27.09.2024

Правило ленца правило правой руки: Правило правой руки

Содержание

Правило правой руки


Электромагнитная индукция

Представим себе два параллельных проводника аб и вг , расположенных на близком расстоянии один от другого. Проводник аб подключен к зажимам батареи Б; цепь включается ключом К, при замыкании которого по проводнику проходит ток в направлении от а к б. К концам же проводника вг присоединен чувствительный амперметр А, по отклонению стрелки которого судят о наличии тока в этом проводнике.

Если в собранной таким образом схеме замкнуть ключ К, то в момент замыкания цепи стрелка амперметра отклонится, свидетельствуя о наличии тока в проводнике вг;
по прошествии же небольшого промежутка времени (долей секунды) стрелка амперметра придет в исходное (нулевое) положение.

Размыкание ключа К опять вызовет кратковременное отклонение стрелки амперметра, но уже в другую сторону, что будет указывать на возникновение тока противоположного направления.
Подобное отклонение стрелки амперметра А можно наблюдать и в том случае, если, замкнув ключ К, приближать проводник аб к проводнику вг или удалять от него.

Приближение проводника аб к вг вызовет отклонение стрелки амперметра в ту же сорону, что и при замыкании ключа К, удаление проводника аб от проводника вг повлечет за собой отклонение стрелки амперметра, аналогичное отклонению при размыкании ключа К.

При неподвижных проводниках и замкнутом ключе К ток в проводнике вг можно вызвать изменением величины тока в проводнике аб.
Аналогичные явления происходят и в том случае, если проводник, питаемый током, заменить магнитом или электромагнитом.

Так, например, на рисунке схематически изображена катушка (соленоид) из изолированной проволоки, к концам которой подключен амперметр А.

Если внутрь обмотки быстро ввести постоянный магнит (или электромагнит), то в момент его введения стрелка амперметра А отклонится; при выведении магнита будет также наблюдаться отклонение стрелки амперметра, но в другую сторону.

Электрические токи, возникающие при подобных обстоятельствах, называются индукционными, а причина, вызывающая появление индукционных токов, электродвижущей силой индукции.

Эта эдс возникает в проводниках под действием изменяющихся магнитных полей,
в которых находятся эти проводники.
Направление эдс индукции в проводнике, перемещающемся в магнитном поле, может быть определено по правилу правой руки, которое формулируется так:

Если правую руку расположить ладонью к северному полюсу так, чтобы большой отогнутый палец показывал направление движения проводника, то четыре пальца будут указывать направление эдс индукции.

Направление индукционного тока, а следовательно, и эдс индукции определяют также по правилу Ленца, которое формулируется следующим образом:

Эдс индукции имеет всегда такое направление, что созданный ею индукционный ток препятствует причине, ее вызывающей.
Величина эдс индукции, возникающей в замкнутом проводнике, пропорциональна скорости изменения магнитного потока, пронизывающего контур этого проводника.

Таким образом, если магнитный поток, пронизывающий контур замкнутого проводника, уменьшился на величину Ф в течение t секунд, то скорость уменьшения магнитного потока равна Ф/t.

Это отношение и представляет собой величину эдс индукции е, т. е.
е = —Ф/t.
Знак минус указывает на то, что ток, созданный эдс индукции, препятствует причине, вызвавшей эту здс.

Возникновение эдс индукции в замкнутом контуре происходит как при движении этого контура в магнитном поле, так и при изменении магнитного потока, пронизывающего неподвижный контур.
Если контур имеет витков, то индуктированная эдс
e = —Ф/t.

Произведение числа витков и магнитного потока, пронизывающих их, называется потокосцеплением =Ф, следовательно, индуктированная в катушке эдс
е = —Ф/t = —/t.

Эта формула, выражающая закон электромагнитной индукции, является исходной для определения эдс, индуктируемых в обмотках электротехнических машин и аппаратов.
Когда контур охватывается лишь частью магнитного потока, величина эдс индукции зависит от скорости изменения не всего потока, а лишь части его.

Допустим, что прямоугольный замкнутый контур абвг, стороны которого равны l и h, находится в магнитном поле, магнитная индукция которого во всех точках равна
В (Тл) и направлена за плоскость рисунка.

Пусть контур, оставаясь в плоскости рисунка, перемещается с равномерной скоростью сверху вниз и в течение t с выходит за пределы магнитного поля.

Замкнутый контур, перемещающийся в магнитном поле

Так как контур абвг перемещается вниз, то магнитный.поток, пронизывающий контур, уменьшается. Следовательно, направление эдс индукции совпадает с вращательным движением рукоятки буравчика, ввинчиваемого вдоль магнитных линий, т. е. по часовой стрелке.

Величина этой эдс индукции определится из следующих соображений.
Площадь, ограниченная контуром проводника, S=lh.
Магнитный поток, пронизывающий контур проводника, Ф=BS.
Чтобы уйти за пределы магнитного поля, т. е. чтобы изменить магнитный поток от Ф до нуля или на величину Ф=Ф, требуется, чтобы t=t.

Следовательно, Е=Ф/t =Ф/t или E=Blh/t.

Частное от деления пути h, пройденного проводником, на время t представляет собой скорость движения этого проводника. Обозначив ее буквой v, получим E=Blv.

Если в этой формуле магнитная индукция В выражена в теслах, длина l — в метрах и скорость v — в метрах на секунду (м/с), то эдс индукции выражается в вольтах.

Эта формула справедлива лишь в том случае, если проводник перемещается в магнитном поле в направлении, перпендикулярном магнитным силовым линиям этого поля.
Если проводник пересекает магнитные линии под каким-либо углом, то
E=Blv sin,
где — угол между направлением движения проводника и направлением вектора магнитной индукции (магнитных линий).

Пример воздействия магнитного поля на замкнутый контур

Скачать можно здесь

(Подробно и доходчиво в видеокурсе «В мир электричества — как в первый раз!»)

ПРАВИЛО ПРАВОЙ РУКИ — это.

.. Что такое ПРАВИЛО ПРАВОЙ РУКИ?

ПРАВИЛО ПРАВОЙ РУКИ

Научно-технический энциклопедический словарь.

  • ПРАВИЛО ЛЕНЦА
  • ПРАВИЛО ЭЙЛЕРА

Смотреть что такое «ПРАВИЛО ПРАВОЙ РУКИ» в других словарях:

  • ПРАВИЛО ПРАВОЙ РУКИ — ПРАВИЛО ПРАВОЙ РУКИ, определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению… …   Энциклопедический словарь

  • правило правой руки — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Fleming s ruleright hand rule …   Справочник технического переводчика

  • Правило правой руки — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки)  мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость …   Википедия

  • правило правой руки — [right hand rule] удобное для запоминания правило для определения направления индукционного тока в проводнике, движущегося в магнитном поле: если расположить правую ладонь так, чтобы отставлtysq большой палец совпадал с направлением движения… …   Энциклопедический словарь по металлургии

  • правило правой руки — dešinės rankos taisyklė statusas T sritis fizika atitikmenys: angl. right hand rule vok. Rechte Hand Regel, f rus. правило правой руки, n pranc. règle de la main droite, f …   Fizikos terminų žodynas

  • Правило левой руки — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки)  мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость …   Википедия

  • Правой руки правило — Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки)  мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость …   Википедия

  • ПРАВОЙ РУКИ ПРАВИЛО — определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то 4… …   Большой Энциклопедический словарь

  • ПРАВОЙ РУКИ ПРАВИЛО — для определения направления индукц. тока в проводнике, движущемся в магн. поле: если расположить правую ладонь так, чтобы отставленный большой палец совпадал с направлением движения проводника, а силовые линии магн. поля входили в ладонь, то… …   Физическая энциклопедия

  • правой руки правило — определяет направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в неё входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то… …   Энциклопедический словарь

Книги

  • Экзамен в ГИБДД. Категории «А», «В» . Особая система запоминания на длительный период, А.И. Копусов-Долинин. В данном пособии развернутые ответы, с использованием дидактических приемов и элементов транспортной психологии, позволяют упростить понимание и запоминание Правил дорожного движения и основ… Подробнее  Купить за 262 руб
  • Экзамен в ГИБДД. Категории А, В. Экзаменационные билеты ГИБДД с комментариями правильных ответов (+CD-ROM), А.И. Копусов-Долинин. В данном пособии развернутые ответы, с использованием дидактических приемов и элементов транспортной психологии, позволяют упростить понимание и запоминание Правил дорожного движения и основ… Подробнее  Купить за 228 руб
  • Готовимся к экзамену в ГИБДД. Категории «А», «В», Копусов-Долинин А. И.. В данном пособии развернутые ответы, с использованием дидактических приемов и элементов транспортной психологии, позволяют упростить понимание и запоминание Правил дорожного движения и основ… Подробнее  Купить за 198 руб

Другие книги по запросу «ПРАВИЛО ПРАВОЙ РУКИ» >>

Правило буравчика, правой и левой руки

Правило буравчика, правой руки и левой руки нашли широкое применение в физике. Мнемонические правила нужны для лёгкого и интуитивного запоминания информации. Обычно это приложение сложных величин и понятий на бытовые и подручные вещи. Первым, кто сформулировал данные правила, является физик Петр Буравчик. Данное правило относится к мнемоническому и тесно соприкасается с правилом правой руки, его задачей является определением направления аксиальных векторов при известном направлении базисного. Так гласят энциклопедии, но мы расскажем об этом простыми словами, кратко и понятно.

Объяснение названия

Большинство людей помнят упоминание об этом из курса физики, а именно раздела электродинамики. Так вышло неспроста, ведь эта мнемоника зачастую и приводится ученикам для упрощения понимания материала. В действительности правило буравчика применяют как в электричестве, для определения направления магнитного поля, так и в других разделах, например, для определения угловой скорости.

Под буравчиком подразумевается инструмент для сверления отверстий малого диаметра в мягких материалах, для современного человека привычнее будет привести для примера штопор.

Важно! Предполагается, что буравчик, винт или штопор имеет правую резьбу, то есть направление его вращения, при закручивании, по часовой стрелке, т.е. вправо.

На видео ниже предоставлена полная формулировка правила буравчика, посмотрите обязательно, чтобы понять всю суть:

Как связано магнитное поле с буравчиком и руками

В задачах по физике, при изучении электрических величин, часто сталкиваются с необходимостью нахождения направления тока, по вектору магнитной индукции и наоборот. Также эти навыки потребуются и при решении сложных задач и расчетов, связанных магнитным полем систем.

Прежде чем приступить к рассмотрению правил, хочу напомнить, что ток протекает от точки с большим потенциалом к точке с меньшим. Можно сказать проще — ток протекает от плюса к минусу.

Правило буравчика имеет следующий смысл: при вкручивании острия буравчика вдоль направления тока – рукоятка будет вращаться по направлению вектора B (вектор линий магнитной индукции).

Правило правой руки работает так:

Поставьте большой палец так, словно вы показываете «класс!», затем поверните руку так, чтобы направление тока и пальца совпадали. Тогда оставшиеся четыре пальца совпадут с вектором магнитного поля.

Наглядный разбор правила правой руки:

Чтобы увидеть это более наглядно проведите эксперимент – рассыпьте металлическую стружку на бумаге, сделайте в листе отверстие и проденьте провод, после подачи на него тока вы увидите, что стружка сгруппируется в концентрические окружности.

Магнитное поле в соленоиде

Всё вышеописанное справедливо для прямолинейного проводника, но что делать, если проводник смотан в катушку?

Мы уже знаем, что при протекании тока вокруг проводника создается магнитное поле, катушка – это провод, свёрнутый в кольца вокруг сердечника или оправки много раз. Магнитное поле в таком случае усиливается. Соленоид и катушка – это, в принципе, одно и то же. Главная особенность в том, что линии магнитного поля проходят так же как и в ситуации с постоянным магнитом. Соленоид является управляемым аналогом последнего.

Правило правой руки для соленоида (катушки) нам поможет определить направление магнитного поля. Если взять катушку в руку так, чтобы четыре пальца смотрели в сторону протекания тока, тогда большой палец укажет на вектор B в середине катушки.

Если закручивать вдоль витков буравчик, опять же по направлению тока, т.е. от клеммы «+», до клеммы «-» соленоида, тогда острый конец и направление движения как лежит вектор магнитной индукции.

Простыми словами – куда вы крутите буравчик, туда и выходят линии магнитного поля. То же самое справедливо для одного витка (кругового проводника)

Определение направления тока буравчиком

Если вам известно направление вектора B – магнитной индукции, вы можете легко применить это правило. Мысленно передвигайте буравчик вдоль направления поля в катушке острой частью вперед, соответственно вращение по часовой стрелки вдоль оси движения и покажет, куда течет ток.

Если проводник прямой – вращайте вдоль указанного вектора рукоятку штопора, так чтобы это движение было по часовой стрелке. Зная, что он имеет правую резьбу – направление, в котором он вкручивается, совпадает с током.

Что связано с левой рукой

Не путайте буравчика и правило левой руки, оно нужно для определения действующей на проводник силы. Выпрямленная ладонь левой руки располагается вдоль проводника. Пальцы показывают в сторону протекания тока I. Через раскрытую ладонь проходят линии поля. Большой палец совпадает с вектором силы – в этом и заключается смысл правила левой руки. Эта сила называется силой Ампера.

Можно это правило применить к отдельной заряженной частице и определить направление 2-х сил:

  1. Лоренца.
  2. Ампера.

Представьте, что положительно заряженная частица двигается в магнитном поле. Линии вектора магнитной индукции перпендикулярны направлению её движения. Нужно поставить раскрытую левую ладонь пальцами в сторону движения заряда, вектор B должен пронизывать ладонь, тогда большой палец укажет направление вектора Fа. Если частица отрицательная – пальцы смотрят против хода заряда.

Если какой-то момент вам был непонятен, на видео наглядно рассматривается, как пользоваться правилом левой руки:

Важно знать! Если у вас есть тело и на него действует сила, которая стремится его повернуть, вращайте винт в эту сторону, и вы определите, куда направлен момент силы. Если вести речь об угловой скорости, то здесь дело обстоит так: при вращении штопора в одном направлении с вращением тела, завинчиваться он будет в направлении угловой скорости.

Выводы

Освоить эти способы определения направления сил и полей очень просто. Такие мнемонические правила в электричестве значительно облегчают задачи школьникам и студентам. С буравчиком разберется даже полный чайник, если он хотя бы раз открывал вино штопором. Главное не забыть, куда течет ток. Повторюсь, что использование буравчика и правой руки чаще всего с успехом применяются в электротехнике.

Напоследок рекомендуем просмотреть видео, благодаря которому вы на примере сможете понять, что такое правило буравчика и как его применять на практике:

Наверняка вы не знаете:

Направление индукционного тока. Правило Ленца — урок. Физика, 9 класс.

Направление индукционного тока в контуре зависит от того, увеличивается или уменьшается магнитный поток через этот контур.

Убедимся в этом на опыте с помощью прибора, изображённого на рисунке \(1\).

 

 

Рис. \(1\). Опыт № \(1\)

 

Узкая алюминиевая пластинка с двумя алюминиевыми кольцами на концах (одно — сплошное, другое — с разрезом) находится на стойке и может свободно вращаться вокруг вертикальной оси.

Попытаемся внести полосовой магнит северным полюсом в сплошное кольцо (рис. \(1\)). Оно уходит от магнита, как будто отталкивается от него, поворачивая при этом всю пластинку. Повторим эксперимент, будем подносить магнит к кольцу южным полюсом. Результат будет точно таким же. Кольцо оттолкнется. Если подносить магнит к кольцу с прорезью, то ничего не произойдет. Замена полюса магнита изменений тоже не вносит.

Данное явление можно объяснить следующим образом:

при приближении магнита к кольцу без прорези возрастает магнитный поток сквозь площадь кольца. Так как кольцо замкнуто, то в нем возникает индукционный ток.

В кольце с разрезом ток циркулировать не может.

Ток в сплошном кольце создаёт магнитное поле, поэтому кольцо приобретает свойства магнита. Кольцо отталкивается от магнита. Значит, кольцо и магнит обращены друг к другу одноименными полюсами, а векторы магнитной индукции их полей направлены в противоположные стороны (рис. \(2\)).

 

 

Рис. \(2\). Опыт № \(2\)

 

Магнитное поле индукционного тока противодействует увеличению внешнего магнитного потока через кольцо.

Внося полосовой магнит, мы увеличиваем интенсивность магнитного поля, действующего со стороны магнита на кольцо. В кольце возникает магнитное поле, которое ослабляет поле полосового магнита, то есть направлено противоположно внешнему. Значит, ток в кольце будет направлен против часовой стрелки.

Направление индукционного тока в кольце определяется правилом правой руки.

Поменяем направление полосового магнита. Из кольца будем удалять магнит (рис. \(3\)). Кольцо будет двигаться за магнитом. Получается, что кольцо притягивается к магниту.

Объяснение: притяжение возможно только в том случае, если кольцо и магнит обращены друг к другу разноименными полюсами. В этом случае направление векторов магнитной индукции магнитных полей кольца и магнита совпадают.

 

 

Рис. \(3\). Опыт № \(3\)

 

Магнитное поле, создаваемое индукционным током, поддерживает уменьшающийся магнитный поток через площадь кольца.

Убирая полосовой магнит из кольца, мы уменьшаем интенсивность магнитного поля, действующего со стороны магнита на кольцо. Магнитное поле кольца будет поддерживать поле полосового магнита, значит, сонаправлено внешнему магнитному полю. Поэтому, ток в кольце будет направлен по часовой стрелке.

Общее правило впервые сформулировал российский ученый Эмилий Христианович Ленц в \(1834\) году:

правило Ленца
Индукционный ток в замкнутом проводящем контуре принимает такое направление, что он ослабляет первопричину своего возникновения.

Источники:

Рис. 1. Опыт № 1. © ЯКласс.

Рис. 2. Опыт № 2. © ЯКласс.

Рис. 3. Опыт № 3. © ЯКласс.

Направление индукционного тока. Правило Ленца. Вихревое поле.

Направление индукционного тока

При внесении в катушку магнита в ней возникает
индукционный ток. Если к катушке присоединить гальванометр, то можно заметить,
что направление тока будет зависеть от того приближаем ли мы магнит или удаляем
его.

Магнит будет взаимодействовать с катушкой либо
притягиваясь, либо отталкиваясь от нее. Это будет возникать вследствие того,
что катушка с проходящим по ней током, будет подобна магниту с двумя полюсами.
Направление индуцируемого тока будет определять, где у катушки будет находиться
какой из полюсов.

Если приближать к катушке магнит, то в ней будет
возникать индукционный ток такого направления, что катушка обязательно будет
отталкиваться от магнита. Если мы будет удалять магнит от катушки, то при этом
в катушке возникнет такой индукционный ток, что она будет притягиваться к
магниту.

Стоит отметить, что не важно каким полюсом мы
подносим или убираем магнит, всегда при подносе катушка будет отталкиваться, а
при удалении притягиваться. Различие состоит в том, что при приближении магнита
к катушке магнитный поток, который будет пронизывать катушку, увеличивается,
так как у полюса магнита кучность линий магнитной индукции увеличивается. А при
удалении магнита, магнитный поток, пронизывающий катушку, будет уменьшаться.

Узнать направление индукционного тока можно. Для
этого существует правило Ленца. Оно основано на законе сохранения.
Рассмотрим следующий опыт.

Имеется катушка с подключенным к ней
гальванометром. К одному и краев катушки начинаем подносить магнит, например,
северным полюсом. Количество линий, которые будут пронизывать поверхность
каждого витка катушки, будет увеличиваться. Следовательно, будет увеличиваться
и значение магнитного потока.

Так как должен выполняться закон сохранения,
должно возникнуть магнитное поле, которое будет препятствовать изменению
магнитного потока. В нашем случае магнитный поток увеличивался, следовательно,
ток должен течь в таком направлении, чтобы линии вектора магнитной индукции,
создаваемые катушкой, были направлены в противоположном направлении линиям
магнитной индукции, создаваемым магнитом.

То есть они должны в нашем случае быть направлены
вверх. Теперь воспользуемся правилом буравчика. Направляем большой палец правой
руки по необходимому нам направлению линий магнитной индукции, то есть — вверх.
Тогда остальные пальцы укажут, в какую сторону должен быть направлен
индукционный ток. В нашем случае, слева на право.

Аналогичный процесс происходит при удалении
магнита. Убираем магнит, магнитный поток уменьшается, следовательно, должно
возникнуть поле которое будет увеличивать магнитный поток. То есть поле линии
магнитной индукции, которого будут сонаправлены с линиями магнитной индукции,
создаваемыми постоянным магнитом. В нашем случае эти лини направлены вниз.
Опять пользуемся правилом буравчика и определяем направление индукционного
тока.

Правило Ленца.

Согласно правилу Ленца возникающий в
замкнутом контуре индукционный ток своим магнитным полем противодействует тому
изменению магнитного потока, которым он вызван. Более кратко это правило можно
сформулировать следующим образом: индукционный ток направлен так, чтобы
препятствовать причине, его вызывающей.

Применять правило Ленца для нахождения направления
индукционного тока в контуре надо так:

1.      Определить
направление линий магнитной индукции вектора В внешнего
магнитного поля.

2.      Выяснить,
увеличивается ли поток вектора магнитной индукции этого поля через поверхность,
ограниченную контуром (ΔФ >
0), или уменьшается (ΔФ <
0).

3.      Установить
направление линий магнитной индукции вектора В’ магнитного
поля индукционного тока. Эти линии должны быть согласно правилу Ленца
направлены противоположно линиям магнитной индукции вектора В’ при ΔФ > 0
и иметь одинаковое с ними направление при ΔФ <
0.

4.      Зная
направление линий магнитной индукции вектора В’, найти
направление индукционного тока, пользуясь правилом буравчика.

Направление индукционного тока
определяется с помощью закона сохранения энергии. Индукционный ток во всех
случаях направлен так, чтобы своим магнитным полем препятствовать изменению
магнитного потока, вызывающего данный индукционный ток.

Вихревое
электрическое поле.

Причина возникновения электрического тока в
неподвижном проводнике — электрическое поле.

Всякое изменение магнитного поля порождает
индукционное электрическое поле независимо от наличия или отсутствия замкнутого
контура, при этом если проводник разомкнут, то на его концах возникает разность
потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым.Направление силовых линий вихревого электрического поля совпадает
с направлением индукционного тока

Индукционное электрическое поле имеет совершенно
другие свойства в отличии от электростатического поля.

электростатическое поле

индукционное электрическое поле

(вихревое электрическое
поле )

1.
создается неподвижными электрическими зарядами

1.
вызывается изменениями магнитного поля

2. силовые
линии поля разомкнуты -потенциальное поле

2. силовые
линии замкнуты — вихревое поле

3.
источниками поля являются электрические заряды

3.
источники поля указать нельзя

4. работа
сил поля по перемещению пробного заряда по замкнутому пути равна нулю.

4. работа
сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции

 

Правило Ленца — презентация онлайн

Эмилий Христианович Ленц

2. ВСПОМНИМ

1.Кем было открыто явление электромагнитной
индукции?
2. В ходе каких опытов можно наблюдать появление
индукционного тока в замкнутом контуре?
3.Что объединяет все перечисленные опыты?
4.В чем заключается явление электромагнитной
индукции?
5.Дайте определение магнитного потока (потока
магнитной индукции), запишите формулу,
размерность в СИ.
6.Как зависит величина индукционного тока от
скорости изменения магнитного потока?

3. ВОЗНИКАЕТ ЛИ В КОНТУРЕ ИНДУКЦИОННЫЙ ТОК В СЛЕДУЮЩИХ СЛУЧАЯХ (ОТВЕТ ПОЯСНИТЬ)

А
Б
При приближении
контура к магниту?
При показанном
вращении рамки?
о
В
В
При вращении рамки
вокруг оси ОС против
часовой стрелки?
с
Г
A
B
Будет ли возникать ток в витке В,
если в цепи витка А :
• замыкают ключ K
• размыкают ключ K
• Если при замкнутом ключе в
цепи витка А изменять силу тока
с помощью реостата R ?
R
+
_
K
При повороте плоскости витка А
при замкнутом ключе
перпендикулярно плоскости витка
В против часовой стрелки?

5.

УСТАНОВЛЕННЫЕ ФАКТЫ:

1.Направление индукционного тока зависит от того:
• приближаем мы магнит к контуру или удаляем его
• каким полюсом мы делаем это — северным или южным
2.В пространстве вокруг движущихся зарядов (токов)
существует магнитное поле.
ВЫВОД: Вокруг индукционного тока должно существовать
магнитное поле и это поле должно взаимодействовать
с магнитным полем постоянного магнита
(должно наблюдаться притяжение или отталкивание)
3.Так как направление тока различно , то и взаимодействие
поля индукционного тока с полем постоянного магнита должно
быть различным в случаях:
• приближения и удаления магнита
• приближения (удаления) северного и южного полюса
При поднесении магнита к кольцу оно начинает
удаляться от магнита,
а при удалении магнита –
движется вслед за ним
B
Bi
B
При приближении магнита
к замкнутому контуру
увеличивается магнитный поток
через поверхность,
ограниченную контуром
В контуре возникает
индукционный ток,
v
имеющий такое
направление,
что созданный им
магнитный поток,
препятствует уменьшению
магнитного потока,
вызвавшего ток.
При удалении магнита от
замкнутого контура
уменьшается магнитный
поток через поверхность,
ограниченную контуром
B
Bi
I
В контуре возникает
индукционный ток, имеющий
такое направление, что
созданный им магнитный
поток
препятствует уменьшению
магнитного потока,
вызвавшего ток
v

9. Правило Ленца

• Индукционный ток
направлен так,
чтобы своим
магнитным полем
противодействовать
тому изменению
магнитного потока,
которым он вызван
Bi
В
I
V

10. ПЛАН РЕШЕНИЯ ЗАДАЧ на правило ЛЕНЦА

1. Определить направление вектора В
внешнего магнитного поля
2.Определить, как изменяется
магнитный поток через поверхность,
ограниченную контуром
3. Определить направление вектора
Вi поля индукционного тока:
а) если магнитный поток
уменьшается, то векторы сонаправлены
б) если магнитный поток увеличивается,
то векторы противоположно направлены.
4.Пользуясь правилом буравчика,
определить направление индукционного тока
в контуре.
I
V

11. РЕШИМ ЗАДАЧУ

Определим направление вектора В внешнего поля
(входит в южный полюс)
Магнит удаляется от кольца ( т.е. магнитный поток уменьшается)
Значит вектор магнитного поля индукционного тока
сонаправлен с вектором В
B
По правилу буравчика определим
направление
индукционного тока
V
Bi
I
Пользуясь правилом Ленца, определите
направление индукционного тока в кольце В
в следующих случаях:
B
B
Bi
A
1. При замыкании ключа в цепи кольца А
Ii
против часовой стрелки
B
2.При размыкании ключа в цепи кольца А
( выполнить дома)
R
+
_
K
3.При замкнутом ключе скользящий
контакт реостата передвигают вправо
по часовой стрелке
4.При замкнутом ключе скользящий контакт реостата передвигают влево
(выполнить дома)
Дома: п. 10, задачи по рисунку.

13. Использованная литература и интернет-ресурсы

• http://upload.wikimedia.org/wikipedia/commons/thumb/c/
c7/Emil_Lenz.jpg/300px-Emil_Lenz.jpg — портрет Ленца
• Г.Я.Мякишев,Б.Б.Буховцев, Н.Н.Сотсткий – Физика 11
– М. Просвещение,2005 г.

Решение качественных задач на правила правой и левой руки. Ленца

Урок №—-. Физика 8 класс.

Тема урока: Решение качественных задач на правила правой и левой руки. Ленца

Цели урока: закрепить знания по предыдущим темам; научить применять знания, полученные на уроке;

показать связь с жизнью; расширить межпредметные связи.

формировать интерес к предмету, к учебе, воспитывать инициативу, творческое отношение, воспитывать добросовестное отношение к учебе, прививать навыки, как самостоятельной работы, так и работы в коллективе, воспитывать познавательную потребность и интерес к предмету.

развивать физическое мышление учащихся, их творческие способности, умение самостоятельно формулировать выводы, расширять познавательный интерес путем привлечения дополнительного материала, а также потребности к углублению и расширению знаний;

развивать речевые навыки;

формировать умения выделять главное, делать выводы, развивать способность быстро воспринимать информацию и выполнять необходимые задания; развивать логическое мышление и внимание, умение анализировать, сопоставлять полученные результаты, делать соответствующие выводы.

Тип урока: обобщающее повторение.

Оборудование: учебник, сборник задач.

Этапы урока:

1. Организационный момент

2. Проверка домашнего задания, знаний и умений

3. Повторение пройденного материала

4. Физкультминутка

5. Закрепление. Решение задач

6. Итоги. Выводы. Домашнее задание

ХОД УРОКА

I. Проверка домашнего задания, знаний и умений

1. Магнитное поле порождается______________ (электрическим током).

2. Магнитное поле создается ______________заряженными частицами (движущимися).

3. За направление магнитной линии в какой-либо ее точке условно принимают направление, которое указывает _________полюс магнитной стрелки, помещенной в эту точку (северный).

4.Магнитные линии выходят из _________ полюса магнита и входят в ________. (Северного, южный).

5. Как взаимодействуют два провода троллейбусной линии: притягиваются или отталкиваются? (Притягиваются).

II.Повторение. Правила левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца были направлены по току, то отставленный на 90° большой палец покажет направление действующей на проводник силы.

Пользуясь правилом левой руки, можно определить не только направление силы, действующей в магнитном поле на проводник с током или движущуюся заряженную частицу. По этому правилу мы можем определить направление тока (если знаем, как направлены линии магнитного поля и действующая на проводник сила), направление магнитных линий (если известны направления тока и силы), знак заряда движущейся частицы (по направлению магнитных линий, силы и скорости движения частицы).

Сила действия магнитного поля на проводник с током или движущуюся заряженную частицу равна нулю, если направление тока в проводнике или скорость частицы совпадают с линиями магнитного поля или параллельны им.

III. Физкультминутка

IV. Закрепление материала. Решение задач

Используем учебное пособие решаем задачи 23-25

V. Домашнее задание: § 20-22повторить; решить 22.4 и 22.5

Закон электромагнитной индукции Ленца: определение и формула

Что такое закон Ленца?

Закон электромагнитной индукции Ленца утверждает, что направление тока, индуцируемого в проводнике изменяющимся магнитным полем (согласно закону электромагнитной индукции Фарадея), таково, что магнитное поле, создаваемое индуцированным током , противостоит начальное изменяющееся магнитное поле, которое его произвело. Направление этого тока определяется правилом правой руки Флеминга.

Сначала это может быть трудно понять, поэтому давайте рассмотрим пример проблемы.

Помните, что когда ток индуцируется магнитным полем, магнитное поле, создаваемое этим индуцированным током, создает собственное магнитное поле.

Это магнитное поле всегда будет таким, что противостоит магнитному полю, которое его изначально создало.

В приведенном ниже примере, если магнитное поле «B» увеличивается — как показано в (1) — индуцированное магнитное поле будет действовать против него.

Когда магнитное поле «B» уменьшается — как показано в (2) — индуцированное магнитное поле снова будет действовать против него. Но на этот раз «в оппозиции» означает, что она действует, чтобы увеличить поле — поскольку она противостоит уменьшающейся скорости изменения.

Закон Ленца основан на законе индукции Фарадея. Закон Фарадея гласит, что изменяющееся магнитное поле индуцирует ток в проводнике.

Закон Ленца сообщает нам направление этого индуцированного тока, которое противостоит начальному изменяющемуся магнитному полю, которое его породило.Это обозначено в формуле закона Фарадея отрицательным знаком («-»).

Это изменение магнитного поля может быть вызвано изменением напряженности магнитного поля при перемещении магнита по направлению к катушке или от нее, или перемещении катушки в магнитное поле или из него.

Другими словами, мы можем сказать, что величина ЭДС, наводимая в цепи, пропорциональна скорости изменения магнитного потока.

Формула закона Ленца

Закон Ленца гласит, что, когда ЭДС создается изменением магнитного потока в соответствии с законом Фарадея, полярность наведенной ЭДС такова, что она создает индуцированный ток, магнитное поле которого противоположно начальному изменение магнитного поля, которое его произвело.

Отрицательный знак, используемый в законе электромагнитной индукции Фарадея, указывает на то, что индуцированная ЭДС (ε) и изменение магнитного потока (δΦ B ) имеют противоположные знаки.Формула закона Ленца показана ниже:

Где:

  • ε = Индуцированная ЭДС
  • δΦ B = изменение магнитного потока
  • N = Количество витков в катушке

Закон Ленца и сохранение энергии

Чтобы подчиняться закону сохранения энергии, направление тока, индуцированного согласно закону Ленца, должно создавать магнитное поле, которое противодействует магнитному полю, которое его создало. Фактически закон Ленца является следствием закона сохранения энергии.

Почему это спросите вы? Что ж, давайте представим, что это не так, и посмотрим, что произойдет.

Если магнитное поле, создаваемое индуцированным током, имеет то же направление, что и поле, которое его породило, то эти два магнитных поля объединятся и создадут большее магнитное поле.

Это комбинированное большее магнитное поле, в свою очередь, индуцирует в проводнике другой ток, в два раза превышающий величину первоначального индуцированного тока.

А это, в свою очередь, создало бы еще одно магнитное поле, которое индуцировало бы еще один ток.И так далее.

Итак, мы можем видеть, что если бы закон Ленца не требовал, чтобы индуцированный ток создавал магнитное поле, которое противостоит полю, которое его создало, то мы бы получили бесконечную петлю положительной обратной связи, нарушив закон сохранения энергия (поскольку мы фактически создаем бесконечный источник энергии).

Закон Ленца также подчиняется третьему закону движения Ньютона (т.е. на каждое действие всегда есть равное и противоположное противодействие).

Если индуцированный ток создает магнитное поле, равное и противоположное направлению магнитного поля, которое его создает, то только он может противостоять изменению магнитного поля в этой области.Это соответствует третьему закону движения Ньютона.

Объяснение закона Ленца

Чтобы лучше понять закон Ленца, давайте рассмотрим два случая:

Случай 1 : Когда магнит движется к катушке.

Когда северный полюс магнита приближается к катушке, магнитный поток, связанный с катушкой, увеличивается. Согласно закону электромагнитной индукции Фарадея, при изменении магнитного потока в катушке индуцируется ЭДС и, следовательно, ток, который создает собственное магнитное поле.

Теперь, согласно закону Ленца, это созданное магнитное поле будет противодействовать своему собственному или, можно сказать, противодействовать увеличению потока через катушку, и это возможно только в том случае, если приближающаяся сторона катушки достигает северной полярности, поскольку мы знаем, что аналогичные полюса отталкиваются. друг с другом.

Зная магнитную полярность стороны катушки, мы можем легко определить направление индуцированного тока, применив правило правой руки. В этом случае ток течет против часовой стрелки.

Случай 2 : Когда магнит удаляется от катушки

Когда северный полюс магнита удаляется от катушки, магнитный поток, связанный с катушкой, уменьшается. Согласно закону электромагнитной индукции Фарадея, в катушке индуцируется ЭДС и, следовательно, ток, и этот ток создает собственное магнитное поле.

Теперь, согласно закону Ленца, это созданное магнитное поле будет противодействовать своему собственному или, можно сказать, противодействовать уменьшению потока через катушку, и это возможно только в том случае, если приближающаяся сторона катушки достигает южной полярности, поскольку мы знаем, что разные полюса притягиваются друг к другу. .

Зная магнитную полярность стороны катушки, мы можем легко определить направление индуцированного тока, применив правило правой руки. В этом случае ток течет по часовой стрелке.

Обратите внимание, что для определения направления магнитного поля или тока используйте правило большого пальца правой руки, т.е. если пальцы правой руки расположены вокруг провода таким образом, чтобы большой палец указывал в направлении потока тока, то искривление пальцы покажут направление магнитного поля, создаваемого проводом.

Закон Ленца можно сформулировать следующим образом:

  • Если магнитный поток Ф, соединяющий катушку, увеличивается, направление тока в катушке будет таким, что он будет противодействовать увеличению потока, и, следовательно, индуцированный ток будет создавать свой поток. в направлении, показанном ниже (с использованием правила Флеминга для большого пальца правой руки)
  • Если магнитный поток Ф, соединяющий катушку, уменьшается, поток, создаваемый током в катушке, таков, что он будет способствовать главному потоку и, следовательно, направление тока показано ниже.

Закон Ленца Приложения

Применения закона Ленца включают:

  • Закон Ленца можно использовать для понимания концепции накопленной магнитной энергии в индукторе. Когда к индуктору подключен источник ЭДС, через него начинает течь ток. Этому увеличению тока через катушку индуктивности препятствует обратная ЭДС. Чтобы установить ток, внешний источник ЭДС должен проделать некоторую работу, чтобы преодолеть это противодействие. Эта работа может быть выполнена за счет того, что ЭДС сохраняется в катушке индуктивности, и ее можно восстановить после удаления внешнего источника ЭДС из схемы.
  • Этот закон указывает, что индуцированная ЭДС и изменение потока имеют противоположные знаки, что обеспечивает физическую интерпретацию. выбора знака в законе индукции Фарадея.
  • Закон Ленца также применяется к электрическим генераторам. Когда в генераторе индуцируется ток, направление этого индуцированного тока таково, что он противодействует и вызывает вращение генератора (как в соответствии с законом Ленца), и, следовательно, генератору требуется больше механической энергии. Он также обеспечивает обратную ЭДС в случае электродвигателей.
  • Закон Ленца также используется в электромагнитных тормозных и индукционных варочных панелях.

Государство Закон Ленца

Закон Ленца гласит, что направление тока, индуцируемого в проводнике изменяющимся магнитным полем, таково, что магнитное поле, создаваемое индуцированным током, противодействует начальному изменяющемуся магнитному полю, которое его породило.

Закон Ленца назван в честь немецкого ученого Х.Ф. Ленца в 1834 году. Закон Ленца подчиняется третьему закону движения Ньютона (т.е. на каждое действие всегда существует равная и противоположная реакция) и закону сохранения энергии (т.е. энергия не может быть ни создана, ни разрушены, и поэтому сумма всех энергий в системе постоянна).

Правило правой руки | PASCO

Правило правой руки в физике

Правило правой руки — это мнемоника руки, используемая в физике для определения направления осей или параметров, указывающих в трех измерениях.Правило правой руки, изобретенное в XIX веке британским физиком Джоном Амброузом Флемингом для применения в электромагнетизме
часто используется для определения направления третьего параметра, когда известны два других (магнитное поле, ток, магнитная сила).
Есть несколько вариантов правила правой руки, которые объясняются в этом разделе.

Когда проводник, такой как медный провод, движется через магнитное поле (B), в проводнике индуцируется электрический ток (I).Это явление известно как закон индукции Фарадея. Если проводник перемещается внутри магнитного поля, то существует соотношение
между направлениями движения (скорости) проводника, магнитного поля и индуцированного тока. Мы можем использовать правило правой руки Флеминга
исследовать закон индукции Фарадея, который представлен уравнением:

ЭДС = индуцированная ЭДС (V или J / C)

N = количество витков катушки

Δ𝚽 B = изменение магнитного потока (Тм2)

Δ t = изменение во времени (с)

Поскольку оси x, y и z перпендикулярны друг другу и образуют прямые углы, правило правой руки можно использовать для визуализации их
выравнивание в трехмерном пространстве.Чтобы использовать правило правой руки, начните с создания L-образной формы с помощью большого пальца правой руки, указателя и середины.
Палец. Затем переместите средний палец внутрь к ладони так, чтобы он был перпендикулярен указательным и большим пальцам. Твоя рука
должно выглядеть примерно так:

На схеме выше большой палец совмещен с осью z, указательный палец — с осью x, а средний палец — с осью y.

Беспроводная интеллектуальная тележка

Один из лучших способов помочь учащимся обрести уверенность в использовании правила правой руки — это провести наглядную демонстрацию, которая поможет им распознать и исправить свои неправильные представления об ортогональных отношениях и системах координат.

Многие учителя используют вращающуюся линейку, чтобы показать, что объект, который кажется вращающимся «по часовой стрелке» с точки зрения одного ученика, также кажется вращающимся «против часовой стрелки», если смотреть с другой точки зрения.
Использование динамической тележки для обучения правилу правой руки позволяет преподавателям продемонстрировать как проблему, используя терминологию «по часовой стрелке», так и «против часовой стрелки», а также решение, которое обеспечивают правило правой руки и оси вращения.
С беспроводной интеллектуальной тележкой преподаватели могут использовать 3-осевой гироскоп и фиксированную систему координат для создания увлекательных демонстраций вращательного движения.Ознакомьтесь с полной демонстрацией здесь.

Правило правой руки для магнетизма


Подвижные заряды

Заряженная частица — это частица с электрическим зарядом. Когда неподвижная заряженная частица существует в магнитном поле, она не
испытать магнитную силу; однако, как только заряженная частица перемещается в магнитном поле, она испытывает наведенное магнитное поле.
сила, которая смещает частицу с ее первоначального пути. Это явление, также известное как сила Лоренца, согласуется с правилом, что
утверждает, что «магнитные поля не работают.”Уравнение, используемое для определения величины магнитной силы, действующей на заряженную частицу (q)
перемещение магнитного поля (B) со скоростью v под углом θ составляет:

Если скорость заряженной частицы параллельна магнитному полю (или антипараллельна), то силы нет, потому что sin (θ) равен нулю.
Когда это происходит, заряженная частица может сохранять прямолинейное движение даже в присутствии сильного магнитного поля.

Плоскость, образованная направлением магнитного поля и скоростью заряженной частицы, расположена под прямым углом к ​​силе.Поскольку
сила возникает под прямым углом к ​​плоскости, образованной скоростью частицы и магнитным полем, мы можем использовать правило правой руки, чтобы
определить их ориентацию.

Правило правой руки гласит: чтобы определить направление магнитной силы на положительный движущийся заряд, направьте большой палец правой руки в
направление скорости (v), указательный палец в направлении магнитного поля (B) и средний палец будут указывать в
направление результирующей магнитной силы (F).На отрицательные заряды будет действовать сила в противоположном направлении.

Магнитная сила, индуцированная током: ток в прямом проводе

Обычный ток состоит из движущихся зарядов, которые имеют положительный характер. Когда обычный ток проходит по проводящему проводу,
на провод действует магнитное поле, которое его толкает. Мы можем использовать правило правой руки, чтобы определить направление силы, действующей на
токоведущий провод. В этой модели ваши пальцы указывают в направлении магнитного поля, а большой палец — в направлении магнитного поля.
обычный ток, протекающий через провод, и ваша ладонь указывает направление, в котором провод проталкивается (сила).

Магнитная сила, действующая на провод с током, определяется уравнением:

Когда длина провода и магнитное поле расположены под прямым углом друг к другу, уравнение принимает следующий вид:

F B = магнитная сила (Н)

I = ток (A)

L = длина провода (м)

B = магнитное поле (Тл)

Если рассматривать протекание тока как движение носителей положительного заряда (обычный ток) в приведенном выше
image, мы замечаем, что обычный ток движется вверх по странице.Поскольку обычный ток состоит из
положительных зарядов, то тот же провод с током также может быть описан как имеющий ток с отрицательным
носители заряда движутся вниз по странице. Хотя эти токи движутся в противоположных направлениях, один
наблюдается магнитная сила, действующая на провод. Следовательно, сила действует в том же направлении, независимо от того,
рассмотрите поток положительных или отрицательных носителей заряда на изображении выше. Применяя правило правой руки к
направление обычного тока указывает направление магнитной силы, которое должно быть направлено вправо.Когда мы рассматриваем поток отрицательных носителей заряда на изображении выше, правило правой руки указывает на то, что
направление силы, которую нужно оставить; однако отрицательный знак меняет результат на противоположный, указывая на то, что направление
магнитной силы действительно указывает вправо.

Если мы рассмотрим поток зарядов в двух разных проводах, один с положительными зарядами, текущими вверх по странице, а другой
с отрицательными зарядами, текущими вверх по странице, то направление магнитных сил не будет таким же, потому что
мы рассматриваем две разные физические ситуации. В первом проводе поток положительных зарядов вверх по странице
указывает на то, что по странице стекают отрицательные заряды. Правило правой руки говорит нам о том, что магнитный
сила укажет в правильном направлении. По второму проводу вверх по странице текут отрицательные заряды, которые
означает, что положительные заряды стекают по странице. В результате правило правой руки показывает, что магнитная
сила указывает в левом направлении.

Токи, индуцированные магнитными полями

В то время как магнитное поле может быть индуцировано током, ток также может быть индуцирован магнитным полем.Мы можем использовать
второе правило правой руки, иногда называемое правилом захвата правой руки, для определения направления магнитного
поле, созданное током. Чтобы использовать правило захвата правой рукой, направьте большой палец правой руки в направлении течения.
течь и скручивай пальцы. Направление ваших пальцев будет отражать направление искривления индуцированного магнитного поля.

Правило захвата правой рукой особенно полезно для решения проблем, связанных с токоведущим проводом или соленоидом.
В обеих ситуациях правило захвата правой рукой применяется к двум приложениям закона оборота Ампера, который связывает
интегрированное магнитное поле вокруг замкнутого контура к электрическому току, проходящему через плоскость замкнутого контура.

Направление вращения: Соленоиды

Когда электрический ток проходит через соленоид, он создает магнитное поле. Чтобы использовать правило для правой руки в
проблема с соленоидом, укажите пальцами в направлении обычного тока и оберните пальцы, как будто они
были вокруг соленоида. Ваш большой палец будет указывать в направлении силовых линий магнитного поля внутри соленоида. Примечание
что силовые линии магнитного поля вне соленоида направлены в противоположном направлении. Они охватывают изнутри, чтобы
снаружи соленоида.

Направление вращения: токоведущие провода

Когда электрический ток проходит по прямому проводу, он индуцирует магнитное поле. Чтобы применить правило захвата правой рукой,
совместите большой палец с направлением обычного тока (от положительного к отрицательному), и ваши пальцы будут указывать
направление магнитных линий потока.

Правило правой руки для крутящего момента


Проблемы с крутящим моментом часто являются самой сложной темой для студентов-первокурсников-физиков.К счастью, есть правило правой руки
приложение для крутящего момента. Чтобы использовать правило правой руки в задачах с крутящим моментом, возьмите правую руку и наведите ее на
направление вектора положения (r или d), затем поверните пальцы в направлении силы, и большой палец будет указывать
в направлении крутящего момента.

Уравнение для вычисления величины вектора крутящего момента для крутящего момента, создаваемого заданной силой:

Когда угол между вектором силы и плечом момента является прямым углом, синусоидальный член становится 1 и уравнение
становится:

F = сила (Н)

𝜏 = крутящий момент (Нм)

r = расстояние от центра до линии действия (м)

Положительный и отрицательный крутящие моменты

Моменты, возникающие против часовой стрелки, являются положительными. В качестве альтернативы крутящие моменты, возникающие в
по часовой стрелке — отрицательные моменты. Так что же произойдет, если ваша рука укажет на бумагу или из нее? Крутящие моменты, которые
лицевой стороной из бумаги следует анализировать положительный крутящий момент, в то время как крутящий момент, направленный внутрь, следует анализировать.
как отрицательные моменты.

Правило правой руки для перекрестного произведения


Перекрестное произведение или векторное произведение создается, когда упорядоченная операция выполняется над двумя векторами, a и b. В
векторное произведение векторов a и b перпендикулярно как a, так и b и перпендикулярно плоскости, которая его содержит.С
есть два возможных направления для перекрестного произведения, для определения направления следует использовать правило правой руки
вектора кросс-произведения.

Например, векторное произведение векторов a и b можно представить с помощью уравнения:

(произносится как «крест б»)

Чтобы применить правило правой руки к перекрестным произведениям, выровняйте пальцы и большой палец под прямым углом. Затем укажите свой индекс
пальцем в направлении вектора a и средним пальцем в направлении вектора b.Ваш большой палец правой руки укажет
в направлении векторного произведения a x b (вектор c).

Правило правой руки по закону Ленца


Закон электромагнитной индукции Ленца — еще одна тема, которая часто кажется нелогичной, поскольку требует
понимание того, как магнетизм и электрические поля взаимодействуют в различных ситуациях. Закон Ленца гласит, что направление
тока, индуцируемого в замкнутом проводящем контуре изменяющимся магнитным полем (закон Фарадея), такова, что
вторичное магнитное поле, созданное индуцированным током, противодействует начальному изменению магнитного поля, которое произвело
Это.Так что это значит? Давайте разберемся с этим.

Когда магнитный поток через проводник с замкнутым контуром изменяется, он индуцирует ток внутри контура. Индуцированная
ток создает вторичное магнитное поле, которое противодействует первоначальному изменению магнитного потока, которое инициировало индуцированный ток.
Сила магнитного поля, проходящего через катушку из проволоки, определяет магнитный поток. Магнитный поток зависит от
сила поля, площадь катушки и относительная ориентация между полем и катушкой, как показано
в следующем уравнении.


𝚽 B = магнитный поток (Tm 2 )

B = магнитное поле (Тл)

Θ = угол между полем и нормалью (град.)

A = площадь контура (м 2 )

Чтобы понять, как закон Ленца повлияет на эту систему, нам нужно сначала определить, является ли начальное магнитное поле
увеличение или уменьшение силы. Когда северный магнитный полюс приближается к петле, это вызывает существующее магнитное поле.
поле для увеличения.Поскольку магнитное поле увеличивается, индуцированный ток и результирующее индуцированное магнитное поле будут
противодействовать исходному магнитному полю, уменьшая его. Это означает, что первичное и вторичное магнитные поля будут возникать в
противоположные направления. Когда существующее магнитное поле уменьшается, индуцированный ток и результирующее индуцированное магнитное поле
поле будет противодействовать исходному, уменьшая магнитное поле, усиливая его. Таким образом, индуцированное магнитное поле будет иметь
в том же направлении, что и исходное магнитное поле.

Чтобы применить правило правой руки к закону Ленца, сначала определите, увеличивается ли магнитное поле через петлю или
уменьшается. Напомним, что магниты создают силовые линии магнитного поля, которые движутся от северного магнитного полюса в направлении
магнитный южный полюс. Если магнитное поле увеличивается, то направление вектора индуцированного магнитного поля будет
в обратном направлении. Если магнитное поле в контуре уменьшается, то вектор индуцированного магнитного поля будет
происходят в том же направлении, чтобы заменить уменьшение исходного поля.Затем выровняйте большой палец в направлении
индуцированное магнитное поле и скрученные пальцы. Ваши пальцы будут указывать в направлении индуцированного тока.

Линейка левой руки Флеминга и линейка правой руки

Если проводник с током помещен в магнитное поле, он испытывает силу из-за магнитного поля. С другой стороны, если проводник перемещается в магнитном поле, ЭДС индуцируется поперек проводника (закон электромагнитной индукции Фарадея).
Джон Амброуз Флеминг ввел два правила для определения направления движения (в двигателях) или направления индуцированного тока (в генераторах).Правила называются правилом левой руки Флеминга (для двигателей) и правилом правой руки Флеминга (для генераторов).

Правило левой руки Флеминга

Когда проводник с током помещается в магнитное поле, на проводник действует сила, перпендикулярная как магнитному полю, так и направлению тока. Согласно правилу для левой руки Флеминга, если большой, указательный и средний пальцы левой руки вытянуты перпендикулярно друг другу, как показано на рисунке слева, и если указательный палец представляет направление магнитного поля , средний палец представляет направление тока, затем большой палец представляет направление силы. Правило левой руки Флеминга применимо к двигателям.

Как запомнить правило левой руки Флеминга?

Метод 1:
Свяжите большой палец с толчком, указательный палец с полем, а средний палец с током, как описано ниже.

  • Th umb представляет направление ржавчины Th на проводнике (сила на проводнике).
  • Рудный палец F представляет направление магнитного поля F .
  • C введите палец (средний палец) в направлении C urrent.

Метод 2:
Свяжите правило левой руки Флеминга с FBI (подождите! НЕ с Федеральным бюро расследований). Здесь F — сила, B — символ плотности магнитного потока, а I — символ тока. Присвойте эти буквы F, B, I большому, указательному и среднему пальцам соответственно.

Правило правой руки Флеминга

Правило правой руки Флеминга применимо к электрическим генераторам. Согласно закону электромагнитной индукции Фарадея, всякий раз, когда проводник с силой перемещается в электромагнитном поле, через проводник индуцируется ЭДС. Если для проводника предусмотрен замкнутый путь, то индуцированная ЭДС вызывает протекание тока. В соответствии с правилом для правой руки Флеминга , большой, указательный и средний пальцы правой руки вытянуты перпендикулярно друг другу, как показано на рисунке справа, и если большой палец представляет направление движения дирижера , указательный палец представляет направление магнитного поля, тогда средний палец представляет направление индуцированного тока.

Как запомнить правило правой руки Флеминга?

Вы можете использовать те же методы, что и для правила левой руки Флеминга, упомянутые выше.В этом случае вам просто нужно рассматривать свою правую руку, а не левую.

Закон Фарадея и закон электромагнитной индукции Ленца

Законы электромагнитной индукции Фарадея объясняют взаимосвязь между электрической цепью и магнитным полем. Этот закон является основным принципом работы большинства электродвигателей, генераторов, трансформаторов, индукторов и т. Д.

Первый закон Фарадея:

Всякий раз, когда проводник помещается в переменное магнитное поле, ЭДС индуцируется поперек проводника (называемая индуцированной ЭДС), и если проводник представляет собой замкнутую цепь, то индуцированный ток течет через него.
Магнитное поле можно варьировать различными методами —
1. Путем перемещения магнита
2. Перемещая катушку
3. Поворачивая катушку относительно магнитного поля

Второй закон Фарадея:

Второй закон электромагнитной индукции Фарадея гласит, что величина наведенной ЭДС равна скорости изменения магнитных связей с катушкой. Магнитопровод представляет собой произведение числа витков и магнитного потока, связанного с катушкой.

Формула закона Фарадея:

Если считать, что проводник движется в магнитном поле, тогда
потокосцепление с катушкой в ​​исходном положении проводника = NΦ 1 (Wb) (N — скорость двигателя, Φ — поток)
потокосцепление с катушкой в ​​конечном положении проводника = NΦ 2 (Wb)
изменение потокосцепления с начального на конечное = N (Φ 1 — Φ 2 )
пусть Φ 1 — Φ 2 = Φ
следовательно, изменение потокосцепления = NΦ
и скорость изменения потокосцепления = NΦ / t
взяв производную от RHS
скорость изменения магнитных связей = N (dΦ / dt)

Согласно закону электромагнитной индукции Фарадея , скорость изменения магнитных связей равна наведенной ЭДС

Итак, E = N (dΦ / dt) (вольт )

Феномен взаимной индукции

Переменный ток, протекающий в катушке, создает вокруг нее переменное магнитное поле. Когда две или более катушек магнитно связаны друг с другом, тогда переменный ток, протекающий через одну катушку, вызывает наведенную ЭДС на других связанных катушках. Это явление называется взаимной индукцией.

Закон Ленца

Закон электромагнитной индукции Ленца гласит, что, когда ЭДС индуцируется в соответствии с законом Фарадея, полярность (направление) этой индуцированной ЭДС такова, что она противодействует причине ее возникновения.

Таким образом, учитывая закон Ленца


E = -N (dΦ / dt) (вольт)

Отрицательный знак показывает, что направление наведенной ЭДС и направление изменения магнитных полей имеют противоположные знаки.

Закон Ленца — Университетская физика, том 2

Цели обучения

К концу этого раздела вы сможете:

  • Используйте закон Ленца для определения направления наведенной ЭДС при изменении магнитного потока.
  • Используйте закон Фарадея с законом Ленца, чтобы определить наведенную ЭДС в катушке и в соленоиде.

Направление, в котором наведенная ЭДС движет ток по проволочной петле, можно определить через отрицательный знак.Однако обычно это направление легче определить с помощью закона Ленца, названного в честь его первооткрывателя Генриха Ленца (1804–1865). (Фарадей также открыл этот закон, независимо от Ленца.) Мы формулируем закон Ленца следующим образом:

Закон Ленца

Направление индуцированной ЭДС движет ток по проволочной петле, чтобы всегда противодействовать изменению магнитного потока, вызывающему ЭДС.

Закон Ленца также можно рассматривать с точки зрения сохранения энергии. Если толкание магнита в катушку вызывает ток, энергия в этом токе должна исходить откуда-то.Если индуцированный ток вызывает магнитное поле, противодействующее увеличению поля магнита, который мы втолкнули, тогда ситуация ясна. Мы приложили магнит к полю и поработали с системой, и это проявилось как ток. Если бы индуцированное поле не противодействовало изменению магнитного потока, магнит был бы втянут, создавая ток без каких-либо действий. Была бы создана электрическая потенциальная энергия, нарушив закон сохранения энергии.

Чтобы определить наведенную ЭДС, вы сначала вычисляете магнитный поток, а затем получаете Величину, заданную формулой. Наконец, вы можете применить закон Ленца для определения значения.Это будет развиваться на примерах, которые иллюстрируют следующую стратегию решения проблем.

Стратегия решения проблем: закон Ленца

Чтобы использовать закон Ленца для определения направлений индуцированных магнитных полей, токов и ЭДС:

  1. Сделайте набросок ситуации для использования при визуализации и записи направлений.
  2. Определить направление приложенного магнитного поля
  3. Определите, увеличивается или уменьшается его магнитный поток.
  4. Теперь определите направление индуцированного магнитного поля. Индуцированное магнитное поле пытается усилить магнитный поток, который уменьшается, или противодействует магнитному потоку, который увеличивается. Следовательно, индуцированное магнитное поле добавляет или вычитает приложенное магнитное поле, в зависимости от изменения магнитного потока.
  5. Используйте правило правой руки 2 (RHR-2; см. Магнитные силы и поля), чтобы определить направление индуцированного тока I , который отвечает за индуцированное магнитное поле
  6. Направление (или полярность) наведенной ЭДС теперь может управлять обычным током в этом направлении.

Давайте применим закон Ленца к системе (Рисунок) (a). Мы обозначаем «перед» замкнутой проводящей петли как область, содержащую приближающийся стержневой магнит, а «заднюю часть» петли как другую область. По мере того как северный полюс магнита движется к петле, поток через петлю из-за поля магнита увеличивается, потому что сила силовых линий, направленных от передней части петли к задней, увеличивается. Таким образом, в контуре индуцируется ток. По закону Ленца направление индуцированного тока должно быть таким, чтобы его собственное магнитное поле было направлено таким образом, чтобы противостояло изменяющемуся потоку, вызванному полем приближающегося магнита. Следовательно, индуцированный ток циркулирует так, что силовые линии его магнитного поля через петлю направлены от задней части петли к передней. При использовании RHR-2 поместите большой палец напротив силовых линий магнитного поля, то есть к стержневому магниту. Ваши пальцы сгибаются против часовой стрелки, если смотреть со стороны стержневого магнита. В качестве альтернативы, мы можем определить направление индуцированного тока, рассматривая токовую петлю как электромагнит, который противодействует приближению северного полюса стержневого магнита.Это происходит, когда индуцированный ток течет, как показано, поскольку тогда поверхность петли ближе к приближающемуся магниту также является северным полюсом.

Изменение магнитного потока, вызванное приближением магнита, индуцирует ток в контуре. (а) Приближающийся северный полюс индуцирует ток против часовой стрелки по отношению к стержневому магниту. (b) Приближающийся южный полюс индуцирует ток по часовой стрелке относительно стержневого магнита.

На части (b) рисунка показан южный полюс магнита, движущийся к проводящей петле.В этом случае поток через петлю из-за поля магнита увеличивается, потому что количество силовых линий, направленных от задней части петли к передней, увеличивается. Чтобы противодействовать этому изменению, в петле индуцируется ток, силовые линии которого через петлю направлены спереди назад. Точно так же можно сказать, что ток течет в таком направлении, что поверхность петли, расположенная ближе к приближающемуся магниту, является южным полюсом, который затем отталкивает приближающийся южный полюс магнита.При использовании RHR-2 ваш большой палец направлен в сторону от стержневого магнита. Ваши пальцы сгибаются по часовой стрелке, по направлению индуцированного тока.

Другой пример, иллюстрирующий использование закона Ленца, показан на (Рисунок). Когда переключатель разомкнут, уменьшение тока через соленоид вызывает уменьшение магнитного потока через его катушки, что вызывает ЭДС в соленоиде. Эта ЭДС должна противодействовать вызывающему его изменению (прекращению тока). Следовательно, наведенная ЭДС имеет указанную полярность и движется в направлении исходного тока.Это может вызвать дугу на выводах переключателя при его размыкании.

(а) Соленоид, подключенный к источнику ЭДС. (b) Размыкающий переключатель S прекращает подачу тока, что, в свою очередь, индуцирует ЭДС в соленоиде. (c) Разность потенциалов между концами заостренных стержней создается за счет индукции ЭДС в катушке. Эта разность потенциалов достаточно велика, чтобы образовалась дуга между остриями.

Проверьте свое понимание Найдите направление индуцированного тока в проводной петле, показанной ниже, когда магнит входит, проходит и покидает петлю.

Для показанного наблюдателя ток течет по часовой стрелке по мере приближения магнита, уменьшается до нуля, когда магнит центрируется в плоскости катушки, а затем течет против часовой стрелки, когда магнит покидает катушку.

Проверьте свое понимание Проверьте направления наведенных токов на (рисунок).

Сводка

  • Мы можем использовать закон Ленца для определения направлений индуцированных магнитных полей, токов и ЭДС.
  • Направление наведенной ЭДС всегда противодействует изменению магнитного потока, которое вызывает ЭДС, результат, известный как закон Ленца.

Концептуальные вопросы

Круглые токопроводящие петли, показанные на прилагаемом рисунке, параллельны, перпендикулярны плоскости страницы и соосны. (a) Когда переключатель S замкнут, в каком направлении индуцируется ток в D ? (b) Когда переключатель разомкнут, какое направление тока индуцируется в контуре D ?

а.CW со стороны схемы; б. Против часовой стрелки, если смотреть со стороны схемы

Северный полюс магнита перемещается к медной петле, как показано ниже. Если вы посмотрите на петлю сверху магнита, скажете ли вы, что индуцированный ток циркулирует по или против часовой стрелки?

На прилагаемом рисунке показано проводящее кольцо в различных положениях при его движении в магнитном поле. В чем смысл индуцированной ЭДС для каждой из этих позиций?

При входе в петлю наведенная ЭДС создает ток против часовой стрелки, а при выходе из петли индуцированная ЭДС создает непрерывный ток.В то время как петля полностью находится внутри магнитного поля, нет изменения потока и, следовательно, нет индуцированного тока.

Покажите, что и у вас такие же единицы.

Укажите направление индуцированного тока для каждого случая, показанного ниже, наблюдая со стороны магнита.

а. Против часовой стрелки, если смотреть со стороны магнита; б. CW, если смотреть со стороны магнита; c. CW, если смотреть со стороны магнита; d. Против часовой стрелки, если смотреть со стороны магнита; е. CW, если смотреть со стороны магнита; f. нет тока

Проблемы

Одновитковая круговая петля из проволоки радиусом 50 мм расположена в плоскости, перпендикулярной пространственно однородному магнитному полю.За интервал времени 0,10 с величина поля равномерно увеличивается от 200 до 300 мТл. (а) Определите ЭДС, наведенную в петле. (б) Если магнитное поле направлено за пределы страницы, каково направление тока, индуцируемого в петле?

а. ; б. CCW с той же точки зрения, что и магнитное поле

При первом включении магнитного поля поток через 20-витковую петлю изменяется со временем в зависимости от того, где он находится в милливеберах, t — в секундах, а петля находится в плоскости страницы с нормальным направлением устройства. наружу.(а) Какая ЭДС индуцируется в контуре как функция времени? Каково направление индуцированного тока при (b) t = 0, (c) 0,10, (d) 1,0 и (e) 2,0 с?

а. 150 А вниз через резистор; б. 46 А вверх через резистор; c. 0,019 А вниз через резистор

Используйте закон Ленца для определения направления индуцированного тока в каждом случае.

Глоссарий

Закон Ленца
направление наведенной ЭДС противодействует изменению магнитного потока, который ее произвел; это отрицательный знак в законе Фарадея

Закон Ленца

Закон Ленца

следующий: Магнитная индукция
Up: Магнитная индукция
Предыдущая: Закон Фарадея

Мы до сих пор не уточнили, в каком направлении генерируется ЭДС.
изменяющимся во времени магнитным потоком, соединяющим электрическую цепь, действует.Чтобы
помогите указать это направление, нам нужно использовать
правило правой руки. Предполагать
что ток циркулирует по плоской петле из проводящего провода, и
тем самым создает магнитное поле. Какое направление
это магнитное поле, когда оно проходит через середину петли? Что ж,
если пальцы правой руки движутся в том же направлении, что и течение,
затем большой палец указывает направление
магнитное поле, когда оно проходит через центр петли. Это показано в
Инжир.34.

Рисунок 34:
Магнитное поле, создаваемое плоской токоведущей петлей.

Рассмотрим плоскую петлю из проводящего провода, соединенную магнитным полем.
поток. По соглашению, направление, в котором ток должен был бы
обтекать контур, чтобы на увеличить магнитный поток, соединяющий контур с
называется положительным направлением . Точно так же направление, в котором ток должен
обтекать контур, чтобы на уменьшить магнитный поток на
соединение цикла
называется отрицательным направлением .Предположим, что магнитный поток, связывающий
петля увеличена. В соответствии с
По закону Фарадея вокруг контура возникает ЭДС.
Действует ли эта ЭДС положительно?
направление, так чтобы ток вокруг петли
что еще больше увеличивает магнитный поток, или действует в
отрицательное направление, так что ток вокруг петли, которая
уменьшает магнитный поток? Экспериментально легко продемонстрировать, что
ЭДС действует в отрицательном направлении. Таким образом:

ЭДС, наводимая в электрической цепи, всегда действует в таком направлении, что
ток, который он движет по цепи, противодействует изменению
в магнитном потоке, который производит ЭДС.


Этот результат известен как закон Ленца , по названию русского закона девятнадцатого века.
ученый Генрих Ленц, который первым ее сформулировал. Закон Фарадея в сочетании с
Закон Ленца, обычно
написано

(196)



Знак минус напоминает нам, что ЭДС всегда противодействует изменению.
в магнитном потоке, который генерирует ЭДС.


следующий: Магнитная индукция
Up: Магнитная индукция
Предыдущая: Закон Фарадея

Ричард Фицпатрик
2007-07-14

Используя закон Ленца — AP Physics C Electricity

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает одно
или больше ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее
в
информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на
ан
Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
в виде
ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно
искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится
на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
Идентификация авторских прав, которые, как утверждается, были нарушены;
Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
достаточно подробностей, чтобы позволить репетиторам Varsity найти и точно идентифицировать этот контент; например нам требуется
а
ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
Ваше имя, адрес, номер телефона и адрес электронной почты; и
Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему утверждению, нарушает
ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство вы
либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон
Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *