24.11.2024

Постоянный или переменный ток в автомобиле: Ток в автомобиле постоянный или переменный

Содержание

ВАЗ 2107 | Генератор переменного тока

Генератор переменного тока

Мощность

В зависимости от двигателя и комплектации мы видим в Audi A4 генераторы мощностью
70, 90 и 120 А. 70-амперный генератор серийно ставится на машины с четырехцилиндровыми
двигателями, 90-амперный генератор входит в серийную комплектацию автомобилей
с шестицилиндровыми двигателями и 120-амперный генератор входит в спецкомплектацию.

Чтобы определить мощность генератора, нужно помножить указанный максимальный
ток на номинальное напряжение в 14 В. Например, 90А Х 14 В = 1260 Вт.

Вы уже заметили: генератор действительно поставляет 14 В при 12 В в бортовой
сети. Т. е. только при таком небольшом различии в напряжении ток может течь
к аккумулятору для того, чтобы его зарядить.

Передача от ременного шкива коленвала к ременному шкиву генератора так выбрана,
что уже на холостых оборотах может производиться около 2/3 мощности генератора.

Обращение с генератором и меры предосторожности

Генератор переменного тока наряду со своей довольно высокой мощностью обладает
решающим преимуществом: он подает ток уже на холостых оборотах двигателя. Кроме
того, его графитовые щетки выдерживают пробег, значительно превышающий 80 000
км. Как ясно по названию, он производит переменный ток, которым мы не может
пользоваться в автомобиле, так как аккумулятор может, конечно, сохранять только
постоянный ток. Поэтому в генераторе встроены три диодных выпрямителя, которые
преобразуют переменный ток в пульсирующий постоянный ток. Эти диоды чувствительны
к высоким напряжениям, и поэтому вы должны учитывать следующие моменты:




  1. При работающем двигателе нельзя ни снимать, ни подключать ни
    один провод между аккумулятором и генератором. За счет этого может
    резко возрасти напряжение (пики напряжения) и «перегреть» диод.
  2. Генератор переменного тока не должен работать без правильно
    подключенного и исправного аккумулятора. Аккумулятор служит для
    генератора в некоторой степени буфером при пиках напряжения.
  3. Все соединения проводов между генератором переменного тока,
    аккумулятором и металлом кузова или блоком двигателя (массой)
    должны быть прочными. Даже качающийся контакт может привести к
    скачкам напряжения.
  4. При ускоренной зарядке аккумулятора (нельзя использовать для
    зарядки в домашних условиях) и при сварочных работах на кузове
    должны отключаться от аккумулятора оба провода для того, чтобы
    не повредить диоды генератора.



В моделях с четырехцилиндровыми двигателями
генератор (2) располагается слева впереди рядом с двигателем и доступен
сверху. Цифрой «1» показан верхний крепежный болт.



Вид шестицилиндрового двигателя снизу.
Генератор (2) размещается справа внизу около двигателя. Для охлаждения
генератора подключен воздушный канал (1) (здесь демонтирован ради наглядности
изображения).

Что называется генератором переменного тока. Подробное описание принципа работы генератора переменного тока в автомобиле

Переменный ток – движущая сила многих производств и транспорта, в частности, автомобилей. Существуют как небольшие модели величиной с кулак, так и гигантские устройства несколько метров в высоту.

Генератор – та самая техническая система, которая преобразует механическую (кинетическую) энергию в электрическую. Как же действует генератор?

Как бы не был устроен генератор, в основе его действия лежит процесс электромагнитной индукции
– появление в замкнутом контуре электрического тока под воздействием измененного магнитного потока.

Генератор условно делят на 2 части: индуктор и якорь.

Индуктором называют ту часть устройства, где создается магнитное поле, а якорем – ту половину, где образуется электродвижущая сила или ток.

Постоянным остается его техническое строение: проволочная обмотка и магнит.

В обмотке возникает электродвижущая сила под воздействием магнитного поля. Это основа для генератора. Но мощный переменный ток нельзя получить из такой примитивной конструкции. Для преобразования нужен сильный магнитный поток.

Для этого в проволочную намотку добавляют 2 стальных сердечника, которые и определяют назначение и устройство генератора переменного тока. Это статор и ротор. Обмотка, которая создает магнитное поле, помещается в паз одного сердечника – это статор, или индуктор. Он остается неподвижен в отличие от ротора. Статор питается постоянным током. Бывают двухполюсным или многополюсным.

Ротор, или также — якорь, активно вращается с помощью подшипников и продуцирует электродвижущую силу или переменный ток. Представляет собой внутренний сердечник с медной проволочной намоткой.

Генератор имеет прочный металлический корпус с несколькими выходами, что зависит от целевого назначения устройства. Переменчиво количество катушек с проволочной намоткой.

Разбираемся в особенностях функционирования агрегата

Теперь выясним, на каком принципе основана работа генераторов переменного тока. Схема функционирования достаточно проста и понятна. При условии постоянной скорости ротора электрический ток будет производиться единым потоком.

Вращение ротора провоцирует изменение магнитного потока. В свою очередь электрическое поле порождает появление электрического тока. Через контакты с кольцами на конце ток от ротора проходит в электрическую цепь устройства. Кольца имеют хорошее скользящее свойство. Они прочно контактируют со щеточками, которые являются постоянными неподвижными проводниками между электрической цепью и медной проволочной обмоткой ротора.

В медной обмотке вокруг магнита присутствует ток, но он очень слаб в сравнении с силой электрического тока, который выходит из ротора по цепи в устройство.

По этой причине для вращения ротора используют только слабый ток, подведенный по контактам со скольжением.

При сборке генератора переменного тока очень важно выдерживать пропорции деталей, размер, величины зазоров, толщину проволочных жил.
Собрать генератор переменного тока можно, если в вашем доме найдутся все необходимые детали и достаточное количество медной проволоки. Смастерить небольшой агрегат вполне реально. Или же для использования существует подробная инструкция.

Устройство и принцип работы генератора переменного тока на видео

В 1832-м году неизвестным изобретателем был создан первый однофазный синхронный многополюсный генератор переменного тока. Но в самых первых электронных устройствах применялся только постоянный ток, в то время как переменный ток долгое время не мог найти своего практического применения. Тем не менее, вскоре выяснили, что намного практичнее использовать не постоянный, а переменный ток, то есть тот ток, который периодически меняет свое значение и направление. Преимущества переменного тока, состоят в том, что его удобнее вырабатывать при помощи электростанций, генераторы переменного тока экономичнее и проще в обслуживании, чем аналоги, работающие на постоянном токе. Поэтому были собраны надежные электрические двигатели переменного тока, которые сразу нашли свое широкое применение в промышленных и бытовых сферах. Надо отметить, что благодаря существованию переменного тока, его особенным физическим явлениям, смогли появиться такие изобретения, как радио, магнитофон и прочая автоматика и электротехника, без которой сложно представить современную жизнь.

Устройство генератора переменного тока

Генератор переменного тока – это устройство, которые преобразует механическую энергию, в электрическую.

Состоит он из неподвижной части, которая называется статор или якорь (см. рисунок) и вращающейся части — ротор или индуктор. В генераторе переменного тока ротор — это электромагнит, который обеспечивает магнитное поле, которое передается на статор. На внутренней поверхности статора есть осевые впадины, так называемые пазы, в которых расположена обмотка переменного тока (проводник). Статор генератора изготавливается из 0.35 мм спрессованных стальных листов, которые изолированы покрытой лаком пленкой. Эти листы устанавливаются в станине устройства. Ротор крепится внутри статора и вращается посредством двигателя. Вал – одна из деталей, для передачи крутящего момента под действием расположенных на нём опор. На общем валу с генератором, располагается так называемый возбудитель постоянного тока, который питает постоянным током обмотки ротора. Аккумулятор в генераторе переменного тока выполняет функции стартерной батареи, которая имеет свойство накапливать и хранить электроэнергию при нехватке в отсутствии работы двигателя и при нехватке мощности, которую развивает генератор.

Применение генераторов переменного тока в жизни

В течении последних лет, популярность использования электростанций и генераторов переменного тока значительно возросла. Используются они как в промышленных, так и в бытовых сферах. являются наилучшим вариантом для использования на производстве, в больницах, школах, магазинах, офисах, бизнес центрах, а так же на строительных площадках, значительно упрощая строительство в тех зонах, где электрификация полностью отсутствует. Бытовые генераторы, более практичные, компактные и идеально подходят для использования в коттедже и загородном доме. Генераторы переменного тока широко применяются в различных областях и сферах благодаря тому, что могут решить множество важных проблем, которые связаны с нестабильной работой электричества или полным его отсутствием.

Обслуживание

Практически любая дизельная электростанция в независимости от ее мощности и производителя имеет 2 главные составляющие. Это генератор переменного тока и двигатель внутреннего сгорания. Так как поддерживать данные узлы необходимо в рабочем исправном состоянии, в ходе их эксплуатации нужен определенный перечень обязательных работ по их техническому обслуживанию. К сожалению, подавляющее большинство владельцев считает, что можно ограничиться лишь своевременной заменой масла и фильтра, при этом «техническое обслуживание» можно провести и самостоятельно. Но результатом этого зачастую становится полный отказ работы устройства. В результате чего, не сложно сделать вывод, что проще и дешевле, доверить оборудование профессионалам, которые благодаря знаниям и огромному опыту, смогут увеличить срок службы ДГУ и сократить расходы при аварийных ситуациях.

Как известно, при прохождении тока через проводник (катушку) образуется магнитное поле. И, наоборот, при движении проводника вверх-вниз через линии магнитного поля возникает электродвижущая сила. Если движение проводника медленное, то соответственно возникающий электрический ток будет слабым. Значение тока прямо пропорционально напряженности магнитного поля, числу проводников, и соответственно скорости их движения.

Простейший генератор тока состоит из катушки, изготовленной в виде барабана, на которую намотана проволока. Катушка крепится на валу. Барабан с проволочной обмоткой еще называют якорем.

Для снятия тока с катушки, конец каждого провода припаивается к токособирающим щеткам. Эти щетки должны быть полностью изолированы друг от друга.

Генератор переменного тока

При вращении якоря вокруг своей оси происходит изменение электродвижущей силы. Когда виток поворачивается на девяносто градусов сила тока максимальная. При следующем повороте падает к значению нуля.

Полный оборот витка в генераторе тока создает период тока или, другими словами, переменный ток.

Для получения постоянного тока используется переключатель. Он представляет собой разрезанное кольцо на две части, каждая из которых присоединена к разным виткам якоря. При правильной установке половинок кольца и токособирающих щеток, за каждый период изменения силы тока в устройстве, во внешнюю среду будет поступать постоянный ток.

Крупный промышленный генератор тока имеет неподвижный якорь, именуемый статором. Внутри статора вращается ротор, создающий магнитное поле.

Обязательно прочитайте статьи про автомобильные генераторы:

В любом автомобиле есть генератор тока, работающий при движении машины для питания электрической энергией аккумулятора, систем зажигания, фар, радиоприемника и т.д. Обмотка возбуждения ротора является источником магнитного поля. Для того чтобы магнитный поток обмотки возбуждения подводился без потерь к обмотке статора, катушки помещают в специальные пазы стальной конструкции.

Когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник может нами рассматриваться как источник электрической энергии.

Способ получения индуктированной ЭДС, при котором проводник перемещается в магнитном поле, двигаясь вверх или вниз, очень неудобен при практическом его использовании. Поэтому в генераторах применяется не прямолинейное, а вращательное движение проводника.

Основными частями всякого генератора являются: система магнитов или чаще всего электромагнитов, создающих магнитное поле, и система проводников, пересекающих это магнитное поле.

Возьмем проводник в виде изогнутой петли, которую в дальнейшем будем называть рамкой (рис. 1), и поместим ее в магнитное поле, создаваемое полюсами магнита. Если такой рамке сообщить вращательное движение относительно оси 00, то стороны ее, обращенные к полюсам, будут пересекать магнитные силовые линии и в них будет индуктироваться ЭДС.

Рис. 1. Индуктирование ЭДС в пелеобразном проводнике (рамке), вращающемся в магнитном поле

Присоединив к рамке при помощи мягких проводников электрическую лампочку, мы этим самым замкнем цепь, и лампочка загорится. Горение лампочки будет продолжаться до тех пор, пока рамка будет вращаться в магнитном поле. Подобное устройство представляет собой простейший генератор, преобразующий механическую энергию, затрачиваемую на вращение рамки, в электрическую энергию.

Такой простейший генератор имеет довольно существенный недостаток. Через небольшой промежуток времени мягкие проводника, соединяющие лампочку с вращающейся рамкой, скрутятся и разорвутся. Для того чтобы избежать подобных разрывов в цепи, концы рамки (рис.2) присоединяются к двум медные кольцам 1 и 2, вращающимся вместе с рамкой.

Эти кольца получили название контактных колец. Отведение электрического тока с контактных колец во внешнюю цепь (к лампочке) осуществляется упругими пластинками 3 и 4, прилегающими к кольцам. Эти пластинки называются щетками.

Рис. 2. Направление индуктированной ЭДС (и тока) в проводниках А и Б рамки, вращающейся в магнитном поле: 1 и 2 — контактные кольца, 3 и 4 — щетки.

При таком соединении вращающейся рамки с внешней цепью разрыва соединительных проводов не произойдет, и генератор будет работать нормально.

Рассмотрим теперь направление индуктирующейся в проводниках рамки ЭДС или, что то же самое, направление индуктированного в рамке тока при замкнутой внешней цепи.

При направлении вращения рамки, которое показано на рис. 2, в левом проводнике АА ЭДС будет индуктироваться в направлении от нас за плоскость чертежа, а в правом ВВ — из-за плоскости чертежа на нас.

Так как обе половины проводника рамки соединены между собой последовательно, то индуктированные ЭДС в них будут складываться, и на щетке 4 будет положительный полюс генератора, а на щетке 3 отрицательный.

Проследим за изменением индуктированной ЭДС за полный оборот рамки. Если рамка, вращаясь в направлении часовой стрелки, повернется на 90° от положения, изображенного на рис. 2, то половинки ее проводника в этот момент будут двигаться вдоль магнитных силовых линий, и индуктирование ЭДС в них прекратится.

Дальнейший поворот рамки еще на 90° приведет к тому, что проводники рамки снова будут пересекать силовые линии магнитного поля (рис. 3), но проводник АА будет при этом по отношению к силовым линиям двигаться не снизу вверх, а сверху вниз, проводник же ВВ, наоборот, будет пересекать силовые линии, двигаясь снизу вверх.

Рис. 3. Изменение направления индуктированной э. д. с. (и тока) при повороте рамки на 180° по отношению к положению, приведенному на рис. 2.

При новом положении рамки направление индуктированной ЭДС в проводниках АЛ и ВВ изменится на обратное. Это следует из того, что самое направление, в котором каждый из этих проводников пересекает в этом случае магнитные силовые линии, изменилось. В результате полярность щеток генератора также изменится: щетка 3 станет теперь положительной, а щетка 4 отрицательной.

Таким образом, за один полный оборот рамки индуктированная ЭДС дважды меняла свое направление, причем величина ее за это же время также дважды достигала наибольших значений (когда проводники рамки проходили под полюсами) и дважды равнялась нулю (в моменты движения проводников вдоль магнитных силовых линий).

Вполне понятно, что изменяющаяся по направлению и величине ЭДС вызовет в замкнутой внешней цепи изменяющийся по направлению и величине электрический ток.

Так, например, если к зажимам данного простейшего генератора присоединить электрическую лампочку, то за первую половину оборота рамки электрический ток через лампочку будет идти в одном направлении, а за вторую. половину оборота — в другом.

Рис. 4. Кривая изменения индуктированного тока за один оборот рамки

Представление о характере изменения тока при повороте рамки на 360°, т. е. за один полный оборот, дает кривая на рис. 4. Электрический ток, непрерывно изменяющийся по величине и направлению, носит название .

Электрогенератор
– один из составляющих элементов автономной электростанции , а также многих других. По сути, он и является самым важным элементом, без которого невозможна выработка электрической энергии . Электрогенератор преобразует вращательную механическую энергию в электрическую. Принцип его действия основан на так называемом явлении самоиндукции, когда в проводнике (катушке), двигающемся в силовых линиях магнитного поля возникает электродвижущая сила (ЭДС), которую можно (для лучшего понимания вопроса) назвать электрическим напряжением (хотя это и не одно и то же).

Составными частями электрического генератора являются магнитная система (в основном используются электромагниты) и система проводников (катушек). Первая создает магнитное поле, а вторая, вращаясь в нем, преобразует его в электрическое. Дополнительно в генераторе есть еще и система отвода напряжения (коллектор и щетки, соединение катушек определенным образом). Она собственно связывает генератор с потребителями электрического тока.

Получить электроэнергию можно и самому, проведя самый простейший опыт. Для этого нужно взять два разнополюсных магнита или повернуть два магнита разными полюсами друг к другу, и поместить между ними металлический проводник в виде рамки. К ее концам подключить небольшую (слабомощную) электрическую лампочку. Если рамку начать вращать в ту или другую сторону, лампочка начнет светится, то есть на концах рамки появилось электрическое напряжение, а через ее спираль потек электрический ток . Точно также происходит в электрогенераторе, стой лишь разницей, что в электрогенераторе более сложная система электромагнитов и намного сложнее катушка из проводников, обычно медных.

Электрогенераторы различаются как по типу привода, так и по виду выходного напряжения. По типу привода, который приводит его в движение:

  • Турбогенератор – приводится в движение при помощи паровой турбины или газотурбинного двигателя. В основном используются на больших (промышленных) электростанциях.
  • Гидрогенератор – приводится в движение при помощи гидравлической турбины. Применяется также на больших электростанциях, работающих посредством движения речной и морской воды.
  • Ветрогенератор – приводится в движение при помощи энергии ветра. Используется как в маленьких (частных) ветряных электростанциях , так и в больших промышленных.
  • Дизель-генератор и бензо-генератор приводятся в движение соответственно дизельным и бензиновым двигателем.

По виду выходного электрического тока:

  • Генераторы постоянного тока – на выходе получаем постоянный ток.
  • Генераторы переменного тока. Бывают однофазные и трехфазные, с однофазным и трехфазным выходным переменным током соответственно.

Различные типы генераторов имеют свои конструктивные особенности и практически несовместимые узлы. Объединяет их лишь общий принцип создания электромагнитного поля путем взаимного вращения одной системы катушек относительно другой либо относительно постоянных магнитов. Ввиду этих особенностей ремонт генераторов или их отдельных компонентов под силу только квалифицированным специалистам.

В чем разница между генератором и инвертором?

Генератор вырабатывает электроэнергию, а инвертор меняет один тип электрического тока на другой. Существует два различных типа электрического тока: переменный (переменный ток) и постоянный (постоянный ток). Инверторы используются, когда устройства, использующие питание переменного тока, необходимо использовать в автомобиле или другом месте, где доступно только питание постоянного тока. Эти две машины имеют совершенно разные функции, хотя существуют инверторные генераторы, которые выполняют обе функции для повышения энергоэффективности.

