15.08.2024

Предохранители назначение устройство принцип действия: Принцип работы предохранителя

Содержание

Назначение, принцип действия и устройство предохранителя




⇐ ПредыдущаяСтр 23 из 29Следующая ⇒

 

а) Назначение предохранителя. Предохранители появились одновременно с электрическими сетями. Простота устройства и обслуживания, малые размеры, высокая отключающая способность, небольшая стоимость обеспечили их очень широкое применение. Предохранители НН изготовляются на токи от мА до тысяч А и на напряжение до 660 В, а предохранители ВН — до 35 кВ и выше.

Предохранители — это ЭА, предназначенные для защиты электрических цепей от токовых перегрузок и токов КЗ.

Отключение защищаемой цепи происходит посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определенное значение.

В большей части конструкций отключение цепи осуществляется путем расплавления плавкой вставки, которая нагревается непосредственно током цепи. После отключения цепи необходимо заменить перегоревшую вставку на исправную. Эта операция осуществляется вручную или автоматически. В последнем случае заменяется весь предохранитель.

Широкое применение предохранителей в самых различных областях народного хозяйства и в быту привело к многообразию их конструкций. Однако, несмотря на это, все они имеют следующие основные элементы: корпус или несущую деталь, плавкую вставку, контактное присоединительное устройство, дугогасительное устройство или дугогасительную среду.

б) Принцип работы предохранителя, физические явления в электрическом аппарате.Отключение защищаемой цепи происходит посредством разрушения специально предусмотренных для этого токоведущих частей под действием тока, превышающего определённое значение.

В большей части конструкций отключение цепи осуществляется путём расплавления плавкой вставки, которая нагревается непосредственно током

 

защищаемой цепи. После отключения цепи необходимо заменить перегоревшую вставку на исправную. Эта операция осуществляется вручную либо автоматически. В последнем случае заменяется весь предохранитель.

При токах > I плавления предохранитель должен срабатывать в соответствии с времятоковой характеристикой. Сростом тока степень ускорения перегорания плавкой вставки должна возрастать намного быстрее тока. Для получения такой характеристики придают вставке определенную форму или используют металлургический эффект.


Вставку выполняют в виде пластинки с вырезами (рис. 6.1,а), уменьшающими ее сечение на отдельных участках. На этих суженых участках

Рис.6.1 – Распределение температур (а) и места перегорания фигурных плавких вставок при перегрузках (б) и при КЗ (в)

 

выделяется больше теплоты, чем на широких. При Iном избыточная теплота вследствие теплопроводности материала вставки успевает распределятся к более широким частям и вся вставка имеет практически одну температуру. При перегрузках (I ) нагрев суженных участков идет быстрее, т.к. только часть теплоты успевает отводиться к широким участкам. Плавкая вставка плавится в одном самом горячем месте (рис 6.1,б). При КЗ (I » ) нагрев суженных участков идет настолько интенсивно, что практически отводом теплоты от них можно пренебречь. Плавкая вставка перегорает одновременно во всех или нескольких суженых местах (рис 6.1,в).

Во многих конструкциях вставке 1 придается такая форма (рис 6.2,а) , при которой электродинамические силы F, возникающие при токах КЗ , разрывают вставку еще до того, как она успевает расплавиться. На рис. 6.2,а место разрыва обозначено кружком. Этот участок выполняется меньшего сечения.

Рис. 6.2. Примеры форм плавких вставок с ускоренным их разрывом

 

При токах перегрузки электродинамические силы малы и плавкая вставка плавится.в суженом месте. В конструкции на рис. 6.2,б ускорение отключения цепи при перегрузках и КЗ достигается за счет пружины 2, разрывающей вставку 1 при размягчении металла на суженных участках, до того, как происходит плавление этих участков.



Металлургический эффект заключается в том, что многие легкоплавкие металлы (олово, свинец и др.) способны в расплавленном состоянии растворять другие тугоплавкие металлы (медь, серебро и др.). Это явление используется в предохранителях с вставками из ряда параллельных проволок.

Для ускорения плавления вставок при перегрузках на проволоки напаиваются оловянные шарики. При токах перегрузки шарик расплавляется и растворяет часть металла, на котором он напаян. Вставка перегорает в месте напайки шарика.

 

Параметры предохранителя

 

Предохранитель работает в двух резко различных режимах: в нормальных условиях и условиях перегрузок и КЗ. В первом случае перегрев вставки имеет характер установившегося процесса, при котором вся выделяемая в ней теплота отдается в окружающую среду. При этом кроме вставки нагреваются до установившейся температуры все другие детали предохранителя. Эта температура не должна превышать допустимых значений. Ток, на который рассчитана плавкая вставка для длительной работы, называют номинальным током плавкой вставки Iном. Он может быть отличен от номинального тока самого предохранителя.

Обычно в один и тот же предохранитель можно вставлять плавкие вставки на разные номинальные токи. Номинальный ток предохранителя, указанный на нем, равен наибольшему из токов плавких вставок, предназначенных для данной конструкции предохранителя.

Защитные свойства предохранителя при перегрузках нормируются. Для предохранителей обычного быстродействия задаются условный ток не плавления — ток, при протекании которого в течении определенного времени плавкая вставка не должна перегореть, условный ток плавления — ток, при протекании которого в течении определенного времени плавкая вставка должна перегореть. Например, для предохранителя с плавкими вставками на номинальные токи 63 -100 А плавкие вставки не должны перегореть при протекании тока 1,3 Iном в течении одного часа, а при токе 1,6 Iном должны перегореть за время до одного часа.

Рассмотрим нагрев вставки при длительной нагрузке.

Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зависимость времени плавления вставки от протекающего тока t=f(i). Для совершенной защиты желательно, чтобы времятоковая характеристика предохранителя (кривая 1 на рис. 6.3) во всех точках шла немного ниже характеристики защищаемой цепи или объекта (кривая 2 на рис. 6.3) . Однако реальная характеристика предохранителя (кривая

 

3) пересекает кривую 2. Поясним это. Если характеристика предохранителя соответствует кривой 1, то он будет перегорать из-за старения или при пуске

Рис. 6.3. Согласование характеристик предохранителя и защищаемого объекта

 

двигателя. Цепь будет отключаться при отсутствии недопустимых перегрузок. Поэтому ток плавления вставки выбирается больше номинального тока нагрузки. При этом кривые 2 и 3 пересекаются. В области больших перегрузок (область Б) предохранитель защищает объект. В области А предохранитель объект не защищает. При небольших перегрузках (1,5 – 2)Iном нагрев предохранителя протекает .медленно. Большая часть тепла отдается окружающей среде,

Ток, при котором плавкая вставка сгорает при достижении ею установившейся температуры, называется пограничным током Inoгp. Для того, чтобы предохранитель не срабатывал при номинальном токе Iном, необходимо Inoгp > Iном. С другой стороны, для лучшей защиты значение Inoгp должно быть возможно ближе к номинальному.

Для снижения температуры плавления вставки при ее изготовлении применяются легкоплавкие металлы и сплавы (медь, серебро, цинк, свинец, алюминий).

Рассмотрим нагрев вставки при КЗ.

Если ток, проходящий через вставку, в 3 — 4 раза больше Iном, то практически процесс нагрева идет адиабатически, т.е. все тепло, выделяемое вставкой, идет на ее нагрев.

Время нагрева вставки до температуры плавления

,

где А’- постоянная, определяемая свойствами материала; q — поперечное сечение вставки; jк -плотность тока вставки.

По мере того как часть плавкой вставки из твердого состояния перейдет в жидкое, ее удельное сопротивление резко увеличится (в десятки раз). Время перехода из твердого состояния в жидкое

,

 

где — удельное сопротивление материала вставки при температуре плавления; — удельное сопротивление материала вставки в жидком состоянии; у — плотность материала вставки; L — скрытая теплота плавления материала

 

вставки.

Основным параметром предохранителя при КЗ является предельный ток отключения — ток, который он может отключить при возвращающемся напряжении, равном наибольшем рабочему напряжению.

Время существования дуги зависит от конструкции предохранителя. Полное время отключения цепи предохранителем

t пр= tпл + t перех + t дуги

Для предохранителя со вставкой, находящейся в воздухе

,

где коэффициент n =3 учитывает преждевременное разрушение вставки, a k0 = 1.2 -1.3 учитывает длительности горения дуги.

В предохранителях с наполнителем (закрытого типа) разрушение вставки до полного ее плавления менее вероятно. Время отключения цепи предохранителем

,

Коэффициент кд = 1,7 -2 учитывает длительность горения дуги.

Плавление вставки переменного сечения происходит в перешейках с наименьшим сечением. Процесс нагрева протекает так быстро, что тепло почти не успевает отводится на участки повышенного сечения. Наличие перешейков уменьшенного сечения позволяет резко снизить время с момента начала КЗ до появления дуги. Процесс гашения дуги начинается до момента достижения током КЗ установившегося или даже амплитудного значения. Дуга образуется через время t1 после начала КЗ, когда ток в цепи значительно меньше установившегося значения Ik уст.

Средства дугогашения позволяют погасить дугу за миллисекунды. При этом проявляется эффект токоограничения, показанный на рис. При отключении поврежденной цепи с токоограничением облегчается гашение дуги, т. К. Отклю­чается не установившийся ток КЗ, а ток, определяемый временем плавления вставки.

Рис. 6.4. Отключение постоянного и переменного тока предохранителем с токоограничением

 

 

Конструкция предохранителей

в) Устройство предохранителя.Широкое применение предохранителей в

 

самых различных областях народного хозяйства и в быту привело к многообразию их конструкций. Однако, несмотря на это, все они имеют следующие основные элементы: корпус или несущую деталь, плавкую вставку, контактное присоединительное устройство, дугогасительное устройство или дугогасительную среду.

 



Рекомендуемые страницы:

Назначение и устройство предохранителя.

 

Предохранители применяют для защиты электрических цепей и элементоэлектроустановок от токов короткого замыкания или токов перегрузок.

Предохранитель встраивается в разрыв электрической цепи. Его основной задачей является пропускание рабочего тока и разрыв электрической цепи при появлении сверхтоков. Различают предохранители низковольтные (до 1 кВ) ивысоковольтные (свыше 3 кВ), однако по назначению и принципу действия они полностью совпадают. Также выделяют силовые и быстродействующие предохранители.

Низковольтные предохранители конструктивно представляют собой довольно простое устройство. Токопроводящий элемент (плавкая вставка) под воздействием тока, значение которого выше номинальной величины, нагревается, расплавляется в дугогасящей среде (чаще всего это кварцевый песок SiO2) и испаряется, создавая разрыв в защищаемой электрической цепи.

Изолятор препятствует выходу горячих газов и жидкого металла в окружающую среду. Он изготавливается из высокосортной технической керамики и должен выдерживать при отключении очень высокие температуры и внутреннее давление.

Защитные крышки имеют планки для захвата унифицированными рукоятками для замены плавких вставок низковольтных предохранителей. Вместе с керамическим корпусом они создают взрывонепроницаемую оболочку для коммутационной электрической дуги.

Песок, в свою очередь, важен для ограничения силы тока. Обычно применяется кристаллический кварцевый песок с высокой минералогической и химической чистотой (содержание SiO2 > 99,5%).

Для коммутационной функции важным являются определенный размер кристаллов песка и оптимальное его уплотнение.

Индикатор позволяет быстро находить сгоревшие предохранители. При повышенной жесткости пружины он может служить ударным сигнализатором для приведения в действие микропереключателей или разъединителей.

Припой сдвигает характеристическую кривую к меньшим значениям тока плавления. Он подбирается в соответствии с материалом плавкого элемента и должен находиться в нужном количестве и в нужном месте.

Контактные ножи механически и электрически соединяют плавкую вставку с держателем-основанием предохранителя. Они изготавливаются из меди или медного сплава с покрытием из олова или серебра.

Традиционными материалами, из которых изготовляются плавкие вставки это: медь, цинк, серебро, обладающие необходимым удельным электрическим сопротивлением.

Основным преимуществом при использовании предохранителя с плавкой вставкой является эффект токоограничения. То есть время расплавления плавкой вставки является достаточно малым и, как следствие, ток короткого замыкания не успевает достигнуть своего максимального значения.

 

Очевидно, что при номинальном уровне тока или меньшем его значении плавкая вставка должна проводить электричество неограниченное количество времени.

Для ускорения времени работы плавкой вставки применяют следующие технические решения:

· плавкие вставки с участками различной ширины (сечения)

· металлургический эффект в конструкции плавких вставок

За счет снижения сечения (сужения) плавкой вставки в определенных местах достигается требуемое — меньшее время размыкания цепи.

 

Металлургический эффект заключается в следующем: отдельные легкоплавкие металлы (например, свинец и олово) способны растворять в своей структуре более тугоплавкие металлы, такие как медь и серебро.

Для этого на медные проволочки наносятся капли олова. При нагреве сверхтоком оловянные капли быстро расплавляются, расплавляя при этом и часть проволок. Далее используется механизм работы плавкой вставки со сниженным сечением в определенных местах.

Основной причиной продолжающегося роста числа пользователей плавких предохранителей помимо крайне выгодного соотношения цены и результата, а также незначительной занимаемой площади является их общеизвестная надежность, которая характеризует предохранители как «последнюю линию защиты». Только сертифицированные предохранители с плавкими вставками, которые соответствуют заявленным характеристикам, позволят Вам избежать пожаров, возникающих в электропроводке и электроустановках.

 

 

БИЛЕТ № 9

  1. Назначение и общее устройство топливной системы дизеля 1-ПД4Д.

Топливная система предназначена для хранения, подогрева, очистки и подачи топлива в цилиндры дизеля обеспечивает своевременный впрыск в требуемой по­следовательности определенных порций топлива под высоким давлением в каме­ры сгорания цилиндров дизеля и распыливания его на мельчайшие частицы.

В систему входят топливоподкачивающий насос, топ­ливный насос высокого давления, трубопроводы низкого и высокого давления, топливный бак, топливоподогреватель, фильтры гру­бой и тонкой очистки, форсунки, регуляторы. Топливоподкачивающий насос засасывает топливо из расходного бака че­рез сетчатый фильтр грубой очистки и подает его под давлением не выше 0,53 МПа (5,3 кгс/см2) к топливному фильтру тонкой очистки, установленному на дизе­ле.

Разгрузочный клапан, установленный на магистрали от топливоподкачи­вающего насоса к фильтру, не допускает повышения давления в топливном тру­бопроводе выше 0,53 МПа (5,3 кгс/см2), перепуская излишнее топливо в расход­ный бак по сливной трубке.

Из топливного фильтра тонкой очистки отфильтрованное топливо поступает под давлением в коллектор топливного насоса высокого давления.

Давление 0,25 МПа (2,5 кгс/см2) в топливном коллекторе поддерживается регулирующим клапаном, отводящим избыток топлива по сливной трубе в бак. Клапан 6 и кран 7 служат для аварийного питания дизеля топливом. Топливный насос нагнетает топливо под высоким давлением в форсунки согласно порядку работы цилиндров дизеля.

Просочившееся топливо из форсунок и насоса высокого давления сливает­ся в расходный бак.

 

 


  1. Назначение и устройство секции топливного насоса высокого давления тепловоза ТЭМ18ДМ.

Топливный насос предназначенный для подачи в цилиндры дизеля под высоким давлением и в соответствии с нагрузкой строго определенных доз топлива на каждый цикл, состоит из следующих основных деталей: картера, кулачкового вала, толкателей, съемных плунжерных секций и коллектора.

Основными деталями секции топливного насоса (рис. 30, а) являются две прецизионные пары, выполненные с высокой точностью и смонтированные вместе с другими ее деталями в корпусе 22, отлитом из чугуна. Первая пара — насосный элемент состоит из гильзы 10 и плунжера /7, а вторая-клапанная пара — из нагнетательного клапана 5 и седла 6, Обе пары изготовлены из высоколегированной термически обработанной стали. Уплотнение в каждой паре достигается путем тщательной притирки одной детали к другой. Поэтому в случае повреждения одной из деталей пара заменяется новой.

Рис 30 Секция топливного насоса (а) и ее нагнетательный клапан (б): 1- нажимной штуцер, 2, 8 — полости, сообщающиеся с нагнетательным трубопроводом, 3 — пружина нагнетательного клапана, 4- упор; 5- нагнетательный клапан, 6 — седло нагнетательного клапана, 7 — резиновое уплотнителььое кольцо, 9 — надплунжерное пространство, 10 — гильза, 11- плунжер; 12 — вертикальный паз, 13 — кольцевая выточка; 14 — верхняя кромка, 15 — нижняя кромка, 16, 27 — стопорные вннты, 17 — регулирующая рейка, 18 — пружина плунжера, 19 — направляющий стакан, 20 — тарелка пружины нижняя, 21 — стопорное кольцо; 22 — корпус секции, 23 — пружинное кольцо, 24 — тарелка пружины верхняя, 35 — шестерня; 26 — отверстие, 28 — паз, 29 — всасывающая полость корпуса, 30-уплотннтельное медное кольцо; 31 — нагнетательный клапан; 32 — седло нагнетательного клапана, 33 — пружина нагнетательного клапана (1- до модернизации! 11- после модернизации)

Гильза 10 плунжера насосной пары выполнена в виде цилиндра с утолщенной верхней частью. Два сквозных отверстия 26 в верхней части соединяют надплунжерное пространство 9 гильзы с полостью 29 корпуса, к которой подводится топливо. Одно из этих отверстий на наружной поверхности гильзы имеет коническую зенковку, а другое — снабжено вертикальной канавкой, в которую входит стопорный винт 27, удерживающий гильзу от проворачивания. При этом отверстие для прохода топлива остается открытым. Нижним буртом гильза плотно притерта к кольцевой выточке корпуса.

Плунжер 11 состоит из цилиндрической головки и фасонного хвостовика, выполненных как одно целое. На поверхности головки в верхней части имеется кольцевая выточка 13, соединенная вертикальным пазом 12 с надплунжерным пространством 9. Нижняя кромка 15 выточки выполнена круглой, а верхняя -14 — фигурной по винтовой линии. На некотором расстоянии от торца головки плунжера она пересекается с кромкой вертикального паза 12. Винтовая кромка служит для отсечки и регулирования количества топлива, подаваемого плунжером. На хвостовике плунжера имеются два выступа и головка. Выступы входят в вертикальные пазы хвостовика шестерни 25, находящейся в зацеплении с регулирующей зубчатой рейкой 17, а головка опирается на донышко направляющего стакана 19, подпираемого снизу сферической поверхностью регулировочного болта 28 толкателя (см. рис. 29). На головку надета тарелка 20 (см. рис. 30, а) пружины 18, возвращающей плунжер в нижнее положение.

Клапанная пара установлена на верхний торец гильзы плунжера. Для обеспечения плотности седло клапанной пары притерто к торцу гильзы и прижато к ней нажимным штуцером 1. Плотность с корпусом секции обеспечивается резиновым кольцом 7. В центре седла 6 имеется отверстие, служащее гнездом для нагнетательного клапана 5.

Клапан 5 (рис. 30, б) выполнен полым. В нижней части он имеет игольчатый посадочный конус, в средней-боковое отверстие Е, а в верхней- кольцевой буртик П.

Буртик П разобщает нагнетательный трубопровод от надплунжерного пространства раньше, чем это выполнит игольчатый конус, а отверстие Е перепускает топливо из нагнетательного трубопровода в надплунжерное пространство 9 после разобщения их буртиком П.

Клапан прижимается к посадочному конусу седла пружиной 3, которая другим своим концом упирается в упор 4, служащий для ограничения подъема нагнетательного клапана.


 

БИЛЕТ № 10

  1. Назначение и устройство водяной системы дизеля 1-ПД4Д.


Установленный на тепловозах ди­зель имеет водяное охлаждение, необ­ходимость которого обусловлена вы­соким нагревом отдельных его частей, соприкасающихся с горячими газами. Уже в конце такта сжатия температу­ра воздуха в цилиндрах повышается до 500 — 700 °С, а при сгорании топ­лива она достигает 2000 °С. Даже от­работавшие газы на выхлопе имеют температуру 430 — 480 °С. Такой вы­сокий нагрев деталей мог бы вызвать значительную их деформацию, разру­шение, пригорание масла и, как след­ствие, заклинивание поршней в ци­линдрах.

Сильный нагрев деталей дизеля требует интенсивного охлаждения их водой, температура которой должна быть достаточно высокой во избежа­ние появления трещин в блоке, цилин­дровых втулках, крышках цилиндров и корпусе турбонагнетателя. Нагре­тая вода охлаждается в секциях ради­атора, а часть тепла, отводимого от дизеля водой, используется для вспо­могательных целей (подогрева топли­ва в баке и воздуха в кабине машини­ста в холодное время года).

На тепловозах вода используется также для охлаждения дизельного масла в водомасляном теплообменнике и надду­вочного воздуха перед поступлением его в цилиндры дизеля. Так как ох­лаждение масла и наддувочного воз­духа должно осуществляться водой с более низкой температурой по сравне­нию с водой, охлаждающей дизель, то водяная система имеет два самостоя­тельных контура циркуляции воды. Температура воды в основном контуре поддерживается в пределах 70 — 85 °С, а во вспомогательном — 60 — 70 °С. Циркуляцию воды в каждом контуре осуществляет специальный насос, получающий привод от колен­чатого вала дизеля.

Для охлаждения воды основного контура используются шестнадцать, а вспомогательного — восемь водяных секций, установленных в шахте холо­дильника. Оба контура объединены расширительным баком, укреплен­ным над шахтой холодильника

Водяная система дизеля закрытого типа с принудительной циркуляцией воды имеет два само­стоятельных контура охлаждения (горячий контур, холодный контур), каждый из которых имеет свой трубо­провод, водяной насос, секции холо­дильника и общий вентилятор охлаж­дения.

Система предназначена для отво­да тепла, выделяющегося при работе дизеля, для обогрева кабины ма­шиниста и осуществления прогрева дизеля перед запуском от посторон­него источника тепла.

Горячий (основной) контур пред­назначен для охлаждения выхлопных коллекторов, корпуса турбокомпрес­сора, втулок и крышек цилиндров дизеля. В холодное время года вода горячего контура используется для подогрева топлива в топливоподогревателе, обогрева кабины машиниста.

Водяным насосом 46, левым по хо­ду тепловоза, вода нагнетается в ох­лаждающие полости дизеля 42 и турбокомпрессор. Нагретая вода от­водится от дизеля в секции 53 хо­лодильника тепловоза и далее во вса­сывающую

полость водяного насоса 46. В холодное время часть воды из водяной полости левого выхлоп­ного коллектора дизеля отводится на обогрев в топливоподогреватель 29, калорифер 32, обогреватели пола ка­бины машиниста 34 и 65.

Холодный контур предназначен для отвода тепла от охладителя наддувочного воздуха и охладителей масла дизеля.

Водяным насосом 63, правым по ходу тепловоза, вода нагнетается в маслоохладитель 22 дизеля, секции 3 холодильника. Охлажденная вода далее прокачивается через масло­охладитель 59, холодильник надду­вочного воздуха 64 и поступает во всасывающий патрубок водяного на­соса 63.

Контроль температуры воды дизе­ля осуществляется дистанционным термометром 51, измеритель которого установлен в горячем контуре на выходе воды из дизеля, а указа­тель — на пульте кабины машиниста. На трубопроводе выхода воды из ди­зеля (горячий контур) и входа воды в маслоохладитель (холодный контур) установлены датчики реле температуры 58 и 60, которые подают сигнал на открытие жалюзи холодильника и на снятие нагрузки с дизеля (при превышении ‘максимально допусти­мой температуры воды).

Терморегуляторы 66 (в горячем и холодном контурах) автоматически

управляют частотой вращения венти­лятора холодильника, поддерживая температуру воды в оптимальных пределах.

Для контроля температуры воды в холодном контуре перед входом в маслоохладитель установлен изме­ритель дистанционного термометра 4, а указатель — на пульте в кабине машиниста.

Для периодических замеров тем­пературы воды в горячем и холод­ном контурах установлены грибки под ртутные термометры. Для перио­дических замеров давления воды в системе установлены грибки под ма­нометры и грибки под мановакуумметры.

Отвод пара и воздуха осуществ­ляется с помощью паровоздушных трубок в расширительный бак 12, который соединен подпиточными тру­бами с всасывающими патрубками водяных насосов 46 и 63.

Водомерное стекло 13 предназна­чено для контроля уровня воды в расширительном баке. На боковой поверхности бака нанесены две черты с надписями В.У.— верхний уровень воды и Н.У.— нижний уровень во­ды. Уровень воды в баке должен находиться между этими отметками. Заливная горловина 9, расположен­ная в верхней части бака, закры­вается крышкой, в которой вмонти­рован паровоздушный клапан 8. Для сообщения бака с атмосферой при заправке снизу тепловоза или пе­ред снятием крышки с паровоздуш­ным клапаном 8 имеется вестовая труба с краном 6.

Положение вентилей, краников и соединительных головок при работе дизеля, включении обогрева, прогре­ве топлива, прогреве дизеля от внеш­него источника, при заполнении сис­темы водой и сливе воды из сис­темы указано в таблице на рисунке.

На подпиточных и паровоздуш­ных трубах установлены вентили 11, 18, 19 и краник 7 с целью отсоединения водяного бака от сис­темы при опрессовке водяных поло­стей дизеля.

 


2. Назначение и устройство форсунки дизеля 1-ПД4Д.

Форсунка дизеля (рис. 32, а) предназначена для распыливания и распределения топлива в камере сгорания. Основной частью форсунки является распылитель, состоящий из прецизионной пары — корпуса 21 и иглы 2. Распылитель прикреплен снизу корпуса 4 форсунки гайкой 19. Верхний торец корпуса распылителя и сопрягаемый с ним торец корпуса форсунки имеют притертые между собой поверхности, которые обеспечивают плотность стыка. Для впрыска топлива в камеру сгорания в нижней части корпуса распылителя выполнена сферическая головка (рис. 32, б) с девятью отверстиями диаметром 0,35 мм, расположенными по окружности.

К седлу корпуса распылителя притерт запорный конус иглы 2 (см. рис. 32, а), который отделяет полость 24 форсунки от камеры сгорания. На хвостовик иглы в верхней части опирается своей шаровой поверхностью штанга 17, передавая ей усилие от пружины 7. Затяжка пружины отрегулирована (при помощи болта 10) на давление впрыска топлива 275 кгс/см2. После регулировки затяжки пружины болт 10 закрепляют контргайкой II и пломбируют.

При работе дизеля топливо, нагнетаемое топливным насосом, подается по трубопроводу высокого давления в штуцер 15, а оттуда, пройдя щелевой фильтр 16, канал 18, кольцевую выточку 20, по трем наклонным отверстиям 22 поступает в полость 24. Так как выходное отверстие корпуса распылителя закрыто иглой 2, прижатой к седлу пружиной, то давление в полости 24 будет резко повышаться, воздействуя на большой конус 1 направляющей части иглы. Когда сила давления топлива, стремящаяся приподнять иглу вверх, превысит силу затяжки пружины 7, игла распылителя приподнимается. При этом топливо будет с большой скоростью впрыскиваться из полости 24 через распыливающие отверстия головки корпуса распылителя в камеру сгорания.

Вследствие высокого давления в полости 24 часть топлива просачивается между иглой и корпусом распылителя во внутреннюю полость форсунки, смазывая трущиеся поверхности.

Просочившееся топливо отводится через сверление 13 и штуцер 14 в сливную трубу. Впрыск топлива прерывается, как только прекращается подача топлива насосом.


Рис. 32. Форсунка дизеля (а) и ее распылитель (б):

Большой конус иглы; 2 — игла распылителя; 3 — крышка цилиндра; 4 — корпус форсунки; 5 — втулка форсунки; 6 — нижняя тарелка пружины; 7-пружина; « — верхняя тарелка пружины; 9 — пробка; 10 — регулирующий болт; 11- контргайка; 12 — пломба; 13 — сверление; 14 — топливоотводящий штуцер; 15 — топливоподводящий штуцер; 16 — щелевой фильтр; П — штанга; 18 — топливоподводящий канал корпуса форсунки; 19 — гайка распылителя; 20 — кольцевая выточка корпуса распылителя; 21 — корпус распылителя; 22 — наклонное отверстие корпуса распылителя; 23 — уплотиительное кольцо; 24 — полость форсунки; 1- распылитель до модернизации; 11- распылитель после модернизации


 

БИЛЕТ № 11

  1. Назначение и устройство воздухоочистителя дизеля 1-ПД4Д.

Воздухоочиститель дизеля тепловоза (рис. 23) является масляным фильтром непрерывного действия. Его к. п. д. очистки постоянен на всех режимах работы тепловоза н составляет 98,5% при сопротивлении до 20 мм вод. ст. Воздухоочиститель позволяет получать технически чистый воздух (запыленностью не более 1 мг/м3) при общей запыленности 65 мг/м3. Фильтрующими элементами воздухоочистителя служат четыре сетчатые кассеты 21 (в виде секторов), которые размещены в колесе 20. В каждой кассете 16 сеток, из них шесть № 5 X 0,7, шесть — № 3,2 X 0,5 и четыре — № 7 X 1,2. Колесо 20 вместе с кассетами 21 установлено на неподвижной оси 24, закрепленной в стенках корпуса, нижняя часть которого представляет собой масляную ванну объемом 108 л. Вращение колеса осуществляется автоматически при помощи пневмоцилиндра 12, к которому подводится воздух от компрессора. Воздух поступает в пневмоцилиндр периодически по мере срабатывания регулятора давления 3РД. При срабатывании регулятора давления поступающий в пневмоцилиндр воздух воздействует на его шток и посредством тяги 13, рычагов 15, 14, тяги 27 и ползуна 16 перемещает собачку 18, входящую в зацепление с храповой лентой (зубьями) обода колеса 20.

 

Рис. 22. Воздухоочиститель дизеля тепловоза:

Всасывающий патрубок турбокомпрессора; 2, 4 — стяжные хомуты; 3 — соединительный рукав; 5 — каркас воздухоочистителя; 6, 9 — люки; 7 — сетчатые кассеты; 8 — жалюзи; 10 — алнвная труба; 11- зажимы крепления кассет

Частота вращения колеса воздухоочистителя зависит от частоты срабатывания регулятора давления ЗРД и примерно составляет 0,04 — 0,15 об/ч. Очистка кассет происходит в период прохождения ими масляной ванны. Задержанная пыль выпадает в осадок на дно ванны. Пылеемкость воздухоочистителя составляет примерно 50 кг и определяется в основном емкостью масляной ванны от днища корпуса до обода колеса 20. Для спуска масла предусмотрен кран со шлангом 7, а для удаления грязи — люки 26.

В верхней части корпуса воздухоочистителя имеются люки 1, 5 и 17, которые служат для забора воздуха из машинного помещения в зимнее время, при этом жалюзи 22 полностью или частично закрываются.




Похожие статьи:

Принцип действия, устройство и назначение предохранителей

Предохранитель — это коммутационный электрический аппарат, предназначенный для отключения защищаемой цепи разрушением специально предусмотренных для этого токоведущих частей под действием тока, превышающего определенное значение.

В большинстве предохранителей отключение цепи происходит за счет расплавления плавкой вставки, которая нагревается протекающим через нее током защищаемой цепи.

После отключения цепи необходимо заменить перегоревшую вставку на исправную. Эта операция производится вручную или автоматически заменой всего предохранителя.

Основными элементами предохранителя являются: корпус, плавкая вставка (плавкий элемент), контактная часть, дугогасительное устройство и дугогасительная среда.

Предохранители изготовляются на напряжение переменного тока 36, 220, 380, 660 В и постоянного тока 24, 110, 220, 440 В.

Предохранители характеризуются номинальным током плавкой вставки, т.е. током, на который рассчитана плавкая вставка для длительной работы. В один и тот же корпус предохранителя могут быть вставлены плавкие элементы на различные номинальные токи, поэтому сам предохранитель характеризуется номинальным током предохранителя (основания), который равен наибольшему из номинальных токов плавких вставок, предназначенных для данной конструкции предохранителя.

Предохранители до 1 кВ изготовляются на номинальные токи до 1000 А.

В нормальном режиме теплота, выделяемая током нагрузки в плавкой вставке, передается в окружающую среду и температура всех частей предохранителя не превышает допустимую. При перегрузках или КЗ температура вставки увеличивается и она расплавляется. Чем больше протекающий ток, тем меньше время плавления. Эта зависимость называется защитной (времятоковой) характеристикой предохранителя.

Предохранители не должны отключать электрическую цепь при протекании условного тока неплавления и должны отключать цепь при протекании условного тока плавления в течение определенного времени, зависящего от номинального тока (ГОСТ 17242—79Е). Например, при номинальных токах 10—25 А плавкая вставка не должна расплавляться в течение 1 ч при токах 130% номинального и должна расплавляться в течение того же времени при токах 175% номинального.

Чтобы уменьшить время срабатывания предохранителя, применяются плавкие вставки из разного материала, специальной формы, а также используется металлургический эффект.

Наиболее распространенными материалами плавких вставок являются медь, цинк, алюминий, свинец и серебро.

Источник: Л. Д. Рожкова, Л. К. Карнеева, Т. В. Чиркова. Электрооборудование электрических станций и подстанций

Принцип работы и устройство предохранителя

История использования электричества насчитывает уже более века. Одновременно с появлением в повседневной жизни такого «невидимого помощника» встал вопрос об организации защиты электропроводки и электроустановок от различных аварийных и ненормальных режимов работы. Одними из первых таких устройств защиты стали предохранители.

Развитие начиналось с обычной проволоки из платины, которая применялась в середине 19 века для защиты телеграфного кабеля, до современных предохранителей с отключающей способностью высокого значения. Благодаря своей довольно простой конструкции и надежной работе, в основе которой лежат незыблемые физические законы, плавкие электрические предохранители стали воплощением безопасности в электрических цепях.

Позднее применялись плавкие вставки с легкоплавкими элементами из свинца и олова. В связи с тем, что номинальные токи в настоящее время могут превышать 1000 А, отпала потребность в использовании плавких вставок старого типа. Однако принцип работы сегодняшних предохранителей высокой отключающей способности остался практически неизменным с 1890 года. Именно тогда Мордей В.М. запатентовал первый предохранитель.

Предохранитель встраивается в разрыв электрической цепи. Его основной задачей является пропускание рабочего тока и разрыв электрической цепи при появлении сверхтоков. Различают предохранители низковольтные (до 1 кВ) и высоковольтные (свыше 3 кВ), однако по назначению и принципу действия они полностью совпадают. Также выделяют силовые и быстродействующие предохранители.

Низковольтные предохранители конструктивно  представляют собой довольно простое устройство. Токопроводящий элемент (плавкая вставка) под воздействием тока, значение которого выше номинальной величины, нагревается,  расплавляется в дугогасящей среде (чаще всего это кварцевый песок SiO2) и испаряется, создавая разрыв в защищаемой электрической цепи.

Изолятор препятствует выходу горячих газов и жидкого металла в окружающую среду. Он изготавливается из высокосортной технической керамики и должен выдерживать при отключении очень высокие температуры и внутреннее давление.

Защитные крышки имеют планки для захвата унифицированными рукоятками для замены плавких вставок низковольтных предохранителей. Вместе с керамическим корпусом они создают взрывонепроницаемую оболочку для коммутационной электрической дуги.

Песок, в свою очередь, важен для ограничения силы тока. Обычно применяется кристаллический кварцевый песок с высокой минералогической и химической чистотой (содержание SiO2 > 99,5%).

Для коммутационной функции важным являются определенный размер кристаллов песка и оптимальное его уплотнение.

Индикатор позволяет быстро находить сгоревшие предохранители. При повышенной жесткости пружины он может служить ударным сигнализатором для приведения в действие микропереключателей или разъединителей.

Припой сдвигает характеристическую кривую к меньшим значениям тока плавления. Он подбирается в соответствии с материалом плавкого элемента и должен находиться в нужном количестве и в нужном месте.

Контактные ножи механически и электрически соединяют плавкую вставку с держателем-основанием предохранителя. Они изготавливаются из меди или медного сплава с покрытием из олова или серебра.

Традиционными материалами, из которых изготовляются плавкие вставки это: медь, цинк, серебро, обладающие необходимым удельным электрическим сопротивлением.

Основным преимуществом при использовании предохранителя с плавкой вставкой является эффект токоограничения. То есть время расплавления плавкой вставки является достаточно малым и, как следствие, ток короткого замыкания не успевает достигнуть своего максимального значения. График показывающий явление токоограничения представлен ниже.

Основным параметром плавкой вставки является ее времятоковая характеристика. С ее помощью можно определить время отключения защищаемой линии при известном сверхтоке. График демонстрирующий данную зависимость представлен ниже.

Очевидно, что при номинальном уровне тока или меньшем его значении плавкая вставка должна проводить электричество неограниченное количество времени.

Для ускорения времени работы плавкой вставки применяют следующие технические решения:

  • плавкие вставки с участками различной ширины (сечения)
  • металлургический эффект в конструкции плавких вставок

За счет снижения сечения (сужения) плавкой вставки в определенных местах достигается требуемое — меньшее время размыкания цепи.

Металлургический эффект заключается в следующем: отдельные легкоплавкие металлы (например, свинец и олово) способны растворять в своей структуре более тугоплавкие металлы, такие как медь и серебро.

Для этого на медные проволочки наносятся капли олова. При нагреве сверхтоком оловянные капли быстро расплавляются, расплавляя при этом и часть проволок. Далее используется механизм работы плавкой вставки со сниженным сечением в определенных местах.

Основной причиной продолжающегося роста числа пользователей плавких предохранителей помимо крайне выгодного соотношения цены и результата, а также незначительной занимаемой площади является их общеизвестная надежность, которая характеризует предохранители как «последнюю линию защиты». Только сертифицированные предохранители с плавкими вставками, которые соответствуют заявленным характеристикам, позволят Вам избежать пожаров, возникающих в электропроводке и электроустановках.

 

Устройство и принцип действия предохранителей — Студопедия

Основные сведения

Предохранители

Плавкие предохранители применяют для защиты электрических цепей и элементов электроустановок от токов короткого замыкания или токов перегрузок.

Плавким предохранителем называют электрический апарат, предназначенный для

размыкания электрической цепи путем расплавления металлической вставки.

Плавкая вставка включается последовательно в контролируемую цепь и при дости-

жении током определенного значения плавкая вставка плавится и разрывает цепь.

Наиболее распостраненные материалы для плавких вставок — цинка и ( реже ) сереб

ро.

В большинстве случаев предохранители применяют для защиты от токов короткого

замыкания неответственных цепей. К таким цепям относятся сети освещения, нагреватель

ные и осветительные приборы, а также, в соответствии с Правилами Регистра, электродви

гатели мощностью менее 0,5 кВт.

Предохранители крайне нежелательно применять для защиты от токов короткого

замыкания 3-фазных асинхронных двигателей. Это объясняется тем, что при коротком замыкании в обмотке статора может сгореть только один предохранитель, а двигатель продолжит работу на двух фазах.

При этом скорость двигателя уменьшится, а ток обмотки статора увеличится, двига

тель может сгореть.

Любой предохранитель состоит из корпуса и патрона. Внутри патрона находится плавкая вставка.

При этом в один и тот же корпус можно поместить от 3 до 6 патронов на разные то-



ки.

На судах применяются предохранители типов ПР, ПДС ( ПД ), ПН и ПК.

Трубчатые предохранители типа ПР-2 ( рис. 4.27 ) выпускаются на номинальные

токи от 15 до 1000 А двух габаритов: с коротким патроном для напряжений до 220 В по

стоянного тока и с длинным патроном для напряжений до 500 В. При переменном токе 380 В могут применяться предохранители обоих габаритов.

В этом случае первые будут обеспечивать пониженню, а вторые – повышенную раз

рывную способность.

Рис. 4.27. Трубчатые предохранители типа ПР-2:

а – патрон на номинальные токи 15…60 А: 1 – фибровая трубка; 2 – плавкая вставка; 3 – латунная втулка; 4 – латунный колпачок

б – патрон на номинальные токи 100…160 А: 1 – фибровая трубка; 2 – плавкая вставка; 3 – латунная втулка; 4 – латунный колпачок; 5 – подкладная шайба; 6 – медные ножи

в – формы плавких вставок

Патроны предохранителей изготовляются из фибровой трубки 1, к концам которой крепятся латунные втулки – наконечники 3. На наконечники на резьбе навинчиваются латунные колпачки 4.


В предохранителях до 60 А ( рис. 4.27, а ) колпачки служат цилиндрическими кон-

тактами и одновременно обеспечивают зажатие отогнутых концов плавкой вставки 2.

Предохранители на токи более 60 А ( рис. 4.27, б ) имеют медные контактные ножи 6. К ним с помощью болта и гайки крепятся концы плавкой вставки. Чтобы исключить проворачивание ножей, предусмотрена подкладная шайба 5 с пазами.

Плавкая вставка вставка представляет собой цинковую пластинку, суженную в од-

ном или нескольких местах ( рис. 4.27, в ). Такая конструкція обеспечивает перегорание вставки при коротких замыканиях в суженных местах, т.е. деление дуги на части, что спо-

собствует гашению дуги. Кроме того, электрическая дуга нагревает фибру, вызывая ин-

тенсивное выделение газов из ее поверхности. Давление внутри патрона повышается, и дуга быстро гаснет.

Пробочные предохранители типа ПДС на токи от 6 до 350 А и ПД на ток 600 А при

меняют в цепах постоянного тока напряженим до 350 В и переменного тока частотой 50 Гц до 380 В.

Предохранители типа ПДС имеют корпуса из стеатита ( стеатит – спрессованный тальк ), типа ПД – из фарфора.

Рис. 4.28. Предохранители типа ПД и ПДС:

1- застекленное отверстие ; 2 – головка; 3 – контрольный глазок; 4, 10 – контакт-

ные колпачки; 5 – патрон; 6 – пружинное кольцо; 7 – плавкая вставка; 8 – засыпка;

9 – контактная гильза, 11 – контактная шайба; 12 – гетинаксовая шайба; 13 – основание;

14 – внешний контакт

Предохранитель состоит из контактной гильзы 9 с фарфоровым или стеатитовым основаним 13 и патрона 5 с плавкой вставкой. Патрон закрепляется головкой 2, навинива-

емой на контактную гильзу 9. Контактная гильза изолируется от токоведущей шины гетинаксовой шайбой 12. Наружное кольцо 6 предотвращает самоотвинчивание головки.

Патрон с плавкой вставкой представляет собой полый фарфоровый цилиндр, на торцах котрого укреплены контактные колпачки 4, 10. Между колпачками расположена плавкая вставка из одной или нескольких проволочек и контрольная константановая проволочка, связанная с контрольным алюминиевым глазком 3.

Полость цилиндра заполнена кварцевым песком с добавленим мраморной крошки, мела и талька. При коротких замыканиях в цепи контрольная проволочка перегорает с плавкой встакой и контрлльный глазок выбрасывается расположенной под ним пружиной.

Исправность плавкой встаки контролируется по положению глазка через застеклен-

ное отверстие 1.

Электрическая дуга, содержащая пары метала, под действием повышенного давле-

ния перемещается в засыпку 8, дробится, охлаждается и гаснет. Давление повышается за

сет выделения из засыпки при высокой температуре водяных паров и углекислого газа.

Рис. 4.29. Предохранитель типа ПК

Трубчатые предохранители типа ПК рассчитаны на переменный и постоянный ток

напряженим до 250 В ( длина предохранителей L = 30 мм ) и до 600 В ( L = 45 мм ).

Устройство предохранителя приведено на рис. 3.

Устройство и принцип действия предохранителей

При соответствии номинального тока плавкой вставки току защищаемой электрической цепи теплота, выделяемая нагревающейся плавкой вставкой, отдается различным деталям предохранителя, а через них в окружающую среду. С увеличением тока нагрузки возрастает температура нагрева плавкой вставки и других деталей предохранителя.

Показателями, характеризующими предохранители, являются также зависимость времени перегорания плавкой вставки от проходящего через нее тока, а также предельный ток отключения, в качестве которого принят наибольший ток, отключаемый предохранителем без повреждений, препятствующих его нормальной работе.

При прохождении через плавкую вставку предохранителя тока, превышающего ее номинальный ток, вставка перегорает и разрывает электрическую цепь, отключая таким образом защищаемый участок от остальной части электроустановки.

Предохранители с плавкой вставкой являются конструктивно простыми, но в то же время достаточно надежными и экономичными аппаратами защиты электрических сетей и электроустановок напряжением до 1000 В.

Предохранитель ПР (рисунок 1, а) состоит из контактных стоек 1 и закрытого разборного патрона 3 без наполнителя, внутри которого размещены одна или две (в зависимости от номинального тока предохранителя или рабочего тока в защищаемой цепи) плавкие вставки.

Во избежание выпадения предохранителя при электродинамических усилиях, возникающих в контактах в момент коротких замыканий в электрической цепи, защищаемой предохранителем, в контактах обеспечиваются необходимые нажатия. Они создаются за счет пружинящих свойств материала скобы контактных стоек (в предохранителях на 15— 60 А), стальной кольцевой или пластинчатой пружины (в предохранителях на 100—350 А) и специального зажима с рукояткой 2, установленного на контактной стойке.

Патроны (рисунок 1, б) предохранителя ПР представляют собой фибровую трубку 4 с толщиной стенок 3—6 мм, внутри которой расположена плавкая вставка 5, а на концах навернуты латунные втулки 6 с прорезями для прохода плавкой вставки.

На втулки надеты латунные колпачки 7, служащие контактными частями у предохранителей на номинальные токи до 60 А. У предохранителей на 100—1000 А контактными частями являются медные ножи 9. Во избежание смещения ножей в предохранителе имеется фиксирующая шайба 8 с пазом для ножа.

Плавкие вставки (рисунок 1, в) представляют собой пластинки с одним или несколькими участками сужения. При перегрузках плавкая вставка (рисунок 2, а) перегорает обычно на одном участке сужения (рисунок 2, б), а при коротких замыканиях — на нескольких участках одновременно (рисунок 2, в).

Рисунок 1 – Разборные предохранители ПР на номинальные токи 15-1000 А с незаполняемыми патронами:
а — общий вид, б — патроны предохранителей на номинальные токи 15-60А и 100— 1000А, в — конструкции плавких вставок; 1,9 — контактные стойка и нож, 2 — рукоятка зажима, 3 — разборный патрон, 4 — фибровая трубка, 5 — плавкая вставка, 6,7 — латунные втулка и колпачок, 8 — фиксирующая шайба

Рисунок 2 – Плавкие вставки

Рисунок 3 – Разборный предохранитель ПН с патроном, заполняемым кварцевым песком:
1 — фарфоровый патрон, 2 — плавкая вставка, 3 — шайба, 4 — контактный нож, 5 — выступы для съема патрона из контактов и установки его в контактах, 6 — крышка патрона

Плавкие вставки изготовляют из листового цинка марки Ц0 или Ц1 путем штамповки. При плавлении вставки предохранителя пары цинка ускоряют процесс рекомбинации ионов, благодаря чему улучшаются условия деионизации дугового пространства, способствующей быстрому гашению электрической дуги в патроне. Отсутствие в патроне заполнителя ухудшает условия гашения электрической дуги, возникающей при разрыве электрической цепи перегорающей плавкой вставкой. Более совершенными по своей конструкции и характеристикам являются предохранители ПН с разборным патроном, заполненным кварцевым песком.

Предохранитель ПН (рисунок 3) состоит из квадратного снаружи и круглого внутри фарфорового патрона 1, в котором помещена плавкая вставка 2, приваренная к шайбам 3 врубных контактных ножей 4. Контактные ножи, выступающие из патрона, фиксируются прорезями в крышках 6, прикрепленных винтами к торцам патрона. Патрон заполнен сухим кварцевым песком. Для предохранения песка от увлажнения патрон герметизирован прокладкой из листового асбеста толщиной 0,8 — 1 мм, установленной между крышкой и патроном предохранителя.

Плавкая вставка предохранителя ПН представляет собой одну или несколько медных ленточек толщиной 0,15 — 0,35 мм и шириной до 4 мм с просечками длиной 6 — 12 мм. При использовании плавкой вставки, состоящей из тонких параллельных ленточек, снижается ее сечение при данном номинальном токе, а следовательно, и количество паров металла в патроне при перегорании плавкой вставки. Это облегчает гашение электрической дуги в патроне, так как при перегорании ленточек плавкой вставки возникает одновременно несколько параллельных дуг, что способствует более интенсивному рассеянию энергии дуги.
Для обеспечения быстрого плавления вставки предохранителя и повышения его защитного действия при малых перегрузках на ленточки плавкой вставки напаяны оловянные шарики диаметром 0,5 — 2 мм (в зависимости от номинальных токов плавких вставок). Наличие этих шариков позволяет использовать «металлургический эффект», сущность которого состоит в том, что при нагреве вставки оловянный шарик, обладающий более низкой температурой плавления, расплавляется раньше, чем вставка, и, проникая в металл вставки, образует сплав металла с характеристиками, отличающимися от исходного материала большим электрическим сопротивлением и более низкой температурой плавления. При токах перегрузки плавкая вставка, нагреваясь, перегорает в том месте, где напаян шарик из олова, при этом температура нагрева всей вставки будет несколько ниже температуры плавления металла, из которого она выполнена.

Предохранители ПР и ПН обладают токоограничивающей способностью, поскольку плавкая вставка в них перегорает раньше, чем ток короткого замыкания успевает достигнуть установившегося значения. Предохранители требуют постоянного наблюдения и своевременного ремонта. От их исправности зависит нормальная и безопасная работа защищаемых электроустановок.

Виды предохранителей: назначение, описание, маркировка

Предохранители используются везде и всюду – они есть в технике, в самых разных электрических устройствах, автомобилях, промышленном оборудовании. Существует множество видов этих элементов. Для чего они нужны и в чем их особенности? Рассмотрим основные виды предохранителей.

Характеристика

Предохранитель – это общий термин, который достаточно устойчиво используется в области электрики. Эта деталь предполагает защиту для проводов, оборудования и электрических сетей.

назначение предохранителей Предохранитель представляет собой коммутационное изделие. В чем его назначение? Предохранитель призван защитить электрическую сеть от высоких токов и коротких замыканий. Принцип действия детали очень простой – в случае образования сверхтоков разрушается специально предназначенный для этого элемент. Зачастую это плавкая вставка. Так устроены все виды стеклянных предохранителей.

Эти вставки – обязательный элемент, без которого невозможен ни один вид предохранительных элементов. Внутри нее также имеется и специальное дугогасительное устройство. Вставки в предохранителях изготавливаются из фарфоровых или фибровых корпусов и закрепляются в специальные части, что проводят электрический ток. Элементы, предназначенные под малые токи, могут и вовсе не иметь корпуса.

Плавкий

Это наиболее распространенные виды предохранителей для использования в быту. Наверное, это единственный элемент, который проще всего диагностировать на предмет исправности. Для этого нужно просто посмотреть деталь на просвет – будет видно, цела плавка вставки или нет.

виды стеклянных предохранителейИзготавливают данные детали в стеклянном корпусе.

Плавкий трубчатый керамический

Этот элемент практически ничем не отличается от стеклянного изделия. Единственное различие в материале, из которого изготовлен корпус. Но в эксплуатации эти детали не так комфортны – диагностировать «на свет» уже не выйдет. Для проверки необходимо использовать тестеры или мультиметры.

Плавкая вставка ПВД

Эти типы предохранителей функционируют на базе такого же принципа.

устройство предохранителя Но здесь конструкция модифицирована таким образом, чтобы видеть состояние детали. Так, если элемент перегорел, то в задней части изделия появится специальный флажок.

Элементы с кварцевым песком

Эти предохранители отличаются высокими дугогасящими характеристиками. Производят их в двух исполнениях: в корпусе из керамических материалов или в стеклянных корпусах. Зачастую изделие рассчитано на работу с большими токами. Существуют и еще усовершенствованные модели. Устройство предохранителя предусматривает еще одну деталь, по конструкции подобную ПВД. Он необходим, чтобы можно было узнать, какой из предохранителей перегорел.

Быстродействующие предохранители

Эти изделия ничем особенным от остальных не отличаются. Различие только в том, что при возникновении короткого замыкания плавкая часть сгорает очень быстро.

SMD

Данные изделия можно встретить в электронных устройствах. Они очень миниатюрны. Принцип действия и назначения предохранителей – защитить технику от высоких токов, с чем они отлично справляются.

Самовосстанавливающиеся

Это достаточно интересные решения. Самовосстанавливающийся предохранитель представляет собой деталь, внутри которой находится специальный пластик. Пока пластиковая вставка холодная, она может проводить электричество. Как только вставка разогреется до определенной температуры, ее токопроводящие свойства теряются за счет увеличения сопротивления.

виды предохранителей После остывания ток снова сможет проходить через изделие. Плюс данных деталей в том, что после перегорания нет никакой нужды в замене элемента. Промышленность выпускает эти изделия в различных видах. Они подходят для пайки по технологии навесного или поверхностного монтажа. В основном эти виды предохранителей используют в маломощных схемах.

Взрывные

Если все вышеперечисленные изделия знает каждый, то взрывной предохранитель – это редкая группа. Процесс перегорания детали обеспечивается достаточно эффектным звуком. Специальное взрывное устройство, которое закрепляется на токопроводящей детали, взрывается. За это отвечают специальные датчики. Последние следят за током в электрической цепи. Это очень точные предохранители, так как они практически не зависят от характеристик металла на токопроводящей детали. Данный элемент зависит от точности датчика тока.

Другие типы предохранителей

Для работы в цепях высокого напряжения используют специальные автогазовые, газовые изделия, а также элементы жидкостного типа. Существуют даже стреляющие предохранители. В обыденной жизни их увидеть нельзя – это профессиональное мощное оборудование.

Маркировка и обозначения

Каждый производитель изготавливает предохранители под определенным кодом или артикулом. Номер предохранителя позволяет в каталогах найти и уточнить технические характеристики. Зачастую эти коды можно найти на корпусах изделий. Также код может наноситься на металлическую часть. Кроме кодов, на корпусе также могут указываться основные данные – это номинальный ток в А, номинальные напряжения в В, отключающие характеристики либо особенности конструкции. По этим данным можно определить назначение предохранителей.

номер предохранителя

Итак, величина номинального тока – это максимально допустимое значение, при котором деталь может нормально функционировать в течение длительного срока.

Номинальные напряжения – это максимально допустимое напряжение, при котором деталь безопасно разрывает цепь в случае короткого замыкания или при перегрузке в сети.

Отключающей способностью называют максимальные токи. При них предохранитель сработает, но корпус его не будет разрушен.

Характеристиками называют зависимость времени, при котором рушится плавкий элемент от тока, что протекает через деталь. Разные виды предохранителей по характеристикам объединены в группы по особенностям применения и скорости срабатывания.

типы предохранителей Обычно эти характеристики указывают на силовых деталях. Для обозначения используются буквы латинского алфавита. Первой обозначается отключающая способность. Так, G – это полный диапазон, деталь способна защитить цепь и от перегрузки, и от короткого замыкания. А – диапазон частичный, а такие виды предохранителей защищают только от коротких замыканий.

Второй буквой обозначаются типы цепи:

  • G – цепь общего назначения.
  • L – защита кабелей, а также распределительных систем.
  • M – защита цепей в электродвигателях.
  • Tr – предохранитель, способный защитить трансформаторную сеть.

Элементы с буквой R используются вместе с силовым полупроводниковым оборудованием. А PV сможет обеспечивать защиту солнечных батарей.

Итак, мы рассмотрели, какие бывают виды предохранителей и какую они имеют маркировку.

Принцип действия и принцип действия предохранителя

— ElectronicsBeliever

В этой статье я расскажу о работе и принципе предохранителя. Предохранитель — это простая электрическая часть, состоящая из провода и клемм на каждом конце. Это просто пассивное устройство, которое защищает цепь в случае сильного тока. Когда это произойдет, плавкий предохранитель разомкнется, и цепь прервется. Принцип действия и принцип действия предохранителя прост, в отличие от других активных электронных устройств, требующих глубокого понимания.Полное обсуждение работы предохранителя и принципа действия подробно обсуждается ниже; так что продолжайте читать.

Давайте также познакомимся с двумя общими классификациями предохранителей, чтобы лучше понять работу и принцип действия предохранителей.

Это запаздывающие и быстродействующие. Плавкий предохранитель с запаздыванием имеет значительную задержку перед тем, как плавкий элемент плавится или размыкается из-за приложения высокого тока. Этот тип очень популярен в емкостных цепях, например, в импульсных преобразователях и источниках питания.Быстродействующий, однако, откроется немедленно, когда будет течь сильный ток. Это очень полезно в критических конструкциях, где требуется очень быстрая защита.

Рисунок 1 — Некоторые типы предохранителей, используемые в настоящее время в промышленности. В разных отраслях и сферах применения требуются предохранители разных типов.

Принцип действия предохранителя

Предохранитель — это основной компонент, используемый для защиты электронных и электрических цепей от чрезмерного тока или короткого замыкания.Установите плавкий предохранитель последовательно в цепь, которую вы хотите защитить, как показано на рисунке 2a. Если рассматриваемая цепь имеет несколько ответвлений (разные пути тока), обязательно подключите предохранитель в секции, где протекает сумма всех токов, как показано на рисунке 2b. Предохранитель должен защищать цепь в ненормальном состоянии, быстро размыкая цепь. Это конечная цель предохранителя, которую нельзя повредить, поэтому очень важно выбрать правильный номинал предохранителя.

Рисунок 2 — a) Расположение предохранителя в цепи, имеющей один путь тока.б) Расположение предохранителя для нескольких токоведущих цепей. Предохранитель может быть вставлен в любую ветвь на Рисунке 2b, а также для защиты устройств на определенных ветвях.

С расположением предохранителя, показанным на рисунке 2b, полный ток цепи гарантированно покрывается. В случае короткого замыкания или ненормального увеличения тока цепи предохранитель быстро откроется, и большой ток больше не сможет течь в цепь. Когда плавкий предохранитель перегорает, не заменяйте предохранитель другим номиналом или номиналом, вместо этого сохраняйте номинал, поскольку он практически предназначен для данной цепи.Замена предохранителя на более высокий поставит цепь в опасность, поскольку она не сработает при указанном токе и времени. С другой стороны, если предохранитель был заменен на предохранитель меньшего номинала, цепь продолжит размыкаться, даже если ток еще не достиг заданного уровня срабатывания. При необходимости вы также можете установить предохранитель в любую ветвь на Рисунке 2b. Обязательно осознайте назначение предохранителя.

При выборе предохранителя следует учитывать несколько важных параметров. Это номинальный ток, ампер-квадратные секунды, отключающая способность и номинальное напряжение.Подробнее об этих параметрах будет рассказано ниже, просто продолжайте читать.

При выборе предохранителя, который также рекомендуется поставщиками предохранителей, полезно учитывать коэффициент 75%. Коэффициент 75% означает, что постоянный ток цепи должен составлять только 75% от номинального постоянного тока предохранителя. Это делается для компенсации влияния температуры окружающей среды, поскольку при высокой температуре окружающей среды точка срабатывания предохранителя будет уменьшаться. Например, при общем токе цепи 10 ампер следует использовать предохранитель на 13 ампер.Однако разработчик должен убедиться, что схема может выдерживать ток 13 ампер за короткое время, пока предохранитель не сработает.

Принцип действия и принцип действия предохранителя: конструктивные параметры

Текущий рейтинг

Это номинальный ток предохранителя, который обычно измеряется при номинальных условиях и температуре окружающей среды 25 ° C. Этот рейтинг не должен полностью использоваться в цепи.Хорошее практическое правило — установить номинальный ток схемы только на 75% от этого номинала. Математически

Пример 1

Цепь

А имеет номинальный ток 10 А. Каким должен быть номинальный ток используемого предохранителя?

Решение

Применяя этот метод, убедитесь, что компоненты схемы способны выдерживать избыточный ток, прежде чем предохранитель сработает.Другими словами, компоненты, включенные последовательно с предохранителем, должны иметь номинальный ток выше точки плавления предохранителя. При этом каждый раз при резком увеличении тока перегорает только предохранитель.

Рейтинг I2t

Для цепи с большой емкостью, скорее всего, будет очень большой ток во время запуска (время зарядки конденсатора). Приведенный выше текущий рейтинг действителен только для устойчивого состояния и не может покрывать это явление.Таким образом, I2t вводится производителями. В некоторых определениях это называется током плавления. Короче говоря, этот предохранитель рассчитан на переходные режимы. Произведение квадрата тока цепи на время должно быть меньше I2t устройства, чтобы избежать повреждения. Математически

Пример 2

У конкретного предохранителя I 2 t 100A 2 секунд. Каким должен быть максимально допустимый пусковой ток цепи, если разрешенный переходный период составляет 1 секунду?

Решение


Номинальное напряжение

Этот рейтинг часто недооценивается и неправильно понимается некоторыми разработчиками схем.Предохранитель подключен последовательно к цепи и имеет очень маленькое сопротивление, так почему номинальное напряжение имеет значение? В случае плавления предохранителя или просто при срабатывании предохранителя, если напряжение холостого хода превышает возможности устройства, может произойти взрыв и вызвать возгорание. Этот рейтинг больше связан с соображениями безопасности не только для цепи, но и для всей окружающей среды. Скажем, если напряжение холостого хода (при сгорании предохранителя) составляет 120 В, то номинал предохранителя должен быть больше этого значения.Математически


Изменение температуры

На допустимую нагрузку по току предохранителя сильно влияет рабочая температура. Как только рабочая температура станет высокой, допустимая токовая нагрузка снизится, и плавкий предохранитель расплавится раньше, поскольку он рассчитан на типовые или номинальные условия. Производители предохранителей предоставили график в своих таблицах данных, который показывает зависимость тока от рабочей температуры.Чтобы разместить пример, см. Ниже.

Рисунок 3 — Это пример максимальной токовой нагрузки предохранителя в зависимости от температуры окружающей среды. Чем выше температура, тем меньше ток предохранителя.

Рисунок 3 взят из техпаспорта определенного производителя предохранителей. Как вы можете видеть, при температуре окружающей среды 25 ° C допустимая нагрузка по току трех типов предохранителей составляет 100%. Однако после этой температуры пропускная способность по току начала уменьшаться.Например, допустимая нагрузка на плавкий предохранитель с задержкой срабатывания снизится примерно до 82% при температуре окружающей среды 65 ° C.

Прочая информация

В настоящее время предохранители

выпускаются в нескольких упаковках, поэтому выберите наиболее подходящий для вашей конструкции. Предохранители также характеризуются как быстродействующие или медленные. Быстрый удар — это быстродействующий тип, при этом номинальная сила I 2 т мала. Это подходит для чувствительных и / или критических цепей. С другой стороны, плавкий предохранитель с задержкой срабатывания является предохранителем с выдержкой времени, в котором номинал I2t относительно выше, чем быстродействующий.Это популярно в приложениях с большими конденсаторами, например, в импульсных источниках питания.

Ключом к правильному выбору предохранителя является понимание его работы и принципа действия. Предохранитель — это простой компонент, но в большинстве случаев он не разработан, что вызывает некоторые проблемы. Вы можете прочитать статью «Как выбрать предохранитель» в качестве дополнения к этому.

Связанные

.

Основной принцип работы индуктивного датчика приближения

Вы когда-нибудь задумывались, как индуктивный датчик приближения может определять присутствие металлической цели? Хотя лежащая в основе электротехника сложна, основной принцип работы понять нетрудно.

В основе индуктивного датчика приближения («прокс», «датчик» или «прокс-датчик» для краткости) лежит электронный генератор, состоящий из индукционной катушки, состоящей из множества витков очень тонкой медной проволоки, конденсатора для хранения электрического заряда, и источник энергии для электрического возбуждения.Размер индукционной катушки и конденсатора согласован для создания самоподдерживающихся синусоидальных колебаний с фиксированной частотой. Катушка и конденсатор действуют как две электрические пружины с грузом, подвешенным между ними, постоянно толкая электроны вперед и назад между собой. Электрическая энергия подается в цепь, чтобы инициировать и поддерживать колебания. Без поддержания энергии колебания исчезли бы из-за небольших потерь мощности из-за электрического сопротивления тонкой медной проволоки в катушке и других паразитных потерь.

Колебание создает электромагнитное поле перед датчиком, потому что катушка расположена прямо за «лицевой стороной» датчика. Техническое название лицевой панели датчика — «активная поверхность».

Когда кусок проводящего металла входит в зону, определяемую границами электромагнитного поля, часть энергии колебаний передается металлу цели. Эта переданная энергия проявляется в виде крошечных циркулирующих электрических токов, называемых вихревыми токами.Вот почему индуктивные датчики иногда называют вихретоковыми датчиками.

Протекающие вихревые токи сталкиваются с электрическим сопротивлением, пытаясь циркулировать. Это создает небольшую потерю мощности в виде тепла (как маленький электрический нагреватель). Потери мощности не полностью компенсируются внутренним источником энергии датчика, поэтому амплитуда (уровень или интенсивность) колебаний датчика уменьшается. В конце концов, колебания уменьшаются до такой степени, что другая внутренняя цепь, называемая триггером Шмитта, обнаруживает, что уровень упал ниже заранее определенного порога.Basic_Oper_Inductive_Sensor Этот порог — уровень, при котором присутствие металлической цели точно подтверждается. При обнаружении цели триггером Шмитта включается выход датчика.

На короткой анимации справа показано влияние металлической цели на колеблющееся магнитное поле датчика. Когда вы видите, что кабель, выходящий из датчика, становится красным, это означает, что обнаружен металл и датчик был включен. Когда цель уходит, вы можете видеть, что колебания возвращаются к своему максимальному уровню, и выход датчика снова отключается.

Хотите узнать больше об основных принципах работы индуктивных датчиков приближения? Вот короткое видео на YouTube, посвященное основам:

Как это:

Нравится Загрузка …

Генри Менке

У меня есть электротехническое образование, которое дает мне прочную техническую основу для моей нынешней должности директора по маркетингу продуктов.

.Магнетрон

, Часть 1: Применение и принципы работы

Магнетрон с вакуумной трубкой почти устарел (за исключением миллионных потребительских микроволновых печей. Его разработка была ключом к созданию высокоэффективного радара во время Второй мировой войны, а также привела к созданию других радиолокационных и радиочастотных устройств). микроволновые вакуумные ламповые приборы.

Электронные лампы такие «вчерашние», не так ли? Они были устаревшими и заменены твердотельными устройствами по многим причинам, за исключением некоторых узкоспециализированных приложений, таких как некоторые радиолокационные передатчики.Точно так же почтенная электронно-лучевая трубка (ЭЛТ), которая десятилетиями использовалась в домашних телевизорах, осциллографах, пользовательских консолях, мониторах и всевозможных дисплеях, была заменена устройствами с плоским экраном

Конечно, ЭЛТ больше не существует, но есть еще одна электронная лампа, которая выживает при широком использовании в конкретном приложении — хотя во многих других она в значительной степени устарела. Как же так? Если у вас есть микроволновая печь на кухне, у вас дома есть вакуумная трубка, называемая магнетроном. Тем не менее, по мнению многих экспертов и историков, это скромное и непритязательное действующее устройство также изменило ход Второй мировой войны.

Q: Что такое магнетрон?

A: Магнетрон — это специализированная электронная лампа, которая выполняет одно предназначение: это источник генератора мощности для частот от нескольких сотен МГц до нескольких ГГц. В зависимости от размера и других факторов он может производить от десятков и сотен ватт до киловатт.

Q: Зачем вообще изучать это уникальное и несколько устаревшее устройство?

A: Есть как минимум три причины: он все еще широко используется, и каждый год производятся миллионы; большие используются для радиолокационных и радиовещательных операций; Кроме того, он научил ученых и инженеров электронным устройствам, которые используют электромагнитные принципы и сочетают электрические и магнитные радиочастотные поля и многое другое, что приводит к созданию важных радиочастотных / микроволновых устройств, таких как лампа бегущей волны (ЛБВ).

Q: Каков физический принцип и основная конструкция магнетрона?

A: В отличие от генератора, построенного вокруг резонансного контура, состоящего из дискретных катушек индуктивности и конденсаторов, магнетрон использует уникальную физическую структуру в сочетании с комбинацией электрических полей, движения электронов и магнитных полей в ограниченной металлической полости. Хотя магнетрон представляет собой вакуумную трубку, он очень сильно отличается от обычной вакуумной трубки, в которой используются электроны, испускаемые нагретым катодом и движущиеся по прямой к положительно заряженному аноду, при этом их путь перемещения модулируется электрическим полем промежуточная сетка.

У обычной вакуумной лампы нет магнитного аспекта. Напротив, магнетрон представляет собой устройство «скрещенного поля», которое использует электрическое поле в сочетании с магнитным полем, при этом силовые линии поля расположены под прямым углом друг к другу. (Название «магнетрон» представляет собой сочетание «магнитного» и «электронного»)

Q: Как работает магнетрон?

A: Анализ магнетрона может варьироваться от качественного объяснения до высокотехнологичного анализа с использованием передовой теории электромагнитного поля и математики.Мы будем использовать более качественный подход.

Q: Каково физическое устройство магнетрона?

magnetron

Рис. 1. Магнетрон с вакуумной трубкой использует резонансные полости на аноде, в которые электроны, испускаемые нагретым катодом, направляются мощным статическим магнитным полем под прямым углом. (Изображение: Hyperphysics / Государственный университет Джорджии)

A: В базовом первом магнетроне — и, конечно же, есть много вариантов — использовался сплошной медный блок (для рассеивания тепла), просверленный с отверстиями (называемыми полостями) (рис. 1) .Размер этих полостей имеет решающее значение для установления рабочей частоты магнетрона. Эта физическая конструкция и устройство радикально отличаются от вакуумной трубки со стеклянной оболочкой, которая использовалась в попытке эффективно генерировать короткие волны и высокие частоты, необходимые для ВЧ / СВЧ-конструкций (1 ГГц = 1000 МГц = 0,3 метра = 30 см). .

Q: Как это устройство работает при подаче напряжения?

A: Катод в центре (который нагревается нитью накала) испускает электроны так же, как катод стеклянной вакуумной трубки, но на этом их сходство заканчивается.Эти электроны обычно притягиваются и движутся в виде радиальных спиц к внешнему кольцу в качестве анода, который заряжен положительно (как пластина трубки). Однако имеется мощное статическое магнитное поле (синие линии), направленное вдоль оси сердечника магнетрона. Это поле заставляет электроны двигаться по круговой схеме потока к внешнему кольцу (красные линии). Магнитное поле изначально создавалось электромагнитами, но, поскольку годы спустя были разработаны более мощные постоянные магниты, они стали использоваться вместо них.

Q: Кажется, что все, что было сделано, — это сдвинуть статический электрический поток, а колебания отсутствуют — так как же магнетрон производит колебания?

A: Магнитное поле отклоняет электроны, и они «кружатся» по кругу. При этом они «качают» на собственной резонансной частоте резонаторов. Результирующий ток вокруг полостей заставляет их излучать электромагнитную энергию на резонансной частоте полостей.

В: Это все? Как можно использовать эту резонансную энергию?

A: С точки зрения физики работа выполняется над электронами, и они поглощают энергию от приложенного источника питания, приложенного к аноду.Электроны продолжают движение и достигают энергетического уровня, на котором имеется избыточный отрицательный заряд, и этот заряд выталкивается обратно вокруг полости. Это, в свою очередь, передает энергию колебаниям на собственной частоте резонатора (накачка). Полость аналогична резонансному ЖК-резервуару: положительно заряженное поле расположено вдоль одного края открытой стороны полости, а отрицательно заряженное поле выровнено вдоль другого края, поэтому отделенная строка функционирует как конденсатор с вакуумом. зазор для интервала.

Q: Как энергия колебаний извлекается из полости магнетрона и используется в системе?

A: Коаксиальная муфта с датчиком точного размера вставлена ​​сбоку в одну полость для захвата энергии от блока, Рис. 2 ; он функционирует как приемная антенна для электромагнитной энергии.

Рис. 2. Зонд с согласованной частотой вставляется в отверстие в одной из полостей для перехвата и извлечения колеблющейся высокочастотной энергии в магнетроне.(Изображение: Руководство EU Radar)

Q: Что задает частоту колебаний магнетрона?

A: Размер и расположение полостей определяют частоту, поскольку они действуют как резонансные камеры. Магнетроны обычно имеют небольшой регулировочный винт для изменения размера полости, поэтому физические размеры можно регулировать для резонанса с точной желаемой частотой, несмотря на неизбежные производственные допуски. Обратите внимание, что магнетрон — это устройство с фиксированной частотой и его нельзя перестраивать, хотя есть несколько продвинутых и более сложных версий, которые имеют скромный диапазон настройки.

Часть 2 этого FAQ будет посвящена истории и роли магнетрона, а также его будущему и возможной кончине.

EE World Online Справочные материалы

Список литературы

  • Википедия, «Полостной магнетрон» (есть ссылки на многие исторические ссылки)
  • Объясните этот материал, «Как работают магнетроны»
  • Государственный университет Джорджии, Гиперфизика, «Магнетрон»
  • Государственный университет Джорджии, Гиперфизика, «Микроволновые печи»
  • Микроволны101, «Магнетроны»
  • Вики по истории инженерии и технологии, «Полостной магнетрон»
  • Музей клапанов, «CV64»
  • Лампы и трубки, «CV64 Ранний британский магнетрон с резонаторами S-диапазона»
  • Radar Tutorial EU, «Магнетрон»
  • Амплеон Н.В., «РФ твердотельная кулинария»
  • ARMMS RF and Microwave Society, «Краткое изложение разработки магнетронов»

.

Что такое емкостный преобразователь? — Определение, принцип, преимущества, недостатки и использование

Определение: Емкостной преобразователь используется для измерения смещения, давления и других физических величин. Это пассивный преобразователь, поэтому для работы ему требуется внешнее питание. Емкостной преобразователь работает по принципу переменной емкости. Емкость емкостного преобразователя изменяется по многим причинам, таким как перекрытие пластин, изменение расстояния между пластинами и диэлектрическая проницаемость.

Емкостной преобразователь содержит две параллельные металлические пластины. Эти пластины разделены диэлектрической средой, которая представляет собой воздух, материал, газ или жидкость. В обычном конденсаторе расстояние между пластинами фиксировано, но в емкостном преобразователе расстояние между ними варьируется.

Емкостной преобразователь использует электрическую величину емкости для преобразования механического движения в электрический сигнал. Входная величина вызывает изменение емкости, которая напрямую измеряется емкостным преобразователем.

Конденсаторы измеряют как статические, так и динамические изменения. Смещение также измеряется напрямую путем подсоединения измеряемых устройств к подвижной пластине конденсатора. Он работает как в контактном, так и в бесконтактном режимах.

Принцип работы

Уравнения ниже выражают емкость между пластинами конденсатора capactive-equation-1

Где A — площадь перекрытия пластин в м 2
d — расстояние между двумя пластинами в метрах
ε — диэлектрическая проницаемость среды в Ф / м
ε r — относительная диэлектрическая проницаемость
ε 0 — диэлектрическая проницаемость свободного места

Принципиальная схема емкостного преобразователя с параллельными пластинами показана на рисунке ниже.capacitive-transducer

Изменение емкости происходит из-за физических переменных, таких как смещение, сила, давление и т. Д. Емкость преобразователя также изменяется в зависимости от изменения их диэлектрической проницаемости, что обычно связано с измерением уровня жидкости или газа.

Емкость преобразователя измеряется по мостовой схеме. Выходное сопротивление датчика равно capacitive-transducer-2

.

Где, C — емкость
f — частота возбуждения в Гц.

Емкостной преобразователь в основном используется для измерения линейного смещения. Емкостной преобразователь использует следующие три эффекта.

  1. Изменение емкости преобразователя происходит из-за перекрытия пластин конденсатора.
  2. Изменение емкости связано с изменением расстояний между пластинами.
  3. Емкость изменяется из-за диэлектрической проницаемости.

Для измерения смещения используются следующие методы.

1. Преобразователь, использующий изменение площади пластин — Уравнение ниже показывает, что емкость прямо пропорциональна площади пластин. Соответственно изменяется и емкость с изменением положения пластин.

capacitive-transducer-with-displacement

Емкостные преобразователи используются для измерения больших перемещений от 1 мм до нескольких см. Площадь емкостного преобразователя изменяется линейно в зависимости от емкости и смещения.Изначально нелинейность в системе возникает из-за ребер. В противном случае он дает линейный отклик.

Емкость параллельных пластин определяется как capacitive-transducer-equation-4

где x — длина перекрывающейся части пластин
ω — ширина перекрывающейся части пластин.

Чувствительность смещения постоянна, поэтому она дает линейную зависимость между емкостью и смещением. capacitive-transducer-5

Емкостной преобразователь используется для измерения углового смещения.Он измеряется подвижными пластинами, показанными ниже. Одна из пластин преобразователя неподвижная, а другая подвижная. angular-capacitive-transducer

Векторная диаграмма преобразователя показана на рисунке ниже.

capacative-transducer Угловое перемещение изменяет емкость преобразователей. Емкость между ними максимальна, когда эти пластины перекрывают друг друга. Максимальное значение емкости выражается как capacitive-transducer-equation-7

Емкость при угле θ выражается как capacitvie-transducer-equation-8

θ — угловое смещение в радианах.Чувствительность к изменению емкости определяется как capacitive-transducer-equation-9

.

180 ° — это максимальное значение углового смещения конденсатора.

2. Преобразователь, использующий изменение расстояния между пластинами — Емкость преобразователя обратно пропорциональна расстоянию между пластинами. Одна пластина преобразователя неподвижна, а другая подвижна. Смещение, которое необходимо измерить, связано с подвижными пластинами. displacement-capacitive-transducer

Емкость обратно пропорциональна расстоянию, из-за которого конденсатор показывает нелинейный отклик.Такой тип преобразователя используется для измерения малых перемещений. Векторная диаграмма конденсатора представлена ​​на рисунке ниже. capacitive-transducer-3

Чувствительность преобразователя непостоянна и варьируется от места к месту.

Преимущества емкостного преобразователя

Ниже приведены основные преимущества емкостных преобразователей.

  1. Для работы требуется внешняя сила, поэтому он очень полезен для небольших систем.
  2. Емкостной преобразователь очень чувствителен.
  3. Дает хорошие частотные характеристики, поэтому используется для динамического исследования.
  4. Преобразователь имеет высокое входное сопротивление, следовательно, они имеют небольшой эффект нагрузки.
  5. Для работы требуется небольшая выходная мощность.

Недостатки емкостного преобразователя

Основные недостатки преобразователя следующие.

  1. Металлические части преобразователей требуют изоляции.
  2. Корпус конденсатора требует заземления для уменьшения влияния паразитного магнитного поля.
  3. Иногда преобразователь демонстрирует нелинейное поведение из-за краевого эффекта, который контролируется с помощью защитного кольца.
  4. Кабель, соединяющий датчик, вызывает ошибку.

Использование емкостного преобразователя

Ниже приведены варианты использования емкостного преобразователя.

  1. Емкостной преобразователь используется для измерения как линейного, так и углового смещения. Он чрезвычайно чувствителен и используется для измерения очень малых расстояний.
  2. Используется для измерения силы и давления. Сила или давление, которые должны быть измерены, сначала преобразуются в смещение, а затем смещение изменяет емкости преобразователя.
  3. Он используется в качестве датчика давления в некоторых случаях, когда диэлектрическая проницаемость датчика изменяется в зависимости от давления.
  4. Влажность газов измеряется емкостным датчиком.
  5. Преобразователь использует механический модификатор для измерения объема, плотности, веса и т. Д.

Точность преобразователя зависит от изменения температуры до высокого уровня.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *