на 115 В. В
выводы пусковой обмотки обычно имеют маркировку T и T. Если двигатель
должен работать от 115 вольт, обе секции ходовой обмотки
подключены параллельно пусковой обмотке (6).
Для работы на 230 В в клемме заменены перемычки.
коробку так, чтобы две 115-вольтовые секции ходовой обмотки были соединены
последовательно по линии 230 В (7). Обратите внимание, что 115 вольт
пусковая обмотка подключена параллельно одной секции ходовой
обмотка. Падение напряжения на этом участке ходовой обмотки равно
115 вольт, и напряжение на пусковой обмотке тоже 115 вольт.
ил.6 Двигатель с двойным напряжением, подключенный на 115 В.
ил. 7 Электродвигатель с двойным напряжением питания 230 В.
ил. 8 Обмотка двухвольтного двигателя с двумя
пусковая и две ходовые обмотки
Некоторые двухфазные двигатели с двойным напряжением имеют пусковую обмотку с двумя
секции, а также двухсекционная ходовая обмотка. Бегущая обмотка
секции помечены T1 и T2 для одной секции и T3 и T4 для другой.
раздел.Одна секция пусковой обмотки имеет маркировку Т5 и Т6, а
вторая секция пусковой обмотки имеет маркировку Т7 и Т8.
Национальная ассоциация производителей электрооборудования (NEMA) имеет цветовую кодировку
терминальные выводы. Если используются цвета, их следует кодировать следующим образом:
Т1 - синий; Т2 - белый; Т3 - оранжевый; Т4 - желтый; Т5 - черный; и Т6 - красный.
илл. 7 показано расположение обмоток для двухвольтного двигателя с
две пусковые обмотки и две ходовые обмотки.Правильные соединения
для режима 115 В и для режима 230 В приведены в таблице
проиллюстрировано в 8.
У асинхронного двигателя с расщепленной фазой очень хорошее регулирование скорости. Это
имеет быстродействие от холостого хода до полной нагрузки, аналогичное этому
трехфазного асинхронного двигателя с короткозамкнутым ротором. Процент скользит по большинству
дробная мощность двигателей с разделенной фазой составляет от 4 до 6 процентов.
Пусковой момент двигателя с расщепленной фазой сравнительно низкий.В
низкое сопротивление и высокое индуктивное сопротивление в цепи бегущей обмотки, а также высокое сопротивление и низкое индуктивное сопротивление в пусковой обмотке
цепи приводят к тому, что два значения тока будут значительно меньше 90 электрических
градусы друг от друга. Токи пусковой и ходовой обмоток во многих
электродвигатели с разделенной фазой имеют сдвиг по фазе только на 30 электрических градусов
Другие. В результате поле, создаваемое этими токами, не развивается.
сильный пусковой момент.
КОНДЕНСАТОР ПУСК, ВПУСКНОЙ ДВИГАТЕЛЬ
Конструкция конденсаторного пускового двигателя почти такая же, как и у двигателя.
асинхронного двигателя с расщепленной фазой. Однако для конденсаторного пускового двигателя
конденсатор включен последовательно с пусковыми обмотками. Конденсатор
обычно устанавливается в металлическом кожухе наверху двигателя. Конденсатор
может быть установлен в любом удобном внешнем положении на раме двигателя и,
в некоторых случаях может быть установлен внутри корпуса двигателя.Конденсатор обеспечивает
более высокий пусковой момент, чем можно получить со стандартной расщепленной фазой
мотор. Кроме того, конденсатор ограничивает пусковой выброс тока.
до более низкого значения, чем у стандартного двигателя с расщепленной фазой.
Асинхронный двигатель конденсаторного пуска применяется в холодильных установках, компрессорах,
масляные горелки, и для небольшого машинного оборудования, а также для приложений
которые требуют сильного пускового момента.
ил.9 Два соединения ходовой обмотки и одна пусковая обмотка
схема подключения.
Принцип работы
Когда конденсаторный пусковой двигатель подключен к более низкому напряжению и запущен,
как ходовая, так и пусковая обмотки подключены параллельно через
линейное напряжение при замыкании центробежного выключателя. Пусковая обмотка,
однако он подключен последовательно с конденсатором. Когда мотор достигает
при значении 75 процентов от его номинальной скорости центробежный выключатель размыкает и отключает пусковую обмотку и конденсатор от сети.В
тогда двигатель работает как однофазный асинхронный двигатель, используя только
обмотка. Конденсатор используется для улучшения пускового момента и
не улучшает коэффициент мощности двигателя.
Для создания необходимого пускового момента вращающееся магнитное поле должно
настраиваться обмотками статора. Пусковой ток в обмотке приведет к
рабочий ток обмотки на 90 электрических градусов, если конденсатор имеет
правильная емкость подключена последовательно с пусковой обмоткой.В результате магнитное поле, создаваемое обмотками статора, почти
идентичен таковому у двухфазного асинхронного двигателя. Пусковой момент
для двигателя с конденсаторным пуском, таким образом, намного лучше, чем у стандартного
двухфазный двигатель.
Неисправные конденсаторы - частая причина неисправностей конденсатора.
пусковые, асинхронные двигатели. Возможны следующие отказы конденсаторов:
• конденсатор может закоротить сам себя, о чем свидетельствует более низкий пусковой ток.
крутящий момент.
• конденсатор может быть «открыт», в этом случае цепи пусковой обмотки
будет открыт, в результате чего двигатель не запустится.
• конденсатор может вызвать короткое замыкание и вызвать срабатывание предохранителя для
вторичная цепь двигателя на обрыв. Если номиналы предохранителей достаточно высоки и не прерывают подачу питания к двигателю достаточно быстро, запуск
обмотка может перегореть.
• пусковые конденсаторы могут вызвать короткое замыкание, если двигатель многократно включается и выключается за короткий промежуток времени.Чтобы предотвратить выход из строя конденсатора,
многие производители двигателей рекомендуют запускать двигатель с конденсаторным пуском.
не более 20 раз в час. Поэтому этот тип двигателя используется только
в тех приложениях, где относительно мало запусков в коротком
временной период.
ил. 10 Подключения для конденсаторного пуска, асинхронный двигатель
Скоростные характеристики двигателя с конденсаторным пуском очень хорошие. Возрастание
в процентном скольжении от холостого хода до полной нагрузки составляет от 4 процентов
до 6 процентов.Таким образом, быстродействие такое же, как у стандартного
двухфазный двигатель.
Провода цепи пусковой обмотки поменяны местами на реверс
направление вращения конденсаторного пускового двигателя. В результате
направление вращения магнитного поля, создаваемого обмотками статора
в сердечнике статора меняется на противоположное, и вращение ротора меняется на противоположное.
(См. Рисунок 9 для изменения подключения проводов.)
ил 10 - схема подключения конденсаторного пускателя.
двигатель до того, как провода пусковой обмотки меняются местами, чтобы
направление вращения ротора.Схема на рисунке 11 показывает
схемы подключения двигателя после замены выводов пусковой обмотки
для изменения направления вращения.
Второй способ изменения направления вращения пускового конденсатора
двигатель должен поменять местами два провода ходовой обмотки. Однако этот метод
редко используется.
Конденсаторный пуск, асинхронные двигатели часто имеют двойное напряжение
115 вольт и 230 вольт. Подключения для конденсаторного пускового двигателя
такие же, как для асинхронных двигателей с расщепленной фазой.
ил. 11 Соединения для реверсирования конденсаторного пуска, индукционные
запустить мотор.
КОНДЕНСАТОР ПУСК, КОНДЕНСАТОР ЗАПУСК ДВИГАТЕЛЯ
Конденсаторный пуск, конденсаторный двигатель аналогичен конденсаторному пуску,
асинхронный двигатель, за исключением того, что пусковая обмотка и конденсатор
постоянно включен в цепь. У этого мотора очень хороший пуск
крутящий момент. Коэффициент мощности при номинальной нагрузке составляет почти 100 процентов или единицу.
из-за того, что в двигателе постоянно используется конденсатор.
Для этого типа двигателя существует несколько различных конструкций. Один тип
конденсаторный пуск, конденсаторный двигатель имеет две обмотки статора, которые
разнесены на 90 электрических градусов. Подключена основная или ходовая обмотка
непосредственно через номинальное сетевое напряжение. Конденсатор подключен последовательно
с пусковой обмоткой и эта последовательная комбинация также связана
через номинальное сетевое напряжение. Центробежный переключатель не используется, потому что
пусковая обмотка находится под напряжением в течение всего периода работы
мотор.
илл. 12 иллюстрирует внутренние соединения для запуска конденсатора,
конденсатор запускает двигатель с использованием одного значения емкости.
ил. 12 Подключения для конденсаторного запуска, конденсаторного двигателя.
Чтобы реверсировать вращение этого двигателя, проводные соединения пускового
обмотку необходимо поменять местами. Этот тип конденсаторного запуска, конденсаторный запуск
двигатель работает бесшумно и используется на масляных горелках, вентиляторах и небольших
деревообрабатывающие и металлообрабатывающие станки.
Второй тип конденсаторного запуска, конденсаторный двигатель имеет два конденсатора.
Рис. 13 представляет собой схему внутренних соединений двигателя. В
в момент запуска двигателя два конденсатора включаются параллельно. когда
двигатель достигает 75 процентов номинальной скорости, центробежный переключатель
отключает конденсатор большей емкости. Затем двигатель работает с
меньший конденсатор подключен только последовательно с пусковой обмоткой.
ил.13 Подключения для конденсаторного пуска, конденсаторного двигателя:
МАЛЫЙ КОНДЕНСАТОР, ИСПОЛЬЗУЕМЫЙ ДЛЯ ЗАПУСКА И РАБОТЫ; КОНДЕНСАТОР БОЛЬШОГО РАЗМЕРА ДЛЯ
ЗАПУСК.
Этот тип двигателя имеет очень хороший пусковой момент, хорошее регулирование скорости и коэффициент мощности почти 100 процентов при номинальной нагрузке. Заявки на
к этому типу двигателей относятся топочные топки, холодильные агрегаты и компрессоры.
Третий тип конденсаторного пуска, конденсаторный двигатель с автотрансформатором.
с одним конденсатором.Этот двигатель имеет высокий пусковой момент и высокую рабочую
фактор силы. Рис. 14 представляет собой схему внутренних соединений для
этот мотор. При запуске двигателя центробежный переключатель подключает
обмотку 2 в точку А на отводном автотрансформаторе. Поскольку конденсатор
подключен через максимальное количество витков трансформатора, он получает максимальное напряжение
вывод при запуске. Таким образом, конденсатор подключается с номиналом примерно
500 вольт. В результате в обмотке имеется большое значение ведущего тока.
2, и развивается сильный пусковой крутящий момент.
Когда двигатель достигает примерно 75 процентов номинальной скорости,
центробежный выключатель отключает пусковую обмотку от точки A и снова подключает
эту обмотку к точке B на автотрансформаторе. Применяется меньшее напряжение
к конденсатору, но двигатель работает с обеими обмотками под напряжением.
Таким образом, конденсатор поддерживает коэффициент мощности, близкий к единице, при номинальной нагрузке.
Пусковой момент этого двигателя очень хороший, а регулировка скорости
удовлетворительно.Приложения, требующие этих характеристик, включают большие
холодильники и компрессоры.
ил. 14 Подключения для конденсаторного пуска, конденсаторного двигателя
с автотрансформатором
НАЦИОНАЛЬНЫЙ КОД ЭЛЕКТРИЧЕСКОГО КОДА
Раздел 430-32 (b) (1) Национального электротехнического кодекса гласит, что любые
двигатель мощностью не более одной лошадиных сил, который запускается вручную и находится в пределах
вид с места стартера, считается защищенным от
перегрузка устройством максимального тока, защищающим проводники ответвления
цепь.Это устройство максимального тока ответвления не должно быть больше указанного.
в статье 430, Часть D (Ответвительная цепь двигателя, короткое замыкание и замыкание на землю
Защита). Исключением является то, что любой такой двигатель можно использовать при напряжении 120 вольт.
или менее в ответвленной цепи, защищенной не более 20 ампер.
Считается, что расстояние более 50 футов находится вне поля зрения
стартовая локация. Раздел 430-32 (c) распространяется на двигатели мощностью в одну лошадиную силу или
меньше, запускаются автоматически, вне поля зрения со стартовой точки
или стационарно установлен.
Раздел 430-32 (c) (1) гласит, что любой двигатель мощностью в одну или менее лошадиных сил
который запускается автоматически, должен иметь отдельное устройство максимального тока
который реагирует на ток двигателя. Этот блок перегрузки должен быть установлен
для отключения при не более 125% номинального тока полной нагрузки
мотор для моторов с маркировкой на повышение температуры не более 40 градусов
Цельсия или с коэффициентом обслуживания не менее 1,15 (1,15 или выше) и не более 115 процентов для всех других типов двигателей.
РЕЗЮМЕ
Однофазный асинхронный двигатель - один из наиболее часто используемых двигателей в жилых и легких коммерческих целях. Каждое приложение подскажет правильный мотор
стиль для использования. Все двигатели используют концепцию использования одной фазы или одной фазы.
синусоиды, и смещение эффектов токов через катушки на
создают движущееся магнитное поле. Расщепленная фаза и конденсаторный пуск
в двигателе используется пусковой выключатель для отключения пусковых обмоток от
линия, когда двигатель наберет скорость.Двухконденсаторные двигатели используют
несколько конденсаторов или варианты конденсаторов двух номиналов для создания пусковой и работающей цепи. Все те же правила NEC, которые применяются к трехфазному
двигатели по-прежнему применимы к однофазным двигателям. Есть много исключений, которые
применимы только к двигателям малой мощности.
ВИКТОРИНА
1. Перечислите основные части асинхронного двигателя с расщепленной фазой.
2. Что произойдет, если контакты центробежного переключателя не включатся повторно при
мотор останавливается?
3.Объясните, как направление вращения асинхронного двигателя с расщепленной фазой
обратный.
4. Асинхронный двигатель с расщепленной фазой имеет номинальное значение двойного напряжения 115/230
вольт. Двигатель имеет две ходовые обмотки, каждая из которых рассчитана на 115
вольт и одну пусковую обмотку на 115 вольт. Нарисуйте принципиальную схему
этого асинхронного двигателя с расщепленной фазой, подключенного для работы на 230 В.
5. Нарисуйте принципиальную схему подключения асинхронного двигателя с расщепленной фазой.
в вопросе 4 подключен для работы от 115 В.
6. Асинхронный двигатель с расщепленной фазой имеет номинальное значение двойного напряжения 115/230.
вольт. Двигатель имеет две ходовые обмотки, каждая из которых рассчитана на 115
вольт. Кроме того, есть две пусковые обмотки, и каждая из этих обмоток
рассчитан на 115 вольт. Нарисуйте принципиальную схему подключения этой разделенной фазы.
асинхронный двигатель подключен для работы от 230 В.
7. В чем основное отличие асинхронного двигателя с расщепленной фазой от конденсаторного двигателя с индукционным пуском?
8.Если центробежный переключатель не размыкается при ускорении двигателя с расщепленной фазой
до его номинальной скорости, что будет с пусковой обмоткой?
9. Какое ограничение у конденсаторного пуска асинхронного двигателя?
10. Вставьте правильное слово или фразу для завершения каждого из следующих
заявления.
а. Двигатель мощностью не более одной лошадиных сил, который запускается вручную и который
находится в пределах видимости от стартовой точки, считается защищенной
______
г.Двигатель мощностью в одну или менее лошадиных сил, запускаемый вручную, считается
в пределах видимости места стартера, если расстояние не превышает
_________
г. Конденсатор используется с конденсаторным пуском, используется асинхронный двигатель.
только для улучшения ______
г. Конденсаторный пуск, асинхронный двигатель имеет лучший пусковой момент
чем _________
Генераторы: асинхронный асинхронный двигатель в качестве генератора связанные темы: Физика энергии, Ветряки |
Асинхронная генерация в распределительных системах Асинхронная генерация в |
Асинхронный генератор Асинхронная машина как генератор, компенсация реактивной мощности и самовозбуждение, подключение асинхронной машины к электросети, Соединение звезда-треугольник, КПД и коэффициент мощности, Асинхронная машина оптимизирован для работы генератора, pdf файл |
Асинхронный генератор с конденсаторным возбуждением pdf файл |
Асинхронные генераторы комбинации ветряных турбин, трансмиссий и |
Асинхронные индукционные генераторы Асинхронные индукционные генераторы, Cage Ротор генератора скольжения |
Асинхронные индукционные генераторы асинхронный двигатель как генератор, конденсатор |
Комментарий transformer un moteur asynchrone en gnrateur asynchrone en Franais |
Комментарий преобразователь un moteur asynchrone en gnrateur asynchrone en Franais pdf file |
Контролируемый шунт Конденсаторный индукционный генератор с самовозбуждением В этой статье предлагается новый схема регулирования напряжения самовозбуждающегося индукционного генератора (СЭИГ).Предлагаемый Схема SEIG использует концепцию непрерывно регулируемого конденсатора и называется управляемый шунтирующий конденсатор SEIG, pdf файл |
Управление индукционным генератором с двойным питанием для ветроэнергетических установок. |
Dubbelgevoede асинхронный генератор на голландском языке, файл в формате pdf |
Elektrische Aspecten van Windturbinegeneratoren |
Eolienne basee sur une machine asynchrone en Franais, файл pdf |
Gnratrices асинхронная индукция машины asynchrone qui transforme de l'nergie mcanique en nergie lectrique.Pour raliser cette трансформация elle doit pour cela tre entrane au-del de la vitesse de synchronisme, en Franais |
Gnratrices асинхронные gnratrice asynchrone cage d'cureuil, gnratrice asynchrone rotor bobin, gnratrice asynchrone avec rsistance rotorique, en Franais |
Gnratrices synchrone et asynchrones en Franais, файл pdf |
Асинхронный двигатель как генератор Асинхронный двигатель в качестве генератора, двигатели, которые могут работать как генераторы, эти двигатели часто называют «двигателями с короткозамкнутым ротором» и используются в стиральных машинах, сушилках, водяных насосах, двигатель с короткозамкнутым ротором в качестве генератора, часть Домашние генераторы |
Индукционные генераторы для малых гидросхем pdf файл |
Индукционный двигатель как генератор 3 фазы Индукция двигатель как генератор, конденсатор |
Асинхронный двигатель, работающий на скорости выше синхронной. |
Исследование самовозбужденных индукционных генераторов для ветряных турбин pdf файл |
ЭКСПЛУАТАЦИЯ ИНДУКЦИОННЫХ ДВИГАТЕЛЕЙ 60-50 ЦИКЛОВ КАК ГЕНЕРАТОРЫ Целью данной статьи является описание соединений требуется для преобразования двух наиболее распространенных типов асинхронных двигателей в переменный ток. генераторы.Два типа двигателей, которые легче всего преобразовать, - трехфазные. "Беличья клетка" |
ЭКСПЛУАТАЦИЯ ИНДУКЦИОННЫХ ДВИГАТЕЛЕЙ 60 ЦИКЛОВ В КАЧЕСТВЕ ГЕНЕРАТОРОВ В качестве генератора можно использовать любой двигатель, и любой генератор будет мотор при надлежащих обстоятельствах. Цель данной статьи - описать соединения, необходимые для преобразования двух наиболее распространенных типов индукции двигатели в генераторы переменного тока, pdf файл |
Выбор Конденсатор для однофазного индукционного генератора с самовозбуждением pdf файл |
Однофазный трехфазный асинхронный двигатель с короткозамкнутым ротором как с приводом от генератора |
Однофазный индукционный генератор с самовозбуждением с напряжением и частотой |
Твердое состояние Контроллеры для асинхронных генераторов занимаются исследованиями на три типа твердотельных контроллеров для регулирования напряжения асинхронного генераторы для изолированной выработки электроэнергии, pdf файл |
Реакция ротора с короткозамкнутым ротором в двухполюсном поле в системе отсчета ротора: Поток |
Турбогенераторы Генераторы, Синхронные машины, Число полюсов, |
Генератор ветровой турбины |
Асинхронный асинхронный генератор ветряных турбин - индукционный генератор, |
Horizontaal |
Ветряная турбина и система индукционного генератора с двойным питанием |
Ветряная электростанция с использованием индукционных генераторов с двойным питанием |
Horizontaal |
Дом Карта сайта Электронная почта: support [at] karadimov. |