AC против постоянного тока

Переменный ток и постоянный ток отличаются тем, что электроны текут взад и вперед в переменном токе, но только в одном направлении в постоянном. Поскольку переменный ток может выдерживать более высокие напряжения, он теряет меньше энергии, когда путешествует на большие расстояния. В результате, переменный ток, как правило, используется для питания большинства домов и зданий. Поэтому большинство бытовых приборов работают от сети переменного тока; в противном случае им потребуется преобразовать энергию переменного тока, которая подается в дом или здание, в постоянный ток для питания устройства. Персональные компьютеры обычно работают на постоянном токе и содержат выпрямитель для выполнения этого преобразования. В этом случае выпрямитель чаще называют источником питания.

Как работают инверторы

Инвертор берет существующую мощность в виде постоянного тока и преобразует ее в переменный ток. Это делается путем отправки тока через переключатели, которые отправляют его в разных направлениях. Затем можно применить фильтры, чтобы сгладить волну и придать ей фиксированную частоту. Различные типы инверторов используют различные методы фильтрации, в зависимости от того, насколько плавным должен быть выходной сигнал. Для преобразования переменного тока в постоянный используется устройство, называемое выпрямителем.

Одним из наиболее распространенных повседневных применений инверторов является обеспечение питания для запуска различной электроники в автомобилях. Автомобили обычно производят постоянный ток, который несовместим с большинством устройств, предназначенных для использования в стандартных розетках. В большинстве современных автомобилей имеется порт для подключения дополнительных устройств, к которому можно подключить портативный инвертор, что позволяет использовать небольшой телевизор, мобильный телефон или другое электронное устройство. Некоторые небольшие инверторы предназначены для подключения к прикуривателю автомобиля.

Более крупные инверторы используются на строительных площадках для обеспечения электроэнергией электроинструментов и других устройств. Генераторы солнечной и ветровой энергии используют инверторы для преобразования производимой ими энергии в энергию, которую можно использовать дома.

Важное различие между инвертором и генератором заключается в том, что инвертор может работать, только если уже есть источник электрической энергии; он не может создать свой собственный. Если инвертор не является частью комбинированной машины, он просто преобразует постоянный ток в переменный, тогда как традиционный генератор не может изменять ток с одной формы на другую.

Как работают генераторы

Генератор — это машина, которая преобразует механическую энергию в электричество. В большинстве случаев электрические генераторы несут ответственность за обеспечение энергией, которую получает дом. Крупногабаритные электрические генераторы могут работать на угле, природном газе или ядерной энергии. Портативный генератор обычно использует бензин или дизельное топливо, которое сжигается для выработки электроэнергии для использования на строительной площадке или в здании во время отключения электроэнергии.

Генераторы могут быть сконструированы для выработки электроэнергии переменного или постоянного тока, хотя большинство из них используются на электростанциях и для небольших применений генерируют переменный ток. Это все, что делают традиционные генераторы — они производят электричество. Если необходимо изменить напряжение, например, электричество, используйте трансформатор.

Инверторные генераторы

Инверторные генераторы похожи на традиционные генераторы, поскольку они вырабатывают мощность переменного тока, которая затем преобразуется в мощность постоянного тока, а затем преобразуется обратно в переменный ток. Это обеспечивает более плавный и устойчивый поток энергии. Преобразование также позволяет генератору быть более экономичным, а также работать более тихо, чем стандартные модели.

Силовые преобразователи

Некоторые люди также путают инвертор с преобразователем питания, даже используя термины взаимозаменяемо. Преобразователь используется для изменения напряжения с одного уровня на другой. В разных странах используются разные уровни напряжения, и путешественникам в других частях мира может понадобиться преобразователь для использования таких приборов, как фены и электробритвы.




ДРУГИЕ ЯЗЫКИ

Устройство и принцип работы автомобильного генератора постоянного тока в составе велогенератора

Это завершающая статья о том, как из велосипеда и генератора от автомобиля сделать мощный электрический генератор своими руками. Предыдущая часть содержит инструкцию по эксплуатации велогенератора.

Технически грамотные могут прочитать дальше как работает автомобильный генератор постоянного тока.

Автомобильный генератор не совсем отвечает своему названию, так как устройство автомобильного генератора уже подразумевает наличие своего собственного выпрямителя и регулирующей схемы. Добавив только лампочку и выключатель, можно сделать самую простую заряжающую систему. Собственно генерирующая часть генератора с помощью неподвижной обмотки (называется статором) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

Принцип работы автомобильного генератора постоянного тока вкратце можно объяснить так. Через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во время первого запуска велогенератора мощность не сможет вернуться в обмотку возбуждения и генерация не запустится, пока не потечёт ток через индикаторную лампу заряда, которая выполняет гораздо больше функций, чем кажется. Протекающий через индикаторную лампочку ток проходит также и через обмотку возбуждения, обеспечивая ей небольшой ток, необходимый для запуска производства электроэнергии. С ростом оборотов ток усиливается, и через три маленьких диода мощность подаётся на обмотку возбуждения — индикаторная лампочка гаснет, тем самым сигнализируя о начале производства электричества. Изменяя параметры индикаторной лампочки, можно контролировать обороты генератора, необходимые для его включения. При первом же запуске генератора железный сердечник обмотки возбуждения постоянно намагничивается. При высокой частоте вращения этого магнетизма может оказаться достаточно для начала генерации и в случае отсутствия аккумулятора выходное напряжение может мгновенно достигнуть сотен вольт. Поэтому никогда не нужно крутить генератор с отключенным аккумулятором. Также предупредите об этой особенности окружающих.

Для механической защиты педального генератора идеально подойдёт старый пожарный кожух, который можно купить на рынке или найти на доске бесплатных объявлений.

Чтобы велогенератор ни за что не зацепился при его перевозке в автомобиле — сначала открутите педали, нанеся немного медной смазки на резьбу.

Вместо ненадёжного регулятора высоты седла на вертикальном генераторе можно просверлить 8-милиметровое отверстие через верхнюю трубу рамы и серию таких же отверстий в подседельном штыре. Тогда для регулировки высоты седла можно использовать ось, сделанную из бесрезьбовой части длинного болта M8.

Источники тока. Грузовые автомобили. Электрооборудование

Источники тока

В качестве источников ток на автомобиле применяют аккумуляторную батарею и генератор. Аккумуляторная батарея питает потребители, когда двигатель не работает или работает на малых оборотах холостого хода, а генератор питает потребители и заряжает аккумуляторную батарею при работе двигателя на средних и больших оборотах.

Аккумуляторная батарея

Состоит из трех или нескольких одинаковых по устройству кислотных аккумуляторов, соединенных последовательно. В аккумуляторных батареях химическая энергия превращается в электрическую. Характерная особенность такого источника питания – способность вырабатывать ток и после разряда, если через батареи пропустить постоянный ток в обратном направлении в течении определенного времени.

Устройство батареи приведено на рисунке.

Рис. Аккумуляторная батарея. А – блок пластин, б– детали узла выключателя «массы», в – общий вид, 1 – отрицательно заряженная пластина, 2 – сепаратор, 3 – положительно заряженная пластина, 2 – сепаратор, 3 – положительно заряженная пластина, 4 – малый шток, 5 – провод, соединяющий выключатель «массы» с выводом12, б – большой шток, 7 – положительный вывод, 8 – бак, 9 – пробка наливного отверстии, 10 – крышка, 11 – перемычка, 12 – отрицательный вывод, 13 – предохранительная решетка, 14 – баретка, 15 – штырь, А – полублок отрицательных пластин, Б – полублок положительных пластин, В – выключатель «массы».


Эбонитовый или из кислотоупорной пластмассы бак 8 имеет отделения для аккумуляторов, составляющих батарею. В каждом отделении (банке) помещается один аккумулятор. Бак, изготовленный из кислотостойкой пластмассы или эбонита, имеет на дне ребра, на которые опираются пластины. В каждую банку помещен набор чередующихся положительно 3 и отрицательно заряженных свинцовых пластин в виде решеток, погруженных в раствор серной кислоты и дистиллированной воды определенной концентрации. Этот раствор называется электролитом. Электролит получают, растворяя серную кислоту в воде. В процессе эксплуатации автомобиля уровень электролита может понижаться из-за выкипания воды. Следовательно, восстанавливаем необходимый уровень, доливая дистиллированную воду. В 1 л электролита заряженного аккумулятора содержится 500 г чистой серной кислоты и 800 г воды. Важным параметром аккумуляторной батареи является плотность электролита. Нормальная плотность электролита у полностью заряженной батареи 1,28-1,29 г/см3, зимой плотность электролита из – за опасности замерзания повышают до 1,31 г/см3. плотность электролита зависит от степени заряженности батареи, а температура замерзания зависит от плотности электролита. Зависимость показана в таблице.

Плотность электролита измеряют специальным прибором называемым ареометром.

Рис. Проверка уровня и плотности электролита 1 – стеклянная трубка; 2 – резиновая груша; 3 – стеклян ный цилиндр; 4 – денсиметр; 5 – наконечник; А – ареометр; Б – шкала денсиметра

Если в аккумулятор налить электролит, то серная кислота вступает в химическую реакцию со свинцовыми пластинами и на поверхности пластин появляется слой сернокислого свинца.

Если через такой элемент пропустить постоянный ток, то электролит под действием тока разлагается, в результате сернокислый свинец положительной пластины превращается в перекись свинца, а на отрицательной пластине сернокислый свинец превращается в губчатый свинец серого цвета. Плотность электролита увеличивается, напряжение на клеммах аккумулятора тоже. Такой процесс называется зарядом.

При подключении к аккумулятору потребителей, ток пойдет в обратном направлении, что вызовет обратную химическую реакцию, на пластинах аккумулятора вновь будет образовываться сернокислый свинец. Плотность электролита уменьшается, напряжение на клеммах аккумулятора тоже. Такой процесс будет называться разрядом.

Отрицательных пластин в каждом аккумуляторе на одну больше, чем положительных, поэтому с обеих наружных сторон блока находятся отрицательные пластины. Толщина положительных пластин больше чем отрицательных. Над пластинами установлен предохранительный щиток.

Положительные пластины отделены от отрицательных пористыми прокладками (сепараторами), изготовленными из стеклянного войлока, микропористого эбонита (мипор) или микропористой пластмассы (мипласта). Сепараторы, изготовленные из минора или мипласта, с одной стороны имеют ребристую поверхность, которой сепаратор обращен к положительной пластине. На дне моноблока аккумуляторной батареи имеются ребра, на которые опираются отрицательные и положительные пластины своими выступами. Во избежание замыкания выступы положительных и отрицательных пластин опираются на разные блоки.

Положительные пластины соединены между собой свинцовыми баретками 14. К бареткам приварены свинцовые штыри 15, выведенные наружу через два крайних отверстия в крышке 10 аккумулятора. Сверху пластины закрыты перфорированным пластмассовым щитком13. через отверстие в крышке, закрываемое пробкой 9, аккумулятор заполняют электролитом. Образующиеся при заряде аккумулятора газы выходят в атмосферу через вентиляционное отверстие пробки. У некоторых аккумуляторов это отверстие выполнено в отдельном штуцере на крышке 10. Зазоры между крышками и стенками бака 8 уплотнены мастикой.

Аккумуляторы соединены в батарею последовательно посредством межэлементных соединений (перемычек) 11, приваренных к выводным штырям 15. Свободные от перемычек выводные штыри крайних аккумуляторов присоединяют к сети электрооборудования автомобиля.

Выключатель массы. При установке на автомобиль выводной штырь батареи со знаком «-» присоединяют к «массе» через выключатель, расположенный в кабине.

Для выключения «массы», нажимают рукой или ногой на большой шток 6. При этом подвижные и неподвижные контакты замыкаются и аккумуляторная батарея включается в электрическую цепь с потребителями. Отключают аккумуляторную батарею от цепи малым штоком 4.

Действие аккумуляторной батареи. На современных автомобилях применяют приборы рассчитанные на напряжение 12 или 24 В. Для того, чтобы получить такое напряжение необходимо соединить последовательно шесть аккумуляторных батарей свинцовыми перемычками. Напряжение на клеммах свинцовых аккумуляторов несмотря на их размер и количество пластин остается постоянным. В заряженном состоянии напряжение одного аккумулятора равно 2В, при разряде напряжение снижается. Нельзя допускать, чтобы напряжение аккумулятора было ниже 1,7В, в таком случае аккумулятор портится.

Емкость аккумулятора определяется количеством электричества, которое может дать заряженный аккумулятор при разряде до допустимого предела (1,7В). Измеряется емкость ампер – часами. Емкость батареи, состоящей из нескольких аккумуляторов, соединенных последовательно, равна емкости одного аккумулятора. Емкость зависит от размера пластин и их количества, от качества активной массы, силы разрядного тока, а также от плотности и температуры электролита.

Номинальная емкость стартерных аккумуляторов гарантируется при непрерывном разряде полностью заряженного аккумулятора током, численно равным 1/10 его емкости, при температуре 30 градусов С, и начальной плотности электролита 1,285 г/см3 для напряжение 1,7В. Так, аккумулятор емкостью 10 ампер – час способен при указанных температуре и начальной плотности электролита поддерживать в присоединенной к нему цепи топ 7А в течение 10 часов, по истечение которых разрядится до напряжения 1,7В.

Чем больше сила разрядного тока, тем меньше становиться емкость. Снижение температуры электролита на один градус Цельсия от температуры 30 градусов Цельсия снижает емкость примерно на 1%.

Типы и обозначения (маркировка) автомобильных аккумуляторных батарей. Принятая маркировка батарей включает: цифру 3 или цифру 6 вначале, обозначающую число аккумуляторов в батарее; буквы СТ, указывают на то, что батарея стартерная, а число после букв СТ, показывает емкость батареи в ампер – часах. Последние буквы обозначают материал бака (Э– эбонит(большинство старых аккумуляторов имели именно такие корпуса), Т – термопластичная пластмасса –, П – асфальтопековая пластмасса с кислотоупорными вставками), буквенное обозначение материала сепараторов (Р – с сепараторами из мипора (мипор), М – с сепараторами из мипласта (мипласт), С – стекловолокно, ДС и МС – древесина или мипласт, комбинированные со стекловолокном, Л – необслуживаемая; 3 – поставляется заряженной; Н – поставляется несухозаряженной. ). После буквенных обозначений указывается соответствующий государственный стандарт.


На автомобилях ЗИЛ-130 устанавливают аккумуляторные батареи 6-СТ-90-ЭМС, на ГАЗ-53А – 6-СТ-75 и на КамАЗ – две 6-СТ-190-ТР.

Присоединение батарей к сети электрооборудования. Для определения на выводных клеммах проставляются знаки « + », « – ». Отрицательную клемму всегда делают тоньше положительной. Батареи соединяют положительным полюсом с изолированными проводами системы электрооборудования, а отрицательным – с массой. Такая полярность наиболее удобна, поскольку в автомобилях установлены радиоприемники, которые должны быть соединены с «землей» отрицательным полюсом.

Если на батарее нет опознавательных знаков и клеммы по толщине различить трудно, надо установить батарею на автомобиль и подключив клеммы, включить свет. Если стрелка амперметра при неработающем двигателе покажет разряд, то батарея включена правильно.

Гарантийный срок эксплуатации аккумуляторных батарей, колеблется от 18 до 24 месяцев, в зависимости от материала сепараторов, а также от условий эксплуатации. Современные аккумуляторные батареи выпускают чаще всего в необслуживаемом исполнении В т.е. все аккумуляторные батареи сухозаряженные, батареи поступают с завода – изготовителя в заряженном виде без электролита. Несмотря на это, они требуют к себе со стороны водителя определенного внимания.

Операции, необходимые для приведения аккумуляторной батареи в рабочее состояние.

– очистить поверхность батареи перед эксплуатацией от загрязнений дабы не дать возможности малым токам, использующим загрязненную поверхность для своего движения, разрядить ее. Очистить поверхность кальцинированной содой или 10% раствором нашатырного спирта, затем насухо вытереть сухой ветошью;

– надежно закрепить аккумуляторную батарею на автомобиле;

– освободить вентиляционные отверстия;

– залить электролит в каждый аккумулятор. Плотность электролита должна соответствовать заряженному аккумулятору, сезону и климатическому поясу; уровень электролита должен быть на 10 – 15 мм выше предохранительного щитка;

– по истечению 2 -3 часов долить электролит до уровня;

– подзарядить аккумулятор силой тока, равной 0,1 емкости в течение 5 часов, если недостаточно – снизить зарядный ток и продолжить заряд аккумулятора в течение 3 часов. Кипение электролита, постоянная плотность и напряжение в течение 3 часов, является признаком конца заряда;

– долить дистиллированную воду или электролит повышенной плотности (1,4), если плотность электролита к концу заряда не соответствует норме;

– проверить зарядку, плотность и уровень электролита, они должны находиться в установленных пределах;

– проверить надежность крепления наконечников (клемм) проводов и их чистоту;

– обратить внимание на состояние полюсных штырей батареи. Окисление этих элементов увеличивает сопротивление.

При электротехнических работах, длительном хранении автомобиля или на стоянке аккумуляторную батарею следует отключить от «массы» автомобиля, для чего устанавливают выключатель аккумуляторной батареи.

При работе с аккумуляторными батареями следует помнить, что при нарушении правил обращения с ними, они опасны для здоровья человека:

– содержат серную кислоту, которая может причинить ожоги, при попадании на открытые участки тела;

– выделяют взрывоопасный горючий газ;

– напряжение и емкость аккумуляторных батарей достаточны для того, чтобы нанести человеку поражение электрическим током в определенных условиях.

Автомобильный генератор

Рис. Генератор 1– шкив, 2 –вентилятор, 3 и 9 – крышки, 4 – вал ротора, 5 – обмотка взбуждения ротора, 6 – контактные кольца, 7 – обмотка статора, 8 – пластины статора, 10 –щетка, 11– щеткодержатель, 12 – магнит ротора, А – ротор, Б – статор, В – выпрямительный блок.

Генератор это источник электрического тока и служит для питания потребителей во время работы двигателя и заряда аккумуляторной батареи. На грузовых автомобилях устанавливают трехфазные генераторы переменного тока со скользящими контактами.

Генератор переменного тока состоит из статора Б, ротора А, выпрямительного блока В, двух крышек 3 и 9, вентилятора 2. Статор представляет собой, кольцо, набранное из листов 8 электротехнической стали, изолированных друг от друга лаком, это сделано для уменьшения потерь на вихревые токи. На внутренней поверхности статора имеются пазы, в которые укладываются 18 катушек 7. Катушки разделены на три группы, по шесть штук в каждой. Таким образом, в каждой фазе по шесть катушек. Соединены между собой катушки последовательно. Одним концом все три катушки соединены между собой, а другой конец каждой группы выведен к выпрямителю. Статор с обеих сторон закрыт крышками из сплава алюминия, в которых на подшипниках установлен ротор.

Магнитное поле создается обмоткой 5 возбуждения и электромагнитом 12, имеющим шесть пар полюсов на стальном валу. Катушка возбуждения помещена внутри сердечников полюсов, а ее выводы припаяны к двум медным контактным кольцам 6. К кольцам прижимаются щетки 10, установленные в щеткодержатели 11.

При включенном зажигании обмотка возбуждения питается от аккумуляторной батареи постоянным током, создавая магнитное поле.

При вращении ротора генератора магнитное поле ротора пересекает своими силовыми линиями проводники обмотки 7 статора и в них индуктируется переменный электрический ток.

Рис. Схема работы генератора

1– магнит ротора, 2 – щетка, 3 – контактное кольцо, 4 – включатель зажигания, 5 – амперметр, 6 – диод, 7 – обмотка статора, 8 – обмотка ротора

Трехфазный ток, индуктируемый в обмотках статора, подводится к кремниевому трехфазному выпрямителю, который состоит из шести кремниевых диодов, собранных внутри задней крышки генератора. После выпрямителя во внешнюю цепь подается уже постоянный электрический ток. Амперметр, с помощью которого контролируется работа генератора, установлен на щитке приборов в кабине.

На генераторе имеются три вывода: один из них положительный ( + ), второй шунт (Ш) и третий выведен на массу ( – ).

Применение генераторов переменного тока позволило уменьшить габариты генераторов, вес, повысить надежность, увеличить мощность по сравнению с генераторами постоянного тока.

Частота вращения коленчатого вала двигателя, а следовательно и ротора генератора, во время работы непостоянна. Чем больше частота вращения ротора, тем больше напряжение тока генератора и наоборот. Когда оно станет больше, чем напряжение тока аккумуляторной батареи, обмотка возбуждения будет питаться током генератора. Такие колебания напряжения влияют на нормальную работу потребителей тока.


Для поддержания в сети постоянного напряжения, вырабатываемого генератором независимо от частоты вращения ротора генератора, нагрузки, температуры и для защиты генератора от перегрузок служит реле – регулятор напряжения .

Регулятор напряжения автоматически поддерживает при средних и больших оборотах коленчатого вала двигателя напряжение генератора приблизительно постоянным, независимо от частоты вращения якоря генератора.

На автомобилях используют контактно – транзисторный реле – регулятор и бесконтактно – транзисторный регулятор. Контактно – транзисторный регулятор применяется на автомобилях ГАЗ -53А и состоит из двух электромагнитных реле (регулятора напряжения и реле защиты), транзистора, трех диодов и резисторов. При работе генератора ток в обмотку возбуждения попадает через транзистор. Если напряжение не превышает допустимого значения, ток поступает без ограничений. С увеличением напряжения намагниченный сердечник регулятора напряжения притягивает якорек и контакты смыкаются, транзистор перестает пропускать ток в обмотку возбуждения, ток поступает в обмотку через добавочные резисторы, напряжение уменьшается и контакты вновь размыкаются. Процесс повторяется с большой частотой.

У бесконтактного регулятора отсутствуют контакты, он более надежен в работе, так как контакты могут окисляться. Такой регулятор состоит из измерительного и регулирующего устройства.

Измерительный элемент – стабилитрон, который управляет тремя транзисторами. Выходной транзистор изменяет силу тока в цепи обмотки возбуждения генератора и тем самым поддерживает напряжение генератора в заданных пределах (12,5 – 13 В).

Регулятор с генератором соединяются проводами с закрытыми фиксирующими штепсельными разъемами, чем исключается короткое замыкание проводов на «массу».

В автомобилях аккумуляторная батарея и генератор включены параллельно. Когда напряжение генератора больше напряжение аккумуляторной батареи, ток от генератора через выпрямитель заряжает аккумуляторную батарею и питает потребителей.

Если напряжение генератора понижается и становится ниже напряжения аккумуляторной батареи, ток для питания потребителей поступает от аккумуляторной батареи.

В генераторах переменного тока присутствует эффект самоограничения максимальной силы тока. При увеличении тока нагрузки, возрастает ток в катушках обмотки статора, увеличивается магнитный поток статора. Он противодействует магнитному потоку ротора, результирующий магнитный поток уменьшается, уменьшается идуктируемое э.д. с. – происходит самоограничение силы тока. Самоограничение происходит еще и за счет увеличения индуктивного сопротивления обмотки, при увеличении частоты вращения ротора и повышения частоты тока в обмотках катушки статора.

Неисправности источников тока

К неисправностям аккумуляторной батареи относятся саморазряд, понижение емкости, полное прекращение действия, а также трещины и другие повреждения корпуса.

Саморазряд – это разряд батареи при отключенных потребителях. Саморазряд, не превышающий 1,0 -1,5% емкости батареи за сутки (полный разряд происходит за 60 – 100 суток). Является нормальным.

Причины ускоренного саморазряда, при котором батарея разряжается за несколько часов: электролит и грязь на поверхности батареи, вызывающие утечку тока, замыкание между собой положительных и отрицательных пластин осадком активной массы, скопившейся на дне бака на уровне ребер, а также загрязнение электролита посторонними примесями.

Понижение емкости батареи вызывается одной из следующих причин: сулфатация пластин, недостаточная плотность электролита, выпадение активной массы. Сульфатация происходит при глубоком (ниже 1, 7 В) разряде аккумуляторов или оставлении батарей разряженными на длительное время, при понижении уровня электролита в аккумуляторах, активная масса выпадает из –за чрезмерной плотности электролита или вследствие колебания пластин, вызванного перегрузкой аккумуляторной батареи при непрерывном включении стартера, более 10 секунд. А также при пуске стартером холодного двигателя., заправленного слишком вязким маслом.

Полное прекращение действия аккумуляторов (на выводных штырях отсутствует напряжение) наступает вследствие замыкания между собой разноименных пластин при поврежденных сепараторах или отрыва выводных штырей от бареток или межэлементных соединений.

Трещины корпуса появляются от ударов при ослабленном креплении аккумуляторной батареи в гнезде, при неосторожном перемещении, замерзании электролита пониженной плотности.

Ремонтируют батарей (разбирают, заменяют неисправные пластины, сепараторы, приваривают штыри и т.д. ) в специализированных мастерских.

Неисправности генераторов и реле – регуляторов. При их неисправностях уменьшается или полностью прекращается питание потребителей от генератора и заряд аккумуляторной батареи. Это обнаруживают по показаниям амперметра ( отсутствие зарядного тока на ходу автомобиля, при хорошо заряженной аккумуляторной батарее и исправном реле – регуляторе является нормальным), а также по недостаточному накалу ламп освещения при работе двигателя на средних и больших оборотах, слабому действию звукового сигнала и т. п. Чаще всего генератор работает ненормально по следующим причинам:

– слабое натяжение ремня привода генератора;

– загрязнение и износ коллектора или контактных щеток генератора;

– ослабление пружин щеток;

– замыкание или обрыв в обмотках генератора;

– нарушение регулировки;

– подгорание контактов и другие неисправности реле – регулятора;

– неисправности выпрямительного устройства.

Состояние коллектора и щеток контролируют осмотром, сняв защитную ленту и если требуется очищают коллектор и заменяют щетки.

Исправность обмоток генератора и реле – регулятора, регулировку реле – регулятора и состояние диодов выпрямительного устройства генератора проверяют в мастерской на специальном стенде.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Генераторы переменного тока и выпрямители

ГЕНЕРАТОРЫ ПЕРЕМЕННОГО ТОКА И ВЫПРЯМИТЕЛИ  [c.58]

Генератор переменного тока и аккумуляторная батарея, установленные на автомобиле, работают параллельно, однако их совместная работа возможна только при наличии выпрямительного устройства,которое выполняется с использованием полупроводниковых (кремниевых) диодов, смонтированных в выпрямительном блоке генератора. При неработающем двигателе или при его работе на малых частотах вращения коленчатого вала диоды выпрямителя предотвращают прохождение тока от аккумуляторной батареи в генератор, защищая его от обратных токов, а аккумуляторную батарею — от разряда. Таким образом, применение кремниевых выпрямителей исключает установку реле обратного тока и ограничителя тока.  [c.101]



Источниками питания гальванических ваин постоянным током обычно являются генераторы постоянного тока и выпрямители переменного. В табл. 25 приведены основные характеристики источников постоянного тока.  [c.62]

Испытание в режиме генератора проводят без нагрузки и под нагрузкой. При этом испытании напряжение должно быть 12,5 В. В генераторах переменного тока с выпрямителем это напряжение измеряют на клеммах выпрямителя. Затем при испытании генератора постоянного тока повышают частоту вращения якоря до  [c.241]

Принципиальная схема трехфазного генератора переменного тока и его выпрямителя  [c.209]

Комплект генератора переменного тока с выпрямителем и регулятором напряжения называют генераторной установкой переменного тока.  [c.182]

В некоторых тракторных реле-регуляторах, работающих с генераторами переменного тока и имеющих электромагнитное возбуждение (например, у трактора К-700 реле-регулятор КТР-1), вместо трех реле устанавливается только два регулятор напряжения РН и ограничитель тока ОТ. Роль реле обратного тока выполняет селеновый выпрямитель, который пропускает электрический ток только в одну сторону — от генератора в сеть.  [c.111]

Конденсатор Сх совместно с резисторами / 1—Яъ образует фильтр низких частот, сглаживающий пульсации напряжения на выходе генератора переменного тока (после выпрямителя). Без этого фильтра переключение транзисторов регулятора происходило бы с частотой пульсаций генератора (несколько килогерц), что вызывало бы увеличение мощности рассеивания в транзисторах и снижало бы надежность регулятора. Схе.ма фильтра построена таким образом, что его постоянная времени остается практически неизменной при различных положениях движка переменного резистора / 2, с помощью которого устанавливается уровень поддерживаемого напряжения.  [c.113]

Применяют генераторы постоянного или переменного тока. Для генераторов переменного тока требуются выпрямители тока такие генераторы в основном применяются нока только на автобусах, где имеется большое количество потребителей и необходима значительная мощность. На остальных автомобилях применяют генераторы постоянного тока.  [c.286]

Для тех же параметров пара ЛКЗ изготовил турбогенераторы для ледоколов Арктика и Сибирь (рис. VII.4). На каждом ледоколе две турбины мощностью по 37 500 л. с. с частотой вращения 3500 об/мин. С турбиной последовательно соединены три электрических генератора переменного тока. Электродвигатели постоянного тока питаются через кремниевые выпрямители. Они вращают трехвальную гребную установку.  [c.124]












Еще раньше, с 1974 г., впервые в отечественной практике на та—кую систему перешел ижевский завод. На мотоцикле Иж-Планета-спор т установлен новый 12-вольтовый генератор переменного тока Иж-ГП1 со встроенным выпрямителем, подающим в систему выпрямленный ток и снабжающий электроэнергией 12-вольтовую аккумуляторную батарею.  [c.49]

Диагностирование генераторной установки осуществляют при помощи вольтметра. При этом, помимо ограничивающего напряжения, возможна проверка и работоспособности генератора. Ограничивающее напряжение проверяют при выключенных потребителях тока и повышенной частоте вращения коленчатого вала двигателя. Работоспособность генератора оценивают по напряжению при включении потребителей тока (приборов освещения) на частоте вращения, соответствующей полной отдаче генератора. При этом напряжение должно быть не ниже 12 В. Однако подобная методика проверки даже при наличии дополнительного режима испытания не может выявить такие характерные, хотя и редко встречающиеся, неисправности генераторов переменного тока, как обрыв или замыкание обмоток статора на корпус (массу) или пробой диодов выпрямителя ввиду значительных резервов работоспособности генератора.  [c.190]

Питание ламп может осуществляться от сети постоянного тока через активные балластные сопротивления, от генератора постоянного тока с мягкой внешней вольт-амперной характеристикой и от сети переменного тока через выпрямитель.[c.26]

Для алюминиевых заводов подводится почти исключительно переменный ток, а выпрямители устанавливаются вблизи от электролизных серий. Это преобразование необходимо потому, что невозможно построить генераторы постоянного тока с достаточно высокой мощностью и числом оборотов, а также потому, что шины для тока большой силы даже при небольшой их протяженности  [c.56]

Генератор переменного тока с электромагнитным возбуждением представляет собой трехфазную синхронную электрическую машину. Синхронным генератор называется потому, что частота тока в нем пропорциональна числу оборотов ротора генератора. В комплект генераторной установки входят генератор, выпрямитель и реле-регулятор (табл. 10).  [c.121]

Обмотка возбуждения генераторов автобусов ЛАЗ и ПАЗ питается постоянным током от аккумуляторной батареи или от селенового выпрямителя. Выпрямитель преобразует вырабатываемый генератором переменный ток в постоянный.[c.121]

В генераторах переменного тока с ростом частоты вращения ротора увеличивается частота изменения направления тока. Это приводит к увеличению индуктивного сопротивления фазовых обмоток. Поэтому при частотах вращения ротора, обеспечивающих получение максимальной мощности генератора, сила тока не может превысить предельной величины. Это свойство генераторов переменного тока называют свойством саморегулирования . Вследствие этого при применении генераторов переменного тока отпадает необходимость в ограничителях тока. Так как выпрямитель пропускает ток только в одном направлении — от генератора к аккумуляторной батарее, то отпадает необходимость и в реле обратного тока.  [c.81]

Кремниевый выпрямитель и реле-регулятор генератора переменного тока  [c.135]

До недавнего времени на автомобилях применялись генераторы постоянного тока. Их замена генераторами переменного тока произошла благодаря развитию электроники и возможности применения дешевых и надежных полупроводниковых выпрямителей. Достоинствами генераторов переменного тока по сравнению с генераторами постоянного тока являются расширение рабочего диапазона частот вращения, большой срок службы, меньшая масса при той же отдаваемой мощности, уменьшение трудоемкости технического обслуживания. Генераторы постоянного тока необходимо было защищать от перегрузки и разряда аккумуляторной батареи через его обмотки, для чего устанавливались ограничитель тока и реле обратного тока. Генераторы переменного тока обладают свойством самоограничения максимальной силы тока, а встроенный выпрямитель препятствует разряду батареи через его обмотки.  [c.31]












Следующий этап развития системы электрооборудования был связан с применением полупроводниковых приборов. Были созданы генераторы переменного тока со встроенными кремниевыми выпрямителями, транзисторные регуляторы напряжения и транзисторные системы зажигания. В настоящее время изделия электрооборудования са встроенными полупроводниковыми приборами уста-  [c. 3]

Общеизвестно, что наиболее слабым местом генератора постоянного тока является щеточно-коллекторный узел. Большое количество неисправностей происходит из-за нарушения работоспособности этого узла. Это обстоятельство является причиной стремления заменить автомобильный генератор постоянного тока генератором переменного тока, не имеющим коллектора. Генератор переменного тока, работающий параллельно с аккумуляторной батареей, можно устанавливать только в комплекте с выпрямителем. Первые отечественные генераторы переменного тока для автобусов снабжались селеновыми выпрямителями. Большие габариты селеновых выпрямителей создавали трудности при их размещении на автомобиле. Кроме того, селеновые выпрямители подвержены старению, имеют низкую температурную стойкость и ряд других недостатков. Поэтому генераторы с селеновыми выпрямителями не нашли широкого применения на автомобилях. Развитие техники полупроводников позволило создать кремниевые выпрямительные диоды, характеризующиеся малыми габаритами, высокой температурной стойкостью, стабильностью электрических характеристик и рядом других преимуществ. Малые габариты кремниевых диодов позволяли встроить их в генератор. Появление кремниевых диодов создало предпосылки для широкого внедрения генераторов переменного тока. На подавляющем большинстве изготовляющихся в настоящее время отечественных автомобилей устанавливаются генераторы переменного тока.  [c.112]

Генераторы с независимым возбуждением и размагничивающей последовательной обмоткой, (рис. 71, а). Генератор Г имеет две обмотки возбуждение обмотку независимого возбуждения НО, питаемую от отдельного источника через сеть переменного тока и полупроводниковый выпрямитель, и последовательную размагничивающую обмотку Р0 включенную последовательно с обмоткой якоря. Ток в цепи независимого возбуждения регулируется реостатом Р. Магнитный ток Фн, создаваемый обмоткой независимого возбуждения, противоположен по своему направлению магнитному потоку  [c.158]

На автобусе ЗИЛ-155 устанавливают генератор переменного тока Г-2 мощностью 750 вт с выпрямителем РС-21 и реле-регулятором РР-2.[c.111]

Генератор переменного тока Г-285 (рис. 101) трехфазный, синхронный с электромагнитным возбуждением, защищенного исполнения с самовентиляцией, работает с селеновым выпрямителем и реле-регулятором. Генератор установлен при помощи приливов на кронштейне двигателя. Привод осуществляется клиновидным ремнем от шкива вентилятора двигателя.  [c.197]

Генератор, устанавливаемый на автомобилях,— трехфазный переменного тока с выпрямителями на кремниевых диодах. Он служит для питания всех потребителей электрической энергии и для зарядки аккумуляторной батареи при среднем и большом числах оборотов коленчатого вала двигателя.  [c.72]

Электронно-ионный регулируемый привод ЭЛИР (табл. 12, тип 6) работает на том же принципе, что и система Г Д. Однако в этом случае питание рабочего двигателя постоянного тока производится не от генератора, а от сети переменного тока через выпрямитель с тиратронами. Этот выпрямитель одновременно позволяет путем применения различных схем сеточного управления регулировать напряжение подводимого к якорю рабочего электродвигателя тока в широких пределах 1 30. Учитывая возможность регулирования скорости вращения рабочего электродвигателя за счет изменения магнитного потока, общий диапазон регулирования привода ЭЛИР может достигать 80— 100. Привод ЭЛИР имеет сложную монтажную схему, сравнительно малый срок службы (порядка 1000 ч) и ограниченную мощность (5—7 кет).  [c.360]

На современных автомобилях устанавливают генераторы переменного тока с кремниевыми выпрямителями. Реле-регулятор генератора переменного тока состоит из регулятора напряжения и реле защиты (от перегрузок).  [c.143]

К источникам электроэнергии относятся аккумуляторные батареи, генератор переменного тока с встроенными выпрямителем и регулятором напряжения,  [c.341]

Пуск дизеля осуществляется электростартером. Для облегчения пуска в холодную погоду служат декомпрессионное устройство и электрическая свеча, с помощью которой подогревается воздух во впускном трубопроводе. Двигатель снабжен генератором переменного тока мощностью 400 Вт с встроенным выпрямителем.[c.231]

Генераторы переменного тока и выпрямители тока. Генератор переменного тока с электромагнитным возбуждением представляет собой трехфазную синхрои-  [c.141]

Некоторые генераторы переменного тока имеют выпрямители, непосредственно встроенные в конструкцию генератора. К таким генераторам относится генератор типа Г250, устанавливаемый на автомобилях ГАЗ-53А, ГАЗ-24, Москвич -412 и автобусе ПАЗ-672.  [c.127]

Сварку иод флюсом осуществляют переменным или постоянным током. Монтангиые организации в большинстве случаев используют переменный ток, так как оборудование для этого (трансформаторы) проще, дешевле и надежнее в эксплуатации, а расход электроэнергии нин е, чем при сварке на постоянном токе. Постоянный ток (генераторы постоянного тока и выпрямители) находит применение преимущественно при сварке нержавеющих сталей, цветных металлов и сплавов и при наплавке.  [c.74]



Источник тока. В зависимостн от источника тока системы батарейного зажигания могут быть постоянного и переменного тока. Система зажигания с генератором переменного тока и аккумуляторной батареей в настоящее время применяется очень редко. Эта система имеет ряд преимуществ (простота конструкции и малая стоимость генераторов, меньшая масса), но требует включения в схему выпрямителей, которые недостаточно надежны, особенно на транспортных установках, и это пока является препятствием для широкого распространения этой схемы.  [c.166]

В исполнительный орган входят возбудитель СВ в виде однофазного генератора переменного тока и управляемый выпрямитель возбуждения УВВ (см. гл. I). Управляющий орган МПР возбуждения состоит из блока управления выпрямителем БУВ и селективного узла СУ, в который поступают сигналы от датчиков по току нагрузки генератора — от трансформаторов ТПТ1 и ТПТ2 по напряжению генератора — от трансформатора ТПН по нагрузке дизеля — от индуктивного датчика ИЦ и сигнал уставки — от блока задания возбуждения БЗВ.[c.79]

Генератор переменного тока и аккумуляторная батарея, расположенные на автомобиле, работают параллельно, однако их совместная работа возможна только при наличии вьшрямительного устройства. Детали выпрямителя закреплены на крышке 7 генератора. Вьшрямитель собран по трехфазной мостовой схеме из шести кремниевых вентилей типа ВА-20 — полупроводниковых приборов, пропускающих ток только в одном направлении. Они находятся в специальном вьшрямительном блоке.  [c.85]

Широкое применение нашел генератор переменного тока Г250. Он состоит из ротора 9 (рис. 27), статора 10, крышек 1, 8, приводного шкива 6 с вентилятором 4 и выпрямителя 11. Подвижное магнитное поле создается вращающимся двенадцатиполюсным электромагнитом — ротором, который состоит из надетых на вал 5 двух половин, имеющих по шесть клювообразных полюсов. Между половинами ротора размещена обмотка возбуждения 3. Напряжение к обмотке возбуждения подводится через медно-графитовые щетки 2. Одна из щеток присоединена к корпусу генератора, а вторая — к изолированной клемме, к которой через регулятор подводится ток возбуждения от аккумуляторной батареи. Ротор вращается внутри статора 10, набранного из изолированны — пластин, выполненных из малоуглеродистой электротехнической стали. При вращении ротора в обмотках статора индуктируется ЭДС. Секции выпрямителя размещены в крышке генератора. Выводы всех секций выпрямителя с одной  [c.70]

Генератор переменного тока Г-250 (рис. 63) состоит из ротора, статора, крышек и приводного шкива с вентилятором и имеет выпрямитель. Подвижное магнитное поле создается вращающимся двенадцатй-полюсным электромагнитом — ротором. Ротор состоит из надетых на вал 7 двух чашеобразных половин 11, имеющих каждая по шесть клювообразных полюсов. Между половинами ротора на стальном кольце размещена обмотка возбуждения 20. Напряжение к обмотке возбуждения подводится через меднографитовые щетки 4 и два изолированных контактных кольца 2, напрессованных на вал ротора. Концы обмотки возбуждения соединены с контактными кольцами. Меднографитовые щетки размещены в щеткодержателях 3 в торцовой крышке 1 генератора со стороны, противоположной приводу. Одна из щеток подключена к корпусу генератора, а вторая — к изолированной клемме, к которой через регулятор подводится ток возбуждения от аккумуляторной батареи. Возникающее магнитное поле намагничивает клювообразные полюсы ротора. Полюсы каждой из половин ротора имеют разную полярность.  [c.96]

На рис. 64 показана схема двухступенчатого вибрационного регулятора напряжения РР380, устанавливаемого на автомобилях ВАЗ — 2103, ВАЗ — 2106 Жигули , ВАЗ-2121 Нива и работающего совместно с генератором переменного тока. В начале работы генератора ток от аккумуляторной батареи поступает к обмотке возбуждения 6 генератора через выключатель зажигания 7 и замкнутые контакты 4 и 3 реле напряжения. Одновременно через резистор ток проходит к управляющей обмотке 7 реле напряжения. Когда напряжение на клеммах выпрямителя повышается,  [c. 81]

Осйовные неисправности генератора переменного тока. Генератор дает малый зарядный ток. Признак на средних и больших оборотах ампермегр показывает разряд или малый зарядный ток. Причины обрыв, плохой контакт или замыкание на массу цепей от генератора до аккумуляторной батарей сгорели предохранители цепей обмоток возбуждения ротора загрязнены или замаслены контактные кольца, слабое давление щеток 10 (см. рис. 43), обрыв в обмотках ротора или в катушках статора пробой селенового выпрямителя.  [c.58]

С выводов генератора переменного тока со встроенными кремниевыми выпрямителями снимается постоянный ток, и, следовательно, он является бесколлекторным генератором постоянного тока. Термин автомобильный генератор переменного тока сложился, когда выпрямительное устройство представляло собой отдельный агрегат, и удержался до настоящего времени.  [c.112]

Количество и мощность потребителей электрической энергии в системах электрооборудования автомобилей непрерывно возрастает, что требует соответствующего роста мощности генератора. Однако при увеличении габаритов генератора возникают трудности, связанные с недостатком места. Высокая компактность генератора переменного тока дает ему преимущества и в этом отношении. Отношение мощности к массе (удельная мощность) у генератора переменного тока Г250, например, составляет 90 Вт/кг, в то время как удельная мощность генераторов постоянного тока не превышает 35 Вт/кг. Генератор переменного тока мощностью 500 Вт имеет меньшую массу и габариты, чем генератор постоянного тока мощностью 350 Вт. С этим связан меньший расход конструкционных материалов на изготовление генератора переменного тока. Например, расход меди на изготовление 500-ваттного генератора переменного тока втрое меньше, чем для 350-ваттного генератора постоянного тока. Надо, однако, указать, что стоимость кремниевых выпрямителей довольно высока и поэтому генератор переменного тока дороже генератора постоянного тока. Тем не менее эксплуатационные преимущества генераторов переменного тока настолько велики, что последние практически вытеснили генераторы постоянного тока на выпускаемых отечественных автомобилях. В настоящее время генераторы постоянного тока изготовляются главным образом в запасные части для находящихся в эксплуатации автомобилей старых моделей.  [c.122]

Генератор переменного тока Г-3 (рис. 54). Трехфазная обмотка 7 якоря генератора неподвижна и размещена на статоре 9. Магнитное поле возбуждения создается об.моткойвращающегося ротора 11, по которой течет постоянный ток от особого выпрямителя (см. 4 на рис. 55).  [c.107]

Электрооборудование базового трактора К-700 (К-702) (рис. 100) включает в себя генератор переменного тока, работающий совместно с селеновым выпрямителем, реле-регулятор, аккумуляторные батареи, приборы системы пуска двигателя, освещения, сигнализащщ, предпускового обогрева и контрольных приборов.  [c.197]


Как устроен электрогенератор. Подробное описание принципа работы генератора переменного тока в автомобиле

Когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник может нами рассматриваться как источник электрической энергии.

Способ получения индуктированной ЭДС, при котором проводник перемещается в магнитном поле, двигаясь вверх или вниз, очень неудобен при практическом его использовании. Поэтому в генераторах применяется не прямолинейное, а вращательное движение проводника.

Основными частями всякого генератора являются: система магнитов или чаще всего электромагнитов, создающих магнитное поле, и система проводников, пересекающих это магнитное поле.

Возьмем проводник в виде изогнутой петли, которую в дальнейшем будем называть рамкой (рис. 1), и поместим ее в магнитное поле, создаваемое полюсами магнита. Если такой рамке сообщить вращательное движение относительно оси 00, то стороны ее, обращенные к полюсам, будут пересекать магнитные силовые линии и в них будет индуктироваться ЭДС.

Рис. 1. Индуктирование ЭДС в пелеобразном проводнике (рамке), вращающемся в магнитном поле

Присоединив к рамке при помощи мягких проводников электрическую лампочку, мы этим самым замкнем цепь, и лампочка загорится. Горение лампочки будет продолжаться до тех пор, пока рамка будет вращаться в магнитном поле. Подобное устройство представляет собой простейший генератор, преобразующий механическую энергию, затрачиваемую на вращение рамки, в электрическую энергию.

Такой простейший генератор имеет довольно существенный недостаток. Через небольшой промежуток времени мягкие проводника, соединяющие лампочку с вращающейся рамкой, скрутятся и разорвутся. Для того чтобы избежать подобных разрывов в цепи, концы рамки (рис.2) присоединяются к двум медные кольцам 1 и 2, вращающимся вместе с рамкой.

Эти кольца получили название контактных колец. Отведение электрического тока с контактных колец во внешнюю цепь (к лампочке) осуществляется упругими пластинками 3 и 4, прилегающими к кольцам. Эти пластинки называются щетками.

Рис. 2. Направление индуктированной ЭДС (и тока) в проводниках А и Б рамки, вращающейся в магнитном поле: 1 и 2 — контактные кольца, 3 и 4 — щетки.

При таком соединении вращающейся рамки с внешней цепью разрыва соединительных проводов не произойдет, и генератор будет работать нормально.

Рассмотрим теперь направление индуктирующейся в проводниках рамки ЭДС или, что то же самое, направление индуктированного в рамке тока при замкнутой внешней цепи.

При направлении вращения рамки, которое показано на рис. 2, в левом проводнике АА ЭДС будет индуктироваться в направлении от нас за плоскость чертежа, а в правом ВВ — из-за плоскости чертежа на нас.

Так как обе половины проводника рамки соединены между собой последовательно, то индуктированные ЭДС в них будут складываться, и на щетке 4 будет положительный полюс генератора, а на щетке 3 отрицательный.

Проследим за изменением индуктированной ЭДС за полный оборот рамки. Если рамка, вращаясь в направлении часовой стрелки, повернется на 90° от положения, изображенного на рис. 2, то половинки ее проводника в этот момент будут двигаться вдоль магнитных силовых линий, и индуктирование ЭДС в них прекратится.

Дальнейший поворот рамки еще на 90° приведет к тому, что проводники рамки снова будут пересекать силовые линии магнитного поля (рис. 3), но проводник АА будет при этом по отношению к силовым линиям двигаться не снизу вверх, а сверху вниз, проводник же ВВ, наоборот, будет пересекать силовые линии, двигаясь снизу вверх.

Рис. 3. Изменение направления индуктированной э. д. с. (и тока) при повороте рамки на 180° по отношению к положению, приведенному на рис. 2.

При новом положении рамки направление индуктированной ЭДС в проводниках АЛ и ВВ изменится на обратное. Это следует из того, что самое направление, в котором каждый из этих проводников пересекает в этом случае магнитные силовые линии, изменилось. В результате полярность щеток генератора также изменится: щетка 3 станет теперь положительной, а щетка 4 отрицательной.

Таким образом, за один полный оборот рамки индуктированная ЭДС дважды меняла свое направление, причем величина ее за это же время также дважды достигала наибольших значений (когда проводники рамки проходили под полюсами) и дважды равнялась нулю (в моменты движения проводников вдоль магнитных силовых линий).

Вполне понятно, что изменяющаяся по направлению и величине ЭДС вызовет в замкнутой внешней цепи изменяющийся по направлению и величине электрический ток.

Так, например, если к зажимам данного простейшего генератора присоединить электрическую лампочку, то за первую половину оборота рамки электрический ток через лампочку будет идти в одном направлении, а за вторую.половину оборота — в другом.

Рис. 4. Кривая изменения индуктированного тока за один оборот рамки

Представление о характере изменения тока при повороте рамки на 360°, т. е. за один полный оборот, дает кривая на рис. 4. Электрический ток, непрерывно изменяющийся по величине и направлению, носит название .

Индукционный генератор переменного тока.
В индукционных генераторах переменного тока механическая энергия превращается в электрическую. Индукционный генератор состоит из двух частей: подвижной, которая называется ротором, и неподвижной, которая называется статором. Действие генератора основано на явлении электромагнитной индукции. Индукционные генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется много типов индукционных генераторов, но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, состоящая из последовательно соединенных витков, в которых индуцируется переменная электродвижущая сила. Так как электродвижущие силы, наводимые в последовательно соединенных витках, складываются, то амплитуда электродвижущей силы индукции в обмотке пропорциональна числу витков в ней.

Рис. 6.9

Число силовых линий, пронизывающих каждый виток, непрерывно меняется от максимального значения, когда он расположен поперек поля, до нуля, когда силовые линии скользят вдоль витка. В результате при вращении витка между полюсами магнита через каждые пол-оборота направление тока меняется на противоположное, и в витке появляется переменный ток. Во внешнюю цепь ток отводится при помощи скользящих контактов. Для этого на оси обмотки укреплены контактные кольца, присоединенные к концам обмотки. Неподвижные пластины – щетки – прижаты к кольцам и осуществляют связь обмотки с внешней цепью (рис. 6.9).

Пусть виток провода вpащается в одноpодном магнитном поле с постоянной угловой скоpостью . Магнитный поток, пронизывающий виток, меняется по закону , здесь S
– площадь витка. Согласно закону Фаpадея в обмотке наводится электродвижущая сила индукции, которая опpеделяется следующим обpазом:

где N
– число витков в обмотке. Таким образом, электродвижущая сила индукции в обмотке изменяется по синусоидальному закону и пpопоpциональна числу витков в обмотке и частоте вpащения.

В опыте с вращающейся обмоткой статором является магнит и контакты, между которыми помещена обмотка. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится электродвижущая сила, уложены в пазах статора и остаются неподвижными. На тепловых электростанциях для вращения ротора используются паровые турбины. Турбины, в свою очередь, приводятся во вращение струями водяного пара, полученного в огромных паровых котлах за счет сжигания угля или газа (теплоэлектростанции) или распада вещества (атомные электростанции). На гидроэлектростанциях для вращения ротора используются водяные турбины, которые вращаются водой, падающей с большой высоты.

Электрогенераторы играют важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии – и, тем не менее, снабжать ею заводы, дома и т.п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей демонстрировал прототип электрогенератора Джону Пилу, канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, все это очень интересно, а какой от всего этого толк?».

«Какой толк? – якобы удивился Фарадей. – Да вы знаете, сэр, сколько налогов эта штука со временем будет приносить в казну?!»

Трансформатор.

Трансформатор.
Электродвижущая сила мощных генераторов электростанций велика, между тем практическое использование электроэнергии требует чаще всего не очень высоких напряжений, а передача энергии, наоборот, очень высоких.

Для уменьшения потерь на нагревание проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, для сохранения мощности увеличить напряжение. Напряжение, вырабатываемое генераторами (обычно около 20 кВ), повышают до напряжения 75 кВ, 500 кВ и даже до напряжения 1,15 МВ, в зависимости от длины линии электропередачи. Повышая напряжение с 20 до 500 кВ, то есть в 25 раз, уменьшают потери в линии в 625 раз.

Преобразование переменного тока определенной частоты, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется электромагнитным устройством, не имеющим подвижных частей – электрическим трансформатором. Трансформатор – важный элемент многих электрических приборов и механизмов. Зарядные устройства и игрушечные железные дороги, радиоприемники и телевизоры – всюду трудятся трансформаторы, которые понижают или повышают напряжение. Среди них встречаются как совсем крошечные, не более горошины, так и настоящие колоссы массой в сотни тонн и более.

Рис. 6.10

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из ферромагнитного материала (рис. 6.10). На магнитопроводе располагаются две обмотки – первичная и вторичная. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», то есть приборы, потребляющие электроэнергию, называется вторичной. Ферромагнетик увеличивает количество силовых линий магнитного поля приблизительно в 10 000 раз и локализует поток магнитной индукции внутри себя, благодаря чему обмотки трансформатора могут быть пространственно разделены и все же остаются индуктивно связанными.

Действие трансформатора основано на явлениях взаимной индукции и самоиндукции. Индукция между первичной и вторичной обмоткой взаимна, то есть ток, протекающий во вторичной обмотке, индуцирует электродвижущую силу в первичной, точно так же, как первичная обмотка индуцирует электродвижущую силу во вторичной. Более того, поскольку витки первичной обмотки охватывают собственные силовые линии, в них самих возникает электродвижущая сила самоиндукции. Электродвижущая сила самоиндукции наблюдается также и во вторичной обмотке.

Пусть первичная обмотка подсоединяется к источнику переменного тока с электродвижущей силой , поэтому в ней возникает переменный ток , создающий в магнитопроводе трансформатора переменный магнитный поток ?
, который сосредотачивается внутри магнитного сердечника и пронизывает все витки первичной и вторичной обмоток.

При отсутствии внешней нагpузки выделяемая в тpансфоpматоpе мощность близка к нулю, то есть близка к нулю сила тока. Применим к первичной цепи закон Ома: сумма электродвижущей силы индукции и напряжения в цепи равна произведению силы тока на сопротивление. Полагая , можно записать: , следовательно, , где Ф
– поток пронизывающий каждый виток первичной катушки. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же электродвижущую силу в каждом витке, то суммарная электродвижущая сила, индуцируемая в обмотке, пропорциональна полному числу ее витков. Следовательно, .

Коэффициент трансформации напряжения равен отношению напpяжения во вторичной цепи к напряжению в первичной цепи. Для амплитудных значений напряжений на обмотках можно записать:

Таким образом, коэффициент трансформации определяется как отношение числа витков вторичной обмотки к числу витков первичной обмотки. Если коэффициент , трансформатор будет повышающим, а если – понижающим.

Написанные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике.

Токи Фуко.

Токи Фуко.
Индукционные токи могут возникать также в сплошных массивных проводниках. При этом замкнутая цепь индукционного тока образуется в толще самого проводника при его движении в магнитном поле или под влиянием переменного магнитного поля. Эти токи названы по имени французского физика Ж.Б.Л. Фуко, который в 1855 г. обнаружил нагревание ферромагнитных сердечников электрических машин и других металлических тел в переменном магнитном поле и объяснил этот эффект возбуждением индукционных токов. Эти токи в настоящее время называются вихревыми токами или токами Фуко.

Если железный сердечник находится в переменном магнитном поле, то в нем под действием индукционного электрического поля наводятся внутренние вихревые токи – токи Фуко, ведущие к его нагреванию. Так как электродвижущая сила индукции всегда пропорциональна частоте колебаний магнитного поля, а сопротивление массивных проводников мало, то при высокой частоте в проводниках будет выделяться, согласно закону Джоуля–Ленца, большое количество тепла.

Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Рис. 6.11

Вихревые токи широко используются для плавки металлов в так называемых индукционных печах (рис. 6.11), для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток). Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя левитационный нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры), получают особо чистые металлы и сплавы.

Содержание:

Когда люди присмотрелись к возможностям электричества, сразу начали придумывать, как бы серьезно поставить на службу эту интересную энергию. И появилась целая гамма приборов, устройств, установок, способных создавать на двух металлических концах электрическое напряжение. К концам сразу же прикрутили два болтика и начали подвешивать к ним все, что вызывало теперь массу интересных эффектов. Устройства эти в целом назвали источниками электроэнергии, или генераторами. А то, что к ним подключалось — электрической цепью. А по мере роста цепей и занятия ими все более значимого и постоянного места в человеческой жизни, их стали называть уже электрическими сетями.

Именно генераторы создали всю нашу электроиндустрию. Чем принцип работы генератора переменного тока отличается от принципов работы первых источников? Некой надежностью и постоянством, происходящими от надежности и всеобщей доступности той энергии, из которой они вырабатывают электричество. Это механическое движение. А у нас мир весь полон движения. И вполне естественно было заставить роторы крутиться, а движение для этого брать из чего-то еще. Из тепла. Сгорает топливо, ротор крутится — генератор тока работает.

Первоначальный источник же был продуктом первых экспериментов. Химия (аккумуляторы), электризация (электрофорные машины) — все это как-то слабо. Потому что непропорционально дорого, сравнительно с количеством энергии, которое потребовали сети. Сначала осветительные, а потом почти сразу трамвайные. Вот трамвай и толкнул генераторы тока вперед в развитии.

Трамвайная линия — это то, где электроэнергия сама производит движение. Плюсом такого подхода оказалась очень удобная подача такого «топлива» на большие довольно расстояния. И очень органично вписалась в затраты по изготовлению самой трамвайной линии. Когда кладут железные пути, что уж там не проложить вдоль них еще и проволоку, подводящую ток к трамваям, которые могут теперь находиться на линии в любом месте и с одинаковой легкостью получать эту энергию.

Преобразование оказалось симметричным: устройство генератора переменного тока практически такое же, как и у двигателя. Только у генератора назначение — вырабатывать электричество, вращая ротор, а у другого электроэнергия крутит почти такой же ротор, а уже он — колеса трамвая.

О такой передаче энергии механики прошлых веков только мечтали. Ведь когда-то с помощью водяного колеса вращали валы обрабатывающих станков в целых цехах. А энергию механическую передавали тоже механически: с помощью валов, шкивов, ремней, шестеренок… Тут же всего-то — два проводочка. А в случае с трамваями вообще один. Второй — сами рельсы.

Ток переменный и ток постоянный

Сначала открыли электрический ток, когда увидели, что он, себя проявляя, действует. Потом только обнаружили, что ток бывает постоянный, но может быть и переменным.

Собственно говоря, генерация тока всегда и происходит от изменения
магнитного поля, проходящего через обмотку. И напряжение, которое при этом возникает, просто обязано быть переменным. Потому что технически просто немыслимо заставить магнитное поле изменяться строго равномерно. Источники тока, полученные другим путем, основывались на стационарных процессах (или квазистационарных — учитывая разряд аккумуляторов), поэтому они и давали исключительно постоянный ток. Когда изобрели телеграф — наверное, первое электрическое изобретение, толкнувшее к созданию масштабных электрических линий, — этот самый ток в них был постоянным, хотя и прерывистым. Постоянный ток не очень высокого напряжения дает в передаче на дальние расстояния огромные потери от сопротивления в проводниках. С этим столкнулся уже Самюэль Морзе, когда протягивал свою первую телеграфную линию в 1844 году от Балтимора до Вашингтона. Они с другом сумели с этим справиться, используя «активное усиление» сигнала с помощью реле.

Трамвайные линии, как известно, поначалу унаследовали эту традицию — питаться постоянным электрическим током, хотя конструкция из магнитов и вращающихся в их поле проводников, будучи использована в качестве генератора, легче и проще производит именно переменный ток.

Назначение генератора — выработка напряжения, постоянного и переменного, отсюда его устройство и принцип работы.

А типы вырабатываемого напряжения и определили строение и принцип действия генераторов.

Поэтому и различаются генераторы типами — генератор постоянного тока и генератор переменного тока.

В генераторах постоянного тока этого постоянства достигают конструкционными ухищрениями: путем создания определенной конфигурации магнитного поля, путем увеличения количества якорных рамок в роторе, в которых наводится разность потенциалов и снятие его с них с помощью многоконтактного коллектора, путем организации особых режимов тока возбуждения на специальных обмотках возбуждения, установленных на магнитах статора, и т.д.

Но, оказалось, проще добиться того же эффекта другим путем: индукционный генератор переменного тока напряжение вырабатывает, а потом оно «выпрямляется» обычной схемой диодного выпрямителя. Что и делает, например, генератор автомобиля.

Принцип работы устройства

Генератор переменного тока — это механико-индукционная машина, создающая переменное электрическое напряжение на своих выходных контактах в ответ на вращение своей подвижной части посторонней силой.

Подвижная часть генератора (или альтернатора) называется ротором, неподвижная — статором.

Две части генератора производят следующее: одна из них создает магнитное поле, а вторая часть содержит проводники, расположенные так, что при изменении относительно них этого магнитного поля (назовем его генерирующим), на их противоположных концах возникает разность потенциалов. Она снимается и переправляется с этих проводников на выходные контакты.

Виды генераторов переменного тока

Отсюда возможны два варианта конструкций генератора переменного тока, в которых:

  • генерирующее магнитное поле создается в статоре и неподвижно;
  • генерирующее магнитное поле создается в роторе и вращается вместе с ним.

В любом случае напряжение, возникающее в результате генерации, нужно снимать не с той части генератора, где создается магнитное поле, а с противоположной.

Первоначально — начиная с опытов по вращению рамки из проводника в неподвижном магнитном поле — ротор и служил для наведения в его обмотках (или рамках) электрической индукции, порождавшей движение электронов к разным концам этих проводников, отчего и возникало напряжение.

Видимо, это связано с тем, что магниты выбирали побольше и потяжелее, дабы создавать сильное поле с большим градиентом, а рамочки с током были совсем легкие. Но теперь и ротор, и статор — это точно пригнанные друг к другу массивные части. Напряжение с вращающегося ротора (или якоря) необходимо снять с помощью специального механизма и отправить на неподвижные выходные контакты. Такой механизм называется коллектором (от лат. «сборщик»), в нем неподвижные подпружиненные щетки, «протянутые» от статора, плотно прижимаются к вращающимся вместе с ротором контактам.

Быть может, конструктивно это самая узкая часть электродвигателей и генераторов. Она требует специального исполнения, при вращении детали ее стираются, от плохих контактов — при стертых пластинах контактов, или промежутков между ними, или стертых щетках (которые изготовляются обычно из графита — а от него токопроводящая пыль) — начинается искрение при вращении, и это никому не нравится.

Поэтому самым удобным вариантом генераторов переменного тока является второй. Это когда магнитное поле вращается ротором, а напряжение возникает в неподвижном статоре. И его не надо снимать никаким замысловатым образом.

Однофазные и многофазные

Принцип работы

Магнитное поле можно гонять (изменять, вращать) над одной системой проводников (имеющих два полюса) или над несколькими.

Из рисунка понятно, как устроен простейший генератор переменного тока. Из чего состоит генератор? Основные части — ротор и статор. Мы видим, что ротор с установленным в нем магнитом N–S вращается. При этом полюса магнита, то N, то S, попеременно совсем близко от катушек с обмотками. Обмотки последовательно соединяются друг с другом и потом с выходными контактами. Направление и поток магнитного поля, проходящий через обмотки, при вращении изменяется. От чего и возникает переменное напряжение на выходных контактах с частотой f
вращения ротора. Происходит генерирование напряжения, а при подключении к контактам нагрузки возникает переменный ток частоты f.

Схема эта — наипростейшая. Она только чуть сложнее, чем те рамочки, которые крутили когда-то в поле двух магнитов. Только теперь, наоборот, магнит, установленный на роторе, вращается, а неподвижные катушки дают напряжение.

Напряжение получается синусоидальным, достигает максимума и минимума, когда около катушек проходят полюса магнита — около них поток магнитного поля наиболее плотен, и поэтому происходит самое быстрое изменение поля. И на контактах в это время будет наведено максимальное по величине напряжение U, или — U . Когда же ротор повернется так, что магнит будет проходить горизонтальное положение, выходное напряжение будет пересекать нулевое значение.

Трехфазный генератор переменного тока

Однако мы видим, что в этой простой электрической машине еще очень много свободного места. Что ж, можно по периметру статора поставить не одну пару, а несколько пар катушек. Но придется тогда от каждой пары катушек отводить отдельные контакты для напряжений, чтобы напряжения разных пар не гасили друг друга. Получится как бы несколько генераторов в одном, каждый из них будет давать синусоидальное напряжение, но так как катушки повернуты относительно друг друга, и синусоиды будут сдвинуты ровно на такой угол, на какой сдвинуты пары катушек относительно нашей первоначальной.

Катушки распределены по периметру статора равномерно, то есть друг от друга отстоят на угол 120⁰. Точно такой сдвиг фаз получается и у напряжений. Напряжение U1 с нулевым сдвигом (это наша первая пара катушек), напряжение U2 — 120⁰ и напряжение U3 — 240⁰.

Такое напряжение называется трехфазным. Его возможно передавать с помощью единой системы проводов — три провода по одной на каждую фазу, а ноль всех трех объединяется в один. Это можно сделать двумя способами: соединив обмотки катушек по типу «треугольник» или «звезда».

Можно придумать и другие схемы генерации переменного напряжения, например, установив не три пары катушек, а только две. Тогда разница фаз между ними получится в 90⁰.

Применение нашла именно трехфазная система генерации.

При потреблении трехфазного напряжения часто выделяют отдельные фазы и раздают их разным потребителям. Когда потребителей много, то случайным образом «раздавать» фазы можно — в среднем обычно получается одинаковая нагрузка на все фазы. Но это должно отслеживаться. Потому что если потребление по разным фазам сильно отличается или оно очень неравномерно себя ведет во времени, наступает такое явление, как «перекос фаз». Напряжение по разным фазам начинает отличаться. А это ведет к очень многим плохим последствиям: перерасходу электроэнергии, выходу из строя трансформаторов, электроприборов, двигателей. На электростанции — к падению КПД генераторов (они начнут как бы «хромать») и даже выходу из строя генераторов электроэнергии. Чтобы минимизировать такого рода ущерб, нулевой провод обычно хорошо заземляют, но и следить должны энергетики за таким неприятным явлением.

Возбуждение генератора

Реальный генератор отличается от тут нарисованного еще и тем, что в качестве источника магнитного поля использовать постоянные магниты — занятие бесполезное. Магнитное поле в промышленной установке должно быть строго определенной и строго выдерживаемой напряженности. А как добиться строго одинаковой напряженности магнитов на разных фазах в трехфазном генераторе переменного тока? Иначе и напряжения на них будут разные, и будут фазы «вечно хромающими». Поэтому на роторе вместо магнитов используют электромагниты с сердечниками. К ним подводится постоянное напряжение, и они во время работы генератора возбуждают электромагнитное поле строго заданной интенсивности. Постоянное напряжение подается от независимого источника — это может быть аккумулятор или другой источник постоянного тока. Тут опять проблема: или взгромоздить на ротор еще и аккумулятор для питания катушек возбуждения, или снова заморачиваться с коллекторами для передачи напряжения возбуждения. Решение можно назвать соломоновым: сделать на одном роторе как бы сразу два генератора, только второй питает током обмотки возбуждения первого. А в статоре, соответственно, добавляются еще электромагниты для возбуждения магнитного поля в этом втором генераторе, ток от которого используется только в самом роторе, следовательно, снаружи никому и не нужен. И не надо городить никаких коллекторов для его съема. Такая конструкция стала называться «бесщеточный синхронный генератор переменного тока».

Синхронным он называется потому, что оба источника — и генератор тока возбуждения, и генератор-устройство, дающее конечный результат — напряжение на выходе, работают одновременно на одном и том же роторе.

С помощью тока возбуждения можно влиять на напряжение, которое дает генератор-устройство: при увеличении тока возбуждения соответственно усиливается и магнитное поле, возбуждаемое ротором, отчего главные обмотки генератора и будут вырабатывать переменное напряжение более высокой амплитуды.

Этим пользуются для регулировки напряжения, так как скорость вращения ротора менять нельзя, иначе изменится и частота, а она задана жестко техническими характеристиками всей нашей сети электроэнергии.

Наша энергосистема вырабатывает напряжение частотой строго 50 Гц, ее и производят генераторы электростанций — все они вращают свои роторы со скоростью, кратной 50 Гц. А конструкция ротора выводит напряжение, изменяющееся 50 раз в секунду.

Однако во многих случаях, где высокая точность частоты вырабатываемой энергии не критична, используют асинхронные генераторы. Они проще и дешевле синхронных, но дают напряжение с большим разбросом параметров. Это неважно там, где оно последующими схемами все равно будет преобразовано в постоянное.

Генераторный узел представляет собой электродвигатель, предназначенный для преобразования механической энергии в электрическую. В зависимости от типа и назначения габариты, устройство и принцип работы генераторов переменного тока могут будут отличаться.

[ Скрыть
]

Как работает генератор переменного тока?

Работа генератора заключается в создании электродвижущей силы в проводнике под действием изменяющегося магнитного поля.

Схема и устройство простейшего генератора

По конструкции электрогенератор включает в себя следующие элементы:

  • вращающаяся индукторная составляющая, называющаяся рамкой;
  • движущая щеточная часть;
  • коллекторное приспособление, оснащенное щетками, предназначенное для отвода напряжения;
  • магнитное поле;
  • контактные кольца.

Схема простейшего генераторного устройства переменного тока

Принцип действия

Образование электродвижущей силы в обмотках статорного механизма осуществляется после появления электрополя. Для последнего характерны вихревые образования. Данные процессы происходят в результате изменения магнитного потока. Причем последний меняется из-за быстрого вращения роторного механизма.

Ток от него поступает в электроцепь посредством контактных элементов, выполненных в виде деталей скольжения. Для более упрощенного прохождения напряжения к концам обмотки производится подсоединение колец. К этим контактным составляющим подключаются неподвижные щеточные элементы. С их помощью между электропроводкой и обмоткой роторного устройства появляется связь.

В витках магнитного элемента происходит образование поля, в нем формируется ток небольшой величины. По сравнению с напряжением, которое выдает простейший генераторный агрегат на внешнюю электроцепь. Если узел характеризуется небольшой мощностью, то в нем поле образует постоянный магнит, который может прокручиваться. Благодаря такому устройству и принципу работы генератора переменного тока в целом упрощается вся система. Поэтому из конструкции можно убрать щетки и контактные элементы.

Канал «Top Generators» наглядно и схематично в видеоролике показал принцип функционирования агрегата.

Основные виды генераторов переменного тока

Между собой устройства, позволяющие генерировать напряжение, делятся на синхронные и асинхронные. Они могут использоваться в различных сферах жизнедеятельности, но работать будут по разному принципу.

Синхронный генератор

Одним из свойств такого типа устройств является то, что частота тока, который оно воспроизводит, пропорциональна скорости вращения роторного механизма.

Между собой синхронные агрегаты делятся на несколько типов:

  1. Повышенной частоты. В основе принципа функционирования устройства лежит процесс изменения магнитного потока, достигающегося путем вращения роторного механизма касательно неподвижного статора. Такой тип агрегатов используется преимущественно для питания антенн длинноволновых станций на расстоянии до 3 км. Подключать устройства для работы с более короткими волнами не получится, поскольку необходимо увеличить значение частоты.
  2. Гидротурбинные агрегаты работают за счет активации гидравлической турбины, которая приводит в движение узел. В таких устройствах роторный механизм устанавливается на одном шкиве с колесом турбинного элемента. Его мощность может составить до 100 тысяч кВт, если скорость вращения будет 1500 оборотов в минуту, а напряжение — до 16 тыс. В. По массе и габаритам такой тип агрегатов считается самым большим, поскольку в них диаметр одного ротора составляет 15 метров. На величину мощности кружения турбины влияют три параметра — скорость вращения, длина электролинии, а также маховый момент роторного механизма.
  3. Паротурбинные агрегаты, которые приводятся в действие посредством активации паровой турбины. Такой тип устройств функционирует со скоростью вращения 1,5-3 тысячи оборотов в минуту и они бывают двухполосными и четырехполосными. Роторный механизм выполнен в виде большого железного цилиндра, оснащенного прямоугольными пазами, внутри элемента располагается обмотка возбуждения. Корпус статорного устройства всегда неразъемный и выполнен из стали. Общий диаметр агрегата составляет до 1 метра, однако длина его ротора может быть до 6,5 м.
Схема и устройство

Синхронный агрегат конструктивно включает в себя два основных элемента:

  1. Ротор. Это подвижная составляющая оборудования. Она предназначена для преобразования системы вращающихся электрических магнитов, которые питаются от внешнего источника.
  2. Статорный механизм или неподвижная составляющая агрегата. В обмотке этого устройства посредством образования магнитного поля появляется ЭДС, которая идет на наружную электроцепь оборудования. Благодаря таким конструктивным особенностям в цепях нагрузок синхронных электрогенераторов не используются скользящие контакты. Магнитный поток от оборудования, который появляется посредством вращения ротора, возбуждается от стороннего источника. Последний монтируется на общем валу или может подключаться к нему с помощью муфты либо ременной передачи.

Схематическое устройство синхронного генераторного агрегата

Особенности работы

Принцип действия может незначительно отличаться в зависимости от типа устройства — явнополюсного либо неявнополюсного. Количество пар полюсных элементов роторного механизма определяется скоростью вращения узла. Если частота образующейся ЭДС составляет 50 Гц, то при 3 тысячах об/мин неявнополюсное устройство обладает одной парой полюсов. В явнополюсных агрегатах, вращающихся при 50-750 оборотах в минуту, количество пар полюсных элементов составит от 60 до 4.

В маломощных синхронных агрегатах питание обмотки возбуждения осуществляется посредством воздействия выпрямленного тока. Электроцепь появляется в результате активации трансформаторных устройств, которые входят в общую цепь нагрузки узла. Также она включает в себя полупроводниковый выпрямительный блок, который может собираться по любой схеме, но обычно как трехфазный мост. Основная электроцепь включает в себя обмотку возбуждения агрегата с регулировочным реостатным устройством.

Процедура самовозбуждения оборудования состоит в следующем:

  1. При запуске установки в магнитной составляющей образуются небольшие ЭДС, это происходит благодаря явлению остаточной индукции. Одновременно в рабочей обмотке агрегата появляется ток.
  2. В результате ЭДС образуется во вторичных электрообмотках трансформаторных устройств. А в электроцепи появляется небольшой ток, который способствует усилению общей индукции магнитного поля.
  3. Увеличение параметра ЭДС осуществляется до момента, пока магнитная система агрегата не возбудится до конца.

Асинхронный генератор

Такой узел представляет собой устройство, производящее электроэнергию с использованием принципа действия асинхронного двигателя. Данный тип агрегатов именуется индукционным. Асинхронное устройство обеспечивает оперативный поворот роторного механизма, а его скорость вращения намного выше по сравнению с синхронным. Простой двигатель может применяться в качестве генераторной установки без дополнительных настроек.

Асинхронные агрегаты используются в разных сферах:

  • для моторов ветровых электрических станций;
  • для автономного питания жилых помещений и частных домов либо в качестве миниатюрных ГЭС-станций;
  • для инверторных агрегатов сварки;
  • с целью организации бесперебойного питания от переменного тока.
Схема и устройство

Схематическое подключение асинхронного агрегата

Основными составляющими элементами данного типа устройств считаются статорный механизм и ротор. Первый является неподвижным, а второй прокручивается внутри него. Ротор отделен от статорного механизма воздушным зазором. Чтобы снизить величину вихревых токов, сердечники составляющих элементов делаются из отдельных листов электротехнической стали. Их толщина в зависимости от производителя может составить от 0,35 до 0,5 мм. Сами листы оксидируются при изготовлении, то есть подвергаются термической обработке, что позволяет увеличить их поверхностное сопротивление.

Сердечник статорного механизма устанавливается внутрь станины, которая является наружной частью агрегата. На внутренней стороне детали располагаются пазы, в них находится обмотка. Статорная электрообмотка зачастую выполняется из катушек с небольшим шагом. В ее основе используется медный изолированный проводник.

Особенности работы

Асинхронный тип двигателей производит электроэнергию при увеличенной скорости прокручивания роторного механизма. Этот параметр всегда выше, чем у синхронных агрегатов. При прокручивании роторного устройства и выработки электричества потребуется сильный крутящий момент. Если в двигателе используется так называемый вечный холостой ход, это обеспечит равную скорость прокручивания в течение всего ресурса эксплуатации установки.

Схемы подключения

По числу использующихся фаз все генераторные агрегаты делятся на две группы:

  • однофазные;
  • трехфазные.

Однофазный генератор

Схема подключения оборудования с одной фазой

Этот тип устройств используется для работы с любыми потребителями электроэнергии, главное — чтобы они были однофазными.

Самые простые конструкции состоят из:

  • магнитного поля;
  • прокручивающейся рамки;
  • коллекторного устройства, предназначенного для отвода тока.

Благодаря наличию последнего в результате рамочного прокручивания через щетки образуется постоянный контакт с рамкой. Параметры тока, который меняется с учетом закона гармоники, будут разными и передаются на щеточный узел, а также в схему потребителей напряжения. На сегодняшний день однофазные агрегаты являются наиболее популярным типом автономного источника питания. Они могут использоваться для подключения практически всех бытовых электроприборов.

Трехфазный генератор

Такой тип устройств относится к классу универсальных, но более дорогих агрегатов. Отличительная особенность трехфазных генераторов заключается в необходимости постоянного и дорогостоящего технического обслуживания. Несмотря на это, данный тип установок получил наибольшее распространение.

Это обусловлено следующими преимуществами:

  1. В основе агрегата используется вращающееся круговое магнитное поле. Это обеспечивает возможность хорошей экономии при разработке оборудования.
  2. Трехфазные генераторы состоят из уравновешенной системы. Это обеспечивает ресурс эксплуатации агрегата в целом.
  3. В работе трехфазного устройства одновременно используется два напряжения — линейное и фазовое. Оба применяются в единой системе.
  4. Одно из основных преимуществ — повышенные экономические показатели. Это обеспечивает снижение материалоемкости силовых проводов, а также трансформаторных агрегатов. Благодаря данной особенности упрощается процедура передачи электричества на большие расстояния.
Схема соединения «звездой»

Данный тип подключения подразумевает электросоединение концов обмоток в определенной точке, которая именуется «нулем». При выполнении такого подсоединения нагрузку к генераторному узлу можно подать посредством трех или четырех кабелей. Проводники от начала обмоток считаются линейными. А основной кабель, который идет от нулевой точки, является нулем. Параметр напряжения между проводниками считается линейным (эта величина выше в 1,73 раза по сравнению с фазной).

Схема типа «звезда» для подключения трехфазного оборудования

Одной из основных особенностей данного варианта является равенство токов. Четырехпроводной тип «звезды» с нейтральным кабелем считается самым распространенным. Его использование позволяет предотвратить перекос фаз при подсоединении несимметричной нагрузки. К примеру, если на одном контакте она активная, а на другом — реактивная или емкостная. При использовании такого варианта обеспечивается максимальная защищенность включенного электрооборудования.

Схемы соединения «треугольником»

Данный метод подключения представляет собой последовательное подсоединение обмоток трехфазного агрегата. Конец первой намотки должен быть соединен с началом второй, а ее контакт — с третьей. Затем проводник от обмотки под номером 3 подсоединяется к началу первого элемента.

При такой схеме линейные кабели отводятся от точек подключения обмоток. Параметр линейного напряжения по величине соответствует фазному. А значение первого тока выше второго в 1,73 раза. Описанные свойства актуальны исключительно в случае равномерной нагрузки фаз. Если она будет неравномерной, то параметры необходимо пересчитать графическим или аналитическим способом.

Электросхемы соединений агрегата «треугольником»

Особенности генераторов с разными типами двигателя

Автомобильные и бытовые установки могут разделяться между собой в соответствии с видом топлива, на котором они функционируют. Генераторный узел может работать на бензине или дизеле.

Бензогенераторы

В таких устройствах источником механической энергии является двигатель. Агрегат относится к классу четырехконтактных карбюраторных ДВС. В бензогенераторах используются двигатели, рассчитанные на 1-6 кВт. В продаже можно встретить агрегаты, разработанные для функционирования при 10 кВт, с их помощью можно обеспечить питание всех световых и электроприборов в частном доме.

Бензогенераторы могут похвастаться невысокой стоимостью и длительным ресурсом эксплуатации, хотя по сравнению с дизельными — они немного меньше. Выбор агрегата осуществляется с учетом нагрузок, в условиях которых он будет функционировать. Если узел работает с большим пусковым током и применяется для электросварки, то лучше отдать предпочтение синхронным устройствам. При выборе асинхронного типа агрегата двигатель сможет справиться с пусковыми токами. Но важно, чтобы генераторная установка была полностью загружена, в противном случае топливо будет расходоваться нецелесообразно.

Канал «Olifer TV» рассказал о выборе агрегатов для частного дома в соответствии с типом горючего, на котором он будет использоваться.

Дизельные генераторы

Такой агрегат приводит в действие мотор, функционирующий на дизеле.

В его основе используется:

  • механическая составляющая;
  • панель с кнопками, предназначенная для управления;
  • система подачи топлива;
  • охладительный узел;
  • система смазки трущихся компонентов и узлов.

Мощность генераторной установки полностью определяется аналогичным параметром самого двигателя. Если она будет невысокой, к примеру, для запитки бытового электрооборудования, то лучше отдать предпочтение бензиновым установкам. Дизельный тип агрегатов целесообразно использовать там, где требуется высокая мощность. Двигатели внутреннего сгорания обычно применяются с верхней установкой клапанов. Они обладают более компактными размерами, а также высокой надежностью.

Кроме того, дизельные ДВС при функционировании выделяют меньше токсичных газов, опасных для здоровья человека, и более удобны в плане ремонта. Специалисты рекомендуют отдать предпочтение агрегатам, корпус которых выполнен из стали, так как пластмасса имеет меньший ресурс использования.

Более надежными являются генераторные дизельные установки, не оснащенные щетками.

Напряжение, которое они вырабатывают, стабильнее. В среднем, если бак заправлен дизельным горючим под завязку, это обеспечит возможность работы генератора в течение семи часов. Если агрегат будет установлен стационарно, то его конструкцию можно дополнить внешним резервуаром для залива топлива.

Канал «Фабрика Тока» продемонстрировал работу дизельного агрегата, использующегося для обеспечения энергией частного дома.

Инверторные генераторы

Производство электрической энергии осуществляется аналогично, как на любой классической модели генератора. В первую очередь производится выработка переменного тока. Он выпрямляется и подается на инверторный узел, а затем преобразуется опять в переменный, только с необходимыми техническими параметрами.

В основе агрегата используется электронный модуль, включающий в себя:

  • выпрямительный узел;
  • микропроцессорное устройство;
  • преобразовательный механизм.

По типу выходного напряжения инверторные агрегаты могут разделяться на:

  1. Прямоугольные. Такой вид устройств считается наиболее дешевым. Его энергии хватит только для запитки электроинструментов и маломощных приборов.
  2. Устройства с трапецеидальным сигналом. Могут использоваться для питания большинства электроприборов, кроме высокочувствительной техники. Стоимость таких агрегатов средняя.
  3. Устройства, работающие с синусоидальным напряжением. Такие генераторы характеризуются стабильными характеристиками и подходят для большинства электрических приборов.

Инверторные агрегаты могут функционировать без перерыва либо промежутками. В качестве объектов потребления энергии обычно выступают учреждения, где нельзя допустить перепадов напряжения.

Основные преимущества инверторных установок:

  • маленькие размеры и масса;
  • низкий расход горючего в результате регулировки выработки определенного объема электричества, необходимого в конкретный момент времени;
  • инверторные агрегаты могут функционировать в течение короткого временного интервала с перегрузкой.
  • высокая стоимость устройств по сравнению с классическими вариантами генераторных установок;
  • повышенная чувствительность к температурным изменениям в электронной составляющей;
  • невысокий уровень мощности установки;
  • дорогостоящий ремонт электронного модуля при его поломке.

Использование инверторных устройств актуально в случае, когда требуемая величина мощности составляет не больше 6 кВт. Если агрегат будет использоваться на постоянной основе, то лучше отдать предпочтение классическому типу.

Канал «Garage КАХОВКА» протестировал бензиновую установку инверторного класса от производителя «ПилоД».

Как сделать генератор переменного тока своими руками

Для самостоятельного изготовления асинхронного агрегата понадобится следующее:

  1. Мотор. Двигатель можно соорудить своими руками, но эта процедура слишком длительная и трудоемкая. Поэтому лучше использовать агрегат от старого неработающего бытового электрооборудования. Оптимальным вариантом будет применение двигателя от дренажного насосного устройства, стиральной машинки либо пылесоса.
  2. Статорный механизм. Рекомендуется приобрести готовое устройство, оборудованное обмоткой.
  3. Комплект электрических проводов.
  4. Изолента, допускается применение термоусадочных трубок.
  5. Трансформаторный узел или выпрямительный блок. Этот элемент потребуется в случае, если на выходе генератора переменного тока энергия будет иметь разную мощность.

Перед началом работ необходимо сделать несколько манипуляций, которые позволят правильно выполнить расчет параметра мощности агрегата:

  1. Использующийся двигатель подключается к электросети для определения скорости вращения. Чтобы выполнить эту задачу, потребуется специальное устройство — тахометр. После считывания информации полученное значение надо записать и прибавить к нему еще 10%. Это — компенсаторная величина. Если добавить 10% к скорости вращения, это позволит предотвратить перегрев агрегата во время функционирования.
  2. Выполняется подбор конденсаторных элементов с учетом требуемой величины мощности. Если на этом этапе возникли сложности, можно воспользоваться таблицей.
  3. Генераторная установка во время работы продуцирует электроэнергию, соответственно, заранее необходимо продумать заземление устройства. При его отсутствии и некачественной изоляции агрегат не только износится быстрее, но и может представлять опасность для человека.
  4. После подготовки выполняется процедура сборки, она не займет много сил. К двигателю, который будет использоваться в основе, подключаются конденсаторные элементы в соответствии со схемой. В ней указана очередность подсоединения компонентов. Надо учесть, что величина емкости каждой конденсаторной детали соответствует предыдущему устройству.

Схема сборки простого генератора переменного тока
Таблица выбора емкости конденсатора для агрегата

Полученный узел сможет обеспечить энергией электрическую пилу, циркулярку или болгарку, т. е. любой маломощный инструмент.

При использовании самодельного генератора переменного тока нельзя допустить перегрева двигателя, иначе это приведет к его поломке и даже взрыву.

В процессе сборки и эксплуатации надо учитывать следующие нюансы:

  1. Если коэффициент полезного действия падает прямо пропорционально в соответствии с длительностью работы, это норма. Данный нюанс связан с тем, что периодически генераторный агрегат должен отдыхать и остывать. Важно время от времени снижать температуру двигателя до 40 градусов Цельсия.
  2. Поскольку в простой схеме устройства не используется автоматика, потребитель должен сам контролировать все процессы работы приспособления. Время от времени к агрегату необходимо подключать измерительное оборудование — тахометр, вольтметр.
  3. Перед выполнением сборки нужно правильно подобрать электроприборы в соответствии с расчетом его технических параметров и свойств. Приведенная схема наиболее простая в плане реализации.

Видео «Принцип действия генераторного устройства»

Канал «Halyk Smart» рассказал о нюансах функционирования агрегата переменного тока.

Термин «генерация» в электротехнику пришел из латинского языка. Он обозначает «рождение». Применительно к энергетике можно сказать, что генераторами называют технические устройства, занимающиеся выработкой электроэнергии.

При этом надо оговориться, что производить электрический ток можно за счет преобразования различных видов энергии, например:

Исторически сложилось так, что генераторами называют конструкции, которые преобразуют кинетическую энергию вращения в электричество.

По виду вырабатываемой электроэнергии генераторы бывают:

1. постоянного тока;

2. переменного.

Физические законы, которые позволяют создавать современные электрические установки для выработки электроэнергии за счет преобразований механической энергии, открыты учеными Эрстедом и Фарадеем.

В конструкции любого генератора реализуется , когда происходит наводка электрического тока в замкнутой рамке за счет пересечения ее вращающимся магнитным полем, которое создается в упрощенных моделях бытового использования или обмотками возбуждения на промышленных изделиях повышенных мощностей.

При вращении рамки изменяется величина магнитного потока.

Электродвижущая сила, наводимая в витке, зависит от скорости изменения магнитного потока, пронизывающего рамку в замкнутом контуре S, и прямо пропорциональна его значению. Чем быстрее осуществляется вращение ротора, тем выше величина вырабатываемого напряжения.

Для того чтобы создать замкнутый контур и отвести с него электрический ток, потребовалось создать коллектор и щеточный узел, обеспечивающий постоянный контакт между вращающейся рамкой и стационарно расположенной частью схемы.

За счет конструкции подпружиненных щеток, прижимающихся к коллекторным пластинам, происходит передача электрического тока на выходные клеммы, а с них дальше он поступает в сеть потребителя.

Принцип работы простейшего генератора постоянного тока

При вращении рамки вокруг оси ее левая и правая половинки циклически проходят около южного или северного полюса магнитов. В них каждый раз происходит смена направлений токов на противоположное так, что у каждого полюса они протекают в одну сторону.

Для того чтобы в выходной цепи создавался постоянный ток, на коллекторном узле создано полукольцо для каждой половинки обмотки. Прилегающие к кольцу щетки снимают потенциал только своего знака: положительный или отрицательный.

Поскольку полукольцо вращающейся рамки разомкнуто, то в нем создаются моменты, когда ток достигает максимального значения или отсутствует. Чтобы поддерживать не только направление, но и постоянную величину вырабатываемого напряжения, рамку изготавливают по специально подготовленной технологии:

    у нее используют не один виток, а несколько — в зависимости от величины запланированного напряжения;

    число рамок не ограничивается одним экземпляром: их стараются сделать достаточным количеством для оптимального поддержания перепадов напряжения на одном уровне.

У генератора постоянного тока обмотки ротора располагают в пазах . Это позволяет сокращать потери наводимого электромагнитного поля.

Конструктивные особенности генераторов постоянного тока

Основными элементами устройства являются:

    внешняя силовая рама;

    магнитные полюса;

    статор;

    вращающийся ротор;

    коммутационный узел со щётками.

Корпус
изготавливают из стальных сплавов или чугуна для придания механической прочности общей конструкции. Дополнительной задачей корпуса является передача магнитного потока между полюсами.

Полюса магнитов
крепят к корпусу шпильками или болтами. На них монтируют обмотку.

Статор
, называемый еще ярмом или остовом, изготавливают из ферромагнитных материалов. На нем размещают обмотку катушки возбуждения. Сердечник статора
оснащен магнитными полюсами, образующими его магнитное силовое поле.

Ротор
имеет синоним: якорь. Его магнитопровод состоит из шихтованных пластин, снижающих образование вихревых токов и повышающих КПД. В пазы сердечника заложены обмотки ротора и/или самовозбуждения.

Коммутационный узел
со щетками может иметь разное количество полюсов, но оно всегда кратно двум. Материалом щеток обычно используют графит. Коллекторные пластины изготавливают из меди, как наиболее оптимального металла, подходящего по электрическим свойствам проводимости тока.

Благодаря использованию коммутатора на выходных клеммах генератора постоянного тока образуется сигнал пульсирующего вида.

Основные типы конструкций генераторов постоянного тока

По типу питания обмотки возбуждения различают устройства:

1. с самовозбуждением;

2. работающие на основе независимого включения.

Первые изделия могут:

    использовать постоянные магниты;

    или работать от внешних источников, например, аккумуляторных батарей, ветряной установки…

Генераторы с независимым включением работают от собственной обмотки, которая может быть подключена:

    последовательно;

    шунтами или параллельным возбуждением.

Один из вариантов подобного подключения показан на схеме.

Примером генератора постоянного тока может служить конструкция, которая раньше часто применялась на автомобильной технике. Ее устройство такое же, как у асинхронного двигателя.

Подобные коллекторные конструкции способны работать в режиме двигателя или генератора одновременно. За счет этого они получили распространение в существующих гибридных автомобилях.

Процесс образования якорной реакции

Она возникает в режиме холостого хода при неправильной настройке усилия прижатия щеток, создающее неоптимальный режим их трения. Это может привести к снижению магнитных полей или возникновению пожара из-за повышенного образования искр.

Способами ее снижения являются:

    компенсации магнитных полей за счет подключения дополнительных полюсов;

    настройка сдвига положения коллекторных щеток.

Преимущества генераторов постоянного тока

К ним относят:

    отсутствие потерь на гистерезис и образование вихревых токов;

    работа в экстремальных условиях;

    пониженный вес и маленькие габариты.

Принцип работы простейшего генератора переменного тока

Внутри этой конструкции используются все те же детали, что и у предыдущего аналога:

    магнитное поле;

    вращающаяся рамка;

    коллекторный узел со щетками для отвода тока.

Основное отличие заключается в устройстве коллекторного узла, который создан так, что при вращении рамки через щетки постоянно создается контакт со своей половинкой рамки без циклической смены их положения.

За счет этого ток, сменяющийся по законам гармоники в каждой половинке, полностью без изменений передается на щетки и далее через них в схему потребителя.

Естественно, что рамка создана намоткой не из одного витка, а рассчитанного их количества для достижения оптимального напряжения.

Таким образом, принцип работы генераторов постоянного и переменного тока общий, а отличия конструкции заключаются в изготовлении:

    коллекторного узла вращающегося ротора;

    конфигурации обмоток на роторе.

Конструктивные особенности промышленных генераторов переменного тока

Рассмотрим основные части промышленного индукционного генератора, у которого ротор получает вращательное движение от рядом расположенной турбины. В конструкцию статора включен электромагнит (хотя магнитное поле может создаваться набором постоянных магнитов) и обмотка ротора с определённым числом витков.

Внутри каждого витка индуктируется электродвижущая сила, которая последовательно складывается в каждом из них и образует на выходных зажимах суммарное значение напряжения, выдаваемого на схему питания подключенных потребителей.

Чтобы повысить на выходе генератора амплитуду ЭДС используют специальную конструкцию магнитной системы, выполненную из двух магнитопроводов за счет применения специальных сортов электротехнической стали в виде шихтованных пластин с пазами. Внутри их смонтированы обмотки.

В корпусе генератора расположен сердечник статора с пазами для размещения обмотки, создающей магнитное поле.

Вращающийся на подшипниках ротор тоже имеет магнитопровод с пазами, внутри которых смонтирована обмотка, получающая индуцируемую ЭДС. Обычно для размещения оси вращения выбирается горизонтальное направление, хотя, встречаются конструкции генераторов с вертикальным расположением и соответствующей конструкцией подшипников.

Между статором и ротором всегда создается зазор, необходимый для обеспечения вращения и исключения заклинивания. Но, в то же время в нем происходит потеря энергии магнитной индукции. Поэтому его стараются делать минимально возможным, оптимально учитывая оба этих требования.

Расположенный на одном валу с ротором возбудитель является электрогенератором постоянного тока, обладающим относительно небольшой мощностью. Его назначение: питать электроэнергией обмотки силового генератора в состоянии независимого возбуждения.

Подобные возбудители применяют чаще всего с конструкциями турбинных или гидравлических электрогенераторов при создании основного либо резервного способа возбуждения.

На картинке промышленного генератора показано расположение коллекторных колец и щеток для съема токов с конструкции вращающегося ротора. Этот узел при работе испытывает постоянные механические и электрические нагрузки. Для их преодоления создается сложная конструкция, которая при эксплуатации требует периодических осмотров и выполнения профилактических мероприятий.

Чтобы снизить создаваемые эксплуатационные затраты применяется другая, альтернативная технология, при которой тоже используется взаимодействие между вращающимися электромагнитными полями. Только на роторе располагают постоянные или электрические магниты, а напряжение снимают со стационарно расположенной обмотки.

При создании подобной схемы такую конструкцию могут называть термином «альтернатор». Она применяется в синхронных генераторах: высокочастотных, автомобильных, на тепловозах и судах, установках электрических станций энергетики для производства электроэнергии.

Особенности синхронных генераторов

Принцип действия

Название и отличительный признак действия заключен в создании жесткой связи между частотой переменной электродвижущей силы, наводимой в статорной обмотке «f» и вращением ротора.

В статоре вмонтирована трехфазная обмотка, а на роторе — электромагнит с сердечником и обмоткой возбуждения, запитанной от цепей постоянного тока через щеточный коллекторный узел.

Ротор приводится во вращение от источника механической энергии — приводного двигателя с одинаковой скоростью. Его магнитное поле совершает такое же движение.

В обмотках статора наводятся одинаковые по величине, но сдвинутые на 120 градусов по направлению электродвижущие силы, создающие трехфазную симметричную систему.

При подключении на концы обмоток цепей потребителей в схеме начинают действовать токи фаз, которые образуют магнитное поле, вращающееся точно так же: синхронно.

Форма выходного сигнала наводимой ЭДС зависит только от закона распределения вектора магнитной индукции внутри зазора между полюсами ротора и пластинами статора. Поэтому добиваются создания такой конструкции, когда величина индукции меняется по синусоидальному закону.

Когда зазор имеет постоянную характеристику, то вектор магнитной индукции внутри зазора создается по форме трапеции, как показано на графике линий 1.

Если же форму краев на полюсах исправить на косоугольную с изменением зазора до максимального значения, то можно добиться синусоидальной формы распределения, как показано линией 2. Этим приемом и пользуются на практике.

Схемы возбуждения синхронных генераторов

Магнитодвижущая сила, возникающая на обмотке возбуждения «ОВ» ротора, создает его магнитное поле. Для этого существуют разные конструкции возбудителей постоянного тока, основанные на:

1. контактном методе;

2. бесконтактном способе.

В первом случае
используется отдельный генератор, называемый возбудителем «В». Его обмотка возбуждения питается от дополнительного генератора по принципу параллельного возбуждения, именуемого подвозбудителем «ПВ».

Все роторы размещаются на общем валу. За счет этого они вращаются совершенно одинаково. Реостаты r1 и r2 служат для регулирования токов в схемах возбудителя и подвозбудителя.

При бесконтактном способе
отсутствуют контактные кольца ротора. Прямо на нем монтируют трехфазную обмотку возбудителя. Она синхронно вращается с ротором и передает через совместно вращающийся выпрямитель электрический постоянный ток непосредственно на обмотку возбудителя «В».

Разновидностями бесконтактной схемы являются:

1. система самовозбуждения от собственной обмотки статора;

2. автоматизированная схема.

При первом методе
напряжение от обмоток статора поступает на понижающий трансформатор, а затем — полупроводниковый выпрямитель «ПП», вырабатывающий постоянный ток.

У этого способа первоначальное возбуждение создается за счет явления остаточного магнетизма.

Автоматическая схема создания самовозбуждения включает использование:

    трансформатора напряжения ТН;

    автоматизированного регулятора возбуждения АВР;

    трансформатора тока ТТ;

    выпрямительного трансформатора ВТ;

    тиристорного преобразователя ТП;

    блока защиты БЗ.

Особенности асинхронных генераторов

Принципиальное отличие этих конструкций состоит в отсутствие жесткой связи между частотами вращения ротора (nr) и индуцируемой в обмотке ЭДС (n). Между ними всегда существует разница, которую называют «скольжением». Ее обозначают латинской буквой «S» и выражают формулой S=(n-nr)/n.

При подключении нагрузки на генератор создается тормозной момент для вращения ротора. Он влияет на частоту вырабатываемой ЭДС, создает отрицательное скольжение.

Конструкцию ротора у асинхронных генераторов изготавливают:

Асинхронные генераторы могут иметь:

1. независимое возбуждение;

2. самовозбуждение.

В первом случае используется внешний источник переменного напряжения, а во втором — полупроводниковые преобразователи или конденсаторы в первичной, вторичной или обоих видах схем.

Таким образом, генераторы переменного и постоянного тока имеют много общих черт в принципах построения, но отличаются конструктивным исполнением определённых элементов.

Автомобильная стереосистема переменного или постоянного тока? – Кухня

Автомобильные радиоприемники используют напряжение постоянного тока (DC) для питания своей электроники, в то время как бытовая электроника использует переменный ток (AC) с гораздо более высоким напряжением. Фактически, автомобильные радиоприемники могут работать примерно до 11 вольт постоянного тока, при этом обычно от 12 до 14,4 вольт при работающем двигателе автомобиля.

Автомобильные усилители постоянного или переменного тока?

Автомобильные усилители предназначены для использования постоянного тока (DC) от аккумуляторной батареи автомобиля и генератора переменного тока для питания.Это отличается от домашней электрической системы, которая использует переменный ток (AC) и обеспечивает напряжение от 110 до 120 вольт при более низком токе.

Автомобильные динамики постоянного тока?

Как вы можете (или должны) знать, питание от аккумуляторной батареи и генераторов переменного тока в наших легковых и грузовых автомобилях осуществляется постоянным током (DC). Если оставить его в этом состоянии и подать на трансформатор, мы увидим небольшой всплеск напряжения при первом подключении сигнала, а затем ничего.

Сколько вольт нужно для автомобильной стереосистемы?

Автомобильные стереосистемы работают от 12-вольтового постоянного тока, но вы можете подключить автомобильную стереосистему к 110-вольтовой сети переменного тока и заставить ее работать в вашем доме.

Могу ли я подключить автомобильную стереосистему напрямую к аккумулятору?

Вам не нужно устанавливать автомобильную стереосистему в машину, чтобы она работала. В случае автомобильного аудиоустройства вам понадобится 12-вольтовая батарея, такая же, как и в автомобильных электрических системах. С аккумулятором и несколькими простыми деталями и инструментами автомобильная стереосистема будет включена и готова к работе в кратчайшие сроки.

Можно ли подключить автомобильную стереосистему к домашней розетке?

Быстрый ответ: да, с правильным блоком питания вы можете подключить автомобильную стереосистему к домашней розетке с напряжением 120 В или даже 220 В.Однако вы не можете напрямую подключить автомобильную стереосистему к розетке.

Дома переменного или постоянного тока?

Домашние и офисные розетки почти всегда подключены к сети переменного тока. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно легко. При высоких напряжениях (свыше 110 кВ) меньше потерь энергии при передаче электроэнергии.

Какое напряжение у автомобильного динамика?

Вы, наверное, знаете, что автомобильные колонки обычно имеют более низкий импеданс, чем домашние или коммерческие колонки. Как вы знаете, в автомобиле имеется ограниченное количество напряжения (приблизительно 13.8 вольт). Это означает, что головные устройства имеют только 13,8 вольт для подачи на провода динамиков.

Что означает DC на динамике?

AC / DC: Возвращаясь к нашему водяному шлангу, поток воды можно рассматривать как поток постоянного тока (DC), что означает, что ток всегда течет в одном и том же направлении. Если бы клапан, который регулирует объем потока воды, мог бы также изменять направление потока, он был бы назван переменным током (AC).

Откуда DC Audio?

Сабвуферы

DC Audio собираются в Америке в Спарксе, штат Невада.Эти громкие и четкие сабвуферы созданы для BASS. Сабвуферы DC Audio считаются одними из самых мощных сабвуферов, которые вы можете получить!

Как я могу подключить автомобильную стереосистему дома?

Вам понадобится шнур питания на 12 В, чтобы использовать блок питания автомобильной стереосистемы в домашних условиях, но вы можете легко приобрести его в хозяйственном магазине. Отрежьте конец шнура питания и соедините черный провод с белой линией вокруг красного и желтого проводов стереосистемы. Перед подключением убедитесь, что каждый провод полностью закрыт.

Куда идет желтый провод магнитолы?

Желтый провод — это 12-вольтовый аккумуляторный провод, который также должен быть подключен к стереосистеме для питания. Последний провод, черный провод, является проводом заземления. Этот провод, когда-то подключенный к стерео, поможет заземлить его.

Что такое дополнительный провод 12 В на автомобильной стереосистеме?

Дополнительный провод 12 В — это один из трех проводов питания, которые используются в автомобильной стереосистеме. Он красного цвета и помогает включить стереосистему.Однако, чтобы этот провод включал стереосистему, ваш ключ зажигания должен находиться в положении «аксессуар».

Как долго автомагнитола будет работать от батареи?

По мнению экспертов, при использовании стандартного автомобильного аккумулятора радио будет работать около 8 часов, прежде чем разрядится автомобильный аккумулятор. Однако, если в вашем автомобиле есть усилитель и сабвуфер, время прослушивания радио до разрядки аккумулятора сокращается примерно до 6 часов.

Какого цвета постоянный провод 12В?

Постоянная (желтая), также называемая BAT или Battery, обеспечивает постоянное питание +12 В от батареи.Это позволяет радио сохранять настройки (например, сохраненные радиостанции) при выключении зажигания.

Обнаружение подачи постоянного тока и измерение переменного тока с помощью единой системы зарядки и разрядки электромобилей

Автор: Мироненко Ольга

Цитируемый URI:

https://udspace.udel.edu/handle/19716/28783

Советник: Кемптон, Уиллетт; Киамилев Фуад Э.

Факультет: Университет Делавэра, факультет электротехники и вычислительной техники

Издатель: Университет Делавэра

Дата выпуска: 2020

Аннотация: Современные энергетические системы все чаще включают в себя распределенную генерацию и хранение.Помимо солнечной энергии, к ним относятся более новые технологии, такие как технология Vehicle-to-Grid (V2G), при которой энергия, хранящаяся в батареях электромобилей (EV), при необходимости возвращается в сеть переменного тока. Вводимая мощность регулируется многими стандартами и законами, с электрическими требованиями, включая защиту от изолирования, ограничение гармоник, низкое напряжение, ток короткого замыкания и подачу постоянного тока. Для хранения солнечных батарей и аккумуляторов, включая V2G, питание в сеть подается преобразователем мощности, который получает постоянный ток от солнечных панелей или батареи, преобразует его в переменный ток и подает мощность переменного тока в сеть.В этой диссертации рассматривается проблема точного измерения мощности переменного тока при использовании того же устройства для обнаружения инжекции постоянного тока. Любой неисправный или неправильно спроектированный силовой преобразователь может подавать постоянный ток в сеть переменного тока, но особую озабоченность вызывают преобразователи большой мощности электромобилей. Подача постоянного тока может вызвать насыщение сердечников трансформатора, перегрев подключенного к сети оборудования и ускорение коррозии кабеля. Поэтому важно убедиться, что его значение находится в пределах допустимого предела, указанного в «Ограничении подачи постоянного тока» стандарта IEEE 1547-2018.Хотя преобразователь мощности отвечает за ограничение постоянного тока в линиях переменного тока, дополнительная проверка подачи постоянного тока с помощью оборудования питания электромобилей (EVSE) была бы экономически эффективной дополнительной мерой безопасности, позволяющей проверять различные электромобили с помощью одного EVSE. Важно отметить, что EVSE с поддержкой V2G должен быть в состоянии выполнять одновременные высокоточные измерения переменного тока и средней точности постоянного тока, чтобы выполнить требования коммерческого учета наиболее экономичным способом. ☐ В первой части работы мы рассмотрим проблему инжекции постоянного тока и широко используемые методы измерения тока для оценки наиболее перспективных кандидатов на датчики тока.Во второй части этой работы мы представим интегрированную систему измерения тока шунта, которую мы разработали, прототипировали и проверили. Конструкция обеспечивает экономичные измерения переменного тока в пределах класса точности 1,0, необходимого для коммерческого учета. Кроме того, прототип способен одновременно обнаруживать подачу постоянного тока ≥ 400 мА в переменный ток до 80 А в соответствии с разделом «Ограничение подачи постоянного тока» стандарта IEEE 1547-2018. Точность обнаружения положительной подачи постоянного тока при предельном значении 400 мА составляет 8.25%. Точность обнаружения отрицательной инжекции постоянного тока составляет 16,5%. Мы обсудим проблемы проектирования системы, результаты испытаний и анализ затрат. В третьей и заключительной части работы мы рассмотрим альтернативные решения и порекомендуем оптимальное решение для одновременного измерения переменного тока и подачи постоянного тока, которые будут использоваться для зарядки и разрядки электромобиля.

URI:

https://udspace.udel.edu/handle/19716/28783

Показать полную запись товара

Файлы в этом элементе

Этот предмет появляется в следующих коллекциях


  • Азбука электромобилей: переменный ток

    Иногда может показаться, что мир электромобилей имеет свой собственный словарный запас, и именно здесь мы вступаем в игру.Обратите внимание на нашу серию «Азбука электромобилей», чтобы демистифицировать слова и фразы, которые вы услышите.

    Если вы еще не посмотрели наше предыдущее видео о Direct Current, мы поместим ссылку на него в примечаниях ниже. В этом видео мы объяснили, как постоянный ток используется для зарядки и как он сохраняется в аккумуляторе.

    Сегодня настала очередь переменного тока — добро пожаловать в Азбуку электромобилей — A для переменного тока. И если вам понравилось это видео, не забудьте нажать «Подписаться», чтобы никогда не пропустить шоу.

    Электроэнергия переменного тока или переменного тока — это вид электроэнергии, доступный в электрических сетях.Вы можете спросить, почему электрические сети не используют постоянный ток? Потому что гораздо эффективнее передавать электроэнергию на большие расстояния, по всей стране, используя очень высокие напряжения. Это компенсирует потери из-за сопротивления. А переменный ток, в отличие от постоянного, тоже может использовать трансформаторы. Таким образом, это означает, что мощность высокого напряжения может быть снижена до чего-то гораздо более полезного в наших домах, как только она достигнет нашего района.

    А почему он называется «Переменный ток»? Направление тока меняется много раз в секунду.В Великобритании направление меняется каждую 1/50 секунды. Мы используем рабочий герц, чтобы описать это. Например, в США сетка составляет 60 Гц или 60 циклов в секунду.

    Как это относится к электромобилям?

    Сначала поговорим о двигателях. В электромобилях это двигатели переменного тока. Двигатель собран из статора, образующего внешнюю часть, и внутри него вращается ротор. Внутри магниты. Они заставляют ротор вращаться внутри статора, создавая крутящий момент.

    Но как заставить магниты двигаться? Ваш автомобиль использует переменный ток на этих электромагнитах, чтобы создать постоянно движущиеся северный и южный полюса.Переменный ток создает это магнитное поле для вращения двигателя.

    Поговорим о зарядке от сети переменного тока. Несмотря на то, что ваш автомобиль хранит энергию в виде постоянного тока, зарядка переменным током является наиболее распространенным способом зарядки электромобиля. Энергия из сети передается в ваш автомобиль, а инвертор преобразует ее в мощность постоянного тока для хранения в аккумуляторе. Вы увидите, что это называется скоростью бортового зарядного устройства, выраженной в киловаттах. Хотя это не столько зарядное устройство, сколько преобразователь.

    На скорость зарядки влияют два фактора: 1) мощность точки зарядки и 2) способность вашей машины скрывать мощность.

    Зарядные устройства переменного тока варьируются от 16 до 63 ампер. Это эквивалентно зарядке со скоростью 3,7 кВт до 43 кВт.

    Зарядные станции переменного тока не требуют каких-либо специальных технологий для преобразования энергии, которую они получают из сети, поэтому производство зарядных устройств зачастую обходится дешевле. И они часто могут быть бесплатными для потребителей.

    И знаете, мы говорили об инверторах? Ну, двигатель вашего электромобиля работает от сети переменного тока. Когда вы нажимаете на педаль газа, на самом деле вы меняете частоту тока для изменения скорости двигателя и амплитуду сигнала для изменения крутящего момента двигателя.

    Если вы знакомы с поршневыми автомобилями, то знаете, что генератор — это деталь, которая иногда требует замены. Когда вы замедляетесь в электромобиле, ваш двигатель фактически становится генератором. Он производит энергию и отправляет ее обратно в аккумулятор.

    Итак, это наш путеводитель по тому, что означает переменный ток для электромобилей. Если вы нашли это полезным, пожалуйста, оставьте комментарий ниже и поставьте лайк этому видео, чтобы мы знали, что оно вам понравилось. И увидимся на следующем.

    Электрический автомобиль работает на переменном или постоянном токе? |ААРГО EV СМАРТ|

    Электродвигатель работает на взаимодействии магнитного поля двигателя и электрического тока.Который может питаться от источника постоянного тока (DC) или от источника переменного тока (AC).

    Тип тока для использования в электромобиле

    Все мы знаем, что электромобиль обычно имеет встроенный аккумулятор. Обычно это литий-ионный аккумулятор, который служит источником питания для электродвигателя, приводящего транспортное средство в движение. Электромобиль в основном зависит от используемых в нем аккумуляторов и двигателя.

    Электромобили обычно поставляются с литий-ионными батареями, которые позволяют накапливать электричество в химической форме.Литий-ионные аккумуляторы имеют высокую плотность мощности, высокую плотность энергии и длительный срок службы по сравнению с другими.

    Motor EV — это устройство, которое преобразует электрическую энергию аккумуляторов в механическую энергию. Двигатель передает эту механическую энергию на колеса электромобиля и вращает их через зубчатое колесо. Но какой двигатель использует электромобиль.

    Двигатель

    Это самая важная часть любого электромобиля. В электромобилях переменного или постоянного тока можно использовать любой тип двигателя.Оба имеют некоторые преимущества и некоторые недостатки.

    Двигатель переменного тока

    Двигатель переменного тока

    или двигатель переменного тока представляет собой трехфазный двигатель, который питается от переменного тока напряжением 240 вольт. Двигатели широко используются производителями электромобилей, особенно для высокопроизводительных автомобилей. AV-двигатели подразделяются на две категории: асинхронные и синхронные. Асинхронные двигатели
    являются экономичными, малообслуживаемыми и надежными двигателями среди этих двух двигателей. Автомобили Tesla имеют асинхронный двигатель внутри транспортных средств.
    Синхронные двигатели не похожи на асинхронные двигатели, в которых скорость вращения ротора меньше скорости магнитного поля. В синхронном двигателе и ротор, и магнитное поле вращаются с одинаковой скоростью.

    В установках переменного тока может использоваться любой трехфазный промышленный двигатель переменного тока, который удобен с точки зрения доступности, размера двигателя, формы и мощности.
    Самая захватывающая особенность двигателя переменного тока заключается в том, что он превращается в генератор, возвращающий энергию батареям электромобиля.Но электромобиль, автобус, двухколесный транспорт. А другим транспортным средствам с двигателем переменного тока требуется инвертор, который преобразует постоянный ток в переменный. Поскольку источником питания является батарея (батарея питает постоянный ток), а двигателю требуется переменный ток.

    Двигатель постоянного тока

    Двигатель постоянного тока (DC) может работать при напряжении от 96 до 192 вольт. Двигатели постоянного тока подразделяются на три категории: щеточные двигатели постоянного тока, бесщеточные двигатели постоянного тока и шаговые двигатели. Производители электромобилей широко используют коллекторный двигатель постоянного тока.Двигатели постоянного тока просты в установке и дешевле, чем двигатели переменного тока. Двигатель постоянного тока
    имеет более высокий пусковой крутящий момент, быстрый пуск и останов, реверс, переменную скорость с входным напряжением по сравнению с двигателем переменного тока.
    Вы также можете перегружать их на более короткий период, то есть в течение более короткого периода вы можете испытать в 5 раз больше мощности, чем его номинальная мощность. Например, двигатель мощностью 20 000 Вт может потреблять 100 000 Вт, но только в течение более короткого периода времени. Двигатель постоянного тока выделяет больше тепла, чем двигатель переменного тока.

    Поскольку двигатель является основной частью электромобиля.Таким образом, в зависимости от типа двигателя, используемого в электромобиле, мы можем определить, является ли он двигателем постоянного или переменного тока. Однако все производители электромобилей одновременно используют как двигатели переменного тока, так и двигатели постоянного тока.

    Электрическая теория автомобильных аудиосистем — расчет работы и мощности в цепях постоянного тока

    В нашей продолжающейся серии статей об электрической теории автомобильных аудиосистем мы собираемся представить концепцию источников питания и сигналов переменного тока. Понимание основ AC имеет решающее значение для понимания того, как работает мобильная аудиосистема.В этой статье используется множество ссылок на системы подачи электроэнергии, используемые в наших домах и офисах, чтобы помочь получить базовое представление о цепях переменного тока. Мы будем опираться на эту основу в этой и последующих статьях, чтобы лучше понять сложности систем переменного тока.

    Разница между переменным и постоянным током

    Напряжение, создаваемое электрической системой наших автомобилей, называется постоянным током. Электроны текут в одном направлении от одной клеммы батареи к другой (кроме случаев, когда мы перезаряжаем батарею).В то время как уровень напряжения меняется, когда мы добавляем нагрузки в цепь или когда генератор переменного тока начинает перезаряжать аккумулятор, направление тока, протекающего к электрическим и электронным устройствам в автомобиле, никогда не меняется.

    И наоборот, электроэнергия, поставляемая местной электроэнергетической компанией для освещения и электроприборов в наших домах и на работе, называется переменным током. Такое название он получил потому, что поток электронов меняет направление 60 раз в секунду. Да, это звучит странно.Кто хотел бы, чтобы их сила ходила туда-сюда? Не волнуйтесь; мы объясним все это в ближайшее время. Просто продолжайте читать.

    Потери мощности в проводах передачи

    Исследователи полагают, что первым источником электроэнергии был глиняный горшок с жестяными пластинами и железным стержнем. При заполнении кислым раствором, таким как уксус, на металлических клеммах возникнет напряжение. Считается, что эта первая батарея была создана более 2000 лет назад.2 x R).Если мы можем передавать энергию с большим напряжением и меньшим током, меньше энергии теряется в проводах передачи.

    Принятие переменного тока

    Существенным преимуществом источников питания переменного тока в коммерческих и жилых помещениях является простота изменения соотношения между напряжением и током с помощью трансформатора. Трансформатор — это устройство, которое использует магнитные поля для увеличения или уменьшения отношения напряжения к току. Например, идеальный трансформатор 2:1 преобразует 10 вольт и 5 ампер переменного тока в 5 вольт и 10 ампер.

    Джорджу Вестингаузу приписывают популяризацию подачи электроэнергии переменного тока в дома благодаря заключению контракта на поставку электроэнергии для освещения Колумбийской выставки 1893 года на Всемирной выставке. Вестингауз использовал трансформаторы на основе патентов, которые он приобрел у Люсьена Голара и Джона Диксона Гиббса. Голар и Гиббс изобрели трансформатор в Лондоне в 1881 году.

    Выходная мощность генератора атомной, угольной или гидроэлектростанции составляет от 20 до 22 киловольт. Это напряжение повышается от 155 000 до 765 000 вольт с помощью трансформатора для распределения по штату или провинции.Большинство высоковольтных опор, которые вы видите вдоль шоссе или на полянах, имеют около 500 000 вольт, протекающих по трем силовым проводникам.

    В каждом городе или части города есть электрическая подстанция определенного типа, где электричество от этих высоковольтных линий понижается до более низкого напряжения для распределения по различным районам. Эти напряжения обычно находятся в диапазоне 16 кВ, чтобы поддерживать адекватный уровень эффективности передачи на этих коротких и умеренных расстояниях.Трансформаторы в ограждениях на обочине дороги или установленные под землей преобразуют это напряжение в 120 В, которое подается на электрические панели в наших домах.

    В качестве примера рассмотрим 1 милю многожильного кабеля 8 AWG. Согласно стандарту American Wire Gauge, 1 миля медного провода 8 AWG будет иметь максимальное сопротивление 3,782 Ом и идеальное сопротивление 3,6 Ом.

    Если мы хотим, чтобы через эту милю кабеля было передано 5000 ватт энергии, часть энергии будет потеряна из-за сопротивления в кабеле.Если мы будем передавать нашу мощность на 240 вольт, по кабелю будет течь ток 20,83 ампера. При сопротивлении 3,6 Ом сам кабель вызывает потери 1562,5 и мы теряем 75 вольт по кабелю. Понятно, что передача низковольтного сигнала на большие расстояния не работает.

    Если мы увеличим напряжение до 16 000 вольт, потери мощности в кабеле упадут до 0,3125 Вт, и мы потеряем в кабеле только 1,125 вольт.

    Высоковольтные линии электропередачи — это то, как электрические компании могут передавать мегаватты электроэнергии на большие расстояния с минимальными потерями мощности.При напряжении 500 000 вольт мы можем передать 1 мегаватт электроэнергии на 100 миль и потерять только 720 вольт. Это 0,144 процента!

    Хорошо, достаточно о соотношении мощности переменного тока и напряжения. Поговорим об аудиосистемах.

    Первый взгляд на звуковые сигналы

    В отличие от сигнала переменного тока с частотой 60 Гц, который питает наши дома, аудиосигналы содержат информацию о напряжении, которая имитирует изменения атмосферного давления, которые мы воспринимаем как звук. В большинстве случаев звуки записываются с помощью микрофона, который работает по принципу, противоположному динамику.Звуковая энергия перемещает небольшую диафрагму, включающую в себя катушку из проволоки. Катушка проволоки движется мимо неподвижного магнита. Движение катушки через магнитное поле индуцирует напряжение в проводе. Расстояние, на которое перемещается диафрагма, определяет амплитуду сигнала напряжения. Более громкие звуки производят более высокое напряжение.

    Ниже приведено изображение звуковой волны, наблюдаемое на осциллографе. Говорящий сказал слово аудио.

    Понимание мощности в цепях переменного тока

    Основная концепция мощности в цепи переменного тока такая же, как и в цепи постоянного тока, но необходимо выполнить некоторые расчеты, прежде чем мы сможем применить закон Ома.Мы рассмотрим бытовой источник питания 120 В, 60 Гц, чтобы объяснить математику в самых простых терминах.

    Чтобы измерить мощность, нам нужно посмотреть на объем работы, выполненной за определенный период. В случае лампочки, подключенной к розетке, нити накала не важно, в каком направлении течет ток, но количество создаваемого света и тепла зависит от амплитуды подаваемого напряжения. Работа, совершаемая лампочкой, рассчитывается по количеству электронов, прошедших через лампочку за заданный промежуток времени.

    Чтобы определить работу, выполняемую переменным напряжением, нам нужно рассчитать значение этого сигнала, который выполняет ту же работу, что и постоянное напряжение. Это значение называется RMS или среднеквадратичным значением и составляет 1/sqrt 2 или 0,70711 для синусоидальных волн. Для нашего 120-вольтового питания, выходящего из стены, 120-вольтовое напряжение является среднеквадратичным значением. Пиковое напряжение составляет около 167,7 вольт. Чтобы было ясно, значение 0,70711 работает только для синусоидального сигнала. Среднеквадратичное значение прямоугольной волны равно 1,0, а симметричной треугольной волны равно 0.577.

    По определению среднеквадратичное напряжение переменного тока может выполнять тот же объем работы, что и постоянное напряжение той же величины.

    На изображении ниже показан один цикл синусоидальной формы волны. Пиковое напряжение составляет 167,7 вольт, а две оранжевые линии определяют среднеквадратичное значение 120 вольт.

    Базовое понимание источников переменного тока и сигналов

    Для этой статьи вывод заключается в том, что звуковые волны на проводах предварительного усилителя и динамиков в нашей стереосистеме представляют собой сигналы переменного тока.В следующей статье мы более подробно обсудим понятие частоты и амплитуды.

    Эта статья написана и подготовлена ​​командой www.BestCarAudio.com. Воспроизведение или использование в любом виде запрещено без письменного разрешения 1sixty8 media.

    Что такое генератор переменного тока и как он работает?

    Вы можете подумать, что аккумулятор питает все электрические устройства в вашем автомобиле, будь то стеклоочистители, фары или радио. На самом деле именно автомобильный генератор производит большую часть электроэнергии вашего автомобиля — ваша батарея в основном используется только для запуска вашего автомобиля и обеспечения питания, когда двигатель не работает.[1] Генератор переменного тока является важным компонентом системы зарядки автомобиля, поэтому полезно понять, как он работает, если вам придется иметь дело с тем, что ваш автомобиль не заводится.

    Что такое генератор?

    Генератор переменного тока — это генератор, предназначенный для распределения электроэнергии по автомобилю и подзарядки аккумулятора.[1] За исключением некоторых гибридных моделей, все автомобили со стандартным двигателем внутреннего сгорания будут иметь генератор переменного тока. Генератор размером с кокосовый орех обычно крепится к передней части двигателя и обматывается ремнем.[2]

    Компоненты генератора

    Компоненты генератора переменного тока предназначены для обеспечения нужного типа и нужного количества энергии для автомобиля. Система зарядки вашего автомобиля состоит из множества частей, но вот основные компоненты и их функции:

    Ротор и статор

    Ротор и статор являются компонентами генератора переменного тока, вырабатывающими электричество.[3][4][5] Ротор, цилиндрическая деталь, окруженная магнитами, вращается внутри статора, который содержит фиксированный набор токопроводящих медных проводов.Движение магнитов по проводке — это то, что в конечном итоге создает электричество.

    Регулятор напряжения

    Регулятор напряжения контролирует мощность генератора.[2] Он отслеживает уровень напряжения, подаваемого на аккумулятор, и подает питание на остальные части автомобиля.

    Диодный выпрямитель

    Диодный выпрямитель преобразует напряжение от генератора переменного тока в форму, которая может использоваться аккумулятором для перезарядки.[2][4]

    Вентилятор охлаждения

    Генераторы выделяют много тепла и нуждаются в охлаждении для эффективной работы.Хотя они оснащены вентиляционными отверстиями и алюминиевым корпусом для лучшего отвода тепла, они также оснащены вращающимися вентиляторами для дополнительного охлаждения.[2][4] Новые модели генераторов переменного тока имеют внутренние охлаждающие вентиляторы, тогда как более старые версии, как правило, имеют внешние лопасти вентилятора.

    Как работает генератор

    Что делает генератор? Как известно, генератор переменного тока обеспечивает автомобиль большей частью электроэнергии и помогает заряжать аккумулятор. Но чтобы сделать все это, генератор переменного тока должен сначала превратить механическую энергию в электричество.

    Как генератор переменного тока производит электричество

    Процесс производства электроэнергии начинается с двигателя. В большинстве современных автомобилей генераторы приводятся в движение коленчатым валом двигателя через змеевиковый ремень, хотя в старых автомобилях может быть отдельный шкив, идущий от коленчатого вала к генератору. Движение ремня — механическая энергия — вращает ротор генератора с высокой скоростью внутри статора.[2][5]

    Электричество вырабатывается при вращении ротора. Магниты, окружающие ротор, преднамеренно расположены так, что когда они проходят над медной проводкой в ​​статоре, создается магнитное поле. 5 Это магнитное поле, в свою очередь, создает напряжение, которое захватывается статором. Затем эта мощность поступает к регулятору напряжения, который распределяет электроэнергию по транспортному средству и управляет количеством напряжения, которое получает аккумулятор.[2]

    Как генератор заряжает аккумулятор?

    Прежде чем батарея сможет использовать энергию, поступающую от генератора переменного тока, ее необходимо преобразовать в формат, который может использовать батарея. Это потому, что электричество может течь в разных токах или направлениях.Автомобильные аккумуляторы работают от одностороннего постоянного тока (DC), в то время как генераторы переменного тока вырабатывают электричество переменного тока (AC), которое иногда течет в обратном направлении. Таким образом, перед подачей на регулятор напряжения мощность, предназначенная для батареи, проходит через диодный выпрямитель и превращается в постоянный ток.[2] После преобразования батарея может использовать энергию для перезарядки.

    Как и любая другая деталь автомобиля, ваш генератор со временем может выйти из строя и может потребовать замены. Узнайте, как заменить генератор и что делать, если ваша машина сломалась в дороге.

     

    [1] itstillruns.com/functions-alternator-6148787.html

    [2] auto.howstuffworks.com/alternator.htm

    [3] galco.com/comp/prod/moto-ac.htm

    [4]autoshop101.com/forms/alt_bwoh.pdf

    [5] «Аккумуляторы и генераторы | Как они работают», Donut Media, youtube.com/watch?v=nuLl_Z9_T9E (30 мая 2018 г.).
    [6]chicagotribune.com/autos/sc-alternator-autos-0128-20160127-story.html

    AC против зарядки постоянным током | Зарядка переменным током и постоянным током

    Контекст

    Зарядка электромобиля (EV) может быть сложнее, чем заправка обычного автомобиля с двигателем внутреннего сгорания (ICEV).В отличие от последнего, водитель электромобиля не может зайти ни на одну зарядную станцию ​​и надеется уехать с полностью заряженным автомобилем за считанные минуты. Процесс зарядки, среди прочих факторов, зависит от совместимости транспортного средства с зарядным устройством и времени, доступного для зарядки. В целом, зарядные устройства для электромобилей делятся на зарядные устройства переменного тока (AC) и зарядные устройства постоянного тока (DC). В качестве альтернативы они могут быть классифицированы как медленные и быстрые зарядные устройства.

    Зарядка электромобиля аналогична зарядке любого электрического устройства. Энергия поступает из сети в зарядное устройство, которое затем подключается к устройству.Точно так же с электромобилями энергия поступает от сети к зарядному устройству электромобиля, которое затем подключается к автомобилю. Энергия, поступающая из сети, всегда представляет собой переменный ток, тогда как электрические устройства, будь то электромобили, мобильные телефоны или ноутбуки, потребляют только постоянный ток. Следовательно, прежде чем устройство можно будет зарядить, переменный ток из сети должен быть преобразован в форму постоянного тока. В случае бытовой техники это преобразование происходит внутри вилки зарядного устройства. После преобразования провод зарядного устройства подает постоянный ток на устройство для потребления.Однако есть два возможных способа преобразования переменного тока из сети в постоянный в электромобилях. Зарядные устройства классифицируются в зависимости от того, где происходит это преобразование.

    Зарядные устройства переменного тока

    Что?

    В случае зарядки переменным током преобразование электрического тока в постоянный происходит внутри электромобиля. Все электромобили поставляются с бортовыми зарядными устройствами, способными преобразовывать ток перед подачей его на автомобильный аккумулятор. Зарядные устройства переменного тока более распространены в экосистеме электромобилей, поскольку их производство, установка и эксплуатация сравнительно дешевле 1 .

    Кроме того, они могут быть подразделены на:

    • Тип 1: медленная зарядка переменным током, представляющая собой обычные домашние розетки, используемые для непрерывной зарядки переменным током
    • Тип 2: быстрая зарядка от сети переменного тока, которая представляет собой более быстрые зарядные устройства для настенных коробок, специально устанавливаемые для электромобилей 

    Кто?

    Хотя их можно использовать для зарядки двух-, трех- и четырехколесных транспортных средств, чем больше батарея, тем больше времени требуется для ее зарядки. Они подходят для ночной зарядки дома, зарядки на парковочных местах и ​​для зарядки транспортных средств для повседневного использования.

    Зарядные устройства постоянного тока

    Что?

    С другой стороны, зарядные устройства постоянного тока позволяют преобразовывать переменный ток в постоянный вне автомобиля. Это преобразование происходит внутри самого зарядного устройства. Затем постоянный ток напрямую подается в электромобиль, что исключает необходимость встроенного преобразования. Эти зарядные устройства требуют гораздо больше энергии от сети — почти 125 А — и намного дороже в производстве, установке и эксплуатации 2 . Сокращение времени зарядки является результатом более крупного преобразователя, установленного внутри зарядного устройства на зарядных станциях, по сравнению с бортовым зарядным устройством автомобиля.В результате батарея электромобиля получает более высокую выходную мощность за меньшее время 3 .

    Кто?

    Быстрые зарядные устройства постоянного тока

    подходят в основном для четырехколесных транспортных средств с большими батареями, требующими мгновенной зарядки, и могут быть найдены на автомагистралях или в других местах, где электромобилю может потребоваться быстрая зарядка за считанные минуты. Они подходят для транспортных средств, путешествующих на большие расстояния, или для коммерческого транспорта 4 .

    Скорость зарядки зависит не только от зарядных устройств переменного или постоянного тока, но и от выходной мощности точки зарядки.Страны различаются по типу зарядных устройств, которые они требуют, поскольку они зависят от конкретных случаев использования электромобилей. В Индии зарядные устройства подразделяются на медленные и быстрые зарядные устройства в соответствии с руководящими принципами Министерства энергетики от 2019 года « Инфраструктура зарядки для электромобилей (EV): пересмотренные руководящие принципы и стандарты — Reg 5 ». Это различие заключается в следующем: 

    Рисунок 1: Вилки зарядного устройства в Индии 6

    Источник:

    Приборная панель для электромобилей CEEW-CEF

    Кого это должно волновать?

    • Потенциальные покупатели электромобилей
    • Операторы зарядных станций
    • Исследователи и политики
    • Жилые и рабочие помещения с обязательной зарядкой электромобилей

    использованная литература

    • [1]Новое движение.нд «Зарядка переменным током против зарядки постоянным током». https://newmotion.com/en-gb/support/faq/ac-charging-vs-dc-charging.
    • [2] Там же.
    • [3] Плеско, Юрай и Гарри Салливан. 2021. «Зарядка электромобиля: разница между переменным и постоянным током». EVBox. https://blog.evbox.com/difference-between-ac-and-dc.
    • [4] Маллик, Камлеш. 2017. «Технические характеристики Bharat EV для зарядки переменным и постоянным током: все, что вам нужно знать!» PluginIndia, 27 декабря 2017 г.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *