26.06.2024

Рабочий ток электродвигателя: Средний рабочий ток трехфазного электродвигателя насоса с короткозамкнутым ротором в зависимости от мощности и коэффициента мощности (cos φ, косинус фи ) и насосов с электродвигателями постоянного тока.0,3-125 КВт, 3х220В,3х380В, 220В и 440В постоянного.

Содержание

Что такое номинальный ток электродвигателя — советы электрика

Номинальный ток асинхронных двигателей

Подавляющее большинство электродвигателей, используемых в промышленности, относятся к трехфазному асинхронному типу. Для питания таких устройств необходима промышленная трехфазная сеть переменного тока, обеспечивающая сетевое напряжение заданной частоты и напряжения.

Высокая популярность асинхронных электродвигателей обусловлена дешевизной, простотой изготовления и механической прочностью данных устройств.

Кроме того, изменяя схему подключения обмоток (звезда или треугольник) можно подключать двигатель к сетям различного напряжения (обычно используются комбинации 220/380 и 127/220В).

Высокий стартовый ток – главный недостаток асинхронного электродвигателя

Однако несмотря на множество неоспоримых преимуществ, асинхронные двигатели имеют минусы, среди которых одним из наиболее значительных является достаточно большой пусковой ток электродвигателя данного типа.

Особенно заметен этот недостаток в асинхронных устройствах с короткозамкнутым ротором.

Такие двигатели следует с осторожностью применять, в тех системах, для которых требуется значительный пусковой момент, который может привести к превышению номинального значения силы тока (Iн).

Обратите внимание

Для большинства асинхронных электродвигателей допустимо кратковременное превышение значение Iн, которое может произойти в момент пуска.

Так, в момент запуска, допускается шестикратное превышение значения номинального тока при условии, что оно будет длиться не более 5 секунд.

В случае, если в некотором режиме номинальный ток превышается не более чем в два раза, допускается увеличить время работы устройства в этом режиме до 15 секунд.

Расчет номинального значения тока асинхронного электродвигателя

Номинальный ток электродвигателя, при котором возможна его длительная работа, связан с номинальной мощностью устройства и его КПД следующим выражением:  Iн=1000*Pн/(Uн*cosφ√η), где Рн – мощность, Uн – номинальное напряжение, которым питается электродвигатель, η – КПД, а cosφ – коэффициент мощности двигателя.

Отсюда можно сделать важный вывод, который состоит в том, что при уменьшении U (например при переключении устройства из сети в 220 В сеть 127 В), увеличивается ток двигателя, который может превысить номинальное значение.

А длительная работа двигателя на токе I>Iн может привести не только к его повреждению, но и к возгоранию.

Поэтому, используемые в системе с электрическим двигателем предохранительные устройства должны быть подобраны так, чтобы предотвратить продолжительную работу при токе I>Iн.

Источник: http://www.rosdiler-electro.ru/nominalnyj-tok-asinhronnyh-dvigatelej.html

Расчет номинального тока электродвигателя, Заметки электрика

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Решил написать статью о расчете номинального тока для трехфазного электродвигателя.

Этот вопрос является актуальным и кажется на первый взгляд не таким и сложным, но почему-то в расчетах зачастую возникают ошибки.

В качестве примера для расчета я возьму трехфазный асинхронный двигатель АИР71А4 мощностью 0,55 (кВт).

Вот его внешний вид и бирка с техническими данными.

Важно

Если двигатель Вы планируете подключать в трехфазную сеть 380 (В), то значит его обмотки нужно соединить по схеме «звезда», т.е. на клеммнике необходимо соединить выводы V2, U2 и W2 между собой с помощью специальных перемычек.

При подключении этого двигателя в трехфазную сеть напряжением 220 (В) его обмотки необходимо соединить треугольником, т.е. установить три перемычки: U1-W2, V1-U2 и W1-V2.

Если же Вы решите подключить этот двигатель в однофазную сеть 220 (В), то его обмотки также должны быть соединены треугольником.

Для правильного выбора автоматического выключателя (или предохранителей) и тепловых реле для защиты двигателя, а также для выбора контактора для его управления, в первую очередь нам нужно знать номинальный ток двигателя для конкретной схемы соединения обмоток.

Обычно, номинальные токи указаны прямо на бирке, поэтому можно смело ориентироваться на них. Но иногда циферки не видны или стерты, а известна только лишь мощность двигателя или другие его параметры.

Такое очень часто встречается, но еще чаще бирка вообще отсутствует или так затерта, что на ней абсолютно ничего не видно — приходится только догадываться, что там изображено.

Но это отдельный случай и что делать в таких ситуациях, я расскажу Вам в ближайшее время.

В данной же статье я хочу акцентировать Ваше внимание на формулу по расчету тока двигателя, потому что даже не все «специалисты» ее знают, хотя может и знают, но не хотят вспомнить основы электротехники.

Совет

Внимание! Мощность на шильдике двигателя указывается не электрическая, а механическая, т.е. полезная механическая мощность на валу двигателя. Об этом отчетливо говорится в действующем ГОСТ Р 52776-2007, п.5.5.3:

Полезную механическую мощность обозначают, как Р2.

Чаще всего мощность двигателя указывают не в ваттах (Вт), а в киловаттах (кВт). Для тех кто забыл, читайте статью о том, как перевести ватты в киловатты и наоборот.

Еще реже, на бирке указывают мощность в лошадиных силах (л.с.), но такого я ни разу еще не встречал на своей практике. Для информации: 1 (л.с.) = 745,7 (Ватт).

Но нас интересует именно электрическая мощность, т.е. мощность, потребляемая двигателем из сети. Активная электрическая мощность обозначается, как Р1 и она всегда будет больше меха

Выбор электродвигателя и расчет его рабочих параметров

Правильность подбора электродвигателя, учитывающая специфику приводного механизма, условия работы и окружающей среды, определяет длительность безаварийной работы и надежность системы «двигатель – нагрузка».

Далее приведены рекомендации по выбору электродвигателя (последовательность, в которой они представлены, не является обязательной).

На первом этапе необходимо определиться с типом электрического двигателя. Ниже даны краткое описание, преимущества и недостатки, сферы предпочтительного применения основных типов двигателей.

Типы электрических двигателей

  1. Двигатели постоянного тока

Основным преимуществом данных двигателей, которое определяло повсеместное их использование на этапе развития электрических приводов, является легкость плавного регулирования скорости в широких пределах. Поэтому с развитием полупроводниковой промышленности и появлением относительно недорогих преобразователей частоты процент их использования постоянно уменьшается. Там, где это возможно двигатели постоянного тока заменяются приводами на основе асинхронных двигателей с короткозамкнутым ротором.

Основные недостатки двигателя постоянного тока (невысокая надежность, сложность обслуживания и эксплуатации) обусловлены наличием коллекторного узла. Кроме того, для питания двигателя необходим источник постоянного тока или тиристорный преобразователь переменного напряжения в постоянное. При всех своих недостатках двигатели постоянного тока обладают высоким пусковым моментом и большой перегрузочной способностью. Что определило их использование в металлургической промышленности, станкостроении и на электротранспорте.

  1. Синхронные двигатели

Основным преимуществом данных двигателей является то, что они могут работать с коэффициентом мощности cosφ=1, а в режиме перевозбуждения даже отдавать реактивную мощность в сеть, что благоприятно сказывается на характеристиках сети: увеличивается ее коэффициент мощности, уменьшаются потери и падение напряжения. Кроме того, синхронные двигатели устойчивы к колебаниям сети. Максимальный момент синхронного двигателя пропорционален напряжению, при этом момент асинхронного двигателя пропорционален квадрату напряжения. Следовательно, при снижении напряжения синхронный двигатель сохраняет большую перегрузочную способность, а возможность форсировки возбуждения увеличивает надежность их работы при аварийных понижениях напряжения. Больший воздушный зазор по сравнению с асинхронным двигателем и применение постоянных магнитов делает КПД синхронных двигателей выше. Их особенностью также является постоянство скорости вращения при изменении момента нагрузки на валу.

При всех достоинствах синхронного двигателя основными недостатками, ограничивающими их применение являются сложность конструкции, наличие возбудителя, высокая цена, сложность пуска. Поэтому синхронные двигатели преимущественно используются при мощностях свыше 100 кВт.

Основное применение – насосы, компрессоры, вентиляторы, двигатель-генераторные установки.

  1. Асинхронные двигатели

По конструктивному принципу асинхронные двигатели подразделяются на двигатели с короткозамкнутым и фазным ротором. При этом большинство используемых электродвигателей являются асинхронными с короткозамкнутым ротором. Столь широкое применение обусловлено простотой их конструкции, обслуживания и эксплуатации, высокой надежностью, относительно низкой стоимостью. Недостатками таких двигателей являются большой пусковой ток, относительно малый пусковой момент, чувствительность к изменениям параметров сети, а для плавного регулирования скорости необходим преобразователь частоты. Кроме того, асинхронные двигатели потребляют реактивную мощность из сети. Предел применения асинхронных электродвигателей с короткозамкнутым ротором определяется мощностью системы электроснабжения конкретного предприятия, так как большие пусковые токи при малой мощности системы создают большие понижения напряжения.

Использование асинхронных двигателей с фазным ротором помогает снизить пусковой ток и существенно увеличить пусковой момент, благодаря введению в цепь ротора пусковых реостатов. Однако, ввиду усложнения их конструкции, и как следствие, увеличения стоимости их применение ограничено. Основное применение – приводы механизмов с особо тяжелыми условиями пуска. Для уменьшения пусковых токов асинхронного двигателя с короткозамкнутым ротором может быть использовано устройство плавного пуска или преобразователь частоты.

В системах, где необходимо ступенчатое изменение скорости (например, лифты) используют многоскоростные асинхронные двигатели. В механизмах, требующих остановки за определенное время и фиксации вала при исчезновении напряжения питания, применяются асинхронные двигатели с электромагнитным тормозом (металлообрабатывающие станки, лебедки). Существуют также асинхронные двигатели с повышенным скольжением, которые предназначены для работы в повторно-кратковременных режимах, а также режимах с пульсирующей нагрузкой.

После того, как определен тип электродвигателя, полностью учитывающий специфику рабочего механизма и условия работы, необходимо определиться с рабочими параметрами двигателя: мощностью, номинальным и пусковым моментами, номинальными напряжением и током, режимом работы, коэффициентом мощности, классом энергоэффективности.

Мощность и моменты

В общем случае для квалифицированного подбора электродвигателя должна быть известна нагрузочная диаграмма механизма. Однако, в случае постоянной или слабо меняющейся нагрузки без регулирования скорости достаточно рассчитать требуемую мощность по теоретическим или эмпирическим формулам, зная рабочие параметры нагрузки. Ниже приведены формулы для расчета мощности двигателя P2 [кВт] некоторых механизмов.

  1. Вентилятор

где Q3/с] – производительность вентилятора,

Н [Па] – давление на выходе вентилятора,

ηвент, ηпер – КПД вентилятора и передаточного механизма соответственно,

kз – коэффициент запаса.

  1. Насос

где Q3/с] – производительность насоса,

g=9,8 м/с2 – ускорение свободного падения,

H [м] – расчетная высота подъема,

ρ [кг/м3] – плотность перекачиваемой жидкости,

ηнас, ηпер – КПД насоса и передаточного механизма соответственно,

kз – коэффициент запаса.

  1. Поршневой компрессор

где Q3/с] – производительность компрессора,

А [Дж/м3] – работа изотермического и адиабатического сжатия атмосферного воздуха объемом 1 м3 давлением 1,1·105 Па до требуемого давления,

ηкомпр, ηпер – КПД компрессора и передаточного механизма соответственно,

kз – коэффициент запаса.

Кроме того, необходимо сопоставить пусковой момент двигателя (особенно в случае асинхронного с короткозамкнутым ротором) и рабочего механизма, так как некоторые механизмы имеют повышенное сопротивление в момент трогания. Следует иметь в виду и то обстоятельство, что при замене трехфазного асинхронного двигателя на однофазный пусковой момент последнего почти в три раза меньше и механизм, успешно функционировавший ранее, может не тронуться с места.

Развиваемый электродвигателем момент M [Нм] и полезная мощность на валу Р2 [кВт] связаны следующим соотношением

Полная мощность, потребляемая из сети:

для двигателей постоянного тока (она же активная)

для двигателей переменного тока

 

 

при этом потребляемые активная и реактивная мощности соответственно

В случае синхронного двигателя значение Q1 может получиться отрицательным, это означает, что двигатель отдает реактивную мощность в сеть.

Важно отметить следующее. Не следует выбирать двигатель с большим запасом по мощности, так как это приведет к снижению его КПД, а в случае двигателя переменного тока также к снижению коэффициента мощности.

Напряжение и ток

При выборе напряжения электродвигателя необходимо учитывать возможности системы энергоснабжения предприятия. При этом нецелесообразно при больших мощностях выбирать двигатель с низким напряжением, так как это приведет к неоправданному удорожанию не только двигателя, но и питающих проводов и коммутационной аппаратуры вследствие увеличения расхода меди.

Если при трогании момент сопротивления нагрузки невелик и для уменьшения пусковых токов асинхронного двигателя с короткозамкнутым ротором может быть применен способ пуска с переключением со «звезды» на «треугольник», необходимо предусмотреть вывод в клеммную коробку всех шести зажимов обмотки статора. В общем случае применение схемы соединения «звезда» является предпочтительным, так как в схеме «треугольник» имеется контур для протекания токов нулевой последовательности, которые приводят к нагреву обмотки и снижению КПД двигателя, в соединении «звезда» такой контур отсутствует.

Режим работы

Нагрузка электродвигателя в процессе работы может изменяться различным образом. ГОСТом предусмотрены восемь режимов работы.

  1. Продолжительный S1 – режим работы при постоянной нагрузке в течение времени, за которое температура двигателя достигает установившегося значения. Мощность двигателя, работающего в данном режиме, рассчитывается исходя из потребляемой механизмом мощности. Формулы расчета мощности некоторых механизмов (насос, вентилятор, компрессор) приведены выше.
  2. Кратковременный S2 – режим, при котором за время включения на постоянную нагрузку температура двигателя не успевает достичь установившегося значения, а за время отключения двигатель охлаждается до температуры окружающей среды. В случае использования двигателя S1 для работы в режиме S2 необходимо проверить его только по перегрузочной способности, так как температура не успевает достичь допустимого значения.
  3. Повторно-кратковременный S3 – режим с периодическим отключением двигателя, при котором за время включения температура не успевает достичь установившегося значения, а за время отключения – температуры окружающей среды. Расчет мощности электродвигателя обычного исполнения для работы в режиме S3 производится по методам эквивалентных величин с учетом пауз и потерь в переходных режимах. Кроме того, двигатель необходимо проверить на допустимое число включений в час. В случае большого числа включений в час рекомендуется использовать двигатели с повышенным скольжением. Данные электродвигатели обладают повышенным сопротивлением обмотки ротора, а, следовательно, меньшими пусковыми и тормозными потерями.
  4. Повторно-кратковременный с частыми пусками S4 и повторно-кратковременный с частыми пусками и электрическим торможением S5. Данные режимы рассматриваются аналогично режиму S3.
  5. Перемежающийся S6 – режим, при котором работа двигателя под нагрузкой, периодически заменяется работой на холостом ходу. Большинство двигателей, работающих в продолжительном режиме, имеют меняющийся график нагрузки.

При этом для обоснованного выбора двигателя с целью оптимального его использования рекомендуется применять методы эквивалентных величин.

Класс энергоэффективности

В настоящее время вопросам энергоэффективности уделяется огромное внимание. При этом под энергоэффективностью понимается рациональное использование энергетических ресурсов, с помощью которого достигается уменьшение потребления энергии при том же уровне мощности нагрузки. Основным показателем энергоэффективности двигателя является его коэффициент полезного действия

где Р2 – полезная мощность на валу, Р1 – потребляемая активная мощность из сети.

Стандартом IEC 60034-30 для асинхронных электродвигателей с короткозамкнутым ротором были установлены три класса энергоэффективности: IE1, IE2, IE3.

 

Рис. 1. Классы энергоэффективности

Так, например, использование двигателя мощностью 55 кВт повышенного класса энергоэффективности позволяет сэкономить около 8000 кВт в год от одного двигателя.

Степень защиты IP, виды климатических условий и категорий размещения

ГОСТ Р МЭК 60034-5 – 2007 устанавливает классификацию степеней защиты, обеспечиваемых оболочками машин.

Обозначение степени защиты состоит из букв латинского алфавита IP и последующих двух цифр (например, IP55).

Большинство электродвигателей, выпускаемых в настоящее время, имеют степени защиты IP54 и IP55.

Категория размещения обозначается цифрой:

1 – на открытом воздухе;

2 – под навесом при отсутствии прямого солнечного воздействия и атмосферных осадков;

3 – в закрытых помещениях без искусственного регулирования климатических условий;

4 – в закрытых помещениях с искусственно регулируемыми климатическими условиями.

Климатические условия:

У – умеренный климат;

УХЛ – умеренно холодный климат;

ХЛ – холодный климат;

Т – тропический климат.

Таким образом, при выборе электродвигателя необходимо учитывать условия окружающей среды (температура, влажность), а также необходимость защиты двигателя от воздействия инородных предметов и воды.

Например, использование электродвигателя с типом климатического исполнения и категорией размещения У3 на открытом воздухе является недопустимым.

Усилия, действующие на вал двигателя со стороны нагрузки

Наиболее нагруженными в двигателе являются подшипниковые узлы. Поэтому при выборе двигателя должны быть учтены радиальные и осевые усилия, действующие на рабочий конец вала двигателя со стороны нагрузки. Превышения допустимых значений сил приводит к ускоренному выходу из строя не только подшипников, но и всего двигателя (например, задевание ротора о статор).

Обычно допустимые значения сил для каждого подшипника приведены в каталогах. Рекомендуется в случае повышенных радиальных усилий (ременная передача) на рабочий конец вала установить роликовый подшипник, при этом предпочтительным является двигатель с чугунными подшипниковыми щитами.

Особенности конструкции двигателя при работе от преобразователя частоты

В настоящее время все большее распространение приобретает использование частотно-регулируемого привода (ЧРП), выполненного на основе асинхронного электродвигателя с короткозамкнутым ротором.

При использовании частотно-регулируемого привода достигается:

1. экономия электроэнергии;

2. плавность пуска и снижение пусковых токов;

3. увеличение срока службы двигателя.

В общем случае стандартный электродвигатель нельзя использовать в составе частотно-регулируемого привода, так как при уменьшении скорости вращения снижается эффективность охлаждения. При регулировании скорости вверх от номинальной резко увеличивается нагрузка от собственного вентилятора. В обоих случаях уменьшается нагрузочная способность двигателя. Кроме того, в случае использования двигателя в системах точного регулирования необходим датчик положения ротора двигателя.

При работе электродвигателя от преобразователя частоты в контуре вал – фундаментная плита могут протекать токи. При этом возникает точечная эрозия на шариках и роликах, на беговых кольцах подшипников качения, а также на баббитовой поверхности подшипников скольжения. От электролиза смазка чернеет, подшипники греются. Для разрыва контура прохождения подшипниковых токов на неприводной конец вала устанавливается изолированный подшипник. При этом по условиям безопасности установка изолированных подшипников с двух сторон двигателя не допустима.

Величина подшипниковых токов становится опасной для безаварийной работы двигателя при напряжении между противоположными концами вала более 0,5 В. Поэтому установка изолированного подшипника обычно требуется для электродвигателей с высотой оси вращения более 280 мм.

 Примечание

Необходимо отметить, что в случае отклонения условий эксплуатации двигателя (например, температуры окружающей среды или высоты над уровнем моря), мощность нагрузки должна быть изменена. Кроме того, при снижении мощности нагрузки в определенные моменты времени для рационального использования двигателя может быть изменена схема соединения обмотки, а, следовательно, и фазное напряжение.

 

Популярные товары

Шины медные плетеные

Шины изолированные гибкие и твердые

Шинодержатели

Изоляторы

Индикаторы наличия напряжения

Расчет защиты электродвигателя мощностью 800 (кВт)

Здравствуйте, дорогие читатели сайта «Заметки электрика».

После прочтения сегодняшней статьи Вы научитесь самостоятельно производить расчет защиты электродвигателя мощностью 800 (кВт).

Расскажу небольшую предисторию.

У нас на распределительной подстанции напряжением 10 (кВ), состоящей из двух сборных секций шин, питаются электродвигатели восьми дымососов (вентиляторов) для нужд газоочистки. Последнее время мне все чаще стали передавать замечания по тяжелому пуску этих двигателей, т.е. двигатели запускались не сразу и отключались во время пуска от токовой отсечки.

Данные замечания конечно же нельзя оставлять без внимания.

И первое, что мы сделали, это проверили уставки релейной защиты на самых «проблемных» дымососах. Скажу сразу, что отклонений по уставкам не было, что собственно и не удивило,  т.к. мы своевременно по графику ППР проводим проверку релейной защиты по всем подстанциям предприятия.

Далее мне в голову пришла мысль пересчитать уставки релейной защиты этих дымососов. Т.к. все дымососы были одной мощностью 800 (кВт), то расчет защиты сводился к минимуму — произвести расчет защиты одного электродвигателя мощностью 800 (кВт) и сравнить полученные значения с действующими уставками. Кстати, двигатели асинхронные, просто забыл упомянуть выше.

Итак поехали…

Расчет защиты электродвигателя 800 (кВт)

Перейду сразу к практике. Позвонив электрику газоочистки, я запросил у него технические данные на электродвигатели дымососов (вентиляторов):

Остальные данные имелись в таблице уставок и прочей технической документации.

Это:

  • схема соединения трансформаторов тока — на разность токов двух фаз (схема прилагается, см. ниже)

Схема соединения трансформаторов тока (на разность токов):

На схеме я указал, где установлены реле токовой отсечки, максимальной токовой защиты от перегруза и реле земляной защиты.

В ячейке установлены 2 трансформатора тока типа ТОЛ-10 с коэффициентом 150/5. Оба трансформатора — двухобмоточные.

Первая обмотка (по схеме Т-1) используется для цепей релейной защиты и собрана по схеме на разность токов двух фаз. Вторая обмотка (по схеме Т-2) используется для цепей измерения и учета электроэнергии (электросчетчики, амперметры) и собрана по схеме неполная звезда.

1. Токовая отсечка (ТО)

Ток срабатывания токовой отсечки (ТО) от междуфазных коротких замыканий можно расчитать двумя способами.

Первый способ заключается в расчете пускового тока электродвигателя дымососа при полном напряжении питающей сети.

Во втором способе необходимо произвести расчет броска тока в первый момент короткого замыкания в сети.

Предпочтительнее является первый способ. Поэтому по нему я и произведу расчет защиты нашего электродвигателя.

Токовая отсечка у нас выполнена на токовых реле РТ-40 через промежуточное реле KL-1 (РП-23), которое замедляет действие защиты на 0,04 — 0,06 (сек. ) при возникновении апериодической составляющей пускового тока. Поэтому в расчетах коэффициент апериодической составляющей мы не учитываем.

Найдем пусковой ток для электродвигателя при пуске от полного напряжения сети:

Найдем первичный ток срабатывания защиты:

Коэффициент надежности  обычно принимается равным 1,2. Коэффициент возврата реле смотрим по протоколам проверки релейной защиты. Он равен 0,85. Подставляем в формулу наши данные и получаем:

Найдем вторичный ток срабатывания защиты:

В нашем случае схема соединения трансформаторов тока выполнена на разность токов двух фаз, поэтому коэффициент схемы будет равен — 1,73. Коэффициент трансформации трансформаторов тока защиты равен 30 (150/5). Подставляем в формулу данные и получаем:

Проверим уставку токовой отсечки на чувствительность. Чувствительность защиты проверяется отношением двухфазного тока короткого замыкания на выводах электродвигателя к первичному току срабатывания защиты.

Ток трехфазного короткого замыкания мы берем из таблицы токов короткого замыкания, составленной мною для удобства расчетов, либо из проекта. Подставляя данные, получаем:

Коэффициент чувствительности, согласно ПУЭ, должен быть больше 2, что удовлетворяет нашему условию.

2. Максимальная токовая защита (МТЗ) от перегруза

Ток срабатывания максимальной токовой защиты (МТЗ) от перегруза рассчитывается от максимального рабочего (номинального) тока электродвигателя.

Найдем первичный ток срабатывания защиты:

Коэффициент надежности и возврата принимаем аналогичными, как при расчете токовой отсечки.

Найдем вторичный ток срабатывания защиты:

В нашем случае схема соединения трансформаторов тока выполнена на разность токов двух фаз, поэтому коэффициент схемы будет равен — 1,73. Коэффициент трансформации трансформаторов тока защиты равен 30 (150/5). Подставляем в формулу данные и получаем:

Проверим уставку максимальной токовой защиты от перегруза на чувствительность. Чувствительность защиты проверяется отношением двухфазного тока короткого замыкания на выводах электродвигателя к первичному току срабатывания защиты.

Ток трехфазного короткого замыкания мы берем из таблицы расчетов токов короткого замыкания, составленной мною для удобства, либо из проекта. Подставляя данные, получаем:

Коэффициент чувствительности согласно ПУЭ должен быть больше 2, что удовлетворяет нашему условию.

Выдержка по времени максимальной токовой защиты от перегрузки составляет 16 (сек.) и выполняется на реле времени.

Вывод

После расчета защиты электродвигателя дымососа сравним действующие и полученные результаты, и сделаем вывод. Чтобы нагляднее проводить сравнение уставок, занесу данные в таблицу.

В первой колонке таблицы указаны виды защит электродвигателей дымососов, в следующих колонках указаны действующие и расчетные уставки.

Итак, что мы видим.

А видим мы то, что ранее произведенный расчет защиты электродвигателя дымососа мощностью 800 (кВт) был произведен не верно.

Но это еще не все. После проделанных мною расчетов я стал искать причину не верного расчета, потому как у меня в голове не укладывалось, почему проектная организация могла так сильно ошибиться в расчетах.

Истина где то рядом…

Нашел я в своем архиве проект на монтаж этой распределительной подстанции, откуда запитаны 8 дымососов и стал его изучать.

И наткнулся на следующее. Во всех таблицах технических данных и расчетов фигурировала мощность дымососов (вентиляторов) 630 (кВт), вместо 800 (кВт).

Вот и стало вся понятно. Перепроверил расчет проектантов — он был правильный и соответствовал моим действующим уставкам.

Тогда остается еще одна «маленькая» неясность. Почему проект был расчитан на дымососы 630 (кВт), а фактически установили на 800 (кВт)? И почему после замены мощности дымососов не пересчитали уставки релейной защиты?

Но ответ на эту загадку остался в далеких 1975 годах.

Все что было написано мною в этой статье было предоставлено в виде отчета на стол главного энергетика, изучив весь материал, он своей подписью заверил мой расчет и было отдано распоряжение на изменение уставок на расчетные.

Изменив уставки, проблему частых отключений от токовой защиты во время пуска электродвигателей дымососов (вентиляторов) мы устранили.

P.S. Если во время прочтения материала у Вас возникли вопросы, то задавайте их в форме комментариев. Если Вам есть, чем поделиться и рассказать свою подобную историю, то с радостью Вас послушаем. Не забывайте подписываться на новые статьи с сайта (вверху в правой колонке сайта), чтобы быть в курсе всех событий.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Электродвигатели переменного тока / ПУЭ 7 / Библиотека / Элек.ру

1.8.15. Электродвигатели переменного тока до 1 кВ испытываются по п. 2, 4, 6, 10, 11.

Электродвигатели переменного тока выше 1 кВ испытываются по п. 1-4,7,9-11.

По п. 5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде.

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85. «Электротехнические устройства» Госстроя России.

2. Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям инструкции, указанной в п. 1. В остальных случаях сопротивление изоляции должно соответствовать нормам, приведенным в табл. 1.8.8.

Таблица 1.8.8. Допустимое сопротивление изоляции электродвигателей переменного тока.

Испытуемый объект

Напряжение мегаомметра, кВ

Сопротивление изоляции

Обмотка статора напряжением до 1 кВ

1

Не менее 0,5 МОм при температуре 10-30 °С

Обмотка ротора синхронного электродвигателя и электродвигателя с фазным ротором

0,5

Не менее 0,2 МОм при температуре 10-30 °С (допускается не ниже 2 кОм при +75 °С или 20 кОм при +20 °С для неявнополюсных роторов)

Термоиндикатор

0,25

Не нормируется

Подшипники синхронных электродвигателей напряжением выше 1 кВ

1

Не нормируется (измерение производится относительно фундаментной плиты при полностью собранных маслопроводах)

3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе.

Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса.

Значения испытательных напряжений приведены в табл. 1.8.9. Продолжительность приложения нормированного испытательного напряжения 1 мин.

4. Измерение сопротивления постоянному току:

а) обмоток статора и ротора. Производится при мощности электродвигателей 300 кВт и более.

Измеренные сопротивления обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2%;

б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10%.

5. Измерение зазоров между сталью ротора и статора. Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90°, должны отличаться не более чем на 10% среднего размера.

Таблица 1.8.9. Испытательное напряжение промышленной частоты для электродвигателей переменного тока.

Испытуемый объект

Характеристика электродвигателя

Испытательное напряжение, кВ

Обмотка статора

Мощность до 1 МВт, номинальное напряжение выше 1 кВ

1,6Uном + 0,8

Мощность выше 1 МВт, номинальное напряжение до 3,3 кВ

1,6Uном + 0,8

Мощность выше 1 МВт, номинальное напряжение выше 3,3 до 6,6 кВ

2Uном

Мощность выше 1 МВт, номинальное напряжение выше 6,6 кВ

1,6Uном + 2,4

Обмотка ротора синхронного электродвигателя

8Uном системы возбуждения, но не менее 1,2

Обмотка ротора электродвигателя с фазным ротором

1

Реостат и пускорегулировочный резистор

1

Резистор гашения поля синхронного электродвигателя

2

6. Измерение зазоров в подшипниках скольжения. Размеры зазоров приведены в табл. 1.8.10.

7. Измерение вибрации подшипников электродвигателя. Значения вибрации, измеренной на каждом подшипнике, должны быть не более значений, приведенных ниже:

Синхронная частота вращения электродвигателя, Гц

50

25

16,7

12,5 и ниже

Допустимая вибрация, мкм

50

100

130

160

8. Измерение разбега ротора в осевом направлении. Производится для электродвигателей, имеющих подшипники скольжения. Осевой разбег не должен превышать 2-4 мм.

9. Испытание воздухоохладителя гидравлическим давлением. Производится избыточным гидравлическим давлением 0,2-0,25 МПа (2-2,5 кгс/см2). Продолжительность испытания 10 мин. При этом не должно наблюдаться снижение давления или утечки жидкости, применяемой при испытании.

10. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом. Продолжительность проверки не менее 1 ч.

11. Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования.

Таблица 1.8.10. Наибольший допустимый зазор в подшипниках скольжения электродвигателей.

Номинальный диаметр вала, мм

Зазор, мм, при частоте вращения, Гц

Менее 16,7

16,7-25

более 25

18-30

0,040-0,093

0,060-0,130

0,140-0,280

30-50

0,050-0,112

0,075-0,160

0,170-0,340

50-80

0,065-0,135

0,095-0,195

0,200-0,400

80-120

0,080-0,160

0,120-0,235

0,230-0,460

120-180

0,100-0,195

0,150-0,285

0,260-0,580

180-260

0,120-0,225

0,180-0,300

0,300-0,600

260-360

0,140-0,250

0,210-0,380

0,340-0,680

360-500

0,170-0,305

0,250-0,440

0,380-0,760

Электрический двигатель — Electric motor

Машина приводится в действие электричеством, которое преобразует электрическую энергию в механическую (вращение)

Анимация, показывающая работу щеточного электродвигателя постоянного тока.

Электродвигатель является электрической машиной , которая преобразует электрическую энергию в механическую энергию . Большинство электродвигателей работают за счет взаимодействия между магнитным полем двигателя и электрическим током в обмотке провода для создания силы в виде крутящего момента, приложенного к валу двигателя. Электродвигатели могут питаться от источников постоянного тока (DC), таких как батареи, автомобили или выпрямители, или от источников переменного тока (AC), таких как электросеть, инверторы или электрические генераторы. Электрический генератор механически идентичен электрический двигатель, но работает с обратным потоком мощности, преобразование механической энергии в электрическую энергию.

Электродвигатели можно классифицировать по таким параметрам, как тип источника питания, внутренняя конструкция, применение и тип выходного движения. В дополнение к типам переменного и постоянного тока двигатели могут быть щеточными или бесщеточными , могут иметь различную фазу (см. Однофазные , двухфазные или трехфазные ) и могут иметь воздушное или жидкостное охлаждение. Двигатели общего назначения стандартных размеров и характеристик обеспечивают удобную механическую мощность для промышленного использования. Самые большие электродвигатели используются для приведения в движение судов, сжатия трубопроводов и гидроаккумуляторов с номинальной мощностью до 100 мегаватт. Электродвигатели используются в промышленных вентиляторах, нагнетателях и насосах, станках, бытовых приборах, электроинструментах и ​​дисководах. Маленькие моторы можно найти в электрических часах.

В определенных приложениях, например, при рекуперативном торможении с помощью тяговых двигателей , электродвигатели могут использоваться в обратном направлении в качестве генераторов для восстановления энергии, которая в противном случае могла бы быть потеряна в виде тепла и трения.

Электродвигатели создают линейную или вращательную силу ( крутящий момент ), предназначенную для приведения в движение какого-либо внешнего механизма, такого как вентилятор или лифт. Электродвигатель обычно предназначен для непрерывного вращения или для линейного перемещения на значительное расстояние по сравнению с его размером. Магнитные соленоиды создают значительную механическую силу, но на рабочем расстоянии, сопоставимом с их размером. Преобразователи, такие как громкоговорители и микрофоны, преобразуют электрический ток и механическую силу для воспроизведения сигналов, например речи. По сравнению с обычными двигателями внутреннего сгорания (ДВС) электродвигатели легче, физически меньше, обеспечивают большую выходную мощность, механически проще и дешевле в сборке, обеспечивая при этом мгновенный и постоянный крутящий момент на любой скорости, с большей отзывчивостью, более высокой общей эффективностью и меньшее тепловыделение. Однако электродвигатели не так удобны или распространены, как ДВС в мобильных приложениях (например, в автомобилях и автобусах), поскольку для них требуется большая и дорогая батарея, в то время как ДВС требуют относительно небольшого топливного бака.

Вид в разрезе через статор асинхронного двигателя.

История

Ранние моторы

Электромагнитный эксперимент Фарадея, 1821 г.

Первые электродвигатели были простыми электростатическими устройствами, описанными в экспериментах шотландского монаха Эндрю Гордона и американского экспериментатора Бенджамина Франклина в 1740-х годах. Теоретический принцип, лежащий в их основе, закон Кулона , был открыт, но не опубликован, Генри Кавендишем в 1771 году. Этот закон был независимо открыт Шарлем-Огюстеном де Кулоном в 1785 году, который опубликовал его, так что теперь он известен под его именем. Изобретение Алессандро Вольта в 1799 году электрохимической батареи сделало возможным производство постоянных электрических токов. После открытия взаимодействия такого тока и магнитного поля, а именно электромагнитное взаимодействия по Эрстедам в 1820 году значительного прогресса в ближайшее время было сделано. Андре-Мари Амперу потребовалось всего несколько недель, чтобы разработать первую формулировку электромагнитного взаимодействия и представить силовой закон Ампера , описывающий возникновение механической силы при взаимодействии электрического тока и магнитного поля. Первая демонстрация эффекта вращательного движения была дана Майклом Фарадеем в 1821 году. Свободно висящий провод был погружен в бассейн с ртутью, на который был помещен постоянный магнит (ПМ) . Когда через провод пропускался ток, он вращался вокруг магнита, показывая, что ток порождал близкое круговое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в физических экспериментах, заменяя (токсичную) ртуть рассолом . Колесо Барлоу было ранним усовершенствованием этой демонстрации Фарадея, хотя эти и подобные униполярные двигатели оставались непригодными для практического применения до конца века.

Jedlik «s„собственная электромагнитная ротор“, 1827 (Музей прикладного искусства, Будапешт). Исторический мотор отлично работает и сегодня.

В 1827 году венгерский физик Аньош Йедлик начал эксперименты с электромагнитными катушками . После того, как Джедлик решил технические проблемы непрерывного вращения с изобретением коммутатора , он назвал свои ранние устройства «электромагнитными самовращающимися роторами». Хотя они использовались только для обучения, в 1828 году Джедлик продемонстрировал первое устройство, содержащее три основных компонента практических двигателей постоянного тока: статор , ротор и коммутатор. В устройстве не использовались постоянные магниты, так как магнитные поля как стационарных, так и вращающихся компонентов создавались исключительно токами, протекающими через их обмотки.

Двигатели постоянного тока

Первый коммутаторный электродвигатель постоянного тока, способный вращать механизмы, был изобретен британским ученым Уильямом Стердженом в 1832 году. Следуя работе Стерджена, американский изобретатель Томас Дэвенпорт построил электродвигатель постоянного тока коммутаторного типа , который он запатентовал в 1837 году. со скоростью до 600 оборотов в минуту, а также механизированные станки и печатный станок. Из-за высокой стоимости энергии первичной батареи двигатели были коммерчески неудачными и обанкротились Davenport. Несколько изобретателей последовали за Sturgeon в разработке двигателей постоянного тока, но все столкнулись с одними и теми же проблемами стоимости батарей. Поскольку в то время не было системы распределения электроэнергии, для этих двигателей не существовало практического коммерческого рынка.

После многих других более или менее успешных попыток с относительно слабым вращающимся и возвратно-поступательным устройством прусский Мориц фон Якоби в мае 1834 года создал первый настоящий вращающийся электродвигатель. Он развил замечательную механическую выходную мощность. Его мотор установил мировой рекорд, который Якоби улучшил четыре года спустя, в сентябре 1838 года. Его второй мотор был достаточно мощным, чтобы переправить лодку с 14 людьми через широкую реку. Также в 1839/40 году другим разработчикам удалось создать двигатели с аналогичными, а затем и более высокими характеристиками.

В 1855 году Джедлик построил устройство, основанное на принципах, аналогичных тем, которые использовались в его электромагнитных роторных двигателях, которое могло выполнять полезную работу. В том же году он построил модель электромобиля .

Важный поворотный момент наступил в 1864 году, когда Антонио Пачинотти впервые описал кольцевой якорь (хотя первоначально он был задуман как генератор постоянного тока, то есть динамо-машина). Он имел симметрично сгруппированные катушки, замыкающиеся друг на друга и подключенные к шинам коммутатора, щетки которого подавали практически не флуктуирующий ток. Первые коммерчески успешные двигатели постоянного тока последовали за разработками Зеноба Грамма, который в 1871 году заново изобрел конструкцию Пачинотти и принял некоторые решения от Вернера Сименса .

Выгода для машин постоянного тока появилась благодаря открытию обратимости электрической машины, о которой Сименс объявил в 1867 году и которую наблюдал Пачинотти в 1869 году. Грамм случайно продемонстрировал это на Всемирной выставке в Вене 1873 года , когда он соединил два таких Устройства постоянного тока на расстоянии до 2 км друг от друга, используя одно из них в качестве генератора, а другое в качестве двигателя.

Барабанный ротор был представлен Фридрихом фон Хефнер-Альтенеком из Siemens & Halske для замены кольцевой арматуры Пачинотти в 1872 году, что повысило эффективность машины. В следующем году компания Siemens & Halske представила многослойный ротор, благодаря чему удалось снизить потери в стали и повысить наведенное напряжение. В 1880 году Йонас Венстрём снабдил ротор пазами для размещения обмотки, что еще больше повысило эффективность.

В 1886 году Фрэнк Джулиан Спраг изобрел первый практический двигатель постоянного тока, неискрящее устройство, которое поддерживало относительно постоянную скорость при переменных нагрузках. Другие электрические изобретения Sprague примерно в это время значительно улучшили распределение электроэнергии в сети (предыдущая работа была проделана, когда использовалась Томасом Эдисоном ), позволили вернуть энергию от электродвигателей в электрическую сеть, обеспечив ее распределение между тележками через воздушные провода и опору троллейбуса. и предоставили системы управления электрическими операциями. Это позволило Спрэгу использовать электродвигатели для изобретения первой системы электрических тележек в 1887–88 годах в Ричмонде, штат Вирджиния , электрического лифта и системы управления в 1892 году, а также электрического метро с вагонами с независимым приводом и централизованным управлением. Последние были впервые установлены в 1892 году в Чикаго на южной стороне надземной железной дороги , где они стали широко известны как « L ». Двигатель Спрэга и связанные с ним изобретения вызвали взрыв интереса к электродвигателям в промышленности. Разработка электродвигателей приемлемого КПД была отложена на несколько десятилетий из-за непонимания чрезвычайной важности воздушного зазора между ротором и статором. Эффективные конструкции имеют сравнительно небольшой воздушный зазор. Мотор Сент-Луиса, долгое время использовавшийся в классах для иллюстрации принципов работы двигателя, крайне неэффективен по той же причине, а также не похож на современный мотор.

Электродвигатели произвели революцию в отрасли. Промышленные процессы больше не ограничивались передачей энергии с использованием линейных валов, ремней, сжатого воздуха или гидравлического давления. Вместо этого каждая машина может быть оснащена собственным источником питания, обеспечивающим простое управление в месте использования и повышающим эффективность передачи энергии. Электродвигатели, применяемые в сельском хозяйстве, лишили силы мускулов человека и животных при выполнении таких задач, как обработка зерна или перекачка воды. Использование электродвигателей в быту (например, в стиральных машинах, посудомоечных машинах, вентиляторах, кондиционерах и холодильниках (замена ледяных ящиков )) сократило объем тяжелого домашнего труда и сделало возможными более высокие стандарты удобства, комфорта и безопасности. Сегодня электродвигатели потребляют более половины электроэнергии, производимой в США.

Двигатели переменного тока

В 1824 году французский физик Франсуа Араго сформулировал существование вращающихся магнитных полей , названных вращениями Араго , которые, вручную включая и выключая переключатели, Вальтер Бейли продемонстрировал в 1879 году как фактически первый примитивный асинхронный двигатель . В 1880-х годах многие изобретатели пытались разработать работоспособные двигатели переменного тока, потому что преимущества переменного тока в передаче высокого напряжения на большие расстояния были компенсированы невозможностью работы двигателей от переменного тока.

Первый асинхронный двигатель переменного тока без коммутатора был изобретен Галилео Феррарисом в 1885 году. Феррарис смог улучшить свою первую конструкцию, создав более совершенные установки в 1886 году. В 1888 году Королевская академия наук Турина опубликовала исследование Феррариса, в котором подробно описывались основы двигателя. операции, при этом в то время заключив, что «устройство, основанное на этом принципе, не может иметь никакого коммерческого значения в качестве двигателя».

Возможное промышленное развитие было предвидено Никола Тесла , который независимо изобрел свой асинхронный двигатель в 1887 году и получил патент в мае 1888 года. В том же году Тесла представил AIEE свою статью «Новая система для двигателей и трансформаторов переменного тока», в которой описывались три запатентованных Типы двухфазных четырехполюсных двигателей: один с четырехполюсным ротором, образующим несамозапускаемый реактивный двигатель , другой с фазным ротором, образующим самозапускающийся асинхронный двигатель , а третий — истинный синхронный двигатель с отдельным подача возбужденного постоянного тока на обмотку ротора. Однако в одном из патентов, которые Тесла подал в 1887 году, также был описан асинхронный двигатель с короткозамкнутым ротором. Джордж Вестингауз , который уже приобрел права у Ferraris (1000 долларов США), быстро купил патенты Tesla (60 000 долларов США плюс 2,50 доллара США за проданную мощность до 1897 года), нанял Tesla для разработки своих двигателей и поручил CF Скотту помочь Tesla; однако в 1889 году Тесла ушел для других занятий. Было обнаружено, что асинхронный двигатель переменного тока с постоянной скоростью не подходит для уличных автомобилей, но инженеры Westinghouse успешно адаптировали его для работы на горнодобывающих предприятиях в Теллуриде, штат Колорадо, в 1891 году. в 1892 году и разработал линейку многофазных асинхронных двигателей с частотой 60 Гц в 1893 году, но эти ранние двигатели Westinghouse были двухфазными двигателями с намотанными роторами. Позднее Б.Г. Ламме разработал ротор намотки с вращающимся стержнем.

Стойкий в своем продвижении трехфазной разработки, Михаил Доливо-Добровольский в 1889 году изобрел трехфазный асинхронный двигатель обоих типов с клетчатым ротором и ротором с пусковым реостатом, а также трехлепестковый трансформатор в 1890 году. Между AEG и Maschinenfabrik Oerlikon Доливо-Добровольски и Чарльз Юджин Ланселот Браун разработали более крупные модели, а именно беличью клетку мощностью 20 л.с. и ротор с фазовой головкой 100 л.с. с пусковым реостатом. Это были первые трехфазные асинхронные двигатели, пригодные для практической эксплуатации. С 1889 года Венстрём начал аналогичные разработки трехфазных машин. На Международной электротехнической выставке во Франкфурте 1891 года была успешно представлена ​​первая трехфазная система для больших расстояний. Он был рассчитан на напряжение 15 кВ и простирался на 175 км от водопада Лауффен на реке Неккар. Электростанция Lauffen включала генератор переменного тока мощностью 240 кВт, 86 В, 40 Гц и повышающий трансформатор, а на выставке понижающий трансформатор питал трехфазный асинхронный двигатель мощностью 100 л.с., который приводил в действие искусственный водопад, что представляет собой передачу оригинала. источник питания. Трехфазная индукция сейчас используется в подавляющем большинстве коммерческих приложений. Михаил Доливо-Добровольский утверждал, что двигатель Теслы был непрактичным из-за двухфазных пульсаций, которые побудили его продолжать свою трехфазную работу.

Компания General Electric начала разработку трехфазных асинхронных двигателей в 1891 году. К 1896 году General Electric и Westinghouse подписали соглашение о взаимном лицензировании на конструкцию ротора со стержневой обмоткой, позже названного ротором с короткозамкнутым ротором . Усовершенствования асинхронного двигателя, вытекающие из этих изобретений и инноваций, были таковы, что асинхронный двигатель мощностью 100 лошадиных сил в настоящее время имеет те же установочные размеры, что и двигатель мощностью 7,5 лошадиных сил в 1897 году.

Составные части

Ротор электродвигателя (слева) и статор (справа)

Ротор

В электродвигателе движущейся частью является ротор, который вращает вал для передачи механической энергии. В ротор обычно проложены проводники, по которым проходят токи, которые взаимодействуют с магнитным полем статора, создавая силы, вращающие вал. В качестве альтернативы некоторые роторы несут постоянные магниты, а статор удерживает проводники.

Подшипники

Ротор поддерживается подшипниками , которые позволяют ротору вращаться вокруг своей оси. Подшипники, в свою очередь, поддерживаются корпусом двигателя. Вал двигателя проходит через подшипники за пределы двигателя, где действует нагрузка. Поскольку силы нагрузки действуют за пределы самого внешнего подшипника, говорят, что нагрузка является выступающей .

Статора

Статор — это неподвижная часть электромагнитной цепи двигателя и обычно состоит из обмоток или постоянных магнитов. Сердечник статора состоит из множества тонких металлических листов, называемых пластинами. Ламинирование используется для уменьшения потерь энергии, которые могут возникнуть при использовании твердого сердечника. Двигатели со смолой, используемые в стиральных машинах и кондиционерах, используют демпфирующие свойства смолы (пластика) для снижения шума и вибрации. Эти двигатели полностью покрывают статор пластиком .

Воздушный зазор

Расстояние между ротором и статором называется воздушным зазором. Воздушный зазор имеет важное значение и, как правило, минимален, так как большой зазор оказывает сильное отрицательное влияние на производительность. Это основной источник низкого коэффициента мощности, с которым работают двигатели. Ток намагничивания увеличивается с увеличением воздушного зазора. По этой причине воздушный зазор должен быть минимальным. Очень маленькие зазоры могут создавать механические проблемы в дополнение к шуму и потерям.

Явнополюсный ротор

Обмотки

Обмотки — это провода, уложенные в катушки , обычно намотанные вокруг многослойного магнитного сердечника из мягкого железа, чтобы образовывать магнитные полюса при подаче тока.

Электромашины бывают двух основных конфигураций полюсов магнитного поля: явнополюсных и несимметричных . В явнополюсной машине магнитное поле полюса создается обмоткой, намотанной вокруг полюса под лицевой стороной полюса. В машине с несоциальными полюсами , с распределенным полем или с круглым ротором обмотка распределена в пазах на торцах полюсов . Затененной-полюсный двигатель имеет обмотку вокруг части полюса , что задержки фазы магнитного поля для этого полюса.

У некоторых двигателей есть проводники, которые состоят из более толстого металла, такого как стержни или листы металла, обычно меди , или алюминия . Обычно они питаются от электромагнитной индукции .

Коммутатор

Маленький двигатель постоянного тока игрушки с его коммутатором

Коммутатор представляет собой механизм , используемый для переключения на вход большинства машин постоянного тока и переменного тока некоторых машин. Он состоит из сегментов контактных колец, изолированных друг от друга и от вала. Ток якоря двигателя подается через неподвижные щетки, находящиеся в контакте с вращающимся коммутатором, что вызывает требуемое изменение направления тока и подает мощность на машину оптимальным образом, когда ротор вращается от полюса к полюсу. В отсутствие такого реверсирования тока двигатель остановился бы. В свете усовершенствованных технологий в области электронного контроллера, бессенсорного управления, асинхронного двигателя и двигателя с постоянными магнитами, индукционные двигатели с внешней коммутацией и двигатели с постоянными магнитами вытесняют двигатели с электромеханической коммутацией.

Электропитание и управление двигателем

Питание двигателя

Электродвигатель постоянного тока обычно получает питание через контактный коллектор, как описано выше. Коммутация электродвигателей переменного тока может быть достигнута с использованием контактного кольца или внешней коммутации, может быть с фиксированной или регулируемой скоростью, а также может быть синхронным или асинхронным. Универсальные двигатели могут работать как от переменного, так и от постоянного тока.

Блок управления двигателем

Двигатели постоянного тока могут работать с переменной скоростью, регулируя напряжение постоянного тока, подаваемое на клеммы, или используя широтно-импульсную модуляцию (ШИМ).

Электродвигатели переменного тока, работающие с фиксированной скоростью, обычно получают питание напрямую от сети или через устройства плавного пуска двигателя .

Электродвигатели переменного тока, работающие с регулируемой скоростью, питаются от различных мощных инверторов , частотно-регулируемых приводов или электронных коммутаторов.

Термин «электронный коммутатор» обычно ассоциируется с автономными бесщеточными двигателями постоянного тока и реактивными реактивными двигателями .

Основные категории

Электродвигатели работают на трех разных физических принципах: магнетизм , электростатика и пьезоэлектричество .

В магнитных двигателях магнитные поля образуются как в роторе, так и в статоре. Продукт между этими двумя полями создает силу и, следовательно, крутящий момент на валу двигателя. Одно или оба из этих полей должны изменяться при вращении двигателя. Это достигается путем включения и выключения шестов в нужное время или изменения силы шеста.

Основными типами двигателей являются двигатели постоянного и переменного тока, причем первые все чаще вытесняются вторыми.

Электродвигатели переменного тока бывают асинхронными или синхронными.

После запуска синхронному двигателю требуется синхронизация с синхронной скоростью движущегося магнитного поля для всех нормальных условий крутящего момента.

В синхронных машинах магнитное поле должно создаваться средствами, отличными от индукции, такими как отдельно возбужденные обмотки или постоянные магниты.

Двигатель дробно-сильный мотор либо имеет рейтинг ниже примерно 1 лошадиных сил (0,746 кВт), или изготавливается с размером стандартного кадра меньше , чем стандартный 1 л.с. двигателя. Многие бытовые и промышленные двигатели относятся к классу малой мощности.

Основные категории
по
типу коммутации двигателя
Самостоятельно коммутируемыйС внешней коммутацией
Механические
коллекторные двигатели
ЭЛЕКТРОННО
Коллектор (EC)
Motors

Асинхронные
машины

Синхронные
машины 2
AC ОКРУГ КОЛУМБИЯAC 5 , 6AC 6
Двигатель постоянного тока с электрическим возбуждением:

  • Отдельно
    взволнован
  • Серии
  • Шунт
  • Соединение

Двигатель постоянного тока с постоянными магнитами

С ротором PM:

С ферромагнитным ротором:

Трехфазные двигатели:

Двигатели переменного тока: 10

Трехфазные двигатели:

  • WRSM
  • PMSM или
    BLAC двигатель
  • Гибридный

Двигатели переменного тока: 10

  • Постоянно разделенный
    конденсатор
  • Гистерезис
  • Шаговый
  • SyRM
  • SyRM-PM гибрид
Простая электроникаВыпрямитель,
линейный транзистор (ы)
или прерыватель постоянного тока
Более сложная
электроника
Самая сложная
электроника ( ЧРП ), если таковая имеется

Примечания:

  1. Вращение не зависит от частоты переменного напряжения.
  2. Вращение равно синхронной скорости (скорость двигателя-статора-поля).
  3. В SCIM вращение с фиксированной скоростью равно синхронной скорости, за вычетом скорости скольжения.
  4. В системах с нескользящей рекуперацией энергии WRIM обычно используется для запуска двигателя, но может использоваться для изменения скорости нагрузки.
  5. Работа с переменной скоростью.
  6. В то время как приводы с асинхронными и синхронными двигателями обычно имеют шестиступенчатый или синусоидальный выходной сигнал, приводы с BLDC-двигателями обычно имеют форму сигнала трапецеидального тока; Однако поведение как синусоидальных, так и трапецеидальных машин с постоянным магнитом идентично с точки зрения их фундаментальных аспектов.
  7. При работе с регулируемой скоростью WRIM используется в системах рекуперации энергии скольжения и в индукционных машинах с двойной подачей.
  8. Обмотка клетки представляет собой короткозамкнутый ротор с короткозамкнутым ротором, обмотка с обмоткой подключена снаружи через контактные кольца.
  9. В основном однофазные, некоторые — трехфазные.

Сокращения:

Самокоммутируемый двигатель

Матовый двигатель постоянного тока

По определению, все двигатели постоянного тока с автоматической коммутацией работают от электроэнергии постоянного тока. Большинство двигателей постоянного тока представляют собой типы небольших постоянных магнитов (PM). Они содержат щеточную внутреннюю механическую коммутацию для реверсирования тока обмоток двигателя синхронно с вращением.

Двигатель постоянного тока с электрическим возбуждением

Работа щеточного электродвигателя с двухполюсным ротором и статором ПМ. («N» и «S» обозначают полярности на внутренних гранях магнитов; внешние грани имеют противоположные полярности.)

Коммутируемый двигатель постоянного тока имеет набор вращающихся обмоток, намотанных на якорь, установленный на вращающемся валу. На валу также находится коммутатор — долговечный поворотный электрический переключатель, который периодически меняет направление тока в обмотках ротора по мере вращения вала. Таким образом, каждый щеточный двигатель постоянного тока имеет переменный ток, протекающий через его вращающиеся обмотки. Ток протекает через одну или несколько пар щеток, установленных на коммутаторе; щетки подключают внешний источник электроэнергии к вращающемуся якорю.

Вращающийся якорь состоит из одной или нескольких катушек проволоки, намотанных на ламинированный магнитно «мягкий» ферромагнитный сердечник. Ток от щеток протекает через коммутатор и одну обмотку якоря, превращая его в временный магнит ( электромагнит ). Магнитное поле, создаваемое якорем, взаимодействует со стационарным магнитным полем, создаваемым либо PM, либо другой обмоткой (катушкой возбуждения), являющейся частью корпуса двигателя. Сила между двумя магнитными полями приводит к вращению вала двигателя. Коммутатор переключает питание на катушки при вращении ротора, предотвращая полное совпадение магнитных полюсов ротора с магнитными полюсами поля статора, так что ротор никогда не останавливается (как это делает стрелка компаса), а скорее продолжает вращаться. пока подано питание.

Многие ограничения классического коллекторного двигателя постоянного тока связаны с необходимостью прижимания щеток к коммутатору. Это создает трение. Искры создаются щетками, замыкая и размыкая цепи через обмотки ротора, когда щетки пересекают изолирующие промежутки между секциями коллектора. В зависимости от конструкции коммутатора, это может включать в себя замыкание щеток между соседними секциями — и, следовательно, концами катушки — на мгновение при пересечении зазоров. Кроме того, индуктивность катушек ротора заставляет напряжение на каждой из них повышаться при размыкании цепи, увеличивая искрение щеток. Это искрение ограничивает максимальную скорость машины, так как слишком быстрое искрение приведет к перегреву, разрушению или даже расплавлению коллектора. Плотность тока на единицу площади щеток в сочетании с их удельным сопротивлением ограничивает мощность двигателя. Замыкание и размыкание электрического контакта также вызывает электрический шум ; искрение порождает радиопомехи . Щетки со временем изнашиваются и требуют замены, а сам коллектор подлежит износу и техническому обслуживанию (на более крупных двигателях) или замене (на небольших двигателях). Сборка коммутатора на большом двигателе — дорогостоящий элемент, требующий точной сборки многих деталей. В небольших двигателях коммутатор обычно постоянно встроен в ротор, поэтому для его замены обычно требуется замена всего ротора.

Хотя большинство коммутаторов имеют цилиндрическую форму, некоторые из них представляют собой плоские диски, состоящие из нескольких сегментов (обычно не менее трех), установленных на изоляторе.

Большие щетки желательны для большей площади контакта щеток, чтобы максимизировать мощность двигателя, но маленькие щетки желательны для малой массы, чтобы максимизировать скорость, с которой может работать двигатель, без чрезмерного подпрыгивания щеток и искрения. (Маленькие щетки также желательны для более низкой стоимости.) Более жесткие щеточные пружины также могут использоваться, чтобы заставить щетки заданной массы работать с более высокой скоростью, но за счет больших потерь на трение (более низкая эффективность) и ускоренного износа щеток и коллектора. Следовательно, конструкция щетки двигателя постоянного тока предполагает компромисс между выходной мощностью, скоростью и эффективностью / износом.

Машины постоянного тока определяются следующим образом:

  • Цепь якоря — обмотка, по которой проходит ток нагрузки, например, неподвижная или вращающаяся часть двигателя или генератора.
  • Цепь возбуждения — набор обмоток, создающих магнитное поле, так что электромагнитная индукция может иметь место в электрических машинах.
  • Коммутация: механический метод, с помощью которого можно достичь выпрямления или получить постоянный ток в машинах постоянного тока.

A: шунт B: серия C: составной f = катушка возбуждения

Есть пять типов щеточных двигателей постоянного тока:

  • Двигатель постоянного тока с параллельной обмоткой
  • Двигатель постоянного тока с последовательной обмоткой
  • Составной двигатель постоянного тока (две конфигурации):
    • Накопительное соединение
    • Дифференциально сложный
  • Двигатель постоянного тока с постоянными магнитами (не показан)
  • Отдельно возбужден (не показан).
Двигатель постоянного тока с постоянным магнитом

Двигатель с постоянными магнитами (постоянными магнитами) не имеет обмотки возбуждения на раме статора, а вместо этого полагается на постоянные магниты для создания магнитного поля, с которым поле ротора взаимодействует для создания крутящего момента. Компенсирующие обмотки, включенные последовательно с якорем, могут использоваться на больших двигателях для улучшения коммутации под нагрузкой. Поскольку это поле является фиксированным, его нельзя настроить для управления скоростью. Поля с постоянными магнитами (статоры) удобны в миниатюрных двигателях, чтобы исключить потребление энергии обмоткой возбуждения. Большинство более крупных двигателей постоянного тока относятся к типу «динамо», которые имеют обмотки статора. Исторически сложилось так, что PM нельзя было заставить сохранять высокий магнитный поток, если они были разобраны; обмотки возбуждения были более практичными для получения необходимого количества магнитного потока. Однако большие PM дороги, опасны и сложны в сборке; это благоприятствует намотанным полям для больших машин.

Чтобы минимизировать общий вес и размер, в миниатюрных двигателях с постоянными магнитами могут использоваться высокоэнергетические магниты, сделанные из неодима или других стратегических элементов; большинство из них — сплавы неодим-железо-бор. Благодаря более высокой плотности магнитного потока электрические машины с высокоэнергетическими ФЭУ, по крайней мере, конкурентоспособны со всеми оптимально спроектированными синхронными и индукционными электрическими машинами с однополярным питанием . Миниатюрные двигатели напоминают структуру на иллюстрации, за исключением того, что у них есть по крайней мере три полюса ротора (для обеспечения запуска, независимо от положения ротора), а их внешний корпус представляет собой стальную трубку, которая магнитно связывает внешние части изогнутых магнитов поля.

Электродвигатель с электронным коммутатором (EC)

Бесщеточный двигатель постоянного тока

Некоторые проблемы щеточного двигателя постоянного тока устранены в конструкции BLDC. В этом двигателе механический «вращающийся переключатель» или коммутатор заменен внешним электронным переключателем, синхронизированным с положением ротора. Двигатели BLDC обычно имеют КПД 85–90% или более. Сообщается о КПД двигателя BLDC до 96,5%, тогда как электродвигатели постоянного тока с щеткой обычно имеют КПД 75–80%.

Характерная форма волны трапециевидной противодвижущей силы (CEMF) двигателя BLDC частично связана с равномерным распределением обмоток статора, а частично — с размещением постоянных магнитов ротора. Также известные как электродвигатели постоянного тока с электронной коммутацией или двигатели постоянного тока наизнанку, обмотки статора трапециевидных двигателей с BLDC могут быть однофазными, двухфазными или трехфазными и использовать датчики на эффекте Холла, установленные на их обмотках для определения положения ротора и недорогие закрытые. -контурное управление электронным коммутатором.

Двигатели BLDC обычно используются там, где необходимо точное управление скоростью, например, в дисководах компьютеров или кассетных видеомагнитофонах, шпинделях в приводах компакт-дисков, CD-ROM (и т. Д.), А также механизмах в офисных изделиях, таких как вентиляторы, лазерные принтеры и т. копировальные аппараты. У них есть несколько преимуществ перед обычными моторами:

  • По сравнению с вентиляторами переменного тока, использующими двигатели с экранированными полюсами, они очень эффективны и работают намного холоднее, чем эквивалентные двигатели переменного тока. Эта холодная операция приводит к значительному увеличению срока службы подшипников вентилятора.
  • Без изнашиваемого коммутатора срок службы двигателя BLDC может быть значительно дольше по сравнению с двигателем постоянного тока, использующим щетки и коммутатор. Коммутация также имеет тенденцию вызывать большое количество электрических и радиочастотных помех; без коммутатора или щеток двигатель BLDC может использоваться в электрически чувствительных устройствах, таких как аудиооборудование или компьютеры.
  • Те же датчики на эффекте Холла, которые обеспечивают коммутацию, также могут обеспечивать удобный сигнал тахометра для приложений с замкнутым контуром (сервоуправлением). В вентиляторах сигнал тахометра может использоваться для получения сигнала «вентилятор исправен», а также для обеспечения обратной связи по скорости вращения.
  • Двигатель можно легко синхронизировать с внутренними или внешними часами, что позволяет точно регулировать скорость.
  • Двигатели BLDC не имеют шансов искрообразования, в отличие от двигателей с щеточным покрытием, что делает их более подходящими для сред с летучими химическими веществами и топливом. Кроме того, искрение генерирует озон, который может накапливаться в плохо вентилируемых зданиях, опасаясь причинения вреда здоровью людей.
  • Двигатели BLDC обычно используются в небольшом оборудовании, таком как компьютеры, и обычно используются в вентиляторах, чтобы избавиться от нежелательного тепла.
  • Они также являются очень тихими в акустическом отношении двигателями, что является преимуществом при использовании в оборудовании, подверженном вибрации.

Современные двигатели BLDC имеют мощность от долей ватта до многих киловатт. В электромобилях используются более крупные двигатели BLDC мощностью до 100 кВт. Они также находят значительное применение в высокопроизводительных электрических моделях самолетов.

Коммутируемый реактивный двигатель

6/4 полюсный реактивный электродвигатель

В SRM нет щеток или постоянных магнитов, а в роторе нет электрического тока. Вместо этого крутящий момент возникает из-за небольшого несовпадения полюсов ротора с полюсами статора. Ротор выравнивается с магнитным полем статора, в то время как обмотки возбуждения статора последовательно возбуждаются для вращения поля статора.

Магнитный поток, создаваемый обмотками возбуждения, следует по пути наименьшего магнитного сопротивления, что означает, что магнитный поток будет проходить через полюса ротора, которые находятся ближе всего к возбужденным полюсам статора, тем самым намагничивая эти полюса ротора и создавая крутящий момент. Когда ротор вращается, различные обмотки будут запитаны, поддерживая вращение ротора.

SRM используются в некоторых приборах и транспортных средствах.

Универсальный двигатель переменного / постоянного тока

Современный недорогой универсальный мотор, от пылесоса. Обмотки возбуждения окрашены в темно-медный цвет с обеих сторон назад. Ламинированный сердечник ротора серый металлик с темными прорезями для намотки катушек. Коммутатор (частично скрыт) потемнел от использования; он направлен вперед. Большая коричневая деталь из формованного пластика на переднем плане поддерживает направляющие и щетки (с обеих сторон), а также передний подшипник двигателя.

Коммутируемый электродвигатель с последовательным или параллельным возбуждением с электрическим возбуждением называется универсальным электродвигателем, поскольку он может быть разработан для работы от источника переменного или постоянного тока. Универсальный двигатель может хорошо работать на переменном токе, потому что ток как в поле, так и в катушках якоря (и, следовательно, результирующие магнитные поля) будут чередоваться (обратная полярность) синхронно, и, следовательно, результирующая механическая сила будет возникать в постоянном направлении вращения. .

Универсальные двигатели, работающие на нормальных частотах линии электропередачи , часто имеют мощность менее 1000 Вт . Универсальные двигатели также легли в основу традиционного железнодорожного тягового двигателя на электрических железных дорогах . В этом приложении использование переменного тока для питания двигателя, изначально предназначенного для работы на постоянном токе, привело бы к потерям эффективности из-за нагрева их магнитных компонентов вихревыми токами , особенно полюсных наконечников поля двигателя, которые для постоянного тока использовали бы твердые ( неламинированный) чугун и сейчас они используются редко.

Преимущество универсального двигателя состоит в том, что источники питания переменного тока могут использоваться на двигателях, которые имеют некоторые характеристики, более общие для двигателей постоянного тока, в частности, высокий пусковой момент и очень компактную конструкцию, если используются высокие скорости вращения. Отрицательный аспект — проблемы с обслуживанием и недолгий срок службы коммутатора. Такие двигатели используются в устройствах, таких как миксеры для пищевых продуктов и электроинструменты, которые используются только с перерывами и часто требуют высокого пускового момента. Несколько ответвлений на катушке возбуждения обеспечивают (неточное) ступенчатое регулирование скорости. Бытовые блендеры, рекламирующие множество скоростей, часто сочетают в себе катушку возбуждения с несколькими ответвлениями и диод, который можно вставить последовательно с двигателем (в результате чего двигатель работает от полуволнового выпрямленного переменного тока). Универсальные двигатели также поддаются электронной регулировке скорости и, как таковые, являются идеальным выбором для таких устройств, как бытовые стиральные машины. Двига

Характеристики асинхронных двигателей — Руководство по устройству электроустановок

Потребление тока

Номинальная мощность (кВт, Pn) двигателя указывает его номинальную эквивалентную механическую выходную мощность.
Полная мощность (кВА, Ра), подаваемая на двигатель, зависит от полной мощности, КПД двигателя и коэффициента мощности:

Pa=Pnηcos⁡ϕ{\displaystyle \definecolor {bggrey}{rgb}{0.9176470588235294,0.9176470588235294,0.9176470588235294}\pagecolor {bggrey}Pa={\frac {Pn}{\eta \cos \phi }}}

Полный ток нагрузки Ia, подаваемый на двигатель, рассчитывается по следующим формулам:

  • 3-фазный двигатель: Ia = Pn x 1,000 / (3{\displaystyle {\sqrt {3}}} x U x η x cosφ)
  • 1-фазный двигатель: Ia = Pn x 1,000 / (U x η x cosφ),

где
Ia : полный ток (А)
Pn : номинальная мощность (кВт)
U : междуфазное напряжение для 3-фазного двигателя и напряжение между зажимами для 1-фазного двигателя (В). 1-фазные двигатели могут подсоединяться на фазное или линейное напряжение
η : КПД, т.е. выходная мощность (кВт)/ входная мощность (кВт)
cos φ : коэффициент мощности, т.е. входная мощность (кВт)/входная мощность(кВА)

Сверхпереходный ток и уставка защиты

  • Пиковое значение сверхпереходного тока может быть крайне высоким. Обычно это значение в 12-15 раз превышает среднеквадратическое номинальное значение Inm. Иногда это значение может в 25 раз превышать значение Inm.
  • Выключатели, контакторы и термореле рассчитываются на пуски двигателей при крайне высоких сверхпереходных токах (сверхпереходное пиковое значение может в 19 раз превышать среднеквадратическое номинальное значение Inm).
  • При внезапных срабатываниях защиты от сверхтоков при пуске это означает выход пускового тока за нормальные пределы. В результате могут достигаться предельные значения параметров распределительных устройств, срок службы может укорачиваться и даже некоторые устройства могут выходить из строя. Во избежание такой ситуации необходимо рассмотреть вопрос о повышении номинальных параметров распределительных устройств.
  • Распределительные устройства рассчитываются на обеспечение защиты пускателей двигателей от КЗ. В зависимости от риска, таблицы показывают комбинации выключателя, контактора и термореле для обеспечения координации типа 1 или 2.

Пусковой ток двигателя

Хотя рынок предлагает двигатели с высоким КПД, на практике их пусковые токи приблизительно такие же, как у стандартных двигателей.

Применение пускателей с соединением треугольником, статических устройств для плавного пуска или регулируемых приводов позволяет снизить значение пускового тока (например, 4 Ia вместо 7,5 Ia).

Компенсация реактивной мощности (квар), подаваемой на асинхронные двигатели

Как правило, по техническим и финансовым соображениям выгоднее снижать ток, подаваемый на асинхронные двигатели. Это может обеспечиваться за счет применения конденсаторов, без влияния на выходную мощность двигателей.

Применение этого принципа для оптимизации работы асинхронных двигателей называется «повышением коэффициента мощности» или «компенсацией реактивной мощности».

Как обсуждается в Главе Компенсация реактивной мощности и фильтрация гармоник, полная мощность (кВА), подаваемая на двигатель, может значительно снижаться путем использования параллельно подключенных конденсаторов. Снижение входной полной мощности означает соответствующее снижение входного тока (так как напряжение остается постоянным).{‘}}}\ ,}

где: cos φ – коэффициент мощности до компенсации, cos φ’ – коэффициент мощности после компенсации, Ia – исходный ток.

Рис. A4 ниже показывает (в зависимости от номинальной мощности двигателя) стандартные значения тока для нескольких значений напряжения питания.

кВт л.с. 230 B 380 — 415 B 400 B 440 — 480 B 500 B 690 B
A A A A A A
0,18
0,25
0,37


1,0
1,5
1,9


0,6
0,85
1,1


0,48
0,68
0,88
0,35
0,49
0,64

0,55
1/2

3/4

2,6
1,3

1,8

1,5
1,1

1,6
— 
1,2

0,87

0,75
1,1
1


3,3
4,7
2,3


1,9
2,7
2,1


1,5
2,2

1,1
1,6


1,5
1-1/2
2


6,3
3,3
4,3


3,6
3,0
3,4


2,9


2,1
2,2

3,0

3
8,5

11,3

6,1
4,9

6,5

4,8
3,9
— 
5,2
2,8

3,8
3,7
4
5,5



15
20

9,7

8,5
11,5

7,6

6,8
9,2

4,9
6,7


7,5
7-1/2
10


27
14,0
18,0


15,5
11,0
14,0


12,4


8,9
11


15
20
38,0


27,0
34,0
22,0


21,0
27,0
17,6

12,8

15
18,5


25
51
61


44
39
35


34
23
28
17
21
22


30
40
72


51
66
41


40
52
33

24

30
37


50
96
115


83
55
66


65
44
53
32
39

45
55
60


140
169
103


80
97
77


64
78

47
57


75
75
100


230
128
165


132
96
124


106


77
90

110

125
278

340

208
160

195

156
128

156
93

113

132
150

200

400
240

320

230
180

240

184

134
150
160
185



487



280



224

162

200
220
250


609
403


350
302


280

203

250
280
300


748
482

 —
430
361


344

250


300
350
400


560
636


414
474




315

335

540
940

— 

540

— 
515
— 
432

313

355

375

500
1061


786
610


590
488

354

400
425
450


1200
— 


690



552

400

475
500
530

— 
 —
1478


 —
850



680

493
560
600
630

— 
1652

1844

— 
950

1060

— 
760

848
551

615
670
710 
750



2070
— 


1190

— 

952

690
800
850
900


2340

2640


1346
— 
1518

— 
1076

1214
780

880
950
1000

— 

2910


1673


1339

970

Рис. A4 : Номинальная мощность и токиzh:感应电机

Пусковые и рабочие токи двигателя и руководство по номинальным значениям

Предупреждение : Следующая статья основана на таблицах, стандартах и ​​номенклатуре Национальной ассоциации производителей электрооборудования (NEMA). Это несколько отличается от индийской и европейской практики. Обозначения классов применимы только к двигателям, совместимым с NEMA, которые используются только в США. Однако логика и схема расчетов везде одинаковы. Поэтому читателя предупреждают, что необходимо следовать только логической последовательности вычислений.

Когда типичные асинхронные двигатели находятся под напряжением, в двигатель врывается намного большее количество тока, чем нормальный рабочий ток, чтобы создать магнитное поле, окружающее двигатель, и преодолеть недостаток углового момента двигателя и его нагрузки. Когда двигатель увеличивается до скорости скольжения, потребляемый ток уменьшается, чтобы соответствовать (1) току, необходимому при подаваемом напряжении для питания нагрузки, и (2) потерям на сопротивление воздуха и трение в двигателе, а также в системе нагрузки и передачи. Двигатель, работающий со скоростью скольжения и подающий в качестве нагрузки мощность, указанную на паспортной табличке, должен потреблять ток, указанный на паспортной табличке, и этот ток должен удовлетворять уравнению

Мощность в лошадиных силах = ( напряжение X ток X коэффициент мощности X КПД двигателя X 3 ) /746

Типичные индукционные двигатели

имеют пусковой коэффициент мощности от 10 до 20 процентов и коэффициент мощности при работе при полной нагрузке от 80 до 90 процентов.Меньшие типичные асинхронные двигатели демонстрируют рабочий КПД при полной нагрузке примерно 92 процента, тогда как большие типичные асинхронные двигатели демонстрируют рабочий КПД при полной нагрузке примерно 97,5 процента.

Поскольку производится много типов асинхронных двигателей, пусковой ток отдельного двигателя важен при проектировании системы электропитания для этого двигателя. Для этого на паспортной табличке каждого двигателя есть кодовая буква, указывающая номинальную пусковую нагрузку двигателя в киловольтамперах / лошадиных силах.Таблица этих кодовых букв и их значений в приблизительной кВА и лошадиных силах показана в следующей таблице.

Буквенный код на заводской табличке двигателя кВА на л.с. с заблокированным ротором
9002 1

Использование эти значения, пусковой ток для конкретного двигателя может быть рассчитан как I пусковой ток = (значение буквенного кода X мощность в лошадиных силах x 1000 ) / ( √3 X напряжение ) Двигатель с кодовой буквой G мощностью 50 л.с., работающий при 460 В, показан ниже

. Из-за перечисленных выше элементов двигатели, которые производят постоянные нагрузки кВА, предъявляют к системе электроснабжения необычные требования по сравнению с требованиями постоянных киловаттных нагрузок.Для их запуска система максимальной токовой защиты должна пропускать пусковой ток, также называемый током заторможенного ротора, в течение нормального периода пуска, а затем максимальный ток при работе двигателя должен быть ограничен приблизительно до номинального тока полной нагрузки на паспортной табличке. Если длительность тока заторможенного ротора слишком велика, двигатель будет перегреваться из-за тепловыделения I2R, а если длительное потребление тока двигателем будет слишком большим, двигатель также будет перегреваться из-за нагрева I2R. Национальный электротехнический кодекс устанавливает ограничения как для пускового тока, так и для рабочего тока, а также предоставляет методологию для определения силы тока выключателя двигателя и номинальной мощности в лошадиных силах.

В таблице 430-152 Национального электротехнического кодекса приведены максимальные настройки устройств максимального тока перед ответвленной цепью двигателя, а части этой таблицы воспроизведены ниже

Двухэлементное время плавкий предохранитель Мгновенный и магнитный выключатель
Трехфазный двигатель с короткозамкнутым ротором
Трехфазный короткозамкнутый ротор Design E
Например, трехфазный двигатель мощностью 50 л.с., конструкция B, 460 В, имеет ток полной нагрузки 65 А при 460 В.Максимальный номинал выключателя с обратнозависимой выдержкой времени, защищающего параллельную цепь двигателя, составляет 65 А x 250% или 162,5 А. Следующим по величине стандартным номиналом является 175 А (США), поэтому 175 А — это максимальный номинал, который можно использовать для защиты цепи двигателя.

Рабочий ток двигателя

На следующих рисунках показаны расчеты, необходимые для конкретных типов двигателей при проектировании электрических цепей, чтобы позволить этим нагрузкам запускаться и продолжать защищать их во время работы.

Таблица токов полной нагрузки для трехфазных асинхронных двигателей переменного тока (часть таблицы 430-150 NEC).

9 0021

9-0002 Двигатель Максимальная токовая защита цепи и размер провода

Статья 430-52 Национального электротехнического кодекса определяет, что минимальный размер параллельной цепи двигателя должен быть рассчитан на 125 процентов от тока полной нагрузки двигателя, указанного в таблице 430-150 для двигателей. которые работают непрерывно, и Раздел 430-32 требует, чтобы номинальное значение отключения при длительной перегрузке не превышало 115 процентов тока, указанного на паспортной табличке двигателя, если на двигателе не указано иное.Обратите внимание, что значения отключения по максимальному току в параллельной цепи (длительная часть автоматического выключателя с термомагнитным отключением и допустимая нагрузка кривой плавления предохранителя) изменены в таблице 430-22b для двигателей, которые не работают непрерывно.

Это проиллюстрировано на примере проблемы. Рассмотрим показанную схему. A 40 л.с., 460 В, 3 фазы, кодовая буква G, коэффициент полезного действия 1,0 планируется для работы от 3-фазной системы 460 В. По табличке ампер 50А. Двигатель рассчитан на продолжительный режим работы и постоянная нагрузка.Найдите минимальные размеры элементов ответвленной цепи? 1. Возьмите ток полной нагрузки двигателя из таблицы 430-150 как 52A, что выше значения, указанного на паспортной табличке. 2. Определите сечение провода: 125% от 52А = 65А. 3. Определите настройку выключателя с обратнозависимой выдержкой времени: 250% от 52A = 130A, следующий стандартный номинальный ток составляет 150A. 4. Определите номинал тепловых перегрузок: 115% от 50 А (ток на паспортной табличке) = 57,5 ​​А 5. Определите номинальный ток разъединителя: 115% от 52 А = 59,8 А

6. Определите номинальную мощность контроллера: 40 л.с. паспортная табличка HP)

Завершенная схема будет выглядеть следующим образом.

NEC Классы крутящего момента и характеристики

Зависит от буквенного кода на заводской табличке Обычно 630-1000%

Выдержки из электрических расчетов Справочник Джона М. Паскала-младшего: Издано McGraw-Hill 2001.Диаграммы тока двигателя

| R&M Electrical Group

Диаграммы тока двигателей | R&M Electrical Group

ЛУЧШЕ • УМНЕЕ • БЕЗОПАСНЕЕ

Технические ресурсы

Мы собрали ряд технических ресурсов для использования в качестве справочника по электрическим проектам.

Скачать в PDF

Таблицы выбора — трехфазные двигатели

Асинхронные двигатели

— таблицы токов при полной нагрузке (1450 об / мин прибл.)
(предоставляется как руководство по выбору подходящего механизма управления MEM). Таблицы основаны на двигателях со средней эффективностью и коэффициентом мощности примерно 1450 об / мин. Двигатели с более высокой скоростью обычно потребляют меньший ток, чем указано в таблице; в то время как двигатели с меньшей скоростью обычно потребляют более высокий ток. Эти цифры могут сильно отличаться, особенно для однофазных двигателей, и инженеры должны по возможности определять фактическую f.l.c из паспортной таблички двигателя в каждом случае.

Однофазные двигатели

НОМИНАЛ ДВИГАТЕЛЯ HP ПРИМ. F.L.C. НАПРЯЖЕНИЕ ЛИНИИ
110 В переменного тока 220 В переменного тока 240 В переменного тока
0,07 кВт 1/12 2,4 1,2 1,1
0,1 кВт 1/8 3,3 1,6 1,5
0.12 кВт 1/6 3,8 1,9 1,7
0,18 кВт 1/4 4,5 2,3 2,1
0,25 кВт 1/3 5,8 2,9 2,6
0,37 кВт 1/2 7,9 3,9 3,6
0,56 кВт 3/4 11 5,5 5
0.75 кВт 1 15 7,3 6,7
1,1 кВт 1,5 21 10 9
1,5 кВт 2 26 13 12
2,2 кВт 3 37 19 17
3 кВт 4 49 24 22
3,7 кВт 5 54 27 25
4 кВт 5.5 60 30 27
5,5 кВт 7,5 85 41 38
7,5 кВт 10 110 55 50

Трехфазные двигатели

НОМИНАЛ ДВИГАТЕЛЯ HP ПРИМ. F.L.C. НАПРЯЖЕНИЕ НА ЛИНИИ
220 В переменного тока 240 В переменного тока 380 В переменного тока 415 В переменного тока 550 В переменного тока
0.1 кВт 1/8 0,7 0,6 0,4 0,4 0,3
0,12 кВт 1/6 1 0,9 0,5 0,5 0,3
0,18 кВт 1/4 1,3 1,2 0,8 0,7 0,4
0,25 кВт 1/3 1,6 1,5 0,9 0,9 0.6
0,37 кВт 1/2 2,5 2,3 1,4 1,3 0,8
0,56 кВт 3/4 3,1 2,8 1,8 1,6 1,1
0,75 кВт 1 3,5 3,2 2 1,8 1,4
1,1 кВт 1,5 5 4,5 2.8 2,6 1,9
1,5 кВт 2 6,4 5,8 3,7 3,4 2,6
2,2 кВт 3 9,5 8,7 5,5 5 3,5
3,0 кВт 4 12 11 7 6,5 4,7
3,7 кВт 5 15 13 8 8 6
4.0 кВт 5,5 16 14 9 8 6
5,5 кВт 7,5 20 19 12 11 8
7,5 кВт 10 27 25 16 15 11
9,3 кВт 12,5 34 32 20 18 14
10 кВт 13.5 37 34 22 20 15
11 кВт 15 41 37 23 22 16
15 кВт 20 64 50 31 28 21
18 кВт 25 67 62 39 36 26
22 кВт 30 74 70 43 39 30
30 кВт 40 99 91 57 52 41
37 кВт 50130119 75 69 50
45 кВт 60 147136 86 79 59
55 кВт 75 183 166105 96 72
75 кВт100239219 138 125 95
90 кВт 125 3019 170 156 117
110 кВт150350325205 189 142
130 кВт175 410389 245 224 169
150 кВт200505 440 278 255 192

Загрузить в формате PDF

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: Информация на этой странице и в PDF-файле предназначена только для информации, и R&M Electrical Group Ltd не несет ответственности за любую содержащуюся там информацию.

Рабочие характеристики асинхронного двигателя

— Инструментальные средства

  • Все крутящие моменты асинхронного двигателя при заданном скольжении изменяются приблизительно пропорционально квадрату напряжения, приложенного к его клеммам.
  • Низкое сопротивление ротора приводит к высокой скорости при полной нагрузке (низкое скольжение), высокой эффективности (низкие потери в роторе) и немного более высокому пусковому току.
  • Высокое сопротивление ротора приводит к высокому пусковому моменту для потребляемого сетевого тока и немного меньшему току во время пуска, но приводит к более низкой скорости при полной нагрузке и снижению эффективности (высокие потери в роторе).
  • Скольжение, при котором возникает максимальный крутящий момент, пропорционально сопротивлению ротора
  • Частота и напряжение ротора пропорциональны скольжению. Таким образом, оба значения равны нулю при синхронной скорости, но возрастают до максимума при нулевой скорости (для диапазона скольжения от 0 до 100%).
  • Ротор I 2 Потери R пропорциональны скольжению и находятся в обмотке ротора двигателя с короткозамкнутым ротором. В двигателе с фазным ротором вторичные потери делятся пропорционально собственному сопротивлению обмотки ротора и любому подключенному внешнему сопротивлению.

Для чисто инерционной нагрузки (крутящий момент без нагрузки) тепловая энергия, добавляемая к обмотке ротора во время разгона (пуска), равна кинетической энергии вращающейся массы на полной скорости. Общая кинетическая энергия, добавляемая к вращающейся массе во время разгона до полной скорости, всегда одинакова для определенного значения инерции двигателя и нагрузки независимо от момента нагрузки.

Эффект момента нагрузки заключается в увеличении тепловой энергии, добавляемой к обмоткам статора и ротора во время разгона до полной скорости из-за более длительного времени разгона.Кинетическая энергия добавляется к вращающейся массе со скоростью, определяемой ускоряющим моментом (развиваемый двигателем крутящий момент за вычетом момента нагрузки), а тепло, добавляемое к обмотке ротора, определяется током ротора и временем разгона.

Время разгона (и время существования высокого пускового тока) обратно пропорционально ускоряющему моменту. В условиях пуска при низком напряжении отношение тепла, добавляемого к ротору по сравнению с кинетической энергией на полной скорости, даже больше, потому что ускоряющий крутящий момент уменьшается (развиваемый крутящий момент изменяется примерно как квадрат напряжения), крутящий момент нагрузки не изменяется. , а отношение ускоряющего момента к моменту нагрузки уменьшается

Электроприводы переменного тока — PetroWiki

Для многих приложений требуются двигатели с регулируемой скоростью.Самый простой способ изменить скорость асинхронного двигателя переменного тока — это использовать привод переменного тока для изменения применяемой частоты. Приводы переменного тока обычно известны как частотно-регулируемые приводы (VFD). VFD — это микропроцессорные контроллеры, которые включают в себя секцию электронного управления, секцию электромагнитного и полупроводникового питания, а также типовые компоненты, которые используются со стандартными контроллерами двигателей. ЧРП могут подавать напряжение на двигатели с частотой от <1 Гц до приблизительно 120 Гц.В настоящее время они доступны для двигателей мощностью от 0,33 л.с. до тысячи лошадиных сил. Работа двигателя с частотой и напряжением, отличными от номинальных, влияет на ток и крутящий момент двигателя. В следующих разделах дается дальнейшее обсуждение этого вопроса.

Соотношение вольт на герц

Выходной крутящий момент двигателя определяется на основе отношения приложенного к двигателю напряжения и приложенной частоты, известного как соотношение вольт на герц (В / Гц). Типичный двигатель переменного тока, изготовленный для использования в США.S. рассчитан на 460 В переменного тока и 60 Гц и, следовательно, имеет соотношение 7,67 В / Гц. Несоблюдение правильного соотношения В / Гц повлияет на крутящий момент двигателя, температуру, скорость, шум и потребление тока. Например, увеличение частоты без увеличения напряжения приведет к увеличению скорости и уменьшению плотности потока в воздушном зазоре. Уменьшение плотности потока в воздушном зазоре вызывает уменьшение крутящего момента двигателя, поскольку крутящий момент прямо пропорционален плотности магнитного потока в воздушном зазоре двигателя. Таким образом, чтобы двигатель создавал свой номинальный крутящий момент при переменной скорости, также необходимо контролировать напряжение и частоту, подаваемые на двигатель.Частотно-регулируемый привод поддерживает заданное соотношение В / Гц при подаче питания на двигатель с переменной скоростью.

Нагрузка с постоянным крутящим моментом

[[Alternating_current_motors | Двигатели переменного тока]], работающие от сети переменного тока, работают с постоянным магнитным потоком, поскольку напряжение и частота постоянны. Говорят, что двигатели, работающие с постоянным магнитным потоком, имеют постоянный крутящий момент. Привод переменного тока может работать с двигателем с постоянным магнитным потоком от нуля до номинальной частоты двигателя (обычно 60 Гц), которая является диапазоном постоянного крутящего момента.Пока поддерживается постоянное соотношение В / Гц, двигатель будет генерировать постоянный крутящий момент. Приводы переменного тока изменяют частоту для изменения скорости двигателя и пропорционально изменяют напряжение для поддержания постоянного магнитного потока. Отношение В / Гц можно поддерживать постоянным для любой скорости до 60 Гц. См. Рис. 1 .

  • Рис. 1 — Постоянный крутящий момент и постоянная мощность (любезно предоставлено Houston Armature Works Inc.).

Некоторые примеры нагрузок с постоянным крутящим моментом: * Конвейеры * Насосы прямого вытеснения * Экструдеры * Гидравлические насосы * Упаковочное оборудование

Постоянная мощность в лошадиных силах

В некоторых случаях требуется, чтобы двигатель работал с частотой вращения выше базовой.Для таких приложений требуется меньший крутящий момент на более высоких скоростях, но при этом требуется, чтобы напряжение не превышало номинальное напряжение, указанное на паспортной табличке, поскольку изоляция двигателя ухудшается экспоненциально при напряжении, превышающем номинальное. Частотно-регулируемые приводы предназначены для поддержания постоянного отношения В / Гц и крутящего момента до 60 Гц. Как показано в таблице , соотношение В / Гц уменьшается при частоте выше 60 Гц, поскольку частотно-регулируемые приводы предназначены для поддержания постоянного напряжения выше 60 Гц. Когда соотношение В / Гц уменьшается, магнитный поток в воздушном зазоре уменьшается, вызывая уменьшение крутящего момента.Поскольку мощность двигателя прямо пропорциональна крутящему моменту и скорости двигателя, она остается постоянной, а крутящий момент уменьшается пропорционально увеличению частоты. Таким образом, двигатель, который работает с частотой выше своей номинальной, работает в области, известной как постоянная мощность (см. Рис. 1 ).

Пуск пониженного напряжения и частоты

Двигатель Национальной ассоциации производителей электрооборудования (NEMA) B, который запускается путем подключения его к источнику питания с полным напряжением и полной частотой, развивает примерно 150% пускового момента и 600% пускового тока ( Рис.2 ). Тот же двигатель, запущенный с частотно-регулируемым приводом при пониженном напряжении и частоте, развивает примерно 150% крутящего момента и тока. Рис. 3 показывает, что кривая крутящего момента / скорости смещается вправо при увеличении частоты и напряжения. Пунктирные линии на кривой крутящего момента / скорости представляют собой часть кривой, не используемую приводом. Привод запускается и плавно ускоряет двигатель, поскольку частота и напряжение постепенно увеличиваются до желаемой скорости. Привод частотно-регулируемого привода, размер которого соответствует двигателю, способен обеспечивать 150% крутящего момента на любой скорости вплоть до скорости, соответствующей входящему линейному напряжению.

  • Рис. 2 — Типичная кривая скорости / крутящего момента для асинхронного двигателя NEMA-B (любезно предоставлено Houston Armature Works Inc.).

  • Рис. 3 — Скорость (частота) в зависимости от крутящего момента при полной нагрузке (любезно предоставлено Houston Armature Works Inc.).

В некоторых случаях требуется пусковой момент> 150%. Например, конвейеру для запуска может потребоваться 200% номинальный крутящий момент. Если двигатель способен на 200% крутящего момента при 200% тока, а привод способен на 200% тока, тогда возможен 200% крутящий момент двигателя.Обычно приводы способны производить 150% номинального тока привода в течение 1 минуты. Для нагрузки, которая требует большего пускового момента, чем может обеспечить привод, требуется привод с более высоким номинальным током. Если требуется высокий пиковый крутящий момент, целесообразно поставить привод с более высокой продолжительной мощностью, чем двигатель.

Выбор мотора

Приводы переменного тока

часто имеют больше возможностей, чем двигатель. Накопители могут работать на более высоких частотах, чем это может быть приемлемо для приложения.Например, на частотах выше 60 Гц соотношение В / Гц уменьшается, и двигатель не может развивать 100% крутящий момент. Приводы также могут работать на более низких скоростях, чем это может быть приемлемо. Например, двигатель с самоохлаждением может не развивать достаточный воздушный поток для охлаждения при пониженных скоростях и полной нагрузке. Каждый двигатель необходимо оценить на предмет его собственных возможностей, прежде чем выбирать его для использования в приводе переменного тока. Гармоники, скачки напряжения и время нарастания напряжения приводов переменного тока не идентичны. Некоторые приводы переменного тока имеют более сложные фильтры и другие компоненты, которые предназначены для минимизации нежелательного нагрева и повреждения изоляции двигателя.Это необходимо учитывать при выборе комбинации привод переменного тока / двигателя. Производители двигателей обычно классифицируют определенные рекомендуемые варианты двигателей на основе опыта, требуемого диапазона скоростей, типа крутящего момента нагрузки и температурных ограничений.

Расстояние между приводом и двигателем

Также необходимо учитывать расстояние между приводом и двигателем. Все кабели двигателя имеют линейную емкость и емкость между фазой и землей. Чем длиннее кабель, тем больше емкость. Некоторые типы кабелей (например,g., экранированный кабель или кабели в металлической трубе) имеют большую емкость. Зарядный ток в емкости кабеля вызывает скачки на выходе приводов переменного тока; более высокое напряжение и большая емкость вызывают более высокие всплески тока. Скачки напряжения, вызванные большой длиной кабеля, могут сократить срок службы привода переменного тока и двигателя. При рассмотрении приложения, в котором расстояние может быть проблемой, обратитесь к производителю частотно-регулируемого привода за его рекомендациями.

Коэффициент обслуживания для приводов переменного тока

Высокоэффективный двигатель с 1.При использовании с приводом переменного тока рекомендуется коэффициент обслуживания 15. Эксплуатационный коэффициент 1,15 снижен до 1,0 из-за тепла, связанного с гармониками привода переменного тока.

Список литературы

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

См. Также

Электрические системы

Электрораспределительные системы

Двигатели переменного тока

Двигатели асинхронные

Синхронный двигатель

Технические характеристики двигателя

Характеристики двигателя NEMA

Корпуса двигателей

PEH: электрические_системы

Категория

% PDF-1.4
%
7768 0 объект
>
endobj

xref
7768 178
0000000016 00000 н.
0000008208 00000 н.
0000008386 00000 п.
0000008432 00000 н.
0000008461 00000 п.
0000008507 00000 н.
0000008637 00000 н.
0000008675 00000 н.
0000009057 00000 н.
0000009219 00000 п.
0000009286 00000 н.
0000009352 00000 п.
0000010096 00000 п.
0000010874 00000 п.
0000011653 00000 п.
0000012335 00000 п.
0000013034 00000 п.
0000013249 00000 п.
0000013461 00000 п.
0000014184 00000 п.
0000014267 00000 п.
0000015069 00000 п.
0000015139 00000 п.
0000015821 00000 п.
0000016504 00000 п.
0000017168 00000 п.
0000029589 00000 п.
0000034748 00000 п.
0000035234 00000 п.
0000036049 00000 п.
0000094658 00000 п.
0000094719 00000 п.
0000094822 00000 н.
0000094904 00000 п.
0000094954 00000 п.
0000095061 00000 п.
0000095215 00000 п.
0000095380 00000 п.
0000095522 00000 п.
0000095691 00000 п.
0000095822 00000 п.
0000095950 00000 п.
0000096107 00000 п.
0000096193 00000 п.
0000096338 00000 п.
0000096498 00000 п.
0000096601 00000 п.
0000096750 00000 п.
0000096917 00000 п.
0000097008 00000 п.
0000097106 00000 п.
0000097264 00000 п.
0000097388 00000 п.
0000097527 00000 п.
0000097669 00000 п.
0000097798 00000 п.
0000097959 00000 п.
0000098113 00000 п.
0000098245 00000 п.
0000098364 00000 п.
0000098509 00000 п.
0000098640 00000 п.
0000098777 00000 п.
0000098885 00000 п.
0000099010 00000 н.
0000099143 00000 п.
0000099311 00000 п.
0000099405 00000 п.
0000099524 00000 н.
0000099646 00000 н.
0000099769 00000 п.
0000099947 00000 н.
0000100034 00000 п.
0000100143 00000 п.
0000100253 00000 н.
0000100369 00000 н.
0000100493 00000 п.
0000100632 00000 н.
0000100727 00000 н.
0000100818 00000 н.
0000100924 00000 н.
0000101028 00000 н.
0000101157 00000 н.
0000101270 00000 н.
0000101445 00000 н.
0000101537 00000 п.
0000101648 00000 н.
0000101822 00000 н.
0000101913 00000 н.
0000102026 00000 н.
0000102204 00000 п.
0000102298 00000 н.
0000102381 00000 п.
0000102489 00000 н.
0000102628 00000 н.
0000102740 00000 н.
0000102829 00000 н.
0000102966 00000 н.
0000103086 00000 п.
0000103225 00000 н.
0000103331 00000 н.
0000103459 00000 н.
0000103586 00000 п.
0000103706 00000 н.
0000103852 00000 п.
0000103954 00000 н.
0000104074 00000 н.
0000104222 00000 п.
0000104336 00000 п.
0000104437 00000 н.
0000104550 00000 н.
0000104689 00000 п.
0000104814 00000 н.
0000104964 00000 н.
0000105090 00000 н.
0000105219 00000 п.
0000105335 00000 п.
0000105458 00000 п.
0000105616 00000 п.
0000105721 00000 п.
0000105833 00000 н.
0000105946 00000 н.
0000106111 00000 п.
0000106249 00000 п.
0000106340 00000 н.
0000106433 00000 н.
0000106535 00000 н.
0000106620 00000 н.
0000106714 00000 н.
0000106819 00000 п.
0000106911 00000 п.
0000107018 00000 п.
0000107127 00000 н.
0000107235 00000 н.
0000107344 00000 п.
0000107452 00000 н.
0000107557 00000 н.
0000107643 00000 п.
0000107730 00000 н.
0000107918 00000 п.
0000108028 00000 н.
0000108123 00000 н.
0000108234 00000 п.
0000108358 00000 п.
0000108463 00000 п.
0000108582 00000 н.
0000108656 00000 н.
0000108818 00000 н.
0000108934 00000 п.
0000109042 00000 н.
0000109156 00000 п.
0000109270 00000 н.
0000109386 00000 п.
0000109469 00000 п.
0000109654 00000 н.
0000109828 00000 п.
0000109919 00000 н.
0000110074 00000 н.
0000110274 00000 н.
0000110351 00000 п.
0000110582 00000 н.
0000110659 00000 н.
0000110780 00000 н.
0000110960 00000 н.
0000111040 00000 н.
0000111229 00000 н.
0000111306 00000 н.
0000111453 00000 н.
0000111530 00000 н.
0000111715 00000 н.
0000111844 00000 н. BPX4 :: E1FT-VHj * VmPn @
.ZEmmi: [B2y {= νQ $ B # y? $ CHVȑ # c @ F (

Plant Engineering | Проще говоря: шаги по определению фактической нагрузки двигателя

Вопреки распространенному мнению, больше не всегда лучше, особенно когда речь идет об электродвигателях. Техническим и техническим отделам завода нравится иметь немного дополнительной мощности «на всякий случай», поэтому они иногда выбирают двигатели большего размера, чем того требуют приложения. Но большие двигатели стоят дороже в эксплуатации, а иногда и намного дороже. К счастью, существует простая процедура для определения фактической мощности, необходимой для нагрузки, без использования дорогостоящего оборудования или технических средств.Имейте в виду, что нагрузки следует определять, когда двигатель работает с максимальной нагрузкой. Широко варьирующиеся нагрузки являются хорошими кандидатами для частотно-регулируемых приводов (ЧРП), которые предлагают дополнительное преимущество контроля скорости производства.

Оценка фактической нагрузки

Как показано на Рисунке 1, нагрузка и ток в процентах по существу линейны, от холостого хода до тока двигателя, указанного на паспортной табличке. Однако простой ошибкой является предположение, что нулевая нагрузка = нулевой ток. Это предположение приведет к ошибкам в определении hp, причем ошибка обратно пропорциональна нагрузке (заштрихованная область на рисунке 1).Наибольшие ошибки возникают при рассмотрении двигателей, которые больше всего нуждаются в «правильном выборе размера» [т.е. 50% тока полной нагрузки (FLA) не = 50% нагрузки].

Хотя можно определить процент нагрузки, которую несет двигатель, по графику на рисунке 1, фактическая нагрузка двигателя может быть приблизительно рассчитана математически на основе хороших исходных данных:

Включите двигатель без сцепления и запишите ток без нагрузки (0% нагрузки). Не используйте здесь никаких ярлыков, потому что измеренный ток будет выше, если двигатель подключен.Чтобы избежать ошибок, всегда используйте несвязанный ток.

Затем запишите ток на паспортной табличке и затем измерьте ток при фактической нагрузке двигателя. Поскольку двигатель меньшего размера представляет другие проблемы, лучше всего измерять ток в течение рабочего цикла процесса. Если нагрузка меняется, запишите ток во время пиковой нагрузки.

Стоимость «запаса прочности»

Дополнительные затраты на эксплуатацию серьезно недоиспользуемых двигателей часто включают доплаты за низкий коэффициент мощности (подробнее об этом позже).С циклических мощных пользователей также может взиматься плата за потребление в зависимости от пиковой мощности. Это означает, что один эпизод интенсивного использования (например, запуск большого двигателя через линию) может вызвать более высокую ставку в кВт / час в течение всего расчетного периода. Выявление недостаточно используемых двигателей дает многим пользователям возможность снизить эксплуатационные расходы.

Скрытые затраты на негабаритные двигатели

Пусковой ток, ток, потребляемый двигателем в момент пуска, не зависит от нагрузки. Для двигателя заданного размера он одинаков вне зависимости от фактической нагрузки.Это означает, что двигатель мощностью 100 л.с. без сцепления потребляет тот же начальный ток, что и при запуске нагрузки в 100 л.с. Поскольку пусковой ток примерно в шесть раз превышает ток, указанный на паспортной табличке (в зависимости от буквенного кода NEMA), он может быть значительно выше для двигателя увеличенного размера, чем для модели «подходящего размера».

Фактический пусковой ток двигателя, также известный как ток с заторможенным ротором или LRA, может быть рассчитан на основе значений кВА / л.с., связанных с его кодовой буквой NEMA (таблица 1):

LRA = CL x л.с. x 1000/1.732 x Напряжение

(Для CL подключите значение кВА на л.с. из таблицы)

Например, LRA для двигателя мощностью 125 л.с. с кодовой буквой G (5,6 — 6,3 кВА / л.с.) должно находиться в диапазоне от 878 до 988 ампер:

5,6 x 125 x 1000 / 1,732 x 460 = 878 ампер

6,3 x 125 x 1000 / 1,732 x 460 = 988 ампер

Пример из жизни

Двигатель мощностью 125 л.с. в приложении с вентилятором имел номинальный ток на паспортной табличке 148 ампер, но потреблял 44 ампера (чуть меньше 1/3 FLA), когда он работал без сцепления.Испытания подтвердили, что при работе с нормальной нагрузкой двигатель потребляет всего 63 ампера. Фактическая требуемая мощность была рассчитана менее 23 л.с.:

л.с. = 125 [1- (148-63 / 148-44)] = 22,8 л.с.

Замена двигателя на более высокую эффективность 25 л.с. резко снизила пусковой ток с 890 до 198 ампер (при той же кодовой букве G). Ток «полной нагрузки» также снизился с 63 до 29 ампер. Очевидно, завод платил за большое количество потраченной впустую электроэнергии.

Коэффициент мощности оригинального двигателя мощностью 125 л.с. также был очень низким при работе с нагрузкой 22,8 л.с., что могло вызвать дополнительные расходы от электросети.

Чрезмерно высокий пусковой ток может увеличить затраты на техническое обслуживание из-за дополнительного износа пускателей и контактов двигателей, но более высокий пусковой ток также характерен для двигателей с более высоким КПД.

Примечание: Перед «регулировкой» убедитесь, что двигатель с меньшей мощностью может обеспечить необходимую пусковую инерцию нагрузки.

Коэффициент мощности и КПД

Коэффициент мощности (PF) важен, потому что его можно использовать для определения эффективности. Для расчета коэффициента мощности используйте следующую формулу:

PF = Входная мощность / [1,732 x вольт x ампер]

КПД также можно рассчитать, если коэффициент мощности измеряется с помощью одного из нескольких инструментов, доступных сегодня электрику. Для расчета КПД трехфазного двигателя:

КПД = 746 x л.с. / [1.732 x Вольт x Ток x PF ]

В случае двигателя мощностью 125 л.с. электрик измерил коэффициент мощности 0,7, поэтому его расчетная эффективность при движении с нагрузкой 22,8 л.с. составила:

КПД = 746 x 22,8 / [1,732 x 460 x 63 x 0,7] = 0,48

Двигатель работал с КПД всего 48%.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *