Резистор. Параметры резисторов.
Его параметры и обозначение на схеме
Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.
Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).
Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.
На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.
Рядом с условным обозначением указывается тип элемента (R) и его порядковый номер в схеме (R1). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах. Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к, то этот резистор имеет сопротивление 10 килоОм (10 кОм – 10 000 Ом). Про множители и приставки «кило», «мега» можете почитать здесь.
Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.
Основные параметры резисторов.
Номинальное сопротивление.
Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.
Рассеиваемая мощность.
Более подробно о мощности резистора я уже писал здесь.
При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.
На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.
К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.
Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.
Допуск.
При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах.
Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.
Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.
Для тех, кто ещё не знает, существует ещё одна возможность подобрать необходимое сопротивление – его можно составить, соединив вместе несколько резисторов разных номиналов. Об этом читайте в статье про соединение резисторов.
Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.
Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,25…0,05%.
Температурный коэффициент сопротивления (ТКС).
Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.
В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал тут.
Первые три параметра основные, их надо знать!
Перечислим их ещё раз:
Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм…)
Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт…)
Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).
Так же стоит отметить конструктивное исполнение резисторов. Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах. Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление, рассеиваемая мощность и допуск.
В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента. Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 2…3 ватт. Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.
Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.
Таблица цветового кодирования.
Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.
Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом. Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм). Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.
На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.
Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?
Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.
Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).
В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Резистор (от латинского «resisto», что означает «сопротивляюсь») – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов.
В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.
Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств.
Содержание статьи
Для чего нужен резистор в электрической цепи
Наглядный пример работы резистора С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.
Закон Ома выражается формулой U = I*R, в которой:
Также резисторы работают как:
Основные характеристики резисторов
Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:
При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.
Способ монтажа
По технологии монтажа резисторы разделяют на выводные и SMD.
Выводные резисторы
Радиальный выводной резистор Аксиальный выводной резистор
Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.
Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.
Из чего состоит резистор проволочного типа
В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.
Чем отличается металлопленочный резистор от проволочного
У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.
SMD-резисторы
SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.
SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.
Из чего делают чип-резисторы
Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.
Виды резисторов по характеру изменения сопротивления
Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.
В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.
Что делают подстроечные резисторы
Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.
Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.
Типы резисторов по характеру вольтамперной характеристики
По ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках.
Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля.
Виды резисторов по назначению
Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:
Шумы резисторов и способы их уменьшения
Собственные шумы резистивных элементов состоят из тепловых и токовых шумов. Тепловые шумы, спровоцированные движением электронов в токопроводящем слое, усиливаются при повышении температуры нагрева детали и температуры окружающей среды. При протекании тока генерируются токовые шумы. Токовые шумы, значение которых существенно выше тепловых, в основном характерны для непроволочных резисторов.
Способы борьбы с шумами:
Обозначение резисторов на схеме
Обозначение переменных, подстроечных и нелинейных резисторов на схемах:
Условное обозначение резистора на схеме – прямоугольник размерами 4х10 мм. На схемах значение сопротивления постоянного резюка менее кОма проставляется рядом с его условным обозначением числом без единицы измерения. При номинале от одного кОм до 999 кОм рядом с числом ставят букву «К», от одного МОм – букву «М». Характеристики резисторов указывают на их поверхности, для чего применяют буквенно-цифровой код или группу цветных полосок.
Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:
Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:
Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:
Производители в силу несовершенства производственной технологии не в состоянии на 100% гарантировать соответствие заявленного значения сопротивления фактическому. Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±5%, ±10%, ±20%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.
Цветовая маркировка резисторов с проволочными выводами
Для резисторов применяют цветовую кодировку, которая наносится 3, 4, 5, 6 цветовыми кольцами. Если кольца смещены к одному из выводов, то первым (с него и начинается расшифровка кода) считается кольцо, находящееся к выводу ближе всего. Если кольца расположены приблизительно равномерно, то следует помнить, что первое кольцо не делают серебристым или золотистым. В некоторых моделях чтение кода начинают с той стороны, где находятся парные кольца, отдельно стоящее кольцо обычно находится в конце шифра.
Таблица расшифровки цветовых колец
В четырехполосном коде первые две полосы означают два знака номинала, третья полоска – это десятичный множитель, то есть это степень, в которую нужно возвести число, обозначающее номинал. Четвертая полоска указывает класс точности элемента. В пятиполосном шифре третья полоса обозначает знак номинала, четвертая – десятичный множитель, а пятая – класс точности. Если присутствует шестая полоса, то она обозначает температурный коэффициент. Если же это кольцо шире остальных в полтора раза, то оно характеризует процент отказов.
В расшифровке кодов проволочных резисторов помогут удобные онлайн-программы. Тем более имеет смысл к ним обратиться при расшифровке кода SMD-резистора, поскольку существует несколько вариантов маркировок, с которыми самостоятельно разобраться будет очень непросто.
Виды соединения резисторов в электроцепи
Эффективная работа элементов электроцепи с резистором зависит от правильного выбора не только самого сопротивления, но и способа его соединения в цепи, который может быть последовательным, параллельным или смешанным.
Последовательное соединение
Последовательное соединение резисторов В такой схеме каждый последующий резистор подсоединяется к предыдущему, образуя неразветвленную цепь. Ток в последовательно соединенных «резюках» одинаковый, напряжение разное. Общее сопротивление нескольких последовательно расположенных «резюков» определяется очень просто – суммированием их номиналов.
Формула: Rобщ. = R1 + R2 +…+ Rn
Чем больше элементов в последовательной схеме, тем больше суммарное сопротивление.
Параллельное соединение
Параллельное соединение резисторов При параллельном соединении резисторы соединяются между собой вводами и выводами. Напряжение на этих элементах одинаково, а ток между ними распределяется. Чем больше ветвей образуется, тем больше вариантов протекания тока и тем меньше общее сопротивление.
Формула: Rобщ. = 1/R1 + 1/R2 +…+ 1/Rn
Смешанное соединение
Смешанное соединение резисторов При таком способе варианты соединения элементов комбинируют. Сопротивление каждого участка с определенным типом соединения рассчитывается по указанным выше правилам.
Соединение нескольких резисторов в одной схеме
Если у вас под рукой не оказалось сопротивления нужного номинала, то можно его получить при помощи правильного соединения нескольких резюков. Так, если вам нужно сопротивление 100 кОм, а есть две резистивные детали по 50 кОм, то их можно соединить последовательно и получить нужный результат. Сопротивление в 100 кОм можно получить параллельным соединением элементов по 200 кОм.
Видео: что такое резистор и как он работает
Была ли статья полезна?Да Нет Оцените статью Что вам не понравилось? Другие материалы по теме
|
Резистор. Резисторы постоянного сопротивления | Для дома, для семьи
Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы разобрались, какие бывают соединительные провода и линии электрической связи и как они обозначаются на электрических схемах. В этой статье речь пойдет о резисторе или как по старинке его еще называют сопротивление.
Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры и используются практически в каждом электронном устройстве. Резисторы обладают электрическим сопротивлением и служат для ограничения прохождения тока в электрической цепи. Их применяют в схемах делителей напряжения, в качестве добавочных сопротивлений и шунтов в измерительных приборах, в качестве регуляторов напряжения и тока, регуляторов громкости, тембра звука и т.д. В сложных приборах количество резисторов может достигать до нескольких тысяч штук.
1. Основные параметры резисторов.
Основными параметрами резистора являются: номинальное сопротивление, допускаемое отклонение фактической величины сопротивления от номинального (допуск), номинальная мощность рассеивания, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; уровня создаваемых шумов, размерами, массой и стоимостью. Однако на практике резисторы выбирают по сопротивлению, номинальной мощности и допуску. Рассмотрим эти три основных параметра более подробно.
1.1. Сопротивление.
Сопротивление — это величина, которая определяет способность резистора препятствовать протеканию тока в электрической цепи: чем больше сопротивление резистора, тем большее сопротивление он оказывает току, и наоборот, чем меньше сопротивление резистора, тем меньшее сопротивление он оказывает току. Используя эти качества резисторов их применяют для регулирования тока на определенном участке электрической цепи.
Сопротивление измеряется в омах (Ом), килоомах (кОм) и мегаомах (МОм):
1кОм = 1000 Ом;
1МОм = 1000 кОм = 1000000 Ом.
Промышленностью выпускаются резисторы различных номиналов в диапазоне сопротивлений от 0,01 Ом до 1ГОм. Числовые значения сопротивлений установлены стандартом, поэтому при изготовлении резисторов величину сопротивления выбирают из специальной таблицы предпочтительных чисел:
1,0; 1,1; 1,2; 1,5; 2,0; 2,2; 2,7; 3,0; 3,3; 3,9; 4,3; 4,7; 5,6; 6,2; 6,8; 7,5; 8,2; 9,1
Нужное числовое значение сопротивления получают путем деления или умножения этих чисел на 10.
Номинальное значение сопротивления указывается на корпусе резистора в виде кода с использованием буквенно-цифровой, цифровой или цветовой маркировки.
Буквенно-цифровая маркировка.
При использовании буквенно-цифровой маркировки единицу измерения Ом обозначают буквами «Е» и «R», единицу килоом буквой «К», а единицу мегаом буквой «М».
а) Резисторы с сопротивлениями от 1 до 99 Ом маркируют буквами «Е» и «R». В отдельных случаях на корпусе может указываться только полная величина сопротивления без буквы. На зарубежных резисторах после числового значения ставят значок ома «Ω»:
3R — 3 Ом
10Е — 10 Ом
47R — 47 Ом
47Ω – 47 Ом
56 – 56 Ом
б) Резисторы с сопротивлениями от 100 до 999 Ом выражают в долях килоома и обозначают буквой «К». Причем букву, обозначающую единицу измерения, ставят на месте нуля или запятой. В некоторых случаях может указываться полная величина сопротивления с буквой «R» на конце, или только одно числовое значение величины без буквы:
К12 = 0,12 кОм = 120 Ом
К33 = 0,33 кОм = 330 Ом
К68 = 0,68 кОм = 680 Ом
360R — 360 Ом
в) Сопротивления от 1 до 99 кОм выражают в килоомах и обозначают буквой «К»:
2К0 — 2кОм
10К — 10 кОм
47К — 47 кОм
82К — 82 кОм
г) Сопротивления от 100 до 999 кОм выражают в долях мегаома и обозначают буквой «М». Букву ставят на месте нуля или запятой:
М18 = 0,18 МОм = 180 кОм
М47 = 0,47 МОм = 470 кОм
М91 = 0,91 МОм = 910 кОм
д) Сопротивления от 1 до 99 МОм выражают в мегаомах и обозначают буквой «М»:
1М — 1 МОм
10М — 10 МОм
33М — 33 МОм
е) Если номинальное сопротивление выражено целым числом с дробью, то буквы Е, R, К и М, обозначающие единицу измерения, ставят на месте запятой, разделяя целую и дробную части:
R22 – 0,22 Ом
1Е5 — 1,5 Ом
3R3 — 3,3 Ом
1К2 — 1,2 кОм
6К8 — 6,8 кОм
3М3 — 3,3 МОм
Цветовая маркировка.
Цветовая маркировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждому цвету соответствует свое числовое значение. Кольца сдвинуты к одному из выводов резистора и первым считается кольцо, расположенное у самого края. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, то ширина первого кольца делается примерно в два раза больше других.
Отчет сопротивления резистора ведут слева направо. Резисторы с величиной допуска ±20% (о допуске будет сказано ниже) маркируются четырьмя кольцами: первые два обозначают численную величину сопротивления в Омах, третье кольцо является множителем, а четвертое — обозначает допуск или класс точности резистора. Четвертое кольцо наносится с видимым разрывом от остальных и располагается у противоположного вывода резистора.
Резисторы с величиной допуска 0,1…10% маркируются пятью цветовыми кольцами: первые три – численная величина сопротивления в Омах, четвертое – множитель, и пятое кольцо – допуск. Для определения величины сопротивления пользуются специальной таблицей.
Например. Резистор маркирован четырьмя кольцами:
красное — (2)
фиолетовое — (7)
красное — (100)
серебристое — (10%)
Значит: 27 Ом х 100 = 2700 Ом = 2,7 кОм с допуском ±10%.
Резистор маркирован пятью кольцами:
красное — (2)
фиолетовое (7)
красное (2)
красное (100)
золотистое (5%)
Значит: 272 Ома х 100 = 27200 Ом = 27,2 кОм с допуском ±5%
Иногда возникает трудность с определением первого кольца. Здесь надо запомнить одно правило: начало маркировки не будет начинаться с черного, золотистого и серебристого цвета.
И еще момент. Если нет желания возиться с таблицей, то в интернете есть программы онлайн калькуляторы, предназначенные для подсчета сопротивления по цветным кольцам. Программы можно скачать и установить на компьютер или смартфон. Также о цветовой и буквенно-цифровой маркировке можно почитать в этой статье.
Цифровая маркировка.
Цифровая маркировка наносится на корпуса SMD компонентов и маркируется тремя или четырьмя цифрами.
При трехзначной маркировке первые две цифры обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель. Множителем является число 10 возведенное в степень третьей цифры:
221 – 22 х 10 в степени 1 = 22 Ом х 10 = 220 Ом;
472 – 47 х 10 в степени 2 = 47 Ом х 100 = 4700 Ом = 4,7 кОм;
564 – 56 х 10 в степени 4 = 56 Ом х 10000 = 560000 Ом = 560 кОм;
125 – 12 х 10 в степени 5 = 12 Ом х 100000 = 12000000 Ом = 12 МОм.
Если последняя цифра ноль, то множитель будет равен единице, так как десять в нулевой степени равно единице:
100 – 10 х 10 в степени 0 = 10 Ом х 1 = 10 Ом;
150 – 15 х 10 в степени 0 = 15 Ом х 1 = 15 Ом;
330 – 33 х 10 в степени 0 = 33 Ом х 1 = 33 Ом.
При четырехзначной маркировке первые три цифры также обозначают численную величину сопротивления в Омах, а четвертая цифра обозначает множитель. Множителем является число 10 возведенное в степень четвертой цифры:
1501 – 150 х 10 в степени 1 = 150 Ом х 10 = 1500 Ом = 1,5 кОм;
1602 – 160 х 10 в степени 2 = 160 Ом х 100 = 16000 Ом = 16 кОм;
3243 – 324 х 10 в степени 3 = 324 Ом х 1000 = 324000 Ом = 324 кОм.
1.2. Допуск (класс точности) резистора.
Вторым важным параметром резистора является допускаемое отклонение фактического сопротивления от номинального значения и определяется допуском (классом точности).
Допускаемое отклонение выражается в процентах и указывается на корпусе резистора в виде буквенного кода, состоящего из одной буквы. Каждой букве присвоено определенное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и приведены в таблице ниже:
Наиболее распространенные резисторы выпускаются с допуском 5%, 10% и 20%. Прецизионные резисторы, применяемые в измерительной аппаратуре, имеют допуски 0,1%, 0,2%, 0,5%, 1%, 2%. Например, у резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может быть в пределах от 9 до 11 кОм ±10%.
На корпусе резистора допуск указывается после номинального сопротивления и может состоять из буквенного кода или цифрового значения в процентах.
У резисторов с цветовой маркировкой допуск указывается последним цветным кольцом: серебристый цвет – 10%, золотистый – 5%, красный – 2%, коричневый – 1%, зеленый – 0,5%, голубой – 0,25%, фиолетовый – 0,1%. При отсутствии кольца допуска резистор имеет допуск 20%.
1.3. Номинальная мощность рассеивания.
Третьим важным параметром резистора является его мощность рассеивания
При прохождении тока через резистор на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала повышает температуру тела резистора, а затем за счет теплопередачи переходит в воздух. Поэтому мощностью рассеивания называют ту наибольшую мощность тока, которую резистор способен длительное время выдерживать и рассеивать в виде тепла без ущерба потери своих номинальных параметров.
Поскольку слишком высокая температура тела резистора может привести его к выходу из строя, то при составлении схем задается величина, которая указывает на способность резистора рассеивать ту или иную мощность без перегрева.
За единицу измерения мощности принят ватт (Вт).
Например. Допустим, что через резистор сопротивлением 100 Ом течет ток 0,1 А, значит, резистор рассеивает мощность в 1 Вт. Если же резистор будет меньшей мощности, то он быстро перегреется и выйдет из строя.
В зависимости от геометрических размеров резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности отличаются размерами: чем больше размер резистора, тем больше его номинальная мощность, тем большую силу тока и напряжение он способен выдержать.
Резисторы выпускаются с мощностью рассеивания 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и более.
На резисторах, начиная с 1 Вт и выше, величина мощности указывается на корпусе в виде цифрового значения, тогда как малогабаритные резисторы приходится определять на «глаз».
С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. На первое время в качестве ориентира для сравнения можно использовать обычную спичку. Более подробно прочитать про мощность и дополнительно посмотреть видеоролик можно в этой статье.
Однако с размерами есть небольшой нюанс, который надо учитывать при выполнении монтажа: габариты отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.
Резисторы можно разделить на две группы: резисторы постоянного сопротивления (постоянные резисторы) и резисторы переменного сопротивления (переменные резисторы).
2. Резисторы постоянного сопротивления (постоянные резисторы).
Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным. Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.
Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные.
2.1. Непроволочные резисторы.
Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки, нанесенной на керамическое основание.
Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций. Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.
В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).
Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.
2.2. Проволочные резисторы.
Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.
Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.
Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.
По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.
Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.
С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.
3. Обозначение резисторов на принципиальных схемах.
На принципиальных схемах постоянные резисторы, независимо от их типа, изображают в виде прямоугольника, а выводы резистора изображают в виде линий, проведенных от боковых сторон прямоугольника. Такое обозначение принято повсеместно, однако в некоторых зарубежных схемах используется обозначение резистора в форме зубчатой линии (пилы).
Рядом с условным обозначением ставят латинскую букву «R» и порядковый номер резистора в схеме, а также указывают его номинальное сопротивление в единицах измерения Ом, кОм, МОм.
Значение сопротивления от 0 до 999 Ом обозначают в омах, но единицу измерения не ставят:
15 — 15 Ом
680 – 680 Ом
920 — 920 Ом
На некоторых зарубежных схемах для обозначения Ом ставят букву R:
1R3 — 1,3 Ом
33R – 33 Ом
470R — 470 Ом
Значение сопротивления от 1 до 999 кОм обозначают в килоомах с добавлением буквы «к»:
1,2к — 1,2 кОм
10к — 10 кОм
560к — 560 кОм
Значение сопротивления от 1000 кОм и больше обозначают в единицах мегаом с добавлением буквы «М»:
1М — 1 МОм
3,3М — 3,3 МОм
56М — 56 МОм
Резистор применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора: двойной косой чертой обозначают мощность 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римскими цифрами обозначается мощность от 1 Вт и выше.
4. Последовательное и параллельное соединение резисторов.
Очень часто возникает ситуация когда при конструировании какого-либо устройства под рукой не оказывается резистора с нужным сопротивлением, но зато есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного соединения можно собрать резистор с любым номиналом.
При последовательном соединении резисторов их общее сопротивление Rобщ равно сумме всех сопротивлений резисторов, соединенных в эту цепь:
Rобщ = R1 + R2 + R3 + … + Rn
Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их общее сопротивление Rобщ = 12 + 24 = 36 кОм.
При параллельном соединении резисторов их общее сопротивление уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора:
Допустим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их общее сопротивление будет равно:
И еще момент: при параллельном соединении двух резисторов с одинаковым сопротивлением, их общее сопротивление будет равно половине сопротивления каждого из них.
Из приведенных примеров понятно, что если хотят получить резистор с бо́льшим сопротивлением, то применяют последовательное соединение, а если с меньшим, то параллельное. А если остались вопросы, почитайте статью последовательное и параллельное соединение резисторов, в которой способы соединения рассказаны более подробно.
Ну и в дополнении к прочитанному посмотрите видеоролик о резисторах постоянного сопротивления.
Ну вот, в принципе и все, что хотел сказать о резисторе в целом и отдельно о резисторах постоянного сопротивления. Во второй части статьи мы познакомимся с резисторами переменного сопротивления.
Удачи!
Литература:
В. И. Галкин — «Начинающему радиолюбителю», 1989 г.
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. Г. борисов — «Юный радиолюбитель», 1992 г.
Характеристики резисторов, параметры и маркировка
Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры.І2 Ом.
Различают следующие виды резисторов: постоянные и переменные. Переменные еще делят на регулировочные и подстроечные. У постоянных резисторов сопротивление нельзя изменять в процессе эксплуатации.
Резисторы, с помощью которых осуществляют различные регулировки в радиоэлектронной аппаратуре изменением их сопротивления, называют переменными резисторами или потенциометрами. Те резисторы, сопротивление которых изменяют только в процессе налаживания (настройки) радиоэлектронного устройства, называют подстроечными.
Основные параметры резисторов
Резисторы характеризуются такими основными параметрами: номинальным значением сопротивления, допустимым отклонением сопротивления от номинального значения, номинальной (допустимой) мощностью рассеяния, максимальным рабочим напряжением, температурным коэффициентом сопротивления, собственными шумами и коэффициентом напряжения.
Номинальное значение сопротивления R обычно обозначено на корпусе резистора. Действительное значение сопротивления резистора может отличаться от номинального в пределах допустимого отклонения (допуска, определяемого в процентах по отношению к номинальному сопротивлению).
Маркировка резисторов
На корпусе резистора, как правило, наносится краской его тип, номинальная мощность, номинальное сопротивление, допуск и дата изготовления. Для маркировки малогабаритных резисторов используют бук-венно-цифровой код. Код состоит из цифр, обозначающих номинальное сопротивление, буквы, обозначающей единицу измерения, и буквы, указывающей допустимое отклонение сопротивления. Примеры наносимого на корпус резистора буквенного кода единиц измерения номинального сопротивления старого и нового стандартов приведены в табл. 1.
Если номинальное сопротивление выражается целым числом, то буквенный код ставится после этого числа. Если же номинальное сопротивление представляет собой десятичную дробь, то буква ставится- вместо запятой, разделяя целую и дробную части. В случае, когда десятичная дробь меньше единицы, целая часть (ноль) исключается.
При маркировке резисторов код допуска ставится после кодированного обозначения номинального сопротивления. Буквенные коды допусков приведены в табл. 2.
Например, обозначение 4К7В (или 4К7М) соответствует номинальному сопротивлению 4,7 кОм с допустимым отклонением 20%. В табл. 1 и 2 приведены буквенные коды, соответствующие как старым, так и новым стандартам, так как в настоящее время встречаются оба варианта. Номинальная мощность на малогабаритных резисторах не указывается, а определяется по размерам корпуса.
Таблица 1. Обозначение номинальной величины сопротивления на корпусах резисторов.
Полное обозначение | Сокращенное обозначение на корпусе | |||||
Обозначение | Примеры обозначения | Обозначение единиц измерения | Примеры обозначения | |||
единиц измерении | Старое | Новое | Старое | Новое | ||
Ом | Омы | 13 Ом 470 0м | R | Е | 13R 470R (К47)
| 13Е 470Е (К47) |
кОм | килоОмы | 1 кОм 5,6 кОм 27 кОм 100 кОм | К | К | 1К0 5К6 27K 100К(М10) | 1К0 5К6 27K 100К(М10) |
МОм | мегаОмы | 470 МОм 4,7 МОм 47 МОм | М
| М
| М47 4М7 47 М
| М47 4М7 47М |
Таблица 2. Буквенные коды допусков сопротивлений, наносимых на корпуса резисторов.
Допуск, % | ±0,1 | ±0,2 | ±0,25 | ±0,5 | ±1 | ±2 | ±5 | ±10 | ±20 | ±30 | |
Обозначение | старое | ж | У | — | Д | Р | Л | И | С | В | Ф |
новое | в | — | С | D | F | G | J | К | М | N |
Цветовой код маркировки резисторов
Тип маркировки, при котором на корпус резистора наносится краска в виде цветных колец или точек называют цветовым кодом (см. на рис. 1). Каждому цвету соответствует определенное цифровое значение.
Цветовая маркировка на резисторах сдвинута к одному из выводов и читается слева направо. Если маркировку нельзя разместить у одного, из выводов, то первый знак делается полосой шириной в два раза больше, чем остальные.
На резисторы с малой величиной допуска (0,1…10%), маркировка производится пятью цветовыми кольцами. Первые три кольца соответствуют численной величине сопротивления в омах, четвертое кольцо ерть множитель, а пятое кольцо — допуск (рис. 1).
Резисторы с величиной допуска 20% маркируются четырьмя цветными кольцами и на них величина допуска не наносится. Первые три кольца — численная величина сопротивления в омах, а четвертое кольцо — множитель. Иногда резисторы с допуском 20% маркируют тремя цветными кольцами.
В этом случае первые два кольца — численная величина сопротивления в омах, а третье кольцо — множитель. Незначащий ноль в третьем разряде не маркируется.
В связи с тем, что на рынке радиоаппаратуры значительное место занимают зарубежные изделия, заметим, что резисторы зарубежных фирм маркируются как цифровым, так и цветовым кодом.
При цифровой маркировке первые две цифры обозначают численную величину номинала резистора в омах, а оставшиеся представляют число нулей. Например: 150 — 15 Ом; 181 — 180 Ом; 132 — 1,3 кОм; 113—11 кОм.
Цветовая маркировка состоит обычно из четырех цветовых колец. Номинал сопротивления представляет первые три кольца, двух цифр и множителя. Четвертое кольцо содержит информацию о допустимом отклонении сопротивления от номинального значения в процентах.
Определение номиналов зарубежных резисторов по цветовому коду такое же, как и для отечественных. Таблицы цветовых кодов отечественных и зарубежных резисторов совпадают.
Многие фирмы, помимо традиционной маркировки, используют свою внутрифирменную цветовую и кодовую маркировки. Например, встречается маркировка SMD-резисторов, когда вместо цифры 8 ставится двоеточие. Так, маркировка 1:23 означает 182 кОм, a 80R6 — 80,6 Ом.
Цвет колец или точек | Номинальное сопротивление, Ом | Множитель | Допуск, % | ТКС, %/ГС | ||
1-я цифра | 2-я цифра | З-я цифра | 4-я цифра | 5-я цифра | п | |
Серебристый | — | — | — | 0601 | ±10 | — |
Золотистый | — | — | — | 061 | ±5 | — |
Черный | — | 0 | — | 1 | — | — |
Коричневый | 1 | 1 | 1 | 10 | ±1 | 100 |
Красный | 2 | 2 | 2 | 10^2 | ±2 | 50 |
Оранжевый | 3 | 3 | 3 | 10^3 | — | 15 |
Желтый | 4 | 4 | 4 | 10^4 | — | 25 |
Зеленый | 5 | 5 | 5 | 10^5 | ±0,5 | — |
Синий | 6 | 6 | 6 | 10^6 | ±0,25 | 10 |
Фиолетовый | 7 | 7 | 7 | 10^7 | ±0,1 | 5 |
Серый | 8 | 8 | 8 | 10^8 | ±0,05 | — |
Белый | 9 | 9 | 9 | 10^9 | — | 1 |
Рис. 1. Цветовая маркировка отечественных и зарубежных резисторов в виде колец или точек, в зависимости от допуска и ТКЕ.
Литература: В.М. Пестриков. Энциклопедия радиолюбителя.
Резисторы. Система условных обозначений |
Цвет знака | Номинальное сопротивление, в Ом | Множитель | Допуск,% | ||
---|---|---|---|---|---|
Первая полоса | Вторая полоса | Третья полоса | Четвертая полоса | Пятая полоса | |
Серебристый | 0,01 | ±10 | |||
Золотистый | 0 | 0,1 | ±5 | ||
Черный | 0 | 1 | |||
Коричневый | 1 | 1 | 1 | 10 | ±1 |
Красный | 2 | 2 | 2 | 100 | ±2 |
Оранжевый | 3 | 3 | 3 | 1000 | |
Желтый | 4 | 4 | 4 | 104 | |
Зеленый | 5 | 5 | 5 | 105 | ±0,5 |
Голубой | 6 | 6 | 6 | 106 | ±0,25 |
Фиолетовый | 7 | 7 | 7 | 107 | ±0,1 |
Серый | 8 | 8 | 8 | 108 | |
Белый | 9 | 9 | 9 | 109 |
Маркировочные знаки на резисторах сдвинуты к одному из выводов и располагаются слева направо. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, ширина полосы первого знака делается примерно в два раза больше других.
Резисторы с малой величиной допуска (0.1%…10%) маркируются пятью цветовыми кольцами. Первые три — численная величина сопротивления в Омах, четвертое — множитель, пятое кольцо — допуск. Резисторы с величиной допуска ±20% маркируются четырьмя цветовыми кольцами. Первые три — численная величина сопротивления в Омах, четвертое кольцо -множитель.
Незначащий ноль в третьем разряде и величина допуска не маркируются. Поэтому такие резисторы маркируются тремя цветовыми кольцами. Первые два — численная величина сопротивления в Омах, третье кольцо — множитель. Мощность резистора определяется ориентировочно по его размерам.
ОБОЗНАЧЕНИЕ РЕЗИСТОРОВ ЗАРУБЕЖНЫХ ФИРМ
Единая структура условных обозначений резисторов за рубежом отсутствует. Она произвольно устанавливается фирмами-изготовителями. В основу обозначения постоянных резисторов положен буквенно-цифровой (или цифровой) код, которым обозначают тип, значения основных параметров (номинальная мощность, ТКС, номинальное сопротивление, допускаемое отклонение) и вид упаковки.
Для резисторов специального назначения (изготовляемые по стандартам MIL) условное обозначение формируется следующим образом:
ПЕРВЫЙ ЭЛЕМЕНТ — обозначает серию резистора, согласно таблицы:
Серия | Наименование резисторов | N стандарта |
---|---|---|
RL | Стандартные металлопленочные резисторы (допуск ±2, ±5) | MIL-R-22684 |
RN | Металлопленочные прецизионные резисторы | MIL-R-10509 |
RE | Мощные проволочные резисторы с алюминиевым радиатором | MIL-R-18546 |
RNC | Металлопленочные резисторы с уровнем надежности «S» | MIL-R-55182 |
RLR | Металлопленочные резисторы с уровнем надежности «Р» | MIL-R-39017 |
RB | Проволочные прецизионные резисторы миниатюрные и субминиатюрные | MIL-R-93 |
RBR | Проволочные прецизионные резисторы с уровнем надежности «R» | MIL-R-39005 |
RW | Проволочные мощные резисторы для поверхностного монтажа | MIL-R-26 |
RNR RNN | Металлопленочные прецизионные резисторы с герметичным уплотнением | MIL-R-55182 |
RCR | Углеродистые композиционные резисторы | MIL-R-39008 |
М55342 | Толстопленочные кристаллы резисторов с уровнем надежности «R» | MIL-R-55342 |
ВТОРОЙ, ТРЕТИЙ, ЧЕТВЕРТЫЙ И ПЯТЫЙ ЭЛЕМЕНТ — цифровой код, обозначающий номинальное сопротивление
ШЕСТОЙ ЭЛЕМЕНТ — буквенный код, которым обозначается уровень надежности резисторов в течение 1000 часов-
Код | М | Р | R | S |
---|---|---|---|---|
Уровень надежности (число отказов в %) | 1 | 0,1 | 0,01 | 0,001 |
Обозначение номинального сопротивления представляет собой код из четырех цифр, первые три из которых указывают величину номинала сопротивления в Омах, а последняя — число последующих нулей. Для резисторов с допуском более 10% код состоит из трех цифр, в котором значащими являются первые две. Некоторые фирмы указывают номинальное сопротивление, закодированное в соответствии с Публикацией МЭК № 62, 63:
Сопротивление | код | Сопротивление | код | Сопротивление | код | Сопротивление | код |
---|---|---|---|---|---|---|---|
0,1 Ом | R10 | 47 Ом | 47R | 4,7 кОм | 4К7 | 220 кОм | М22 |
0,15 Ом | R15 | 68 Ом | 68R | 6,8 кОм | 6К8 | 330 кОм | МЗЗ |
0,22 Ом | R22 | 100 Ом | 100R | 10 кОм | 10К | 470 кОм | М47 |
0,33 Ом | R33 | 150 Ом | 150R | 15 кОм | 15К | 680 кОм | М68 |
4,7 Ом | 4R7 | 220 Ом | 220R | 22 кОм | 22К | 1,0 МОм | 1МО |
6,8 Ом | 6R8 | 330 Ом | 330R | 33 кОм | ЗЗК | 1,5 МОм | 1М5 |
10 Ом | 10R | 1 кОм | 1КО | 47 кОм | 47К | 2,2 МОм | 2М2 |
15 Ом | 15R | 1,5 кОм | 1К5 | 68 кОм | 68К | 3,3 МОм | ЗМЗ |
22 Ом | 22R | 2,2 кОм | 2К2 | 100 кОм | М10 | 4,7 МОм | 4М7 |
33 0м | 33R | 3,3 кОм | ЗКЗ | 150 кОм | М15 | 6,8МОм | 6М8 |
Для примера рассмотрим условное обозначение постоянных резисторов фирмы Philips :
ПЕРВЫЙ ЭЛЕМЕНТ — тип (класс) резистора: AC, ACL (Cemented Wirewound’ Nonisolated) -мощные керамические проволочные, CR (Carbon Resistor) -углеродистые пленочные, EH (Power Wirewound Isolated) -мощные, опорные проволочные. MPR (Metal film precision Resistor) -металлопленочные прецизионные, MR (Vetal film Resistor) -металлопленочные, NPR (Fussible) -предохранительные металлопленочные, PR (Power metal film Resistor) -мощные металлопленочные, RC (Chip Resistor) — бескорпусные (кристаллы),SFR (Standart film Resistor) -стандартные пленочные, VR (High- ohmic Voltage Resistor) -высоковольтные, WR (Enamelled Wirewound Isolated Resistor) — мощные эмалированные пленочные;
ВТОРОЙ ЭЛЕМЕНТ — максимальный диаметр корпуса (кроме класса RC): 06 — 0,6 мм; 08 — 0,8 мм; 16—1,6 мм; 21 — 2,1 мм; 24 или 25 — 2,5 мм; 30—3 мм; 31 или 34 — 3,1 мм; 37 или 39 — 3,7 мм; 52 или 54 — 5,2 мм; 68 или 74 — 6,8 мм.
ПРИМЕЧАНИЕ: Для классов AC, ACL и ЕН цифры обозначают допустимую мощность рассеяния: 01 — 1 Вт; 02 — 2 Вт; 03-3 Вт; 04—4 Вт; 05—5 Вт; 07—7 Вт; 09-9 Вт; 10 — 10 Вт; 15 — 15 Вт; 17 — 17 Вт; 20 — 20 Вт.
ТРЕТИЙ ЭЛЕМЕНТ — кодируется буквенными символами и обозначает конструктивное исполнение контактных выводов и материал покрытия контактов (см. табл.1). Обозначение номинального сопротивления, в зависимости от типа резистора, может быть представлено: — кодом из четырех (или трех) цифр, в котором первые три (или две) являются значащими, а последняя обозначает число последующих нулей; — кодом в соответствии с Публикацией МЭК № 62; — цветовым кодом в соответствии с Публикацией МЭК № 63.
Таблица 1. Цветовое различие выпускаемых корпусов резисторов.
Цвет корпуса | Тип резистора |
---|---|
Светло-коричневый | CR16, CR25, CR37, CR52, CR68 |
Светло-зеленый | SFR16, SFR25, SFR30 |
Серый | NFR25, NFR30 |
Зеленый | MR16, MR25, MR30, MR52, MR24E(C), MR34E(C), MR54E(C), MR74E(C), MPR24, MPR34, AC04, AC05, AC07, AC10, AC15, AC20, ACL01, ACL02, ACL03 |
Светло-голубой | VR25, VR37, VR68 |
Красный | PR37, PR52 |
Коричневый | WRO167E, WRO842E, WRO825E, WRO865E |
Некоторые фирмы применяют цветовое кодирование для отличия резисторов, изготавливаемых по стандартам MIL, от резисторов промышленного и бытового назначения или обозначения ТКС для отличия проволочных резисторов от постоянных.
НЕКОТОРЫЕ РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ РЕЗИСТОРОВ
Резисторы, применяемые в колебательных контурах, усилителях высокой частоты, аттенюаторах, должны обладать только активным сопротивлением, т. е. не изменяют свое сопротивление в рабочем диапазоне частот. Граничная частота, на которой может работать резистор, зависит от его номинального сопротивления и собственной емкости :
Frp. = 1/4RC.
Собственные емкости, например, непроволочных резисторов (ВС, МТ, ОМЛТ, С2-6, С2-13, С2-14, С2-23, С2-33) находятся в интервале 0,1… 1,1 пФ. При работе в импульсном режиме средняя мощность не должна превышать номинальную, т.к. через резистор протекают периодические импульсы тока, мгновенные значения которых могут значительно превышать значения в непрерывном режиме.
Комментарии и замечания пишите:
|
SMD резисторы маркируются различными способами. Способ
|
Обозначение резисторов на схемах — Основы электроники
Из предыдущих статей мы с вами узнали, что такое резистор, какие виды и типы реристоров выпускаются современной промышленностью. Как выглядят резисторы, вы тоже увидели, теперь рассмотрим обозначение резисторов на схемах или условно-графическое обозначение резисторов (УГО).
Условно-графическое обозначение резисторов на схемах отображается согласно ГОСТа 2.728-74.
На рисунке 1. показано общее обозначение постоянного резистора и приведены размеры, согласно которых резистор наносится на принципиальные схемы.
Рисунок 1. Общее обозначение резистора на схеме.
Над УГО резистора наносится его порядковый номер, латинская буква R показывает на принадлежность к классу резисторов. Под УГО наносится номинальное сопротивление резистора.
Все резисторы имеют значение номинальной мощности рассеяния. Это значение мощности тока на резисторе, при которой он может работать длительное время и не перегреваться (обычно берут в расчет комнатную температуру ?23°).
Обозначение мощности резисторов на схемах показано на рисунке 2.
Рисунок 2. Обозначение мощности резисторов на схеме. а)0,125 Вт; б)0,25 Вт; в)0,5 Вт; г)1 Вт; д)2 Вт; е)5 Вт.
Обозначение переменных резисторов на схемах показано на рисунке 3.
Рисунок 3. Обозначение переменных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)при неленейном регулировании.
Обозначение педстроечных резисторов на схемах показано на рисунке 4.
Рисунок 4. Обозначение подстроечных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)переменный с подстройкой.
Приведенные обозначения резисторов на схемах, как уже было сказано соответствуют ГОСТу, однако в настоящее время в летературе (особенно в зарубежной) можно встретить другие обозначения резисторов.
Эти обозначения приведены на рисунке 5.
Рисунок 5. Обозначение резисторов используемое в зарубежной литературе. а)постоянный резистор; б)переменный резистор.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Резисторы
| Electronics Club
Резисторы | Клуб электроники
Цветовой код | Толерантность |
Серия E6 / E12 | Номинальная мощность
См. Также: Сопротивление | Закон Ома |
Переменные резисторы
Резисторы ограничивают прохождение электрического тока, например, резистор включен последовательно с
светодиод (LED) для ограничения тока, проходящего через светодиод.
Резисторы можно подключать любым способом, и они не повреждаются от нагрева при пайке.
Сопротивление измеряется в омах, символ (омега).
1 довольно мала, поэтому номиналы резисторов также приведены в
к и М:
1k = 1000
1M = 1000k
= 1000000.
Большинство резисторов слишком малы, чтобы отображать их сопротивление в виде числа.
Вместо этого используется цветовой код.
Для получения информации о резисторах, подключенных последовательно и параллельно, см.
страница сопротивления.
Rapid Electronics: резисторы
Сокращенное обозначение резистора
Значения резисторов часто записываются на принципиальных схемах с использованием кодовой системы, исключающей использование десятичной точки.
потому что очень легко пропустить маленькую точку.Вместо десятичной точки используются буквы R, K и M.
Чтобы прочитать код: замените букву десятичной точкой, затем умножьте значение на 1000, если буква K,
или 1000000, если буква М. Буква R означает умножение на 1.
Цвет резистора, код
Номиналы резисторов
обычно отображаются с помощью цветных полос, каждый цвет представляет собой число, как показано в таблице.
Большинство резисторов имеют 4 полосы:
- Первая полоса дает первую цифру .
- Вторая полоса дает вторую цифру .
- Третья полоса указывает количество нулей .
- Четвертая полоса показывает допуск (точность) резистора
но это можно игнорировать почти для всех схем.
Пример
Этот резистор имеет красную (2), фиолетовую (7), желтую (4 нуля) и золотую полосы, поэтому его значение составляет
270000 = 270 тыс.
(на принципиальных схемах обычно отображается как 270K ).
Сделайте свой собственный калькулятор цветового кода.
Электроника Код цвета | |
Цвет | Номер |
Черный | 0 |
Коричневый | 1 |
Красный | 2 |
Оранжевый | 3 |
Желтый | 4 |
Зеленый | 5 |
Синий | 6 |
Фиолетовый | 7 |
Серый | 8 |
Белый | 9 |
Резисторы малой стоимости (
<10 Ом)
Стандартный цветовой код не может отображать значения меньше 10.Для отображения меньших значений используются два специальных цвета для третьей полосы :
- золота, что означает × 0,1
- серебра, что означает × 0,01
Первый и второй диапазоны представляют цифры обычным образом.
Например:
красные, фиолетовые, золотые полосы представляют
27 × 0,1 = 2,7.
зеленые, синие, серебряные полосы представляют
56 × 0,01 = 0,56.
Калькулятор цветовой кодировки резистора
Этот калькулятор можно использовать для определения номиналов резисторов.Он состоит из трех карточных дисков, показывающих цвета и значения, они скреплены вместе, чтобы вы могли просто
поверните диски, чтобы выбрать требуемое значение или цветовой код. Простой, но эффективный!
Есть две версии для загрузки и печати на белой карточке формата А4 (два калькулятора на листе):
Чтобы сделать калькулятор: вырежьте три диска и скрепите их вместе латунной застежкой для бумаги.
Черно-белую версию нужно раскрашивать вручную, проще всего это сделать перед вырезкой .
Допуск резисторов
Допуск резистора показан на четвертой полосе цветового кода.
Допуск — это точность резистора и выражается в процентах.
Например, 390
резистор с допуском ± 10% будет иметь значение в пределах 10% от
390, г.
между 390 — 39 = 351
и 390 + 39 = 429 (39 составляет 10% от 390).
Для четвертой полосы используется специальный цветовой код Допуск:
- серебро ± 10%
- золото ± 5%
- красный ± 2%
- коричневый ± 1%
- Если четвертая полоса не отображается, допуск составляет ± 20%
Допуском можно пренебречь почти для всех цепей, поскольку точное значение резистора требуется редко.
и там, где это переменный резистор, обычно будет использоваться.
Реальные значения резисторов (серии E6 и E12)
Вы могли заметить, что резисторы доступны не со всеми возможными значениями, например
22k и 47k
есть в наличии, но 25к
а 50к нет!
Почему это? Представьте, что вы решили делать резисторы каждые
10 дает 10, 20, 30, 40, 50 и так далее.
Кажется, это нормально, но что произойдет, когда вы достигнете 1000?
Делать 1000, 1010, 1020, 1030 и так далее было бы бессмысленно, потому что для этих значений
10 — очень маленькая разница, слишком мала, чтобы быть заметной в большинстве схем.
Для получения разумного диапазона значений резистора вам необходимо увеличить размер «шага».
по мере увеличения значения. Стандартные номиналы резисторов основаны на этой идее и образуют
серия, которая следует той же схеме для каждого числа, кратного десяти.
Деньги используют аналогичную систему
Аналогичное расположение используется для денег: размер шага монет и банкнот увеличивается с увеличением стоимости.
Например, валюта Великобритании (1 фунт = 100 пенсов) содержит монеты 1, 2, 5, 10, 20, 50, 1 и 2 фунта стерлингов.
(плюс банкноты 5, 10, 20 и 50 фунтов стерлингов).
E6 серии
Серия E6 имеет 6 значений для каждого кратного десяти, она используется для резисторов с допуском 20%.
Значения: 10, 15, 22, 33, 47, 68, … затем продолжается 100, 150, 220, 330, 470, 680, 1000 и т. Д.
Обратите внимание, как размер шага увеличивается с увеличением значения. Для этой серии шаг (к
следующее значение) примерно вдвое меньше.
E12 серии
Серия E12 имеет 12 значений для каждого кратного десяти, она используется для резисторов с допуском 10%.Значения: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, … затем продолжается 100, 120, 150 и т. Д.
Обратите внимание, как это серия E6 с дополнительным значением в промежутках.
Серия E12 наиболее часто используется для резисторов.
Позволяет выбрать значение в пределах 10% от точного значения, которое вам нужно. Это достаточно точно для почти
все проекты и это разумно, потому что большинство резисторов
имеют допуск ± 10%.
Номинальная мощность резисторов
Электрическая энергия преобразуется в тепло, когда через резистор протекает ток.Обычно эффект незначителен, но если сопротивление низкое или напряжение на резисторе высокое,
может пройти большой ток, в результате чего резистор заметно нагреется. Резистор должен выдерживать
эффект нагрева и резисторы имеют номинальную мощность, чтобы показать это.
Номинальная мощность резисторов редко указывается в списках деталей, потому что для большинства цепей стандартная мощность
Подходят мощность 0,25 Вт или 0,5 Вт. В редких случаях, когда требуется более высокая мощность, она должна быть четко обозначена.
указанных в перечне деталей, это будут схемы, использующие резисторы малой мощности (менее
около 300) или высокого напряжения (более 15В).
Rapid Electronics: силовые резисторы
Мощность P, развиваемая в резисторе, может быть определена с помощью следующих уравнений:
P = V² / R или P = I² × R |
P = развиваемая мощность в ваттах (Вт)
I = ток через резистор в амперах (A)
R = сопротивление резистора в Ом ()
В = напряжение на резисторе в вольтах (В)
Примеры:
- Резистор 470 А с 10 В на нем
требуется номинальная мощность P = V² / R = 10² / 470 = 0.21Вт.
В данном случае подойдет стандартный резистор 0,25Вт. - Резистор 27 А с напряжением 10 В на нем
требуется номинальная мощность P = V² / R = 10² / 27 = 3,7 Вт.
Требуется резистор большой мощности с номинальной мощностью 5 Вт (или более).
Rapid Electronics
любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку.
У них есть широкий ассортимент резисторов и других компонентов для электроники, и я рад
рекомендую их как поставщика.
Книг по комплектующим:
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию.
Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет
используется только для ответа на ваше сообщение, оно не будет передано никому.
На этом веб-сайте отображается реклама, если вы нажмете на
рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.
Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.
Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов.
(включая этот), как объяснил Google.
Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста,
посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
резисторов — учимся.sparkfun.com
Добавлено в избранное
Любимый
50
Примите стойку, стойку сопротивления
Резисторы — самые распространенные электронные компоненты. Они являются важной частью практически каждой цепи. И они играют важную роль в нашем любимом уравнении — законе Ома.
В этом разделе résistance мы рассмотрим:
- Что такое резистор ?!
- Блоки резисторов
- Обозначение цепи резистора
- Последовательные и параллельные резисторы
- Различные варианты резисторов
- Цветовое кодирование декодирование
- Расшифровка резистора поверхностного монтажа
- Примеры применения резистора
Считайте чтение…
Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники. Прежде чем перейти к этому руководству, подумайте о том, чтобы сначала прочитать (по крайней мере, бегло просмотреть) эти:
Хотите попробовать резисторы?
и nbsp
и nbsp
Основы резистора
Резисторы — это электронные компоненты, которые обладают постоянным постоянным электрическим сопротивлением. Сопротивление резистора ограничивает поток электронов через цепь.
Это пассивных компонентов, то есть они только потребляют энергию (и не могут ее генерировать). Резисторы обычно добавляются в схемы, где они дополняют активных компонентов , таких как операционные усилители, микроконтроллеры и другие интегральные схемы. Обычно резисторы используются для ограничения тока, деления напряжений и подтягивания линий ввода / вывода.
Блоки резисторов
Электрическое сопротивление резистора измеряется в Ом . Символ ома — греческая заглавная буква омега: & ohm ;.(Несколько окольным) определение 1 & ohm; — это сопротивление между двумя точками, где 1 вольт (1 В) приложенной потенциальной энергии будет подталкивать 1 ампер (1 А) тока.
В единицах СИ большие или меньшие значения Ом могут быть сопоставлены с префиксом, например, кило-, мега- или гига-, чтобы облегчить чтение больших значений. Очень часто можно увидеть резисторы в диапазоне килоомов (кОм;) и мегаомов (МОм;) (гораздо реже можно увидеть резисторы в миллиомах (м & Ом;)). Например, 4,700 Ом; резистор эквивалентен 4.7к & Ом; резистор и 5,600,000 Ом; резистор можно записать как 5,600 кОм; или (чаще) 5.6M & ohm ;.
Схематическое обозначение
Все резисторы имеют две клеммы, , по одной клемме на каждом конце резистора. При моделировании на схеме резистор будет отображаться как один из этих двух символов:
Два общих условных обозначения резистора. R1 — это 1 кОм в американском стиле; резистор, а R2 — международный 47кОм; резистор.
Выводы резистора — это каждая линия, идущая от волнистой линии (или прямоугольника). Это то, что подключается к остальной части схемы.
Обозначения схемы резистора обычно дополняются значением сопротивления и именем. Значение, отображаемое в омах, очевидно, имеет решающее значение как для оценки, так и для фактического построения схемы. Название резистора обычно — R перед числом. Каждый резистор в цепи должен иметь уникальное имя / номер.Например, вот несколько резисторов в цепи таймера 555:
В этой схеме резисторы играют ключевую роль в установке частоты на выходе таймера 555. Другой резистор (R3) ограничивает ток через светодиод.
Типы резисторов
Резисторы
бывают разных форм и размеров. Они могут быть сквозными или поверхностными. Это может быть стандартный статический резистор, набор резисторов или специальный переменный резистор.
Прерывание и монтаж
Резисторы
будут иметь один из двух типов оконечной нагрузки: сквозное отверстие или поверхностный монтаж. Эти типы резисторов обычно обозначаются аббревиатурой PTH (сквозное отверстие с гальваническим покрытием) или SMD / SMT (технология или устройство для поверхностного монтажа).
Резисторы со сквозным отверстием поставляются с длинными гибкими выводами, которые можно вставить в макет или вручную припаять к макетной плате или печатной плате (PCB). Эти резисторы обычно более полезны при макетировании, прототипировании или в любом другом случае, когда вы не хотите паять крошечные, маленькие 0.Резисторы SMD длиной 6 мм. Длинные выводы обычно требуют обрезки, и эти резисторы неизбежно занимают гораздо больше места, чем их аналоги для поверхностного монтажа.
Наиболее распространенные сквозные резисторы поставляются в аксиальном корпусе. Размер осевого резистора зависит от его номинальной мощности. Обычный резистор ½ Вт имеет диаметр около 9,2 мм, тогда как резистор меньшей Вт имеет длину около 6,3 мм.
Резистор мощностью полуватта (½Вт) (вверху) мощностью до четверти ватта (Вт).
Резисторы для поверхностного монтажа обычно представляют собой крошечные черные прямоугольники, оканчивающиеся с обеих сторон еще меньшими, блестящими, серебряными проводящими краями.Эти резисторы предназначены для установки на печатных платах, где они припаяны к ответным посадочным площадкам. Поскольку эти резисторы настолько малы, их обычно устанавливает робот и отправляет через печь, где припой плавится и удерживает их на месте.
Крошечный 0603 330 & Ом; резистор, парящий над блестящим носом Джорджа Вашингтона на вершине [США квартал] (http://en.wikipedia.org/wiki/Quarter_ (United_States_coin).
Резисторы SMD
бывают стандартных размеров; обычно либо 0805 (0.08 «в длину на 0,05» в ширину), 0603 или 0402. Они отлично подходят для массового производства печатных плат или в конструкциях, где пространство является драгоценным товаром. Однако для ручной пайки им нужна твердая и точная рука!
Состав резистора
Резисторы
могут быть изготовлены из различных материалов. Чаще всего современные резисторы изготавливаются из углеродной, металлической или металлооксидной пленки марки . В этих резисторах тонкая пленка проводящего (но все же резистивного) материала намотана спиралью вокруг и покрыта изоляционным материалом.Большинство стандартных простых сквозных резисторов имеют углеродную или металлическую пленку.
Загляните внутрь нескольких углеродных пленочных резисторов. Значения сопротивления сверху вниз: 27 Ом, 330 Ом; и 3,3 МОм. Внутри резистора углеродная пленка обернута вокруг изолятора. Чем больше обертываний, тем выше сопротивление. Довольно аккуратно!
Другие сквозные резисторы могут быть намотаны проволокой или изготовлены из сверхтонкой металлической фольги.Эти резисторы обычно являются более дорогими, более дорогими компонентами, специально выбранными из-за их уникальных характеристик, таких как более высокая номинальная мощность или максимальный температурный диапазон.
Резисторы для поверхностного монтажа обычно бывают толстыми или тонкопленочными . Толстая пленка обычно дешевле, но менее точна, чем тонкая. В обоих типах резисторов небольшая пленка из резистивного металлического сплава помещается между керамической основой и стеклом / эпоксидным покрытием, а затем соединяется с концевыми токопроводящими краями.
Наборы специальных резисторов
Существует множество других резисторов специального назначения. Резисторы могут поставляться в предварительно смонтированных пакетах из пяти или около того резисторных матриц. Резисторы в этих массивах могут иметь общий вывод или быть настроены как делители напряжения.
Массив из пяти 330 Ом; резисторы, соединенные вместе на одном конце.
Переменные резисторы (например, потенциометры)
Резисторы тоже не обязательно должны быть статичными. Переменные резисторы, известные как реостаты , представляют собой резисторы, которые можно регулировать в пределах определенного диапазона значений.Аналогичен реостату потенциометр . Горшки соединяют два резистора внутри последовательно, и регулируют центральный отвод между ними, создавая регулируемый делитель напряжения. Эти переменные резисторы часто используются для входов, например регуляторов громкости, которые необходимо регулировать.
Расшифровка маркировки резистора
Хотя они могут не отображать свое значение сразу, большинство резисторов имеют маркировку, показывающую их сопротивление. Резисторы PTH используют систему цветовой кодировки (которая действительно добавляет немного изящества схемам), а резисторы SMD имеют свою собственную систему маркировки значений.
Расшифровка цветных полос
Осевые резисторы со сквозным отверстием обычно используют систему цветных полос для отображения своего значения. Большинство из этих резисторов будут иметь четыре цветных полосы, окружающие резистор, хотя вы также найдете пять полосных и шесть полосных резисторов.
Четырехполосный резистор
В стандартных четырехполосных резисторах первые две полосы обозначают две старшие цифры номинала резистора. Третья полоса — это весовое значение, при котором умножает две значащие цифры на десять.
Последняя полоса указывает допуск резистора. Допуск объясняет, насколько более или менее фактическое сопротивление резистора можно сравнить с его номинальным значением. Ни один резистор не может быть доведен до совершенства, и различные производственные процессы приведут к лучшим или худшим допускам. Например, 1 кОм; резистор с допуском 5% на самом деле может быть где-то между 0,95 кОм; и 1.05кОм ;.
Как определить, какая группа первая и последняя? Последний диапазон допусков часто четко отделен от диапазонов значений, и обычно это либо серебро, либо золото.
Пяти- и шестиполосные резисторы
Пятиполосные резисторы имеют третью полосу значащих цифр между первыми двумя полосами и полосой умножителя . Пятиполосные резисторы также имеют более широкий диапазон допусков.
Шестиполосные резисторы — это, по сути, пятиполосные резисторы с дополнительной полосой на конце, которая указывает температурный коэффициент. Это указывает на ожидаемое изменение номинала резистора при изменении температуры в градусах Цельсия. Обычно эти значения температурного коэффициента чрезвычайно малы, в диапазоне ppm.
Декодирующий резистор Цветовые полосы
При расшифровке цветовых полос резисторов обратитесь к таблице цветовых кодов резисторов, подобной приведенной ниже. Для первых двух полос найдите соответствующее цифровое значение этого цвета. 4,7 кОм; Резистор, показанный здесь, имеет в начале цветные полосы желтого и фиолетового цветов, которые имеют числовые значения 4 и 7 (47). Третья полоса 4,7 кОм; красный, что означает, что 47 следует умножить на 10 2 (или 100). 47 умножить на 100 — это 4700!
4.7к & Ом; резистор с четырьмя цветными полосами
Если вы пытаетесь сохранить код цветовой полосы в памяти, может помочь мнемоническое устройство. Существует несколько (иногда сомнительных) мнемоник, которые помогают запомнить цветовую кодировку резистора. Хороший, который раскрывает разницу между b Отсутствие и b rown:
« B ig b rown r abbits o ften y ield g reat b IG v ocal g roans inger .«
Или, если вы помните «ROY G. BIV», вычтите индиго (бедный индиго, никто не помнит индиго) и добавьте черный и коричневый к передней части и серый и белый к задней части классической цветовой схемы радуги. .
Таблица кодов цветов резистора
Проблемы со зрением? Щелкните изображение для лучшего просмотра!
Калькулятор цветового кода резистора
Если вы предпочитаете пропустить математику (мы не будем судить!) И просто воспользуетесь удобным калькулятором, попробуйте один из них!
Четырехполосный резистор
Диапазон 1 | Диапазон 2 | Диапазон 3 | Диапазон 4 | |
Значение 1 (MSV) | Значение 2 | Вес | Допуск | |
Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) | Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) | Черный (1) Коричневый (10) Красный (100) Оранжевый (1k) Желтый (10k) Зеленый (100k) Синий (1M) Фиолетовый (10M) Серый (100M) Белый (1G) | Золото (± 5%) Серебро (± 10%) |
Сопротивление: 1 кОм; ± 5%
Пяти- и шестиполосные резисторы
Примечание: Рассчитайте здесь свой шестиполосный резистор, но не забудьте добавить температурный коэффициент к окончательному значению резистора.
Диапазон 1 | Диапазон 2 | Диапазон 3 | Диапазон 4 | Диапазон 5 | |
Значение 1 (MSV) | Значение 2 | Значение 3 | Вес | Допуск | |
Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) | Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) | Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) | Черный (1) Коричневый (10) Красный (100) Оранжевый (1k) Желтый (10k) Зеленый (100k) Синий (1M) Фиолетовый (10M) Серый (100M) Белый (1G) | Золото (± 5%) Серебро (± 10%) Коричневый (± 1%) Красный (± 2%) Зеленый (± 0.5%) Синий (± 0,25%) Фиолетовый (± 0,1%) Серый (± 0,05%) |
Сопротивление: 1 кОм; ± 5%
Расшифровка маркировки для поверхностного монтажа
У резисторов SMD
, таких как в корпусах 0603 или 0805, есть собственный способ отображения их значения. Есть несколько распространенных методов маркировки этих резисторов. Обычно на корпусе печатается от трех до четырех символов — цифр или букв.
Если три символа, которые вы видите, это все числа , вы, вероятно, смотрите на резистор с маркировкой E24 .Эти маркировки действительно имеют некоторое сходство с системой цветных полос, используемой на резисторах PTH. Первые два числа представляют собой первые две наиболее значимые цифры значения, последнее число представляет величину.
На изображении выше в качестве примера резисторы обозначены 104 , 105 , 205 , 751 и 754 . Резистор с маркировкой 104 должен быть 100 кОм; (10×10 4 ), 105 будет 1 МОм & Ом; (10×10 5 ) и 205 составляет 2M & Ом; (20×10 5 ). 751 — 750 Ом; (75×10 1 ) и 754 составляет 750 кОм; (75×10 4 ).
Еще одна распространенная система кодирования — E96 , и она самая загадочная из всех. Резисторы E96 будут обозначены тремя символами — двумя цифрами в начале и буквой в конце. Два числа сообщают вам первые , три цифр значения, соответствующие одному из не столь очевидных значений в этой поисковой таблице.
Код | Значение | Код | Значение 9069 | Значение | Код | Значение | Код | Значение | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01 | 100 | 17 | 147 | 9 | 49 | 316 | 65 | 464 | 81 | 681 | ||||||
02 | 102 | 18 | 150 | 34 | 221 | 50 | 324 | 66 | 475 | 82 | 698 | |||||
03 | 105 | 19 | 154 | 35 | 226 | 51 | 332 | 67 | 487 | 83 | 715 | |||||
04 | 107 | 20 | 158 | 36 | 52 | 340 | 68 | 499 | 84 | 732 | ||||||
05 | 110 | 21 | 162 | 37 | 237 | 53 | 348 | 69 | 511 90 072 | 85 | 750 | |||||
06 | 113 | 22 | 165 | 38 | 243 | 54 | 357 | 70 | 523 | 86 | 768 | |||||
07 | 115 | 23 | 169 | 39 | 249 | 55 | 365 | 71 | 536 | 87 | 787 | |||||
08 | 118 | 24 | 174 | 40 | 255 | 56 | 374 | 72 | 549 | 88 | 8 06 | |||||
09 | 121 | 25 | 178 | 41 | 261 | 57 | 383 | 73 | 562 | 89 | 825 | |||||
10 | 124 | 26 | 182 | 42 | 267 | 58 | 392 | 74 | 576 | 90 | 845 | |||||
11 | 127 | 27 | 187 | 43 | 274 | 59 | 402 | 75 | 590 | 91 | 866 | |||||
12 | 130 | 28 | 191 | 44 | 280 | 60 | 412 | 76 | 604 | 92 | 887 | |||||
13 | 133 | 29 | 196 | 45 | 287 | 61 | 422 | 77 | 619 | 93 | 909 | |||||
14 | 137 | 30 | 200 | 46 | 294 | 62 | 432 | 78 | 634 | 94 | 931 | |||||
15 | 140 | 31 | 47 | 301 | 63 | 442 | 79 | 649 | 95 | 953 | ||||||
16 | 143 | 32 | 210 | 48 | 309 | 64 | 453 | 80 | 665 | 96 | 976 |
Буква в конце представляет множитель, соответствующий чему-то в этой таблице:
Letter | Множитель | Letter | Множитель | Letter | Множитель | ||
---|---|---|---|---|---|---|---|
1 | A | 1 | D | 1000 | |||
Y или R | 0,01 | B или H | 10 | E | 10000 | ||
X или S | 0,1 | C | 100 | F | 100000 |
Итак, резистор 01C — наш хороший друг, 10 кОм; (100×100), 01B составляет 1 кОм; (100×10), а 01D — 100 кОм.Это просто, другие коды могут быть не такими. 85A на картинке выше — 750 Ом; (750×1) и 30C на самом деле 20 кОм.
Номинальная мощность
Номинальная мощность резистора — одна из наиболее скрытых величин. Тем не менее это может быть важно, и это тема, которая возникает при выборе типа резистора.
Мощность — это скорость, с которой энергия преобразуется во что-то другое. Он рассчитывается путем умножения разности напряжений в двух точках на ток, протекающий между ними, и измеряется в ваттах (Вт).Лампочки, например, превращают электричество в свет. Но резистор может превратить только электрическую энергию, проходящую через него, в тепла . Хит обычно не лучший товарищ по играм с электроникой; слишком много тепла приводит к дыму, искрам и пожару!
Каждый резистор имеет определенную максимальную номинальную мощность. Чтобы резистор не перегревался слишком сильно, важно убедиться, что мощность на резисторе не превышает его максимального значения. Номинальная мощность резистора измеряется в ваттах и обычно находится между & frac18; Вт (0.125 Вт) и 1 Вт. Резисторы с номинальной мощностью более 1 Вт обычно называют силовыми резисторами и используются специально из-за их способности рассеивать мощность.
Определение номинальной мощности резистора
Номинальная мощность резистора обычно определяется по размеру его корпуса. Стандартные сквозные резисторы обычно имеют номинальную мощность ¼ или ½ Вт. Силовые резисторы более специального назначения могут указывать свою номинальную мощность на резисторе.
Эти силовые резисторы могут выдерживать гораздо большую мощность, прежде чем они сработают.Сверху справа в нижний левый приведены примеры резисторов 25 Вт, 5 Вт и 3 Вт со значениями 2 Ом, 3 Ом; 0,1 & Ом; и 22к & Ом. Меньшие силовые резисторы часто используются для измерения тока.
О номинальной мощности резисторов для поверхностного монтажа обычно можно судить также по их размеру. Резисторы типоразмера 0402 и 0603 обычно рассчитаны на 1/16 Вт, а резисторы 0805 могут потреблять 1/10 Вт.
Измерение мощности на резисторе
Мощность обычно рассчитывается путем умножения напряжения на ток (P = IV).Но, применяя закон Ома, мы также можем использовать значение сопротивления при расчете мощности. Если нам известен ток, протекающий через резистор, мы можем рассчитать мощность как:
Или, если мы знаем напряжение на резисторе, мощность можно рассчитать как:
Резисторы серии
и параллельные
Резисторы постоянно соединяются вместе в электронике, обычно в последовательной или параллельной схеме. Когда резисторы объединяются последовательно или параллельно, они создают общее сопротивление , которое можно рассчитать с помощью одного из двух уравнений.Знание того, как сочетаются значения резисторов, пригодится, если вам нужно создать конкретное значение резистора.
Резисторы серии
При последовательном соединении значения резисторов просто складываются.
резисторов Н. Общее сопротивление — это сумма всех последовательных резисторов.
Так, например, если у вас всего , нужно иметь , 12,33 кОм; резистор, найдите некоторые из наиболее распространенных номиналов резисторов 12 кОм; и 330 Ом, и соединить их последовательно.
Резисторы параллельные
Определить сопротивление параллельно включенных резисторов не так-то просто. Общее сопротивление параллельно включенных резисторов Н и обратно пропорционально сумме всех обратных сопротивлений. Это уравнение может иметь больше смысла, чем последнее предложение:
резисторов Н, включенных параллельно. Чтобы найти общее сопротивление, инвертируйте каждое значение сопротивления, сложите их, а затем инвертируйте.
(Сопротивление, обратное сопротивлению, на самом деле называется проводимостью , так что короче: проводимость параллельных резисторов является суммой каждой из их проводимостей).
Как частный случай этого уравнения: если у вас только два резистора , подключенных параллельно, их полное сопротивление можно рассчитать с помощью этого чуть менее инвертированного уравнения:
В качестве даже более особого случая для этого уравнения, если у вас есть два параллельных резистора с одинаковым значением , общее сопротивление составляет половину их значения. Например, если два 10k & ohm; резисторы включены параллельно, их полное сопротивление 5кОм.
Сокращенно сказать, что два резистора подключены параллельно, можно с помощью оператора параллельности: || .Например, если R 1 находится параллельно с R 2 , концептуальное уравнение может быть записано как R 1 || R 2 . Намного чище и скрывает все эти неприятные фракции!
Резисторные сети
В качестве специального введения в вычисление общего сопротивления учителя электроники любят , когда они знакомят своих учеников с сумасшедшими, запутанными цепями резисторов.
Приручить резисторный сетевой вопрос может быть что-то вроде: «какое сопротивление между выводами A, и B в этой цепи?»
Чтобы решить такую проблему, начните с задней части схемы и упростите ее до двух терминалов.В этом случае R 7 , R 8 и R 9 все идут последовательно и могут складываться вместе. Эти три резистора включены параллельно с R 6 , поэтому эти четыре резистора можно превратить в один с сопротивлением R 6 || (R 7 + R 8 + R 9 ). Делаем нашу схему:
Теперь четыре крайних правых резистора можно упростить еще больше. R 4 , R 5 и наш конгломерат R 6 — R 9 все включены в серию и могут быть добавлены.Тогда все эти последовательные резисторы включены параллельно R 3 .
И это всего лишь три последовательных резистора между выводами A и B . Добавьте их! Таким образом, общее сопротивление этой цепи составляет: 1 + 2 + 3 || ( 4 + 5 + 6 || ( 7 + ) 8 + R 9 )).
Примеры приложений
Резисторы
присутствуют практически во всех электронных схемах.Вот несколько примеров схем, которые сильно зависят от наших друзей-резисторов.
Резисторы
— это ключ к тому, чтобы светодиоды не взорвались при подаче питания. Посредством соединения резистора последовательно со светодиодом ток, протекающий через два компонента, может быть ограничен до безопасного значения.
При выборе токоограничивающего резистора обратите внимание на два характеристических значения светодиода: типичное прямое напряжение и максимальный прямой ток .Типичное прямое напряжение — это напряжение, необходимое для включения светодиода, и оно варьируется (обычно где-то между 1,7 В и 3,4 В) в зависимости от цвета светодиода. Максимальный прямой ток обычно составляет около 20 мА для основных светодиодов; непрерывный ток через светодиод всегда должен быть равен или меньше этого номинального тока.
После того, как вы получили эти два значения, вы можете подобрать токоограничивающий резистор с помощью следующего уравнения:
В S — это напряжение источника — обычно напряжение батареи или источника питания.V F и I F — это прямое напряжение светодиода и желаемый ток, который проходит через него.
Например, предположим, что у вас есть батарея на 9 В для питания светодиода. Если ваш светодиод красный, то прямое напряжение может быть около 1,8 В. Если вы хотите ограничить ток до 10 мА, используйте последовательный резистор примерно 720 Ом.
Делители напряжения
Делитель напряжения представляет собой схему резистора, которая преобразует большое напряжение в меньшее. Используя всего два последовательно подключенных резистора, можно создать выходное напряжение, составляющее часть входного напряжения.
Вот схема делителя напряжения:
Два резистора, R 1 и R 2 , подключены последовательно, и источник напряжения (V в ) подключен через них. Напряжение от V на выходе до GND можно рассчитать как:
Например, если R 1 был 1,7 кОм; и R 2 составлял 3,3 кОм, входное напряжение 5 В можно было преобразовать в 3,3 В на выводе выхода V .
Делители напряжения
очень удобны для считывания показаний резистивных датчиков, таких как фотоэлементы, гибкие датчики и силочувствительные резисторы.Одна половина делителя напряжения — это датчик, а часть — статический резистор. Выходное напряжение между двумя компонентами подается на аналого-цифровой преобразователь на микроконтроллере (MCU) для считывания значения датчика.
Здесь резистор R 1 и фотоэлемент создают делитель напряжения для создания переменного выходного напряжения.
Подтягивающие резисторы
Подтягивающий резистор используется, когда вам нужно смещать входной вывод микроконтроллера в известное состояние.Один конец резистора подключен к выводу MCU, а другой конец подключен к высокому напряжению (обычно 5 В или 3,3 В).
Без подтягивающего резистора входы на MCU можно оставить плавающими . Нет гарантии, что на плавающем контакте высокий (5 В) или низкий (0 В) вывод.
Подтягивающие резисторы часто используются при взаимодействии с входом кнопки или переключателя. Подтягивающий резистор может смещать входной контакт, когда переключатель разомкнут. И это защитит цепь от короткого замыкания при замкнутом переключателе.
В приведенной выше схеме, когда переключатель разомкнут, входной вывод MCU подключен через резистор к 5В. Когда переключатель замыкается, входной контакт подключается непосредственно к GND.
Величина подтягивающего резистора обычно не требует особого указания. Но он должен быть достаточно высоким, чтобы не терять слишком много мощности, если к нему приложить 5 В или около того. Обычно значения около 10 кОм; работать хорошо.
Покупка резисторов
Не ограничивайте количество резисторов.У нас есть наборы, пакеты, отдельные детали и инструменты, которым вы просто не можете противостоять , .
Наши рекомендации:
Щелкните здесь, чтобы просмотреть больше резисторов в каталоге
инструментов:
Цифровой мультиметр — базовый
В наличии
TOL-12966
Цифровой мультиметр (DMM) — незаменимый инструмент в арсенале каждого энтузиаста электроники.Цифровой мультиметр SparkFun, h…
21 год
Инструмент для гибки выводов резистора
В наличии
ТОЛ-13114
Этот маленький кусочек пластика с зазубринами — инструмент для гибки выводов резистора. Этот маленький…
3
Ресурсы и дальнейшее развитие
Теперь, когда вы начинающий эксперт по резисторам, как насчет изучения некоторых более фундаментальных концепций электроники! Резисторы, конечно, не единственный базовый компонент, который мы используем в электронике, есть еще:
Или, может быть, вы хотите подробнее изучить применение резисторов?
Сопротивление резистора | Основы резистора
Сопротивление резистора
Назначение резистора — противодействовать прохождению через него электрического тока.Это называется электрическим сопротивлением и измеряется в омах. Сопротивление можно рассчитать по закону Ома, когда известен ток и измерено падение напряжения:
Сопротивление резистора зависит от его материала и формы. Некоторые материалы имеют более высокое удельное сопротивление, что приводит к более высокому значению сопротивления. Значение часто печатается на резисторе с номером или в виде цветового кода.
Что такое сопротивление?
Понятия тока, напряжения и сопротивления можно объяснить с помощью гидравлической аналогии.Поток воды по трубе ограничен сужением. Это вызывает падение давления после сужения. Течение воды эквивалентно электрическому току. Падение давления равно падению напряжения. Перетяжка эквивалентна резистору и имеет определенное сопротивление. Сопротивление пропорционально падению напряжения или давления для данного тока.
В гидравлическом примере сопротивление может быть увеличено, например, за счет уменьшения диаметра сужения.Для резистора или провода сопротивление обычно зависит от материала и геометрической формы. Влияние геометрической формы легко объяснить на примере гидравлики. Длинная и узкая трубка будет иметь более высокое сопротивление, чем короткая и широкая трубка.
Сопротивление резистора прямоугольного сечения площадью А и длиной L.
Сопротивление материала называется удельным сопротивлением.Электрическое сопротивление резистора пропорционально удельному сопротивлению материала. Для резистора прямоугольного сечения сопротивление R определяется по формуле:
, где ρ — удельное сопротивление материала резистора (Ом · м), l — длина резистора вдоль направления тока (м), а A — площадь поперечного сечения, перпендикулярного току. (м 2 ). Удельное сопротивление — это свойство материалов. Для многих материалов удельное сопротивление постоянно, а V и I прямо пропорциональны друг другу.Материалы, соответствующие этой характеристике, называются омическими материалами. Хорошие материалы резисторов имеют удельное сопротивление от 2 · 10 -8 до 200 · 10 -8 Ом · м.
Сопротивление в серии
Эквивалентное сопротивление последовательно включенных резисторов равно сумме каждого резистора:
Ток, проходящий через все последовательно включенные резисторы, одинаков, а напряжение — нет. Для более подробного объяснения и практических примеров, обратитесь к статье резисторов в серии.Иногда желаемое значение недоступно со стандартными предпочтительными значениями. Вместо этого, чтобы создать желаемое значение сопротивления, два резистора можно соединить последовательно или параллельно.
Сопротивление параллельно
Эквивалентное сопротивление резисторов, включенных параллельно, можно рассчитать по следующей формуле:
Напряжение на каждом параллельном резисторе одинаково, а ток — нет. Для более подробного объяснения и практических примеров обратитесь к статье резисторы параллельно.
Как найти сопротивление резистора
Сопротивление резистора либо напечатано на корпусе резистора, либо обозначено цветовым кодом. Комбинация цветов указывает номинал и допуск резистора. Чтобы получить калькулятор или полное объяснение, обратитесь к разделу кода резистора.
Circuit Innovations — Уголок для начинающих> Компоненты> Резисторы
Резисторы
можно найти почти в каждой схеме, они бывают разных форм и размеров.Наиболее часто используемые типы для любителей — это разновидность осевых выводов с номинальной мощностью до 1 Вт. Единицей измерения сопротивления является ом, который обозначается буквой омега W и назван в честь немецкого ученого Георга Симона Ома. Ом определяется как сопротивление проводника, в котором ток в один ампер вызывает разность потенциалов в один вольт на его выводах. Другими словами, V = IR, где V — разность потенциалов в вольтах, I — ток в амперах, а R — сопротивление в омах.
Более часто используемое обозначение SI для ом (в основном потому, что омегу нелегко найти на клавиатуре) заключается в использовании R. Например, 10 Вт записывается как 10R, 4700 Вт эквивалентно 4,7 кВт и записывается как 4K7, где K заменяет десятичную точку и представляет 1000. 560 000 Вт записывается как 560 КБ, а 1 000 000 Вт записывается как 1M0, где M представляет 1 миллион.
Краткое описание различных типов резисторов показано ниже.
Начнем с самого маленького.На рисунке показан типичный резистор для поверхностного монтажа. Эти резисторы редко используются любителями, хотя любой, кто попытается отремонтировать коммерческий продукт, вероятно, найдет их огромное количество. Резисторы SMD доступны в нескольких размерах, самый большой из которых составляет около 4 мм x 2 мм. Стоимость компонента указана на боковой стороне упаковки. Первые две (или три) цифры дают первые числа значения, а последняя цифра дает множитель. В показанном здесь примере значение не 100 Ом, как вы могли подумать, а фактически 10 Ом.Такие резисторы с низким номиналом также иногда обозначаются как 10R. Другой пример, резистор с маркировкой 472 имеет номинал 4700 Ом или 4К7. 2 является множителем и относится к 10 в степени 2 или 100, поэтому 47 умножается на 100, чтобы получить 4700.
В некоторых резисторах меньшего размера используется совершенно другая система цифр и букв для обозначения значений, известная как стандарт EIA-96. В этой системе используется трехзначный код, где первая пара чисел обозначает три наиболее значимые цифры значения, а последний символ кода, обычно буква, обозначает множитель.
Еще больше усложняет ситуацию то, что на некоторых резисторах SMD нет никакой маркировки или они настолько малы, что их невозможно.
Наиболее часто используемый резистор с осевыми выводами доступен в диапазоне номинальной мощности от 0,125 Вт до 3 Вт. Резисторы малой мощности обычно изготавливаются из углеродной или металлической пленки, а резисторы более высокой мощности — из оксида металла. Диапазон углеродных пленок в значительной степени вытеснен ассортиментом металлических пленок, которые обеспечивают лучшую стабильность и более высокие допуски.Номинал резистора обозначается серией цветных полос. Щелкните здесь, чтобы узнать о цветовом коде резистора.
Резисторы с проволочной обмоткой обычно используются для увеличения рассеиваемой мощности. Как следует из названия, они состоят из отрезка резистивного провода, намотанного на каркас. Снаружи резистор может быть покрыт силиконом, стекловидной эмалью или керамическим материалом.
Для действительно высокого рассеяния мощности резистор с проволочной обмоткой установлен внутри литого алюминиевого корпуса.Кожух обычно имеет плоскую поверхность и крепежные отверстия с одной стороны, чтобы резистор можно было прикрепить к подходящему радиатору, чтобы помочь отвести тепло. Эти резисторы доступны с номинальной мощностью от 10 Вт до 300 Вт и даже версии 600 Вт с водяным охлаждением!
R (резистор) Символ |
Базовые резисторы для начинающих и новичков
Базовые резисторы для начинающих и новичков
Цветовые коды резисторов
HTML с: http://www.btinternet.com/~dtemicrosystems/beginner.htm
ЦВЕТОВЫЕ КОДЫ И ИХ ОБЩЕЕ ИСПОЛЬЗОВАНИЕ
ПРИЗНАННЫЕ СТАНДАРТЫ
Есть десять международно признанных стандартов
цвета, используемые для обозначения значений ряда электронных компонентов.Каждый
присвоено числовое значение от 0 (ноль) до 9 (девять) в следующем порядке; чернить,
коричневый, красный, оранжевый, желтый, зеленый, синий, фиолетовый, серый, белый.
Поскольку они чаще всего используются для определения номиналов резисторов, этот диапазон
цвета часто (неправильно) называют «цветовой кодировкой резистора». В
На практике они могут применяться к различным другим электронным компонентам, хотя в настоящее время
это было в значительной степени заменено печатными сокращениями, которые будут объяснены
позже.
Два других цвета также широко используются; золото и серебро, обычно в качестве знаков допуска
на резисторах (наряду с некоторыми другими цветами), но они также удваиваются как деление
маркировка коэффициентов для сопротивлений ниже 10 Ом. Их присвоенные значения допуска 5%.
для золота и 10% для серебра. В качестве коэффициентов деления их значения равны 10 и 100.
соответственно.
Это покажется немного запутанным в данный момент (мягко говоря!), Если вы не
знакомы с любым из этих цветовых кодов, но, надеюсь, вскоре он станет более понятным.
ЦВЕТОВЫЕ КОДЫ РЕЗИСТОРА
ОБРАТИТЕ ВНИМАНИЕ:
Прежде всего, мы должны указать, что следующая информация не относится к современным
устройство поверхностного монтажа (SMD) или чип-резисторы, которые не используют цветовую кодировку, а
вместо этого проштампован код сопротивления. Мы объясним это позже, но пока
концентрируясь только на стандартных типах с цветовой кодировкой, помните, что этот раздел предназначен для
новички. Несмотря на то, что вы достаточно прямолинейны для понимания, прежде чем читать это
переход на резисторы, вы, наверное, никогда не догадались бы самого принципиального
компонент в электронике может быть так задействован.
Наиболее распространенные типы резисторов с цветовой кодировкой поставляются с четырьмя или пятью
цветные полосы. Вы также найдете шесть типов цветных полос, которые включают температуру
диапазон коэффициентов, но, чтобы вас не запутать, мы пока будем игнорировать их
быть и сконцентрироваться в основном на типе четырех диапазонов, после чего следует краткое объяснение
пять полос типа, так как это просто расширение четырех полос.
КРАТКИЙ УРОК ИСТОРИИ
Раньше резисторы выглядели как субминиатюрные.
реостаты, что-то вроде керамической трубки, с ножками, похожими на заостренные метки припоя, приваренные близко к
концы трубки.При пайке они стояли примерно на одну восьмую дюйма.
(3,175 мм) над монтажной платой. Весь корпус резистора окунул в бирюзу.
цветной краской, а ценность определялась чудесным сочетанием точек, пятен и
числа, которые в половине случаев разошлись по печатной машине на мили! Как углеродная пленка и
резисторы из углеродного состава стали более популярными, цветные кольца или полосы вокруг всего
тело стало «нормой» для идентификации.
Вот очень специфический аспект изготовления резисторов этого типа; в свое время они
у всех было только четыре цветных полосы, обычно напечатанных на корпусе бордового цвета, и
физически достаточно большой, чтобы можно было легко видеть и читать все цвета.В наши дни то же самое
резисторы меньше четверти размера, имеют разный цвет корпуса и содержат больше
цветные кольца, чем Сатурн! Это делает практически невозможным определение некоторых значений.
человеческими глазами, даже со зрением 20:20. Даже опытные дизайнеры признаются в
подключив некоторые из них к мультиметру, чтобы подтвердить значение.
Люди, которые привыкли к считыванию цветовых кодов резисторов, как правило, смогут
взгляните на тело и скажите вам в течение двух секунд, каково значение этого резистора,
без использования каких-либо таблиц преобразования.Хотите верьте, хотите нет, но вы тоже примете это как
вторая натура после некоторого опыта.
КОНВЕНЦИИ
«R» = Ом. «K» = килом. «M» = мегом.
Чтобы избежать необходимости писать или работать с большим количеством цифр, приняты определенные соглашения
применяются к тому, как записываются значения резисторов, когда они достигают различных величин. Каждый
1000 Ом называется килом (килограмм = одна тысяча) и сокращается до заглавной буквы.
буква «К». Каждые 1000000 Ом называют Мегаомом (Мега = один миллион),
сокращенно до заглавной буквы «М».В качестве пары примеров; 4700 Ом
резистор будет записан как 4.7K или 4K7, а 5600000 Ом будет записано как
5,6М или 5М6. Для полноты таким же образом можно записать значения ниже 10 Ом;
Например, 3,9 Ом можно записать как 3R9.
Не существует жесткого правила, определяющего сокращенный метод их записи.
использовал. Первоначально они писались с десятичной точкой посередине, но когда схема
диаграммы начали массово появляться, особенно в журналах для любителей, стало очевидно
что из-за используемой техники печати и использования низкокачественной бумаги десятичная точка была очень
часто воспроизводится не очень точно.Это привело к неправильной интерпретации напечатанного
ценности и конструкторы строят схемы, которые не работают. И проблема не в
ограничен журналами для любителей, множеством коммерческих схем и технических руководств
также были допущены те же упущения. Из-за этого многие схемы стали отключаться.
изготовленные, номиналы резисторов которых были записаны буквой в середине.
ЧТО ПРОИЗОШЛО С OMEGA?
Еще одним символом, который также использовался для обозначения сопротивления, был сам знак Омега, но теперь он в значительной степени заменен заглавной буквой.
«Р».Почему? Поскольку принципиальные схемы изначально были нарисованы на бумаге
рисовальщики используют трафареты, содержащие различные электронные символы и символы. С участием
появление широко доступных CAD-машин для создания принципиальных схем, и
текстовых процессоров, чтобы набрать письменную документацию, они внезапно поняли, что Omega
символ не был стандартным типографским знаком. В «старые времена», покупая пишущую машинку *, вы указывали, какие специальные символы (если есть) должны
быть включенным для обслуживания вашего конкретного направления бизнеса.Но с новым цифровым
системы, вы должны были обойтись тем, что было доступно, и буква «R», казалось,
наиболее логично использовать для сопротивления, поэтому R = Ом.
ЦВЕТОВЫЕ КОДЫ 4-ПОЛОСНОГО РЕЗИСТОРА
ОБЫЧНО ИСПОЛЬЗУЕТСЯ НА РЕЗИСТОРАХ УГЛЕРОДНОЙ ПЛЕНКИ
Рисунок на
Слева показан резистор с четырехцветной полосой вместе с таблицей преобразования, чтобы вы могли
чтобы вычислить значение любого из этого типа. Все цвета должны быть преобразованы в их
присвоенные значения для расчета сопротивления, и результат всегда получается в
Ом.
НЕПРАВИЛЬНЫЕ ЦВЕТА:
Обратите внимание, как некоторые цвета были опущены в первом и третьем столбцах. Это
потому что первый столбец никогда не будет черным, а третий столбец никогда не будет иметь цвет
с присвоенным значением выше 6, так как номиналы базового резистора колеблются от 1 Ом — коричневый,
черный, золотой, до 10 МОм — коричневый, черный, синий. В нашем примере 27K сопротивление равно
рассчитывается следующим образом;
ЗНАЧИМЫЕ ЦИФРЫ и МНОЖЕСТВЕННЫЕ ПОЛОСЫ:
Первые два цвета представляют два числовых значения, известных как значащие цифры, которые
просто записываются по мере появления, т.е. «2» и «7».Далее
полоса множителя указывает, сколько нулей нужно записать после первых двух цифр, и
здесь нам нужно их три — «000». Это оно! Теперь у вас есть сопротивление
значение этого резистора в Ом — 27000 Ом. Поскольку каждые 1000 Ом представляют собой килом
или «1K», значение в примере составляет 27K.
ЗОЛОТАЯ ИЛИ СЕРЕБРЯНАЯ ПОЛОСА МНОЖИТЕЛЯ:
Независимо от номинала, эти резисторы ДОЛЖНЫ
иметь четыре цветных полосы. Однако только значения от 10 Ом и выше могут быть представлены с помощью
«обычная» цветовая гамма от черного до белого, так как минимально допустимый цвет
Последовательность Коричневый, Черный, Черный — 10 Ом.На рисунке справа показано, как значения ниже
Представлено 10 Ом. Здесь для ленты множителя используется золото или серебро, только сейчас
это означает, что рассчитанное значение сопротивления должно быть РАЗДЕЛЕННО на 10 или 100 соответственно. В
в нашем примере показан резистор 5,6 Ом, но то же самое относится ко всем значениям ниже 10 Ом.
Если бы полоса умножителя была серебряной, это значение было бы 0,56 Ом. Однако это очень
маловероятно, что в настоящее время вы встретите такие типы резисторов с серебряным умножителем.
группа.
ПОЛОСА ДОПУСКА:
Возвращаясь к нашему примеру 27K, четвертая полоса указывает на допуск этого
сопротивление в процентах.Если полоса допуска — золото, сопротивление будет в пределах
5% выше или ниже 27K, что соответствует допуску в 1350 Ом (5% от 27000 = 1350).
Это означает, что фактическое сопротивление может составлять от 25650 Ом до 28350 Ом.
Ом. Золотая полоса допуска, вероятно, является наиболее распространенной на стандартном угле.
пленочные резисторы. Если полоса допуска красная, сопротивление будет в пределах 2% от 27 кОм, или
в пределах 1%, если используется коричневый цвет. Если вам не удастся достать очень старые резисторы,
серебро, которое представляет собой допуск 10%, редко (если вообще когда-либо) будет рассматриваться как допуск
группа.Но он по-прежнему является частью стандарта цветовой кодировки, поэтому был включен в
остальные из них.
5 ЦВЕТОВЫЕ КОДЫ РЕЗИСТОРА
ОБЫЧНО ИСПОЛЬЗУЕТСЯ НА РЕЗИСТОРАХ ИЗ МЕТАЛЛИЧЕСКОЙ ПЛЕНКИ
Рисунок на
Слева показан резистор с пятицветной полосой вместе с таблицей преобразования цветов в
позволяют рассчитать значение любого из этого типа. Как и в случае с 4 типами полос, все
цвета должны быть преобразованы в их назначенные значения для расчета сопротивления, и
опять же результат всегда отображается в Омах.
НЕПРАВИЛЬНЫЕ ЦВЕТА:
Как и в приведенной выше 4-полосной диаграмме, в этой тоже есть определенные цвета, отсутствующие в различных
столбцы, опять же там, где их вряд ли можно будет найти. Первый столбец никогда не будет черным,
а в четвертом столбце никогда не будет цвета с присвоенным значением выше 4 — желтый. Металл
Номиналы пленочного резистора варьируются от 10 Ом — коричневый, черный, черный, золотой, до 1 МОм — коричневый,
черный, черный, желтый. Расчет значения очень похож на метод, описанный для
4 типа полос.Используя наш пример 15K слева, это достигается следующим образом;
ЗНАЧИТЕЛЬНЫЕ ЦИФРЫ и МНОЖЕСТВЕННЫЕ ПОЛОСЫ:
Первые три цвета представляют три числовых значения, известные как значащие цифры,
которые просто записываются по мере появления, т.е. а «1», «5» и а
«0». Затем полоса множителя указывает, сколько нулей нужно записать после
первые три цифры, а здесь нам понадобятся две из них — «00». Это оно! Теперь у вас есть
значение сопротивления этого резистора в Ом — 15000 Ом, а так как каждые 1000 Ом
представляет килом или «1 кОм», значение в примере составляет 15 кОм.
ЗОЛОТАЯ или СЕРЕБРЯНАЯ ПОЛОСА МНОЖИТЕЛЯ:
ДОЛЖНЫ быть представлены значения этих резисторов.
пятью цветными полосами. Однако только значения от 100 Ом и выше могут быть представлены с помощью
«обычная» цветовая гамма от черного до белого, так как минимально допустимый цвет
Последовательность Коричневый, Черный, Черный, Черный — 100 Ом. На рисунке справа показано, как
представлены значения ниже 100 Ом. Используя золото в качестве полосы множителя,
рассчитанное сопротивление должно быть РАЗДЕЛЕННО на 10. В этом примере показан резистор 47 Ом.Если
полоса умножителя была серебряной, значение должно было стать 4,7 Ом, но это всего лишь
гипотеза, поскольку резисторы этих типов обычно не имеют значений ниже 10 Ом, поэтому
очень маловероятно, что вы когда-нибудь найдете такой с серебряной лентой множителя.
ПОЛОСА ДОПУСКА:
Возвращаясь к нашему примеру 15K, пятая полоса указывает на допуск этого сопротивления.
в процентах. Если полоса допуска красная, сопротивление будет в пределах 2% выше или
ниже 15K, что соответствует допуску в 300 Ом (2% от 15000 = 300).Это означает
фактическое сопротивление может составлять от 14 700 Ом до 15 300 Ом. Если
полоса допуска коричневая, сопротивление будет в пределах 1%. Золотые или серебряные полосы допуска
вряд ли когда-либо увидишь на этих резисторах. Но они по-прежнему являются частью цветового кода.
стандартные, поэтому были включены с остальными.
ЦВЕТОВЫЕ КОДЫ 6-ПОЛОСНОГО РЕЗИСТОРА
ИСПОЛЬЗУЕТСЯ НА РЕЗИСТОРАХ ИЗ МЕТАЛЛИЧЕСКОЙ ПЛЕНКИ
Рисунок на
Слева показан резистор с шестицветной полосой — в нашем примере 620К.Прежде чем вы сделаете запрос
сопротивление, да, это стандартное значение, доступное для данного диапазона резисторов. Эти
рассчитывается точно так же, как и пять указанных выше типов с полосами. Единственная разница
добавление шестой полосы, указывающей температурный коэффициент резистора, который
указывается в миллионных долях на градус Цельсия — PPM /.
В большинстве случаев вы столкнетесь с коричневой шестой полосой, так как это
является наиболее распространенной производимой версией, поскольку она обеспечивает достаточно стабильную работу.
резистор в широких условиях эксплуатации.Однако можно получить
«специальные» с температурным коэффициентом ближе, чем 100 ppm / C, они используются
в более точных или критичных к температуре приложениях, поэтому не удивляйтесь, если вы
встречаются с ними время от времени.
ЧТО ОЗНАЧАЕТ ТЕРМИН «PPM / C»?
СТАБИЛЬНОСТЬ РЕЗИСТОРА В зависимости от ТЕМПЕРАТУРЫ
Определяет температурный коэффициент диапазона резистора. Не путайте это
со значением резистора, это относится к составу резистора, будь то углеродная пленка,
металлическая пленка, намотанная или что-то еще.Термин «ppm / C» не является специфическим для
резисторы, он применяется практически ко всем электронным компонентам, когда-либо производившимся, и
мера того, насколько стабильность этого компонента будет дрейфовать в ответ на изменение
температура. Обычно это измеряется в миллионных долях на градус.
по Цельсию — ppm / C. Значение «частей» — это единицы, из которых
Компонент измеряется, вот оно Ом. Если бы мы говорили о конденсаторах, то единицы были бы
быть фарадами, микрофарадами или пикофарадами и т. д. Стабильность частоты осциллятора будет выражаться в терминах
компании Hertz
Интересно, что большинство типов резисторов имеют указанные характеристики до
рабочая температура около 70С.При этом необходимо учитывать не только окружающую среду.
температуры, но также и любые факторы нагрева, влияющие на компонент в результате работы
сам контур. Это может иметь форму рассеяния мощности, что приводит к довольно
нормальный самоиндуцированный нагрев или вторичный нагрев, вызванный непосредственной близостью других
более горячие компоненты, такие как трансформаторы, силовые транзисторы и т. д.
Для упрощения расчетов мы будем использовать
Пример углеродного пленочного резистора 1 МОм — 1000000 Ом (показан слева).Мы будем
также предположим, что его температурный коэффициент указан как 400 ppm / C, что довольно
общий для углеродных пленочных резисторов.
На каждое изменение температуры на 1 ° С наш резистор 1 МОм может сместиться на величину до 400
Ом выше или ниже указанного значения. Этот дрейф не зависит от других
спецификации, установленные для резистора любого типа, к которому он относится. Другими словами, нет
независимо от того, какой допуск или диапазон рабочих температур, пока он эксплуатируется
в указанном температурном диапазоне сопротивление все еще может дрейфовать из-за любых
ppm / C указано.
В нашем примере выше, за исключением допуска в 5%, что позволяет нашему 1 МОм
резистор в диапазоне от 950 000 Ом до 1050 000 Ом при температуре до 70 ° C (5% от 1000000 =
50000 или 50K), его температурный коэффициент 400 ppm / C также позволяет ему дрейфовать вверх
до 400 Ом на каждый 1С изменения температуры. В большинстве случаев
сопротивление будет падать при повышении температуры, поэтому повышение температуры на 1 ° C может
означают падение сопротивления до 400 Ом. И это касается каждого увеличения 1С в
температура.
Не забывайте, что все эти допуски и температурные коэффициенты
допустимые пределы для любого конкретного диапазона резисторов. Это не значит, что у них будет
изменить на указанные суммы, только то, что им разрешено, оставаясь при этом в пределах
их спецификации. Вы можете довольно легко подключить два, казалось бы, одинаковых резистора.
через мультиметр и дает разные результаты для каждого из них. Но пока они
оба находятся в этих пределах, то с ними все в порядке.
С точки зрения разработчиков, в критически важных приложениях, таких как аналогово-цифровой
(A / D) преобразования и схемы измерения температуры, спецификация ppm является одним из
наиболее важные факторы, определяющие тип используемых резисторов, в сочетании с
Разработчики предусмотрели диапазон рабочих температур готовой схемы.
Я ПРАВИЛЬНО ЧИТАЮ РЕЗИСТОР?
ИЛИ КАК Я УЗНАЮ, ЧТО Я ЧИТАЮ ПРАВИЛЬНО?
Ответ на этот вопрос прост — опыт! Учитывая все эти типы резисторов,
с их различными методами идентификации легко неверно истолковать ценность некоторых
резисторы, и это довольно часто случается.Однако по мере того, как вы становитесь более знакомыми
используя цветовые коды, вы начнете понимать, что только определенные последовательности и
значения резисторов доступны, и скоро вы привыкнете к тому, что они
находятся.
В качестве экономии вы всегда можете попытаться вычислить значение, а затем проверить свое
сравните с таблицей номиналов резистора, чтобы увидеть, указан ли он там. Если это не так, попробуйте
прочтите его снова, начиная с другого конца, затем проверьте еще раз. Обычно это только
проблема с пяти- и шестиполосными металлопленочными резисторами, потому что стандартные четыре
Типы углеродных пленок с полосами почти всегда будут иметь золотую полосу допуска на одном конце,
так что вы знаете, что это нужно читать с другого конца.
ДЛЯ ЧЕГО ИСПОЛЬЗУЮТСЯ КОДЫ РЕЗИСТОРОВ?
С развитием технологий размеры резисторов значительно уменьшились по сравнению с их
оригинального размера, и устройства для поверхностного монтажа (SMD) или чип-резисторы в настоящее время используются в огромных количествах.
количества по производителям оборудования. Они действительно крошечные по сравнению с сегодняшними
резисторы средней (скажем) ватт, что делает использование цветовой кодировки непрактичным, не только
с производственной точки зрения, но также и для бедных конечных пользователей, которым нужно попробовать
читай их!
БУКВЕННО-ЦИФРОВАЯ КОДИРОВКА:
Чтобы преодолеть это, вместо этого используются средства кодирования цифрами и буквами.Этот способ
фактически уже несколько лет используется на различных компонентах. Фигура слева
показывает однопроводную (SIL) резисторную сеть, подобные которой существуют уже давно.
лет, и современный резистор для поверхностного монтажа. Обратите внимание, что они не показаны в масштабе,
некоторые из резисторов SMD настолько малы, что могут поместиться только между двумя контактами
Сеть SIL!
КАК РАБОТАЕТ ЭТО КОДИРОВАНИЕ?
Обычно эта кодировка состоит из трех цифр, иногда за которыми следует одна буква.Три числа на самом деле являются прямым представлением их эквивалентной цветовой полосы.
значения, т.е. 1 — коричневый, 2 — красный, 3 — оранжевый и так далее. Где
буква следует за цифрами, это означает, что обычно является диапазоном допуска,
которым присваиваются следующие значения; M = 20%, K = 10%, J = 5%, G = 2%, F = 1%
Изучив их, вы сможете увидеть взаимосвязь между
буквенно-цифровые коды и цветные полосы. Многим людям их легче читать
и понять, чем их эквиваленты с цветовой кодировкой.Это всего лишь два примера того, где
вы найдете этот тип кодирования. Также регулярно используются многие другие, в частности
на резисторах высокой точности и других компонентах, где объем доступного пространства (или
его отсутствие) делает цветовое кодирование непрактичным.
Нажмите здесь, чтобы вернуться
ЧТО ТАКОЕ (ИЛИ БЫЛО) ПИСАТЕЛЬ?
* ПИСАТЕЛЬ: Для младших
читатели, это был своего рода механический текстовый процессор / принтер, сделанный в основном из чугуна,
это было изобретено до электричества, и всегда казалось, что он весит около полтонны, даже
легкие модели! Чтобы использовать старую пишущую машинку сколько угодно времени, требуются мускулы.
как Рэмбо, пара наушников (наушников) и обычная способность тянуть
машина возвращается на расстояние до клавиатуры, после вибрации в
«рации» подальше от вас во время набора текста!
Один лист бумаги был вставлен за пластину и повернут рукой в нужное положение.
готов к вводу прямо на.Печать на этих машинах достигалась несколько иначе.
к сегодняшним принтерам, в котором печатающая головка оставалась неподвижной, а каретка тянулась
справа налево тканевой лентой, прикрепленной к подпружиненному барабану. Когда бумага
поля выставлены правильно, предупреждающее устройство в виде одиночного «звонка» колокольчика
сообщил вам, что вы достигли правого края бумаги и что вы только
осталось около 10 символов, прежде чем все внезапно остановилось! Возврат каретки и
перевод строки был вызван оператором вручную за одну простую, но быструю операцию, которая
пришлось резко щелкнуть самым большим рычагом, за который они могли дотянуться, и скользить по
каретку в крайнее правое положение, пока она не остановится резко,
рычаг сломался, или вся машинка перевернулась на бок! Однако последняя особенность
был доступен только в стандартной комплектации на моделях с широкой тележкой! В качестве дополнительной опции на узких
кареток, это было достигнуто за счет скольжения каретки назад на гораздо более высокой скорости !.
У этих машин не было экрана дисплея, памяти, масштабируемых шрифтов или графики.
Однако жирный шрифт можно было получить, просто повернув каретку до слов, которые вы
нужно выделить жирным шрифтом, а затем снова набрать всю партию поверх того, что уже было
напечатаны, просто молясь, чтобы вы не нажали не ту клавишу по пути! Это тоже не позировало
большая проблема, поскольку исправление ошибок обычно происходило всего в нескольких дюймах в виде
крошечной бутылки, содержащей что-то вроде кисти для лака для ногтей с завинчивающейся крышкой, которая
был погружен в раствор, напоминающий белую шелковую виниловую эмульсионную краску, но пахнущий
как химический завод! Известная как корректирующая жидкость, ее просто закрашивали поверх
неправильного символа (ов) до тех пор, пока он не станет напоминать ссылку на 3D-карту мини-кольцевой развязки
или островок безопасности.Этому дали высохнуть в течение нескольких секунд, и правильные символы
затем набирались поверх нарисованного «горба», что не только удаляло излишки «краски».
и заменил его на требуемый символ, но также изменил
появление этого символа примерно в следующие десять или около того раз, когда он был напечатан!
Чтобы решить эту проблему, версия этого средства исправления ошибок на пленке с сухим переносом
была изобретена техника, известная как корректирующая бумага, которая значительно облегчила жизнь бедным
машинистка.Все, что здесь требовалось, — это держать пленку над
неправильные символы, а затем введите эти символы снова. Идея заключалась в том, чтобы применить только
количество корректирующей среды, необходимое для «скрытия» неправильных символов.
К сожалению, любую заданную область пленки можно было использовать только один раз, и из-за отсутствия
механическая точность пишущей машинки, неправильные символы, возможно, должны были быть
перепечатали несколько раз, прежде чем исходный отпечаток был стерт. После такого лечения
смотреть с лицевой стороны напечатанного документа было неплохо, но, к сожалению, обратное
напоминало то, что мог прочитать слепой!
Вернемся к самой машинке.Как правило, эти машины были монохромными,
хотя также был доступен полный диапазон серых шкал, основанный на износе ленты и
количество силы, приложенной во время набора текста. Полноцветные черные, красные и синие версии могут быть
имелся за дополнительную плату, но одновременно был доступен только один цвет. Широкие модели тележек
пишущей машинки также были доступны примерно до 24 дюймов, что, откровенно говоря, было
улучшение ограничений сегодняшних современных принтеров! К сожалению, размер тела
Машинка с широкой кареткой не соответствовала ширине каретки, а удлиненные ножки на болтах
должен был быть установлен, чтобы уравновесить вес каретки, когда она была
о его путешествии.
Печатать документы в этих системах требовалось отталкивать «клавиатуру» со всеми
ваша сила, чтобы создать приемлемое изображение персонажа на бумаге. Это часто было
проклят как причину повреждения нежных женских ногтей, которые сегодня в среднем
ногти были исключительно длинными. Ущерб нанесен ногтями.
ловя клавишу над клавишей, которую они пытались напечатать. Возможно, это был всего лишь один из
причины, по которым машинистки, привыкшие пользоваться пишущими машинками, сказали, что близкие
близость клавиш на современных компьютерных клавиатурах никогда не завоюет популярность и будет
совершенно непригоден для набора текста, только на этот раз проблема будет не в повреждении
ногтей, но типографских ошибок, вызванных ногтем, набирающим
символ над тем, который должен печатать палец.Странно, как много ничего
изменилось!
Нажмите здесь, чтобы вернуться
Калькулятор параллельных резисторов
R1 + R2 = эквивалентный резистор R схема сопротивления, эквивалентная общая сумма резисторов, упрощенная комбинация = параллельная
параллельная калькуляция резисторов R1 + R2 = эквивалентный резистор R эквивалентная схема сопротивления, полная поисковая система резисторов, упрощенная совмещенная = параллельная — sengpielaudio Sengpiel Berlin
R итого | Формула: R итого = R1 × R2 / (R1 + R2) |
Введите два значения резистора , будет рассчитано третье значение параллельной цепи.
Вы даже можете ввести общее сопротивление R всего и одно известное сопротивление R 1 или R 2 .
Формула (уравнение) для расчета двух сопротивлений R 1 и R 2 , соединенных параллельно:
Расчет необходимого параллельного резистора R 2 , при R 1 и суммарное сопротивление R дается всего :
Решение формулы R итого = ( R 1 × R 2 ) / ( R 1 + R 2 ) для R 13 1 Первый шаг — очистить все дроби путем умножения на наименьшее значение . общий знаменатель, то есть R t × R 1 × R 2 … Итак, получаем: 1/ R итого = 1/ R 1 + 1/ R 2 R итого × R 1 × R 2 [1/ R всего = 1/ R 1 + 1/ R 2 ] R 1 × R 2 20 = 920 всего × R 2 + R итого × R 1 затем соберите члены с R 1 и решите R 1 × 611560 — R всего × R 1 = R всего × R 2 R 1 ( R 2 2061 — ) всего = R 2 × R итого 9156 1 Последний шаг: R 1 = R 2 × R всего 2 / ( 950202 R 9502 R всего ) или: R 2 = R 1 × всего R 1 — R итого ) |
Примечание: Этот калькулятор также может решать другие математические задачи.Расчет резисторов параллельно
точно так же, как вычисления, необходимые для параллельных катушек индуктивности или для конденсаторов, включенных последовательно.
Два резистора, включенных параллельно, и результирующее общее сопротивление: Два одинаковых значения, также покажите уравнение, что результаты всегда равны половине. Это упрощает работу, когда проектирование схем или прототипирование. С кепками всегда вдвое больше, потом с кепками всего просто сложите параллельно. |
• Сопротивления поиска R 1 и R 2 , когда известно целевое сопротивление (эквивалентное сопротивление) •
Расчет: пары резисторов — вычислитель с обратной конструкцией
Поиск R 1 и R 2 с известным целевым сопротивлением
● Рассчитайте несколько резисторов параллельно ●
Этот калькулятор определяет сопротивление до 10 резисторов, включенных параллельно . Введите сопротивления в поля ниже и, когда все значения будут введены, нажмите кнопку «рассчитать», и результат появится в поле под этой кнопкой. В качестве теста, если мы введем сопротивления 4, 6 и 12 Ом, ответ должен быть 2 Ом. Примечание. При снятии флажков вручную сохраненные значения не сбрасываются. Воспользуйтесь «сбросом». |
Закон Ома — калькулятор и формулы
Два резистора, включенных параллельно, и результирующее общее сопротивление
Сопротивление в диапазоне от 1 Ом до 100 Ом
R2 | R1 | |||||||||||
1 | 1.5 | 2,2 | 3,3 | 4,7 | 6,8 | 10 | 15 | 22 | 33 | 47 | 68 | |
1 | 0,5 | 0,6 | 0,69 | 0.77 | 0,83 | 0,87 | 0,91 | 0,93 | 0,95 | 0,97 | 0,98 | 0,99 |
1,5 | 0,6 | 0,75 | 0,89 | 1,03 | 1,14 | 1,22 | 1,30 | 1,36 | 1,40 | 1,43 | 1.45 | 1,46 |
2,2 | 0,69 | 0,89 | 1,1 | 1,32 | 1,50 | 1,66 | 1,82 | 1,92 | 2,0 | 2,06 | 2,10 | 2,13 |
3,3 | 0,77 | 1,03 | 1,32 | 1.65 | 1,94 | 2,22 | 2,48 | 2,70 | 2,87 | 3,00 | 3,08 | 3,14 |
4,7 | 0,83 | 1,14 | 1,50 | 1,94 | 2,35 | 2,78 | 3,20 | 3,58 | 3,87 | 4,12 | 4.27 | 4,39 |
6,8 | 0,87 | 1,22 | 1,66 | 2,22 | 2,78 | 3,40 | 4,05 | 4,68 | 5,19 | 5,64 | 5,94 | 6,18 |
10 | 0,91 | 1,30 | 1,82 | 2.48 | 3,20 | 4,05 | 5,0 | 6,0 | 6,9 | 7,7 | 8,3 | 8,7 |
15 | 0,93 | 1,36 | 1,92 | 2,70 | 3,58 | 4,68 | 6,0 | 7,50 | 8,9 | 10,3 | 11,4 | 12.2 |
22 | 0,95 | 1,40 | 2,00 | 2,87 | 3,87 | 5,19 | 6,9 | 8,9 | 11,0 | 13,2 | 15,0 | 16,6 |
33 | 0,97 | 1,43 | 2,06 | 3,0 | 4.12 | 5,64 | 7,7 | 10,3 | 13,2 | 16,5 | 19,4 | 22,2 |
47 | 0,98 | 1,45 | 2,1 | 3,08 | 4,27 | 5,94 | 8,3 | 11,4 | 15,0 | 19,4 | 23,5 | 27.8 |
68 | 0,99 | 1,46 | 2,13 | 3,14 | 4,39 | 6,18 | 8,7 | 12,2 | 16,6 | 22,2 | 27,8 | 34,0 |
Примечание: Этот калькулятор также может решать другие математические задачи. Расчет резисторов параллельно
точно так же, как вычисления, необходимые для параллельных катушек индуктивности или для конденсаторов, включенных последовательно.
Мощность, рассеиваемая в резисторе: P = В × I , P = В 2 / R , P = I 2 20 × |
Примечание: Для резисторов, включенных последовательно, ток одинаков для каждого резистора, а для резисторов, включенных параллельно, напряжение одинаково для каждого резистора. |