Протон. Протон чему равен
Протон — Традиция
Материал из свободной русской энциклопедии «Традиция»
Прото́н (от др.-греч. πρῶτος — первый, основной) — элементарная частица, имеющая положительный электрический заряд и входящая в состав ядра каждого атома. Общим названием для протонов и нейтронов является нуклон.
Свободный протон, не связанный с нуклонами, электронами и другими частицами, является стабильным и не испытывает распада. Протон быстро связывается с электронами, поэтому свободные протоны наблюдаются лишь при достаточно больших энергиях или температуре среды, в состоянии плазмы. При движении быстрых протонов в веществе они тормозятся за счёт столкновений с ядрами и электронными облаками, производя ионизацию атомов, а затем вступают в химическую реакцию или захватывают электрон, превращаясь в атомы водорода.
Протоны составляют более 90 % частиц, входящих в состав космических лучей. В составе водорода протоны составляют основу молекулярных облаков, распространённых в межзвёздном пространстве. В земных условиях атомы водорода соединяются в молекулы, образуя газ, который используется в промышленности для различных целей. Ускоренные протоны являются важным источником частиц в ускорителях.
Распады нейтронов приводят к образованию протонов, электронов и антинейтрино. Кроме этого, протоны могут излучаться некоторыми атомными ядрами при их радиоактивном распаде.
Протоны принимают участие в термоядерных реакциях, которые являются основным источником энергии, генерируемой звёздами. В частности, реакции pp-цикла, который является источником почти всей энергии, излучаемой Солнцем, сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.
Физические свойства[править]
Протон относится к барионам, имеет спин 1/2, электрический заряд +1 в единицах элементарного заряда, что равно 1,602176565(35) × 10−19 К. Электрический дипольный момент не превышает значения 5,4 × 10−24 К•см. Электрическая поляризуемость протона равна 1,20(6) × 10−48 м3 ,[1] а магнитная поляризуемость равна 1,9(5) × 10−49 м3.
Магнитный момент протона равен 1,410606743(33) × 10−26 Дж•Т−1, что в 2,792847356(23) раз больше амплитуды магнитного момента нейтрона. Отношение магнитного момента протона к магнетону Бора равно 1,521032210(12) × 10−3.
В физике элементарных частиц протон рассматривается как нуклон с проекцией изоспина +1/2 (в ядерной физике принят противоположный знак проекции изоспина). Протон участвует в четырёх фундаментальных взаимодействиях, среди которых гравитация, электромагнитное взаимодействие, сильное взаимодействие, слабое взаимодействие.
Структура[править]
Согласно квантовой хромодинамике, протон является фермионом со спином ½ и состоит из трёх кварков (один d-кварк и два u-кварка). Предполагается, что кварки связаны друг с другом посредством сильного взаимодействия, переносчиком которого являются глюоны. В теории также допускается наличие внутри протона виртуальных (морских) кварков. Сильное взаимодействие кварков за пределами протонов и нейтронов превращается в ядерные силы, скрепляющие нуклоны в атомных ядрах.
Масса[править]
Масса протона, выраженная в разных единицах, составляет:
(рекомендованные значения CODATA 2010 года, в скобках указана погрешность величины в единицах последней значимой цифры, одно стандартное отклонение).
В стандартной модели масса трёх токовых кварков, образующих протон, составляет около 1 % массы протона. Считается, что остальная масса протона возникает за счёт кинетической энергии движения этих кварков и массы-энергии глюонного поля.[3]
В квантовой хромодинамике масса протона вычисляется наиболее точно с помощь методики, называемой КХД на решётке или решёточной КХД. [4]
Радиус[править]
В первом приближении распределение заряда внутри протона может быть описано экспоненциальной функцией. [5]
Зарядовый радиус протона по данным CODATA составляет 0,8775(51) фм. [2] К известным способам оценки радиуса протона относятся эксперименты по рассеянию электронов, фотонов и нуклонов на протонной мишени, [6] и эксперименты с системой из протона и отрицательного мюона. [7] В зависимости от типа эксперимента и способа обработки результатов, получаются несколько отличающиеся величины радиуса, требующие дополнительного объяснения.
Стабильность[править]
Протон считается стабильной частицей, так как распад свободного протона никогда не наблюдался. Некоторые Теории Великого объединения в физике элементарных частиц предсказывают распад протона с временем его жизни порядка 1036 лет. С целью определения времени жизни протона проводились различные эксперименты в отношении возможных его распадов на разные частицы.
Нижнее ограничение на время жизни протона — 2,1×1029 лет независимо от канала распада, было получено в нейтринной лаборатории в Канаде (Sudbury Neutrino Observatory). [8] В эксперименте изучалось гамма-излучение, которое могло появиться при распаде протона в составе ядра кислорода-16.
Время жизни 6,6×1033 лет для распада протона на антимюон и нейтральный пион, и 8,2×1033 лет для распада в позитрон и нейтральный пион дали эксперименты на детекторе в Super-Kamiokande, Япония. [9]
Несмотря на свою стабильность, протон может превратиться в нейтрон в таком процессе, как электронный захват (или обратный бета-распад). Уравнение реакции подразумевает излучение электронного нейтрино: $$~p^+ + e^- \rightarrow n + \nu_e .$$
В обратной реакции бета-распада свободный нейтрон самопроизвольно, с периодом порядка 15 минут, распадается на протон, электрон и электронное антинейтрино.
Химические свойства[править]
Зарядовое число[править]
Протоны (вместе с нейтронами) являются основными составляющими атомных ядер. Порядковый номер химического элемента в периодической таблице определяется зарядом ядра его атомов, который, в свою очередь, равен количеству протонов в ядре (протонному числу). В нейтральном атоме количество отрицательно заряженных электронов в электронной оболочке атома и количество положительно заряженных протонов в ядре атома одинаково и суммарный заряд атома равен нулю. Химические свойства атомов зависят от количества имеющихся у них электронов, поэтому можно считать, что зарядовое число характеризует и химические свойства.
Кроме зарядового числа, у атомов в ядре имеется некоторое число нейтронов. В зависимости от числа нейтронов, ядра с одним и тем же зарядовым числом принадлежат тому или иному изотопу химического элемента.
Ион водорода[править]
Ядро атома водорода состоит из одного протона. Протон в химическом смысле является ядром атома водорода (точнее, его лёгкого изотопа — протия) без электрона. В физике протон обозначается буквой p (или p+). Химическое обозначение протона (рассматриваемого в качестве положительного иона водорода) — H+, астрофизическое — HII.
Свободный протон является химически активным реагентом и потому имеет малое время жизни в химических системах, где быстро захватывает электронное облако у какой-нибудь молекулы. В водных растворах водород образует гидроксоний, h4O+, который затем может войти в более сложные катионы с молекулами воды, например в [H5O2]+ и [H9O4]+.[10]
В протонной теории Брёнстеда — Лоури кислоты являются донорами протонов, а основания – акцепторами протонов. В химической реакции, сопровождающейся переносом протона, всегда имеется и кислота и основание. В биохимии используется термин протонный насос, обычно для обозначения мембранного белкового аппарата, служащего для переноса гидроксония через мембраны клеток и митохондрий.
Ионы тяжёлого водорода, дейтерия и трития, лишённые электронов, называются дейтрон и тритон, соответственно.
Протонный магнитный резонанс[править]
В химии связанные в молекулах протоны могут быть обнаружены и исследованы с помощью протонного магнитного резонанса. В этом методе используется эффект переворота спина протонов под действием радиоизлучения соответствующей частоты.
В 1815 году Уильям Праут предположил, что все атомы состоят из атомов водорода, основываясь на том, что относительная атомная масса химических элементов приблизительно пропорциональна целым числам. Более точные измерения показали, что гипотеза Праута неверна. В 1886 году Eugen Goldstein открыл анодные (каналовые) лучи и показал, что они являются потоком положительно заряженных ионов, образующихся в газе. Отношение массы к заряду ионов у разных газов оказалось различным, достигая минимума у водородных ионов. В 1896 в катодных лучах был открыт отрицательно заряженный электрон.
После открытия Резерфордом атомных ядер в 1911 году, Антониус ван ден Брук предположил, что атомный номер химического элемента, задающий положение элемента в периодической таблице, равен заряду ядра. Генри Мозли подтвердил это экспериментально в 1913 году с помощью рентгеноспектрального анализа.
Открытие протона относится к 1917 году, когда Резерфорд своими экспериментами доказал, что ядро водорода присутствует также в других атомах. [11] До этого Резерфорд обнаружил ядра водорода с помощью сцинтилляционных счётчиков в водородном газе, после облучения газа альфа-частицами. Облучение альфа-частицами воздуха и азота также производило ядра водорода. При столкновении альфа-частицы с ядром азота возникает кислород-17 и вылетает протон, ядерная реакция записывается следующим образом: 14N + α → 17O + p.
Открытия Резерфорда показали, что не весь атом водорода, как это предполагал Праут, а только ядро водорода, является наименьшей и универсальной частицей, входящей в состав каждого ядра. Резерфорд выбрал для наименования ядра водорода два названия – протон, основываясь на греческом слове πρῶτον, то есть первый, и prouton, в честь Праута. [12] В 1920 году Британская ассоциация развития науки остановила свой выбор на слове протон, учитывая также название protyle, которое дал Праут водородному атому как универсальному объекту для всех атомов в своей гипотезе.
Действие протонного излучения[править]
Комплект научных инструментов для исследования лунной поверхности по программе «Аполлон» ALSEP определил, что более 95 % частиц в солнечном ветре представляют собой поровну протоны и электроны. [13][14]
Поскольку спектрометр солнечного ветра делает непрерывные измерения, стало возможным измерить, как магнитное поле Земли действует на прилетающие частицы солнечного ветра. Приблизительно две трети своей орбиты Луна проходит за пределами основного магнитного поля Земли. При этом концентрация протонов колеблется от 10 до 20 штук в кубическом сантиметре, а скорости протонов лежат в интервале 400 – 600 км/с. В течение 5 дней Луна находится в геомагнитном поясе нашей планеты, где обычно частицы солнечного ветра отсутствуют. В остальное время Луна находится в промежуточном поясе, в магнитной оболочке, где магнитное поле Земли заметно действует на солнечный ветер. Здесь скорости протонов уменьшаются до 250 – 450 км/с, поток протонов снижается. Когда на Луне ночь, спектрометр закрывается от солнечного ветра Луной и протоны не регистрируются. [13]
Основными источниками солнечных протонов являются корональные выбросы массы. Протоны возникают также в других звёздах и видны в составе галактических космических лучей, где их доля достигает 90 %. Эти протоны могут иметь очень большие энергии по сравнению с солнечными протонами, а их поток заметно более однородный и изотропный.
В потоках протонов космические корабли приобретают положительный заряд.[15]
Протоны могут оказывать негативное действие на здоровье людей, особенно в космосе. [14][16]
Проводимые исследования нацелены на определение того, какие хромосомы могут повреждаться потоками протонов, приводя к раковым заболеваниям. [14] Изучаются также нейрохимические и поведенческие нарушения, включая функции гормона дофамина, действие амфетамина, память и пространственную ориентацию. [16] Разрабатываются методы защиты от солнечных вспышек и галактических космических лучей. В космическом полёте Спейс Шаттла «Колумбия» по программе STS-65 и в аналогичных советских программах проводились различные медико-биологические исследования, включая влияние излучения протонов и тяжёлых ионов на микроорганизмы. [17]
CPT-инвариантность связывает между собой частицы и античастицы, так что свойства антипротона могут быть определены через свойства протона. Сумма зарядов протона и антипротона должна равняться нулю, что было проверено с точностью 1 к 108, и с такой же точностью получено равенство их масс. Ловушка Пеннинга позволяет улучшить результат для отношения масс до точности 1 к 6 •109. [18]
Магнитный момент антипротона равен магнитному моменту протона с точностью 8 •10–3ядерного магнетона, и противоположен по направлению.
Субстанциональная модель[править]
В теории бесконечной вложенности материи предполагается, что на уровне атомов и частиц действует сильная гравитация, удерживающая вещество элементарных частиц от распада, соединяющая нуклоны в ядрах и участвующая в образовании связей электронов с ядрами атомов. Рассматривается также модель кварковых квазичастиц, согласно которой кварки являются не настоящими частицами, а квазичастицами, пригодными лишь для описания свойств симметрии элементарных частиц. Отсюда следуют гравитационная модель сильного взаимодействия и субстанциональная модель протона. При известной величине постоянной сильной гравитации становится возможным вычислить радиус протона \(~ R_p =8,73\cdot 10^{-16}\) м. [19] и объяснить квантовый спин протона на основе равенства полного потока энергии гравитационного поля и потока кинетической энергии вращающегося вещества протона. [20]
Интересные факты[править]
- Отношение масс протона и электрона, равное 1836,152 672 45(75) [2], с точностью до 0,002% равно значению \(6 \pi^5= 1836,118~108~711...\)
- Ультрарелятивистские протоны (как и любые другие адроны, а также атомные ядра) для неподвижного наблюдателя имеют форму двояковогнутой линзы [21].
- Все известные свойства протона систематически изложены в публикации Particle Data Group. [2](англ.)
- ↑ Yao W.-M. et al., (Particle Data Group), Physics Letters, Vol. B667, P. 1 (2008) and 2009 partial update for the 2010 edition. [1]
- ↑ а б в г д е P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 6.0). This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: http://physics.nist.gov/constants [Thursday, 02-Jun-2011 21:00:12 EDT]. National Institute of Standards and Technology, Gaithersburg, MD 20899.
- ↑ Quarks and Nuclei. — World Scientific, 1984. — С. 65–66. — ISBN 9971-966-61-1>
- ↑ S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz, S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo, and G. Vulvert (21 November 2008). "Ab Initio Determination of Light Hadron Masses". Science 322 (5905): 1224–7. DOI:10.1126/science.1163233. PMID 19023076.
- ↑ Fundamentals in Nuclear Physics. — Springer, 2005. — ISBN 0-387-01672-4>
- ↑ Ingo Sick. On the rms-radius of the proton. Phys.Lett.B576:62-67,2003.
- ↑ Randolf Pohl at all. The size of the proton. Nature, 2010, Vol. 466, P. 213–216.
- ↑ S.N. Ahmed et al. (SNO Collaboration) (2004). "Constraints on nucleon decay via invisible modes from the Sudbury Neutrino Observatory". Physical Review Letters 92 (10). DOI:10.1103/PhysRevLett.92.102004. PMID 15089201.
- ↑ H. Nishino et al (Kamiokande collaboration) (2009). Search for Proton Decay via p → e + π0 and p → μ + π0 in a Large Water Cherenkov Detector. Physical Review Letters 102 (14): 141801. doi: 10.1103/PhysRevLett.102.141801.
- ↑ Headrick, J.M.; Diken, E.G.; Walters, R. S.; Hammer, N. I.; Christie, R.A. ; Cui, J.; Myshakin, E.M.; Duncan, M.A.; Johnson, M.A.; Jordan, K.D. (2005). "Spectral Signatures of Hydrated Proton Vibrations in Water Clusters". Science 308 (5729): 1765–69. DOI:10.1126/science.1113094. PMID 15961665.
- ↑ R.H. Petrucci, W.S. Harwood, and F.G. Herring. General Chemistry. 8th edition. page 41. (2002).
- ↑ Romer A (1997). "Proton or prouton? Rutherford and the depths of the atom". Amer. J. Phys. 65 (8). DOI:10.1119/1.18640.
- ↑ а б "Apollo 11 Mission". Lunar and Planetary Institute. 2009. Retrieved 2009-06-12.
- ↑ а б в "Space Travel and Cancer Linked? Stony Brook Researcher Secures NASA Grant to Study Effects of Space Radiation". Brookhaven National Laboratory. 12 December 2007. Retrieved 2009-06-12.
- ↑ N.W. Green and A.R. Frederickson. "A Study of Spacecraft Charging due to Exposure to Interplanetary Protons" (PDF). Jet Propulsion Laboratory. Retrieved 2009-06-12.
- ↑ а б B. Shukitt-Hale, A. Szprengiel, J. Pluhar, B.M. Rabin, and J.A. Joseph. "The effects of proton exposure on neurochemistry and behavior". Elsevier/COSPAR. Retrieved 2009-06-12.
- ↑ Space and life: an introduction to space biology and medicine. — CRC Press, 2004. — С. 135–138. — ISBN 0-415-31759-2>
- ↑ G. Gabrielse (2006). "Antiproton mass measurements". International Journal of Mass Spectrometry 251 (2–3): 273–280. DOI:10.1016/j.ijms.2006.02.013.
- ↑ Fedosin S.G. The radius of the proton in the self-consistent model. Hadronic Journal, 2012, Vol. 35, No. 4, P. 349 – 363; статья на русском языке: Радиус протона в самосогласованной модели.
- ↑ Комментарии к книге: Федосин С.Г. Физические теории и бесконечная вложенность материи. Пермь, 2009, 844 стр., Табл. 21, Ил.41, Библ. 289 назв. ISBN 978-5-9901951-1-0
- ↑ Иванов И. «Какую форму имеет быстро летящий протон?» = B. Blok, L. Frankfurt, M. Strikman. On the shape of a rapid hadron in QCD.
Внешние ссылки[править]
traditio.wiki
Протон — стабильная частица из класса адронов, ядро атома водорода. Трудно сказать, какое событие следует считать открытием протона: ведь как ион водорода он был известен уже давно. В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и открытие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906 — 1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона первые фотографии следов протона, одновременно подтвердив открытие искусственного превращения элементов. В этих опытах альфа-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода. Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атомный номер данного элемента. Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона. Это проверено на эксперименте с точностью до 10-21. Масса протона = (938,2796 ± 0,0027) МэВ или = 1,6∙10-24 г, т. е. протон в 1836 раз тяжелее электрона! С современной точки зрения протон не является истинно элементарной частицей: он состоит из двух u-кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d-кварка с электрическим зарядом — 1/3. Кварки связаны между собой обменом другими гипотетическими частицами — глюонами, квантами поля, переносящего сильные взаимодействия. Данные экспериментов, в которых рассматривались процессы рассеяния электронов на протонах, действительно свидетельствуют о наличии внутри протонов точечных рассеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечные размеры = 10-13 см, хотя, разумеется, его нельзя представлять как твердый шарик. Скорее, протон напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц. Протон, как и все адроны, участвует в каждом из фундаментальных взаимодействий. Так: сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимодействия — протоны и электроны в атомах. Примерами слабых взаимодействий могут служить бета-распад нейтрона n → р + е- + νе , или внутриядерное превращение протона в нейтрон с испусканием позитрона и нейтрино p → n + е+ + νе ,(для свободного протона такой процесс невозможен в силу закона сохранения и превращения энергии, так как нейтрон имеет несколько большую массу). Спин протона равен 1/2. Адроны с полуцелым спином называются барионами (от греческого слова, означающего «тяжелый»). К барионам относятся протон, нейтрон, различные гипероны (Λ, Σ, Ξ, Ω) и ряд частиц с новыми квантовыми числами, большинство из которых еще не открыто. Для характеристики барионов введено особое число — барионный заряд, равный 1 для барионов, — 1 - для антибарионов и 0 — для всех прочих частиц. Барионный заряд не является источником барионного поля, он введен лишь для описания закономерностей, наблюдавшихся в реакциях с частицами. Эти закономерности выражаются в виде закона сохранения барионного заряда: разность между числом барионов и антибарионов в системе сохраняется в любых реакциях. Сохранение барионного заряда делает невозможным распад протона, ибо он легчайший из барионов. Этот закон носит эмпирический характер и, безусловно, должен быть проверен на эксперименте. Точность закона сохранения барионного заряда характеризуется стабильностью протона, экспериментальная оценка для времени жизни которого, дает значение не меньше 1032 лет В то же время в теориях, объединяющих все виды фундаментальных взаимодействий, предсказываются процессы, приводящие к нарушению барионного заряда и к распаду протона (например, р → π0 + е+). Время жизни протона в таких теориях указывается не очень точно: примерно 1032±2 лет. Это время огромно, оно во много раз больше времени существования Вселенной (≈ 2∙1010 лет). Поэтому протон практически стабилен, что сделало возможным образование химических элементов и в конечном итоге появление разумной жизни. Однако поиски распада протона представляют сейчас одну из важнейших задач экспериментальной физики. При времени жизни протона = 1032 лет в объеме воды в 100 м3 (1 м3 содержит = 1030 протонов) следует ожидать распада одного протона в год. Остаётся «всего лишь» зарегистрировать этот распад. Открытие распада протона станет важным шагом к правильному пониманию единства сил природу. Так, протон описывается в классическом варианте. Общая теория взаимодействий рассматривает протон более детально и конкретно. Заработать в интернете - как, сколько, где |
Общая теория взаимодействий General theory of interactions
Конец света 2012 Летающие тарелки Анализ послания инопланетян Расшифровка кругов на полях Как научиться Как научиться петь Как научиться читать реп Обучение иностранному языкуКак соблазнять парней Как научиться заигрывать с парнями Как мне научиться нравиться парням Как понять, что нравишься Как завоевать мужчину Как выспаться за 4 часа Как создать сайт самостоятельно Раскрутка сайтов в интернете ФОРУМ БЛОГ Гостевая книга НОВОСТИ Галактика Разума |
www.b-i-o-n.ru
Протон — Викизнание... Это Вам НЕ Википедия!
Прото́н (от др. греческого πρῶτος — первый, основной) — элементарная частица. Относится к барионам, имеет спин 1/2. Стабилен.
Протоны принимают участие в термоядерных реакциях, которые являются основным источником энергии, генерируемой звёздами. В частности, реакции pp-цикла, который является источником почти всей энергии, излучаемой Солнцем, сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.
В физике протон обозначается буквой p (или p+). Химическое обозначение протона (рассматриваемого в качестве положительного иона водорода) — H+, астрофизическое — HII.
Открытие протона[править]
Существует неоднозначность в определении открытия протона.
Эрнест Резерфорд в 1919 году, облучая альфа-частицами ядра азота, наблюдал образование ядер водорода. Образующуюся в результате столкновения частицу Резерфорд назвал протоном. Первые фотографии следов протона в камере Вильсона были получены в 1925 году Патриком Блэкеттом. Но сами ионы водорода (чем и являются протоны) были известны задолго до опытов Резерфорда.
Свойства протона[править]
Относится к барионам, имеет спин 1/2, электрический заряд +1 (в единицах элементарного электрического заряда). В физике элементарных частиц рассматривается как нуклон с проекцией изоспина +1/2 (в ядерной физике принят противоположный знак проекции изоспина). Состоит из трёх кварков (один d-кварк и два u-кварка). Стабилен (нижнее ограничение на время жизни — 2,9×1029 лет независимо от канала распада, 1,6×1033 лет для распада в позитрон и нейтральный пион).
Масса протона, выраженная в разных единицах, составляет (рекомендованные значения CODATA 2014 года, в скобках указана погрешность величины в единицах последней значимой цифры, одно стандартное отклонение):
Внутренняя чётность: равна 1. [5]
Отношение масс протона и электрона, равное 1836,152 673 89(17), [4] с точностью до 0,002 % равно значению
Магнитный момент протона измеряется путём измерения отношения резонансной частоты прецессии магнитного момента протона в заданном однородном магнитном поле и циклотронной частоты обращения протона по круговой орбите в том же самом поле. [6]
Протон в атомном ядре способен захватывать электрон с ближайшей K- или L-электронной оболочки атома (т. н. «электронный захват»). Протон атомного ядра, поглотив электрон, превращается в нейтрон и одновременно испускает нейтрино. «Дырка» в K- или L-слое, образовавшаяся при электронном захвате, заполняется электроном одного из вышележащих электронных слоев атома с излучением характеристических рентгеновских лучей, соответствующих атомному номеру Z-1. Известно свыше 200 изотопов от 4Be7 до 101Md256, распадающихся путём электронного захвата.
Ядро атома водорода состоит из одного протона. Протон в химическом смысле является ядром атома водорода (точнее, его лёгкого изотопа — протия) без электрона.
Протоны (вместе с нейтронами) являются основными составляющими атомных ядер. Порядковый номер химического элемента в периодической таблице (и, соответственно, все его химические свойства) полностью определяются зарядом ядра его атомов, который, в свою очередь, равен количеству протонов в ядре (протонному числу).
Положительно заряженный ион (катион) водорода — H+ в химии является мощным акцептором электронов и, соответственно, участвует в реакциях донорно-акцепторного взаимодействия. Протонирование, присоединение протона к веществу имеет важное значение во многих химических реакциях, например, при нейтрализации, электрофильном присоединении и электрофильном замещении, образовании ониевых соединений. [7]
Источником протонов в химии являются минеральные (азотная, серная, фосфорная и другие) и органические (муравьиная, уксусная, щавелевая и другие) кислоты. В водном растворе кислоты способны к диссоциации с отщеплением протона, образующего катион гидроксония.
Интересные факты[править]
- Ультрарелятивистские протоны (как и любые другие адроны, а также атомные ядра) для неподвижного наблюдателя имеют форму двояковогнутой линзы [8]
- Измерения радиуса протона с помощью атомов обычного водорода, проводимые разными методами с 1960-х годов, привели (CODATA-2014) к результату 0,8751±0,0061 фемтометра (1 фм = 10−15 м) [9]
Первые эксперименты с атомами мюонного водорода (где электрон заменён на мюон) дали для этого радиуса на 4 % меньший результат 0,84184±0.00067 фм. [10] [11] Причины такого различия пока неясны.
Протон в Стандартной модели[править]
Протон как структура из двух u-кварков и одного d-кварка
В стандартной модели предполагается, что протон является связанным состоянием трёх кварков: двух «верхних» (u) и одного «нижнего» (d) кварков (кварковая структура протона: uud), а нейтрон имеет (кварковую структуру udd). Близость значений масс протона и нейтрона объясняется близостью масс кварков (u и d).
Проблемой стандартной модели остаётся то, что до сих пор наличие свободно существующих одиночных кварков в природе экспериментально не доказано, а имеются лишь косвенные свидетельства, которые можно интерпретировать как наличие следов кварков в некоторых взаимодействиях элементарных частиц. Еще одной проблемой Стандартной модели является отсутствие глюонов в природе.[?]
Протон с точки зрения других теоретических построений, моделей, гипотез[править]
Протон и Субстанциональная модель[править]
В теории бесконечной вложенности материи предполагается, что на уровне атомов и частиц действует сильная гравитация, удерживающая вещество элементарных частиц от распада, соединяющая нуклоны в ядрах и участвующая в образовании связей электронов с ядрами атомов. Рассматривается также модель кварковых квазичастиц, согласно которой кварки являются не настоящими частицами, а квазичастицами, пригодными лишь для описания свойств симметрии элементарных частиц. Отсюда следуют гравитационная модель сильного взаимодействия и субстанциональная модель протона. При известной величине постоянной сильной гравитации становится возможным:
вычислить радиус протона Rp =8,73•10-16 м в рамках самосогласованной модели, [12]
объяснить квантовый спин протона на основе равенства полного потока энергии гравитационного поля и потока кинетической энергии вращающегося вещества протона. [13]
Оценки радиуса протона можно сделать по крайней мере ещё тремя разными способами – путём рассмотрения стоячих электромагнитных волн внутри протона, приравниванием разности энергий связи протона и нейтрона к массе-энергии электромагнитного поля протона, [14] а также с помощью момента импульса гравитационного поля протона. [15] Все три способа дают величину (6,7 ± 0,1)∙10-16 м. Полученный результат отличается от теоретического на +47%, что является неплохим результатом для математической модели, не учитывающей реального строения элементарных частиц.
Протон в Эфиродинамике[править]
Эфиродинамика с самого начала предполагает наличие строительного материала, из которого состоят все элементарные частицы вещества. Это сразу же позволяет поставить вопрос об их структуре и о внутреннем движении материи, результатом которого являются все внешние свойства микрочастиц. Наблюдения Бюраканской обсерватории (Амбарцумян) за активностью ядра спиральной Галактики выявили истечение протонно-водородного газа из ее ядра, а также наличие скопления молодых звезд вокруг ядра. Это позволяет высказать определенную уверенность в том, что именно в ядре спиральной галактики и зарождаются протоны, из которых в дальнейшем формируются звезды, а затем в процессе эволюции в них создаются и все остальные элементы. Протон является основной микрочастицей всего мироздания на уровне вещества. Это следует из того, что протон – основа атома водорода, он входит в состав ядер всех веществ, причем, как оказалось, нейтрон – это тот же протон в одном из его состояний. Поэтому можно полагать, что более 99% массы всего видимого вещества в нашей Галактике, а вероятно, и во Вселенной состоит из протонов. Поскольку единственным видом движения эфира, способным в замкнутом объеме собрать уплотненный эфир, являются тороидальные вихри, структура протона должна быть отождествлена именно с такой структурой. [16]
Протон в полевой теории[править]
www.wikiznanie.ru
Протон — WiKi
Символ | p, p+ |
Масса | 938,272 0813(58) МэВ[1]1,672 621 898(21)·10−27кг[2]1,007 276 466 879(91) а. е. м.[3] |
Античастица | Антипротон (p¯){\displaystyle ({\bar {p}})} |
Участвует во взаимодействиях | Сильное, слабое, электромагнитное и гравитационное |
Классы | фермион, адрон, барион, N-барион, нуклон |
Электрический заряд | +1 |
Спин | 1/2 |
Изотопический спин | 1/2 |
Барионное число | 1 |
Странность | 0 |
Очарование | 0 |
Время жизни | ∞ (не менее 2,9·1029 лет[4]) |
Схема распада | нет |
Кварковый состав | uud |
Прото́н (от др.-греч. πρῶτος — первый, основной) — элементарная частица. Относится к барионам, имеет спин 1/2 и положительный электрический заряд +1 e. Стабилен[⇨].
Протоны принимают участие в термоядерных реакциях, которые являются основным источником энергии, генерируемой звёздами. В частности, реакции pp-цикла, который является источником почти всей энергии, излучаемой Солнцем, сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.
Кварковая структура протонаВ физике протон обозначается p (или p+). Химическое обозначение протона (рассматриваемого в качестве положительного иона водорода) — H+, астрофизическое — HII.
Открытие
Свойства протона
Относится к барионам, имеет спин 1⁄2, электрический заряд +1 (в единицах элементарного электрического заряда). В физике элементарных частиц рассматривается как нуклон с проекцией изоспина +1⁄2 (в ядерной физике принят противоположный знак проекции изоспина). Состоит из трёх кварков (один d-кварк и два u-кварка). Стабилен.
Масса протона, выраженная в разных единицах, составляет (рекомендованные значения CODATA 2014 года, в скобках указана погрешность величины в единицах последней значимой цифры, одно стандартное отклонение):
Внутренняя чётность протона равна 1.[7]
Отношение масс протона и электрона, равное 1836,152 673 89(17)[6], с точностью до 0,002 % равно значению 6π5 = 1836,118…
Внутренняя структура протона впервые была экспериментально исследована Р. Хофштадтером путём изучения столкновений пучка электронов высоких энергий (2 ГэВ) с протонами (Нобелевская премия по физике 1961 г.)[8]. Протон состоит из тяжёлой сердцевины (керна) радиусом ≈0,25⋅10−13{\displaystyle \approx 0,25\cdot 10^{-13}} см, с высокой плотностью массы и заряда, несущей ≈35%{\displaystyle \approx 35\%} электрического заряда протона и окружающей его относительно разреженной оболочки. На расстоянии от ≈0,25⋅10−13{\displaystyle \approx 0,25\cdot 10^{-13}} до ≈1,4⋅10−13{\displaystyle \approx 1,4\cdot 10^{-13}} см эта оболочка состоит в основном из виртуальных ρ- и π-мезонов, несущих ≈50%{\displaystyle \approx 50\%} электрического заряда протона, затем до расстояния ≈2,5⋅10−13{\displaystyle \approx 2,5\cdot 10^{-13}} см простирается оболочка из виртуальных ω- и π-мезонов, несущих ~15 % электрического заряда протона[9][10].
Давление в центре протона, создаваемое кварками, составляет порядка 1035Па (1030атмосфер), то есть выше давления внутри нейтронных звёзд[11].
Магнитный момент протона измеряется путём измерения отношения резонансной частоты прецессии магнитного момента протона в заданном однородном магнитном поле и циклотронной частоты обращения протона по круговой орбите в том же самом поле[12].
С протоном связаны три физических величины, имеющих размерность длины:
- комптоновская длина волны протона λK=2πℏmc≈1,32⋅10−13{\displaystyle \lambda _{K}={\frac {2\pi \hbar }{mc}}\approx 1,32\cdot 10^{-13}} см;
- расстояние от центра протона до максимума плотности электрического заряда RE≈0,75⋅10−13{\displaystyle R_{E}\approx 0,75\cdot 10^{-13}} см[10];
- гравитационный радиус протона RG=2Gmc2≈2,48⋅10−52{\displaystyle R_{G}={\frac {2Gm}{c^{2}}}\approx 2,48\cdot 10^{-52}} см.
Измерения радиуса протона с помощью атомов обычного водорода, проводимые разными методами с 1960-х годов, привели (CODATA-2014) к результату 0,8751 ± 0,0061 фемтометра (1 фм = 10−15 м)[13]. Первые эксперименты с атомами мюонного водорода (где электрон заменён на мюон) дали для этого радиуса на 4 % меньший результат 0,84184 ± 0,00067 фм[14][15]. Причины такого различия пока неясны.
Ультрарелятивистские протоны (как и любые другие адроны, а также атомные ядра) для неподвижного наблюдателя имеют форму двояковогнутой линзы[16].
Так называемый слабый заряд протона Qw ≈ 1 − 4 sin2θW, определяющий его участие в слабых взаимодействиях путём обмена Z0-бозоном (аналогично тому как электрический заряд частицы определяет её участие в электромагнитных взаимодействиях путём обмена фотоном), составляет 0,0719 ± 0,0045, согласно экспериментальным измерениям нарушения чётности при рассеянии поляризованных электронов на протонах[17]. Измеренная величина в пределах экспериментальной погрешности согласуется с теоретическими предсказаниями Стандартной модели (0,0708 ± 0,0003)[17].
Стабильность
Свободный протон стабилен, экспериментальные исследования не выявили никаких признаков его распада (нижнее ограничение на время жизни — 2,9·1029 лет независимо от канала распада[4], 8,2·1033 лет для распада в позитрон и нейтральный пион[18], 6,6·1033 лет для распада в положительный мюон и нейтральный пион[18]). Поскольку протон является наиболее лёгким из барионов, стабильность протона является следствием закона сохранения барионного числа — протон не может распасться в какие-либо более лёгкие частицы (например, в позитрон и нейтрино) без нарушения этого закона. Однако многие теоретические расширения Стандартной модели предсказывают процессы (пока не наблюдавшиеся), следствием которых было бы несохранение барионного числа и, следовательно, распад протона.
Протон, связанный в атомном ядре, способен захватывать электрон с электронной K-, L- или M-оболочки атома (т. н. «электронный захват»). Протон атомного ядра, поглотив электрон, превращается в нейтрон и одновременно испускает нейтрино: p+e− → n+νe. «Дырка» в K-, L- или M-слое, образовавшаяся при электронном захвате, заполняется электроном одного из вышележащих электронных слоев атома с излучением характеристических рентгеновских лучей, соответствующих атомному номеру Z − 1, и/или Оже-электронов. Известно свыше 1000 изотопов от 74Be до 262105Db, распадающихся путём электронного захвата. При достаточно высоких доступных энергиях распада (выше 2mec2 ≈ 1,022 МэВ) открывается конкурирующий канал распада — позитронный распад p → n+e++νe. Следует подчеркнуть, что эти процессы возможны только для протона в некоторых ядрах, где недостающая энергия восполняется переходом образовавшегося нейтрона на более низкую ядерную оболочку; для свободного протона они запрещены законом сохранения энергии.
Эффект Унру должен приводить к тому, что в неинерциальных системах отсчета протон (как и другие стабильные частицы) приобретает конечное время жизни[19] — открывается возможность его обратного бета-распада на нейтрон, позитрон и нейтрино p → n+e++νe, запрещённого законом сохранения энергии для покоящегося или равномерно движущегося протона[20][21]. Однако при достижимых в лаборатории ускорениях этот эффект мал и никогда не наблюдался экспериментально.
Протон в химии
Ядро атома водорода состоит из одного протона. Протон в химическом смысле является ядром атома водорода (точнее, его лёгкого изотопа — протия) без электрона.
Протоны (вместе с нейтронами) являются основными составляющими атомных ядер. Порядковый номер химического элемента в периодической таблице (и, соответственно, все его химические свойства) полностью определяются зарядом ядра его атомов, который, в свою очередь, равен количеству протонов в ядре (протонному числу).
Положительно заряженный ион (катион) водорода — H+ в химии является мощным акцептором электронов и, соответственно, участвует в реакциях донорно-акцепторного взаимодействия. Протонирование, присоединение протона к веществу имеет важное значение во многих химических реакциях, например, при нейтрализации, электрофильном присоединении и электрофильном замещении, образовании ониевых соединений[22].
Источником протонов в химии являются минеральные (азотная, серная, фосфорная и другие) и органические (муравьиная, уксусная, щавелевая и другие) кислоты. В водном растворе кислоты способны к диссоциации с отщеплением протона, образующего катион гидроксония.
В газовой фазе протоны получают ионизацией — отрывом электрона от атома водорода. Потенциал ионизации невозбуждённого атома водорода составляет 13,595 эВ. При ионизации молекулярного водорода быстрыми электронами при атмосферном давлении и комнатной температуре первоначально образуется молекулярный ион водорода (h3+) — физическая система, состоящая из двух протонов, удерживающихся вместе на расстоянии 1,06 Å одним электроном. Стабильность такой системы, по Полингу, вызвана резонансом электрона между двумя протонами с «резонансной частотой», равной 7·1014 с−1[23]. При повышении температуры до нескольких тысяч градусов состав продуктов ионизации водорода изменяется в пользу протонов — H+.
Применение
Пучки ускоренных протонов используются в экспериментальной физике элементарных частиц (изучение процессов рассеяния и получение пучков других частиц), в медицине (протонная терапия онкологических заболеваний)[24][25].
См. также
Примечания
- ↑ http://physics.nist.gov/cuu/Constants/Table/allascii.txt Fundamental Physical Constants --- Complete Listing
- ↑ 1 2 CODATA Value: proton mass
- ↑ 1 2 CODATA Value: proton mass in u
- ↑ 1 2 Ahmed S. et al. (2004). «Constraints on Nucleon Decay via Invisible Modes from the Sudbury Neutrino Observatory». Physical Review Letters 92 (10): 102004. arXiv:hep-ex/0310030. DOI:10.1103/PhysRevLett.92.102004. PMID 15089201. Bibcode: 2004PhRvL..92j2004A.
- ↑ CODATA Value: proton mass energy equivalent in MeV
- ↑ 1 2 CODATA Value: proton-electron mass ratio
- ↑ Широков, 1972, с. 67.
- ↑ Хофштадтер P. Структура ядер и нуклонов // УФН. — 1963. — Т. 81, № 1. — С. 185—200. — ISSN. — URL: http://ufn.ru/ru/articles/1963/9/e/
- ↑ Щёлкин К. И. Виртуальные процессы и строение нуклона // Физика микромира — М.: Атомиздат, 1965. — С. 75.
- ↑ 1 2 Жданов Г. Б. Упругие рассеяния, периферические взаимодействия и резононы // Частицы высоких энергий. Высокие энергии в космосе и лаборатории — М.: Наука, 1965. — С. 132.
- ↑ Burkert V. D., Elouadrhiri L., Girod F. X. The pressure distribution inside the proton (англ.) // Nature. — 2018. — May (vol. 557, no. 7705). — P. 396—399. — DOI:10.1038/s41586-018-0060-z.
- ↑ Бете, Г., Моррисон Ф. Элементарная теория ядра. — М: ИЛ, 1956. — С. 48.
- ↑ Proton rms charge radius (англ.). Fundamental Physical Constants. NIST (2014). Проверено 3 апреля 2016.
- ↑ Pohl R. et al. (8 July 2010). «The size of the proton». Nature 466 (7303): 213–216. DOI:10.1038/nature09250. PMID 20613837. Bibcode: 2010Natur.466..213P. Проверено 2010-07-09.
- ↑ Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen
- ↑ Иванов И. Какую форму имеет быстро летящий протон? = B. Blok, L. Frankfurt, M. Strikman. On the shape of a rapid hadron in QCD.
- ↑ 1 2 The Jefferson Lab Qweak Collaboration Precision measurement of the weak charge of the proton (англ.) // Nature. — 2018. — May (vol. 557, no. 7704). — P. 207—211. — DOI:10.1038/s41586-018-0096-0.
- ↑ 1 2 Nishino H. et al. (2009). «Search for Proton Decay via p→e+π0 and p→μ+π0 in a Large Water Cherenkov Detector». Physical Review Letters 102 (14): 141801. arXiv:0903.0676. DOI:10.1103/PhysRevLett.102.141801. PMID 19392425. Bibcode: 2009PhRvL.102n1801N.
- ↑ Mueller R. Decay of accelerated particles (англ.) // Phys. Rev. D. — 1997. — Vol. 56. — P. 953—960. — DOI:10.1103/PhysRevD.56.953. — arXiv:hep-th/9706016.
- ↑ Vanzella D. A. T., Matsas G. E. A. Decay of accelerated protons and the existence of the Fulling-Davies-Unruh effect (англ.) // Phys. Rev. Lett.. — 2001. — Vol. 87. — P. 151301. — DOI:10.1103/PhysRevLett.87.151301. — arXiv:gr-qc/0104030.
- ↑ Suzuki H., Yamada K. Analytic Evaluation of the Decay Rate for Accelerated Proton (англ.) // Phys. Rev. D. — 2003. — Vol. 67. — P. 065002. — DOI:10.1103/PhysRevD.67.065002. — arXiv:gr-qc/0211056.
- ↑ Химический энциклопедический словарь / гл. редактор И.Л.Кнунянц. — М.: «Советская энциклопедия», 1983. — С. 484. — 792 с.
- ↑ Л. Паулинг. Природа химической связи. — Госхимиздат, 1947. — С. 26. — 440 с.
- ↑ Гольдин Л. Л., Джелепов В. П., Ломанов М. Ф., Савченко О. В., Хорошков В. С. Применение тяжелых заряженных частиц высокой энергии в медицине // УФН. — 1973. — Т. 110. — С. 77—99.
- ↑ Кокурина E. Лечебная подводная лодка // В мире науки. — 2017. — № 8/9. — С. 40—48.
Литература
- Многие известные свойства протона систематически изложены в публикации Particle Data Group. [1] (англ.)
- Широков Ю. М., Юдин Н. П. Ядерная физика. — М.: Наука, 1972. — 670 с.
- Резерфорд Э. Избр. научные труды. Кн. 2 — Строение атома и искусственное превращение элементов, пер. с англ. М., 1972.
- Жакоб М., Ландшофф П. Внутренняя структура протона // УФН. — 1981. — Т. 133, вып. 3. — С. 505—524. — DOI:10.3367/UFNr.0133.198103d.0505.
- Дрелл С. Д., Захариазен Ф. Электромагнитная структура нуклонов. — М.: ИЛ, 1962. — 175 с.
- Шелест В. П. Лекции о структуре и свойствах адронов. — М: Атомиздат, 1976. — 248 с.
ru-wiki.org
Протон Википедия
Символ | p, p+ |
Масса | 938,272 0813(58) МэВ[1]1,672 621 898(21)·10−27кг[2]1,007 276 466 879(91) а. е. м.[3] |
Античастица | Антипротон (p¯){\displaystyle ({\bar {p}})} |
Участвует во взаимодействиях | Сильное, слабое, электромагнитное и гравитационное |
Классы | фермион, адрон, барион, N-барион, нуклон |
Электрический заряд | +1 |
Спин | 1/2 |
Изотопический спин | 1/2 |
Барионное число | 1 |
Странность | 0 |
Очарование | 0 |
Время жизни | ∞ (не менее 2,9·1029 лет[4]) |
Схема распада | нет |
Кварковый состав | uud |
Прото́н (от др.-греч. πρῶτος — первый, основной) — элементарная частица. Относится к барионам, имеет спин 1/2 и положительный электрический заряд +1 e. Стабилен[⇨].
Протоны принимают участие в термоядерных реакциях, которые являются основным источником энергии, генерируемой звёздами. В частности, реакции pp-цикла, который является источником почти всей энергии, излучаемой Солнцем, сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.
Кварковая структура протонаВ физике протон обозначается p (или p+). Химическое обозначение протона (рассматриваемого в качестве положительного иона водорода) — H+, астрофизическое — HII.
Открытие
Открыт Эрнестом Резерфордом в 1919 году.
Свойства протона
Относится к барионам, имеет спин 1⁄2, электрический заряд +1 (в единицах элементарного электрического заряда). В физике элементарных частиц рассматривается как нуклон с проекцией изоспина +1⁄2 (в ядерной физике принят противоположный знак проекции изоспина). Состоит из трёх кварков (один d-кварк и два u-кварка). Стабилен.
Масса протона, выраженная в разных единицах, составляет (рекомендованные значения CODATA 2014 года, в скобках указана погрешность величины в единицах последней значимой цифры, одно стандартное отклонение):
Внутренняя чётность протона равна 1.[7]
Отношение масс протона и электрона, равное 1836,152 673 89(17)[6], с точностью до 0,002 % равно значению 6π5 = 1836,118…
Внутренняя структура протона впервые была экспериментально исследована Р. Хофштадтером путём изучения столкновений пучка электронов высоких энергий (2 ГэВ) с протонами (Нобелевская премия по физике 1961 г.)[8]. Протон состоит из тяжёлой сердцевины (керна) радиусом ≈0,25⋅10−13{\displaystyle \approx 0,25\cdot 10^{-13}} см, с высокой плотностью массы и заряда, несущей ≈35%{\displaystyle \approx 35\%} электрического заряда протона и окружающей его относительно разреженной оболочки. На расстоянии от ≈0,25⋅10−13{\displaystyle \approx 0,25\cdot 10^{-13}} до ≈1,4⋅10−13{\displaystyle \approx 1,4\cdot 10^{-13}} см эта оболочка состоит в основном из виртуальных ρ- и π-мезонов, несущих ≈50%{\displaystyle \approx 50\%} электрического заряда протона, затем до расстояния ≈2,5⋅10−13{\displaystyle \approx 2,5\cdot 10^{-13}} см простирается оболочка из виртуальных ω- и π-мезонов, несущих ~15 % электрического заряда протона[9][10].
Давление в центре протона, создаваемое кварками, составляет порядка 1035Па (1030атмосфер), то есть выше давления внутри нейтронных звёзд[11].
Магнитный момент протона измеряется путём измерения отношения резонансной частоты прецессии магнитного момента протона в заданном однородном магнитном поле и циклотронной частоты обращения протона по круговой орбите в том же самом поле[12].
С протоном связаны три физических величины, имеющих размерность длины:
- комптоновская длина волны протона λK=2πℏmc≈1,32⋅10−13{\displaystyle \lambda _{K}={\frac {2\pi \hbar }{mc}}\approx 1,32\cdot 10^{-13}} см;
- расстояние от центра протона до максимума плотности электрического заряда RE≈0,75⋅10−13{\displaystyle R_{E}\approx 0,75\cdot 10^{-13}} см[10];
- гравитационный радиус протона RG=2Gmc2≈2,48⋅10−52{\displaystyle R_{G}={\frac {2Gm}{c^{2}}}\approx 2,48\cdot 10^{-52}} см.
Измерения радиуса протона с помощью атомов обычного водорода, проводимые разными методами с 1960-х годов, привели (CODATA-2014) к результату 0,8751 ± 0,0061 фемтометра (1 фм = 10−15 м)[13]. Первые эксперименты с атомами мюонного водорода (где электрон заменён на мюон) дали для этого радиуса на 4 % меньший результат 0,84184 ± 0,00067 фм[14][15]. Причины такого различия пока неясны.
Ультрарелятивистские протоны (как и любые другие адроны, а также атомные ядра) для неподвижного наблюдателя имеют форму двояковогнутой линзы[16].
Так называемый слабый заряд протона Qw ≈ 1 − 4 sin2θW, определяющий его участие в слабых взаимодействиях путём обмена Z0-бозоном (аналогично тому как электрический заряд частицы определяет её участие в электромагнитных взаимодействиях путём обмена фотоном), составляет 0,0719 ± 0,0045, согласно экспериментальным измерениям нарушения чётности при рассеянии поляризованных электронов на протонах[17]. Измеренная величина в пределах экспериментальной погрешности согласуется с теоретическими предсказаниями Стандартной модели (0,0708 ± 0,0003)[17].
Стабильность
Свободный протон стабилен, экспериментальные исследования не выявили никаких признаков его распада (нижнее ограничение на время жизни — 2,9·1029 лет независимо от канала распада[4], 8,2·1033 лет для распада в позитрон и нейтральный пион[18], 6,6·1033 лет для распада в положительный мюон и нейтральный пион[18]). Поскольку протон является наиболее лёгким из барионов, стабильность протона является следствием закона сохранения барионного числа — протон не может распасться в какие-либо более лёгкие частицы (например, в позитрон и нейтрино) без нарушения этого закона. Однако многие теоретические расширения Стандартной модели предсказывают процессы (пока не наблюдавшиеся), следствием которых было бы несохранение барионного числа и, следовательно, распад протона.
Протон, связанный в атомном ядре, способен захватывать электрон с электронной K-, L- или M-оболочки атома (т. н. «электронный захват»). Протон атомного ядра, поглотив электрон, превращается в нейтрон и одновременно испускает нейтрино: p+e− → n+νe. «Дырка» в K-, L- или M-слое, образовавшаяся при электронном захвате, заполняется электроном одного из вышележащих электронных слоев атома с излучением характеристических рентгеновских лучей, соответствующих атомному номеру Z − 1, и/или Оже-электронов. Известно свыше 1000 изотопов от 74Be до 262105Db, распадающихся путём электронного захвата. При достаточно высоких доступных энергиях распада (выше 2mec2 ≈ 1,022 МэВ) открывается конкурирующий канал распада — позитронный распад p → n+e++νe. Следует подчеркнуть, что эти процессы возможны только для протона в некоторых ядрах, где недостающая энергия восполняется переходом образовавшегося нейтрона на более низкую ядерную оболочку; для свободного протона они запрещены законом сохранения энергии.
Эффект Унру должен приводить к тому, что в неинерциальных системах отсчета протон (как и другие стабильные частицы) приобретает конечное время жизни[19] — открывается возможность его обратного бета-распада на нейтрон, позитрон и нейтрино p → n+e++νe, запрещённого законом сохранения энергии для покоящегося или равномерно движущегося протона[20][21]. Однако при достижимых в лаборатории ускорениях этот эффект мал и никогда не наблюдался экспериментально.
Протон в химии
Ядро атома водорода состоит из одного протона. Протон в химическом смысле является ядром атома водорода (точнее, его лёгкого изотопа — протия) без электрона.
Протоны (вместе с нейтронами) являются основными составляющими атомных ядер. Порядковый номер химического элемента в периодической таблице (и, соответственно, все его химические свойства) полностью определяются зарядом ядра его атомов, который, в свою очередь, равен количеству протонов в ядре (протонному числу).
Положительно заряженный ион (катион) водорода — H+ в химии является мощным акцептором электронов и, соответственно, участвует в реакциях донорно-акцепторного взаимодействия. Протонирование, присоединение протона к веществу имеет важное значение во многих химических реакциях, например, при нейтрализации, электрофильном присоединении и электрофильном замещении, образовании ониевых соединений[22].
Источником протонов в химии являются минеральные (азотная, серная, фосфорная и другие) и органические (муравьиная, уксусная, щавелевая и другие) кислоты. В водном растворе кислоты способны к диссоциации с отщеплением протона, образующего катион гидроксония.
В газовой фазе протоны получают ионизацией — отрывом электрона от атома водорода. Потенциал ионизации невозбуждённого атома водорода составляет 13,595 эВ. При ионизации молекулярного водорода быстрыми электронами при атмосферном давлении и комнатной температуре первоначально образуется молекулярный ион водорода (h3+) — физическая система, состоящая из двух протонов, удерживающихся вместе на расстоянии 1,06 Å одним электроном. Стабильность такой системы, по Полингу, вызвана резонансом электрона между двумя протонами с «резонансной частотой», равной 7·1014 с−1[23]. При повышении температуры до нескольких тысяч градусов состав продуктов ионизации водорода изменяется в пользу протонов — H+.
Применение
Пучки ускоренных протонов используются в экспериментальной физике элементарных частиц (изучение процессов рассеяния и получение пучков других частиц), в медицине (протонная терапия онкологических заболеваний)[24][25].
См. также
Примечания
- ↑ http://physics.nist.gov/cuu/Constants/Table/allascii.txt Fundamental Physical Constants --- Complete Listing
- ↑ 1 2 CODATA Value: proton mass
- ↑ 1 2 CODATA Value: proton mass in u
- ↑ 1 2 Ahmed S. et al. (2004). «Constraints on Nucleon Decay via Invisible Modes from the Sudbury Neutrino Observatory». Physical Review Letters 92 (10): 102004. arXiv:hep-ex/0310030. DOI:10.1103/PhysRevLett.92.102004. PMID 15089201. Bibcode: 2004PhRvL..92j2004A.
- ↑ CODATA Value: proton mass energy equivalent in MeV
- ↑ 1 2 CODATA Value: proton-electron mass ratio
- ↑ Широков, 1972, с. 67.
- ↑ Хофштадтер P. Структура ядер и нуклонов // УФН. — 1963. — Т. 81, № 1. — С. 185—200. — ISSN. — URL: http://ufn.ru/ru/articles/1963/9/e/
- ↑ Щёлкин К. И. Виртуальные процессы и строение нуклона // Физика микромира — М.: Атомиздат, 1965. — С. 75.
- ↑ 1 2 Жданов Г. Б. Упругие рассеяния, периферические взаимодействия и резононы // Частицы высоких энергий. Высокие энергии в космосе и лаборатории — М.: Наука, 1965. — С. 132.
- ↑ Burkert V. D., Elouadrhiri L., Girod F. X. The pressure distribution inside the proton (англ.) // Nature. — 2018. — May (vol. 557, no. 7705). — P. 396—399. — DOI:10.1038/s41586-018-0060-z.
- ↑ Бете, Г., Моррисон Ф. Элементарная теория ядра. — М: ИЛ, 1956. — С. 48.
- ↑ Proton rms charge radius (англ.). Fundamental Physical Constants. NIST (2014). Проверено 3 апреля 2016.
- ↑ Pohl R. et al. (8 July 2010). «The size of the proton». Nature 466 (7303): 213–216. DOI:10.1038/nature09250. PMID 20613837. Bibcode: 2010Natur.466..213P. Проверено 2010-07-09.
- ↑ Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen
- ↑ Иванов И. Какую форму имеет быстро летящий протон? = B. Blok, L. Frankfurt, M. Strikman. On the shape of a rapid hadron in QCD.
- ↑ 1 2 The Jefferson Lab Qweak Collaboration. Precision measurement of the weak charge of the proton (англ.) // Nature. — 2018. — May (vol. 557, no. 7704). — P. 207—211. — DOI:10.1038/s41586-018-0096-0.
- ↑ 1 2 Nishino H. et al. (2009). «Search for Proton Decay via p→e+π0 and p→μ+π0 in a Large Water Cherenkov Detector». Physical Review Letters 102 (14): 141801. arXiv:0903.0676. DOI:10.1103/PhysRevLett.102.141801. PMID 19392425. Bibcode: 2009PhRvL.102n1801N.
- ↑ Mueller R. Decay of accelerated particles (англ.) // Phys. Rev. D. — 1997. — Vol. 56. — P. 953—960. — DOI:10.1103/PhysRevD.56.953. — arXiv:hep-th/9706016.
- ↑ Vanzella D. A. T., Matsas G. E. A. Decay of accelerated protons and the existence of the Fulling-Davies-Unruh effect (англ.) // Phys. Rev. Lett.. — 2001. — Vol. 87. — P. 151301. — DOI:10.1103/PhysRevLett.87.151301. — arXiv:gr-qc/0104030.
- ↑ Suzuki H., Yamada K. Analytic Evaluation of the Decay Rate for Accelerated Proton (англ.) // Phys. Rev. D. — 2003. — Vol. 67. — P. 065002. — DOI:10.1103/PhysRevD.67.065002. — arXiv:gr-qc/0211056.
- ↑ Химический энциклопедический словарь / гл. редактор И.Л.Кнунянц. — М.: «Советская энциклопедия», 1983. — С. 484. — 792 с.
- ↑ Л. Паулинг. Природа химической связи. — Госхимиздат, 1947. — С. 26. — 440 с.
- ↑ Гольдин Л. Л., Джелепов В. П., Ломанов М. Ф., Савченко О. В., Хорошков В. С. Применение тяжелых заряженных частиц высокой энергии в медицине // УФН. — 1973. — Т. 110. — С. 77—99.
- ↑ Кокурина E. Лечебная подводная лодка // В мире науки. — 2017. — № 8/9. — С. 40—48.
Литература
- Многие известные свойства протона систематически изложены в публикации Particle Data Group. [1] (англ.)
- Широков Ю. М., Юдин Н. П. Ядерная физика. — М.: Наука, 1972. — 670 с.
- Резерфорд Э. Избр. научные труды. Кн. 2 — Строение атома и искусственное превращение элементов, пер. с англ. М., 1972.
- Жакоб М., Ландшофф П. Внутренняя структура протона // УФН. — 1981. — Т. 133, вып. 3. — С. 505—524. — DOI:10.3367/UFNr.0133.198103d.0505.
- Дрелл С. Д., Захариазен Ф. Электромагнитная структура нуклонов. — М.: ИЛ, 1962. — 175 с.
- Шелест В. П. Лекции о структуре и свойствах адронов. — М: Атомиздат, 1976. — 248 с.
wikiredia.ru
ПРОТОН - это... Что такое ПРОТОН?
Протон-К — «Протон К» выводит на орбиту модуль «Звезда» для МКС. «Протон К» для запуска лунного корабля «Зонд» «Протон К» с модулем «Заря» для МКС. 20 Нояб … Википедия
Протон-М — «Протон К» выводит на орбиту модуль «Звезда» для МКС. «Протон К» для запуска лунного корабля «Зонд» «Протон К» с модулем «Заря» для МКС. 20 Нояб … Википедия
Протон (РН) — «Протон К» выводит на орбиту модуль «Звезда» для МКС. «Протон К» для запуска лунного корабля «Зонд» «Протон К» с модулем «Заря» для МКС. 20 Нояб … Википедия
Протон (КА) — У этого термина существуют и другие значения, см. Протон (значения). Протон серия из четырёх советских научных станций искусственных спутников Земли, запущенных с 1965 по 1968 года. Разработаны «НПО машиностроения». Масса спутников составляла от… … Википедия
ПРОТОН — (обозначение ), стабильная ЭЛЕМЕНТАРНАЯ ЧАСТИЦА с положительным зарядом, равным по модулю негативному заряду ЭЛЕКТРОНА. Протон образует ЯДРО самого легкого изотопа ВОДОРОДА (протия). Вместе с нейтронами протоны образуют ядра всех других… … Научно-технический энциклопедический словарь
ПРОТОН — (от греческого protos первый) (p), стабильная положительно заряженная элементарная частица; ядро атома водорода 1H. Масса 1,7?10 24 г; положительный заряд, равный заряду электрона e. Вместе с нейтронами протоны образуют ядра всех элементов. Число … Современная энциклопедия
ПРОТОН — 1) искусственный спутник Земли для изучения космического пространства. Максимальная масса Протона ок. 17 т. В 1965 68 в СССР запущено 4 Протона .2) Многоступенчатая ракета носитель на жидком топливе. В СССР применялась для запуска космических… … Большой Энциклопедический словарь
ПРОТОН — (от греч. protos первый) (символ р), стабильная элем. частица, ядро атома водорода. Масса П. mр=1,672614(14) •10 24 г »1836 mе, где mе масса эл на; в энергетич. ед. mp»938,3 МэВ. Электрич. заряд П. положителен: е=4,803242(14) •10 10 СГСЭ ед.… … Физическая энциклопедия
Протон — Proton стабильная положительно заряженная элементарная частица с зарядом 1,61?10 19 Кл и массой 11,66?10 27 кг. Протон образует ядро «легкого» изотопа атома водорода (протия). Число протонов в ядре любого элемента определяет заряд ядра и атомный… … Термины атомной энергетики
протон — Стабильная положительно заряженная элементарная частица с зарядом 1,61·10 19 Кл и массой 1,66·10 27 кг. Протон образует ядро "легкого" изотопа атома водорода (протия). Число протонов в ядре любого элемента определяет заряд … Справочник технического переводчика
Протон-ПМ — Протон Пермские моторы с 1995 ОАО http://www.protonpm.ru/ г. Пермь, организация Источник: http://news.mail.ru/economics/8846246/ … Словарь сокращений и аббревиатур
polytechnic_dictionary.academic.ru
Протон - Википедия
Материал из Википедии — свободной энциклопедии
Символ | p, p+ |
Масса | 938,272 0813(58) МэВ[1]1,672 621 898(21)·10−27кг[2]1,007 276 466 879(91) а. е. м.[3] |
Античастица | Антипротон (p¯){\displaystyle ({\bar {p}})} |
Участвует во взаимодействиях | Сильное, слабое, электромагнитное и гравитационное |
Классы | фермион, адрон, барион, N-барион, нуклон |
Электрический заряд | +1 |
Спин | 1/2 |
Изотопический спин | 1/2 |
Барионное число | 1 |
Странность | 0 |
Очарование | 0 |
Время жизни | ∞ (не менее 2,9·1029 лет[4]) |
Схема распада | нет |
Кварковый состав | uud |
Прото́н (от др.-греч. πρῶτος — первый, основной) — элементарная частица. Относится к барионам, имеет спин 1/2. Стабилен[⇨].
Протоны принимают участие в термоядерных реакциях, которые являются основным источником энергии, генерируемой звёздами. В частности, реакции pp-цикла, который является источником почти всей энергии, излучаемой Солнцем, сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.
Кварковая структура протонаВ физике протон обозначается p (или p+). Химическое обозначение протона (рассматриваемого в качестве положительного иона водорода) — H+, астрофизическое — HII.
Свойства протона[ | ]
Относится к барионам, имеет спин 1⁄2, электрический заряд +1 (в единицах элементарного электрического заряда). В физике элементарных частиц рассматривается как нуклон с проекцией изоспина +1⁄2 (в ядерной физике принят противоположный знак проекции изоспина). Состоит из трёх кварков (один d-кварк и два u-кварка). Стабилен.
Масса протона, выраженная в разных единицах, составляет (рекомендованные значения CODATA 2014 года, в скобках указана погрешность величины в единицах последней значимой цифры, одно стандартное отклонение):
Внутренняя чётность: равна 1.
encyclopaedia.bid
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.