22.11.2024

Расчет площади сечения кабеля от нагрузки: Калькулятор расчета сечения кабеля

Содержание

Площадь сечения проводов и кабелей в зависимости от силы тока, расчет необходимого сечения кабеля


Если старая проводка вышла из строя нужно её заменить, но прежде чем менять на аналогичную, узнайте, почему произошла проблема со старой. Возможно, что было просто механическое повреждение, или изоляция пришла в негодность, а еще более весомой проблемой является – выход из строя проводки из-за превышения допустимой нагрузки.

Чем отличается кабельная продукция, какие основные характеристики?


Начнем с того, что определяется, какое напряжение в сети, в которой будут работать кабеля. Для бытовых сетей часто применяются кабеля и провода типа ВВГ, ПУГНП (только он запрещен современными требованиями ПУЭ из-за больших допусков по сечению при производстве, до 30%, и допустимой толщине изолирующего слоя 0.3мм, против 0.4 в ПУЭ), ШВВП и другие.


Если отойти от определений провод от кабеля отличается минимально, в основном по определению в ГОСТе или ТУ по которому он производится. Ведь на рынке есть большое количество проводов с 2-3 жилами и двумя слоями изоляции, например тот же ПУГНП или ПУНП.

Допустимое напряжение определяется изоляцией кабеля


Для выбора кабеля кроме напряжения принимают во внимание и условия, в которых он будет работать, для подключения движущегося инструмента и оборудования он должен быть гибким, для подключения неподвижных элементов, в принципе, все равно, но лучше предпочесть кабель с монолитной жилой.


Решающим фактором при покупке является площадь поперечного сечения жилы, она измеряется в мм2, от неё и зависит способность проводника выдерживать длительную нагрузку.

Что влияет на допустимый ток через кабель?


Для начала обратимся к основам физики. Есть такой закон Джоуля-Ленца, он был открыт независимо друг от друга двумя ученными Джеймсом Джоулем (в 1841) и Эмилием Ленцом (в 1842), поэтому и получил двойное название. Так вот этот закон количественно описывает тепловое действие электрического тока протекающего через проводник.


Если выразить его через плотность тока получится такая формула:


Расшифровка: w – мощность выделения тепла в единице объема, вектор j – плотность тока через проводник измеряется в Амперах на мм2. Для медного провода принимают от 6 до 10 А на миллиметр площади, где 6 – рабочая плотность, а 10 кратковременная. вектор E – напряженность электрического поля. σ – проводимость среды.


Так как проводимость обратно пропорциональна сопротивлению: σ=1/R


Если выразить закон Джоуля-Ленца через количество теплоты в интегральной форме, то:


Таким образом, dQ – количество теплоты, которое выделится за промежуток времени dt в цепи, где протекает ток I, через проводник сопротивлением R.


То есть количество тепла прямо пропорционально току и сопротивлению. Чем больше ток и сопротивление – тем больше выделяется тепла. Это опасно тем, что в определенный момент количество тепла достигнет такого значения, что у проводов плавится изоляция. Вы могли замечать, что провода дешевых кипятильников ощутимо теплеют во время работы, это оно и есть.


Если выделяется мощность на кабеле, значит, падает и напряжение на его концах, подключенных к нагрузке.


В калькуляторах для расчета сечений кабеля, обычно задаются такие параметры:


Чем больше сопротивление – тем больше упадет напряжение и нагреется кабель, поскольку на нем выделится мощность (P=UI, где U падение напряжения на кабеле, I – ток, протекающий через него).


Все расчеты свелись к току и сопротивлению. Сопротивление проводника вычисляется по формуле:


Здесь: ρ (ро) – удельное сопротивление, l – длина кабеля, S – площадь поперечного сечения.


Удельное сопротивление зависит от структуры металла, величины удельных сопротивлений можно определить из таблицы.


В проводке в основном используются алюминий и медь. У меди сопротивление 1.68*10-8 Ом*мм2/м., а у аллюминия в 1.8 раза больше чем у меди, равняется 2.82*10-8 Ом*мм2/м. Это значит, что алюминиевый провод нагреется почти в 2 раза сильнее, чем медный при одинаковом сечении и токе. Отсюда следует, что для прокладки проводки придется покупать более толстый алюминиевый провод, к тому же жилы легко повредить.


Поэтому медные провода вытеснили с домашней проводки медные, а применение аллюминия в проводке запрещено, разрешается только применение алюминиевых кабелей для монтажа очень мощных электроустановок, потребляющих большой ток, тогда используют провод из аллюминия сечением больше 16 мм2 (смотрите — Почему алюминиевый кабль нельзя использовать в электропроводке)

Как определить сопротивление провода по диаметру жилы?


Бывают случаи, когда площадь поперечного сечения жилы не известна, поэтому можно посчитать по диаметру. Для определения диаметра монолитной жилы можно использовать штангенциркуль, если его нет, то возьмите стержень, например шариковую ручку или гвоздь, намотайте плотно 10 витков провода на него, и измерьте линейкой длину получившейся спирали, разделив эту длину на 10 – вы получите диаметр жилы.


Для определения общего диаметра многопроволочной жилы, измерьте диаметр каждой жилы и умножьте на их количество.


Дальше считают поперечное сечение по этой формуле:


И вновь возвращаются к этой формуле для расчета сопротивления провода:

Как определить необходимую площадь сечения провода?


Самый простой вариант – определить площадь сечения жил по таблице. Он подходит для расчета не слишком длинных линий проложенных в нормальных условиях (с нормальной температурой окружающей среды). Также так можно подобрать провод для удлинителя. Обратите внимание, что в таблице указаны сечения при определенном токе и мощности в однофазной и трёхфазной сети для аллюминия и меди.


При расчете длинных линий (больше 10 метров) такой таблицей лучше не пользоваться. Нужно провести расчеты. Быстрее всего воспользоваться калькулятором. Алгоритм расчета такой:


Берут допустимые потери по напряжению (не более 5%), это значит что при напряжении в сети 220В и допустимым потерям напряжения в 5% на кабеле падение напряжения (от конца до конца) не должно превышать:


5%*220=11В.


Теперь, зная ток, который будет протекать, мы может вычислить сопротивление кабеля. В двух проводной линии сопротивление умножают на 2, так как ток течет по двум проводам, при линии длиной в 10м, общая длина проводников – 20м.


Отсюда по вышеприведенным формулам вычисляют необходимое поперечное сечение кабеля.


Вы можете сделать это автоматически со своего смартфона, с помощью приложений «Мобильный электрик» и electroDroid. Только в калькуляторе задается не общая длина проводов, а именно длина линии от источника питания к приемнику электричества.

Заключение


Правильно рассчитанная проводка это уже 50% залог её успешного функционирования, вторая половина зависит от правильности монтажа. Следует учитывать все особенности проводки, максимальную потребляемую мощность всеми потребителями. При этом введите запас по допустимому току на 20-40% «на всякий случай».

Расчет сечения кабеля по мощности формула

На сегодняшний день существует широкий ассортимент кабельной продукции, с поперечным сечением жил от 0,35 мм.кв. и выше.

Если неправильно выбрать сечение кабеля для бытовой проводки, то результат может иметь два итога:

  1. Чересчур толстая жила «ударит» по Вашему бюджету, т.к. ее погонный метр будет стоить дороже.
  2. При неподходящем диаметре проводника (меньшем, чем необходимо), жилы начнут нагреваться и плавить изоляцию, что вскоре приведет к самовозгоранию электропроводки и короткому замыканию.

Как Вы понимаете, и тот и другой итог неутешительный, поэтому перед монтажом электропроводки в доме и квартире необходимо правильно рассчитать сечение кабеля в зависимости от мощности, силы тока и длины линии. Сейчас мы подробно рассмотрим каждую из методик.

Расчет по мощности электроприборов

Для каждого кабеля есть определенная величина тока (мощности), которую он способен выдержать при работе электроприборов. Если ток (мощность), потребляемый всеми приборами, будет превышать допустимую величину для токопроводящей жилы, то в скором времени аварии не избежать.

Чтобы самостоятельно рассчитать мощность электроприборов в доме, необходимо на лист бумаги выписать характеристики каждого прибора отдельно (плиты, телевизора, светильников, пылесоса и т.д.). После этого все значения суммируются, и готовое число используется для выбора кабеля с жилами с оптимальной площадью поперечного сечения.

Формула расчета имеет вид:

Где: P1..Pn–мощность каждого прибора, кВт

Обращаем Ваше внимание на то, что получившееся число необходимо умножить на поправочный коэффициент – 0,8. Этот коэффициент обозначает, что из всех электроприборов одновременно работать будет только 80%. Такой расчет более логичный, потому что, к примеру, пылесосом либо феном Вы точно не будете пользоваться в течение длительного времени без перерыва.

Таблицы выбора сечения кабеля по мощности:

Это приведенные и упрощенные таблицы, более точные значения вы можете найти в ПУЭ п.1.3.10-1.3.11.

Как вы видите, для каждого определенного вида кабеля табличные значения имеют свои данные. Все что Вам нужно, это найти ближайшее значение мощности и посмотреть соответствующее сечение жил.

Чтобы Вы наглядно поняли, как правильно рассчитать кабель по мощности, приведем простой пример:

Мы подсчитали, что суммарная мощность всех электроприборов в квартире составляет 13 кВт. Данное значение необходимо умножить на коэффициент 0,8, что в результате даст 10,4 кВт действительной нагрузки. Далее в таблице ищем подходящее значение в колонке. Нас устраивает цифра «10,1» при однофазной сети (напряжение 220В) и «10,5», если сеть трехфазная.

Это значит, что нужно выбрать такое сечение жил кабеля, который будет питать все расчётные приборы – в квартире, комнате или каком-либо другом помещении. То есть такой расчёт нужно проводить для каждой розеточной группы, запитанной от одного кабеля, или для каждого прибора, если он запитан напрямую от щитка. В примере выше, мы привели расчет площади поперечного сечения жил вводного кабеля на весь дом или квартиру.

Итого, выбор сечения останавливаем на 6-миллиметровом проводнике при однофазной сети либо 1,5-миллиметровом при трехфазной сети. Как вы видите, все довольно просто и даже электрик-новичок справится с таким заданием самостоятельно!

Расчет по токовой нагрузке

Расчет сечения кабеля по току более точный, поэтому лучше всего пользоваться им. Суть аналогична, но только в данном случае необходимо определить токовую нагрузку на электропроводку. Для начала по формулам считаем силу тока по каждому из приборов.

Если в доме однофазная сеть, для расчета необходимо воспользоваться следующей формулой:Для трехфазной сети формула будет иметь вид:Где, P – мощность электроприбора, кВт

cos Фи- коэффициент мощности

Более подробно о формулах, связанных с вычислением мощности, можно прочитать в статье: https://samelectrik.ru/kak-najti-moshhnost-toka.html.

Далее все токи суммируются и по табличным значениям необходимо выбрать сечение кабеля по току.

Обращаем Ваше внимание на то, что от условий прокладки проводника будут зависеть значения табличных величин. При монтаже открытой электропроводки допустимые токовые нагрузки и мощность будут значительно большими, чем при прокладке проводки в трубе.

Повторимся, любой расчет сечения проводится для конкретного прибора или их группы.

Таблица выбора сечения кабеля по току и мощности:

Расчет по длине

Ну и последний способ, позволяющий рассчитать сечение кабеля – по длине. Суть следующих вычислений заключается в том, что каждый проводник имеет свое сопротивление, которое с увеличением протяженности линии способствует потерям напряжения (чем больше расстояние, тем больше и потери). В том случае, если величина потерь превысит отметку в 5%, необходимо выбрать проводник с жилами покрупнее.

Для вычислений используется следующая методика:

  • Нужно рассчитать суммарную мощность электроприборов и силу тока (выше мы предоставили соответствующие формулы).
  • Выполняется расчет сопротивления электропроводки. Формула имеет следующий вид: удельное сопротивление проводника (p) * длину (в метрах). Получившееся значение необходимо разделить на выбранное поперечное сечение кабеля.

R=(p*L)/S, где p — табличная величина

Обращаем Ваше внимание на то, что длина прохождения тока должна умножаться в два раза, т.к. ток изначально идет по одной жиле, а потом возвращается назад по другой.

  • Рассчитываются потери напряжения: сила тока умножается на рассчитанное сопротивление.
  • Определяется величина потерь: потери напряжения делятся на напряжение в сети и умножаются на 100%.
  • Итоговое число анализируется. Если значение меньше 5%, оставляем выбранное сечение жилы. В противном случае подбираем более «толстый» проводник.

Допустим мы рассчитали, что сопротивление жил у нас 0,5 Ома, а ток 16 Ампер, тогда:

Что вполне допустимо для большинства случаев, согласно ГОСТ 29322-14 «Стандартные напряжения». Подробнее в статье: https://samelectrik.ru/kakoe-otklonenie-napryazheniya-v-seti-schitaetsya-predelnym.html.

Таблица удельных сопротивлений:

Если Вы протягиваете линию на довольно протяженное расстояние, обязательно производите расчет с учетом потерь по длине, иначе будет высокая вероятность неправильного выбора сечения кабеля.

Видео примеры расчетов

Наглядные видео примеры всегда позволяют лучше усвоить информацию, поэтому предоставляем их к Вашему вниманию:

Похожие материалы:

Качество проведения электромонтажных работ оказывает воздействие на безопасность целого здания. Определяющим фактором при проведении таких работ является показатель сечения кабеля. Для осуществления расчета нужно выяснить характеристики всех подключенных потребителей электричества. Необходимо провести расчет сечения кабеля по мощности. Таблица нужна, чтобы посмотреть требуемые показатели.

Качественный и подходящий кабель обеспечивает безопасную и долговечную работу любой сети

Расчет сечения кабеля по мощности: таблица с важными характеристиками

Оптимальная площадь сечения кабеля позволяет протекать максимальному количеству тока и при этом не нагревается. Выполняя проект электропроводки, важно найти правильное значение для диаметра провода, который бы подходил под определенные условия потребляемой мощности. Чтобы выполнить вычисления, требуется определить показатель общего тока. При этом нужно выяснить мощность всего оборудования, которое подключено к кабелю.

Такая таблица поможет подобрать оптимальные параметры

Перед работой вычисляется сечение провода и нагрузка. Таблица поможет найти эти значения. Для стандартной сети 220 вольт, примерное значение тока рассчитывается так, I(ток)=(Р1+Р2+….+Рn)/220, Pn – мощность. Например, оптимальный ток для алюминиевого провода – 8 А/мм, а для медного – 10 А/мм.

Расчет по нагрузке

Даже определив нужное значение, можно произвести определенные поправки по нагрузке. Ведь нечасто все приборы работают одновременно в сети. Чтобы данные были более точными, необходимо значение сечения умножить на Кс (поправочный коэффициент). В случае, если будет включаться всё оборудование в одно и то же время, то данный коэф-т не применяется.

Чтобы выполнить вычисления правильно применяют таблицу расчетов сечения кабеля по мощности. Нужно учитывать, что существует два типа данного параметра: реактивная и активная.

Так проводится расчет с учетом нагрузки

В электрических сетях протекает ток переменного типа, показатель которого может меняться. Активная мощность нужна, чтобы рассчитать среднее показатели. Активную мощность имеют электрические нагреватели и лампы накаливания. Если в сети присутствуют электромоторы и трансформаторы, то могут возникать некоторые отклонения. При этом и формируется реактивная мощность. При расчетах показатель реактивной нагрузки отражается в виде коэффициента (cosф).

Особенности потребления тока

Полезная информация! В быту среднее значение cosф равняется 0,8. А у компьютера такой показатель равен 0,6-0,7.

Расчет по длине

Вычисления параметров по длине необходимы при возведении производственных линий, когда кабель подвергается мощным нагрузкам. Для расчетов применяют таблицу сечения кабеля по мощности и току. При перемещении тока по магистралям проявляются потери мощности, которые зависят от сопротивления, появляющегося в цепи.

По техническим параметрам, самое большое значение падения напряжения не должно быть больше пяти процентов.

Применение таблицы помогает узнать значение сечения кабеля по длине

Использование таблицы сечения проводов по мощности

На практике для проведения подсчетов применяется таблица. Расчет сечения кабеля по мощности осуществляется с учетом показанной зависимости параметров тока и мощности от сечения. Существуют специальные стандарты возведения электроустановок, где можно посмотреть информацию по нужным измерениям. В таблице представлены распространенные значения.

Узнать точный показатель можно, используя различные параметры

Чтобы подобрать кабель под определенную нагрузку, необходимо провести некоторые расчеты:

  • рассчитать показатель силы тока;
  • округлить до наибольшего показателя, используя таблицу;
  • подобрать ближайший стандартный параметр.

Статья по теме:

Как повесить люстру на натяжной потолок. Видео пошагового монтажа позволит всю работу произвести самостоятельно без обращения к специалистам. Что нужно подготовить для работы и как избежать ошибок мы и расскажем в статье.

Формула расчетов мощности по току и напряжению

Если уже имеются какие-то кабели в наличии, то чтобы узнать нужное значение, следует применить штангенциркуль. При этом измеряется сечение и рассчитывается площадь. Так как кабель имеет округлую форму, то расчет производится для площади окружности и выглядит так: S(площадь)= π(3,14)R(радиус)2. Можно правильно определить, используя таблицу, сечение медного провода по мощности.

Стандартные формулы для определения силы тока

Важная информация! Большинство производителей уменьшают размер сечения для экономии материала. Поэтому, совершая покупку, воспользуйтесь штангенциркулем и самостоятельно промеряйте провод, а затем рассчитайте площадь. Это позволит избежать проблем с превышением нагрузки. Если провод состоит из нескольких скрученных элементов, то нужно промерить сечение одного элемента и перемножить на их количество.

Варианты кабеля для разных назначений

Какие есть примеры?

Определенная схема позволит вам сделать правильный выбор сечения кабеля для своей квартиры. Прежде всего, спланируйте места, в которых будут размещаться источники света и розетки. Также следует выяснить, какая техника будет подключаться к каждой группе. Это позволит составить план подсоединения всех элементов, а также рассчитать длину проводки. Не забывайте прибавлять по 2 см на стыки проводов.

Определение сечения провода с учетом разных видов нагрузки

Применяя полученные значения, по формулам вычисляется значение силы тока и по таблице определяется сечение. Например, требуется узнать сечение провода для бытового прибора, мощность которого 2400 Вт. Считаем: I = 2400/220 = 10,91 А. После округления остается 11 А.

Схемы прокладки кабелей

Чтобы определить точный показатель площади сечения применяются разные коэффициенты. Особенно данные значения актуальны для сети 380 В. Для увеличения запаса прочности к полученному показателю стоит прибавить еще 5 А.

Схема трехжильной проводки

Стоит учитывать, что для квартир применяются трехжильные провода. Воспользовавшись таблицами, можно подобрать самое близкое значение тока и соответствующее сечение провода. Можно посмотреть какое нужно сечение провода для 3 кВт, а также для других значений.

У проводов разного типа предусмотрены свои тонкости расчетов. Трехфазный ток применяется там, где нужно оборудование значительной мощности. Например, такое используется в производственных целях.

Для выявления нужных параметров на производствах важно точно рассчитать все коэффициенты, а также учесть потери мощности при колебаниях в напряжении. Выполняя электромонтажные работы дома, не нужно проводить сложные расчеты.

Следует знать о различиях алюминиевого и медного провода. Медный вариант отличается более высокой ценой, но при этом превосходит аналог по техническим характеристикам. Алюминиевые изделия могут крошиться на сгибах, а также окисляются и имеют более низкий показатель теплопроводности. По технике безопасности в жилых зданиях используется только продукция из меди.

Основные материалы для кабелей

Так как переменный ток передвигается по трем каналам, то для монтажных работ используется трехжильный кабель. При установке акустических приборов применяются кабели, имеющие минимальное значение сопротивления. Это поможет улучшить качество сигнала и устранить возможные помехи. Для подключения подобных конструкций применяются провода, размер которых 2*15 или 2*25.

Подобрать оптимальный показатель сечения для применения в быту помогут некоторые средние значения. Для розеток стоит приобрести кабель 2,5 мм2, а для оформления освещения – 1,5 мм2. Оборудование с более высокой мощностью требует сечения размером 4-6 мм2.

Варианты соединения проводов

Специальная таблица окажет помощь, если возникают сомнения при расчетах. Для определения точных показателей нужно учитывать все факторы, которые оказывают влияние на ток в цепи. Это длина отдельных участков, метод укладки, тип изоляции и допустимое значение перегрева. Все данные помогают увеличить производительность в производственных масштабах и более эффективно применять электрическую энергию.

Расчет сечения кабеля и провода по мощности и току, для подключения частного дома (видео)

Кабельная продукция сейчас представлена на рынке в широком ассортименте, поперечное сечение жил составляет от 0,35 мм.кв. и выше, в данной статье будет приведен пример расчета сечения кабеля.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

Неправильный выбор сечения кабеля для бытовой проводки, может привести к таким результатам:

1. Погонный метр чересчур толстой жилы будет стоить дороже, что нанесет значительный «удар» по бюджету.

2. Жилы вскоре начнут нагреваться и будут плавить изоляцию, если будет выбран неподходящий диаметр проводника (меньший, чем необходимо) и это вскоре может привести к короткому замыканию или самовозгоранию электропроводки.

Чтобы не потратить средства впустую, необходимо перед началом монтажа электропроводки в квартире или доме, выполнить правильный расчет сечения кабеля в зависимости от силы тока, мощности и длины линии.

Расчет сечения кабеля по мощности электроприборов.

Каждый кабель имеет номинальную мощность, которую при работе электроприборов он способен выдержать. Когда мощность всех электроприборов в квартире будет превышать расчетный показатель проводника, то аварии в скором времени не избежать.

Рассчитать мощность электроприборов в квартире или доме можно самостоятельно, для этого необходимо выписать на лист бумаги характеристики каждого прибора отдельно (телевизора, пылесоса, плиты, светильников). Затем все полученные значения суммируются, а готовое число используется для выбора оптимального диаметра.

Формула расчета мощности имеет такой вид:

Pобщ = (P1+P2+P3+…+Pn)*0.8 , где: P1..Pn–мощность каждого электроприбора, кВт

Стоит обратить внимание на то, что число, которое получилось нужно умножить на поправочный коэффициент – 0,8. Обозначает этот коэффициент то, что одновременно будет работать только 80% из всех электроприборов. Такой расчет будет более логичным, потому что, пылесос или фен, точно не будет находиться в использовании длительное время без перерыва.

Пример расчета сечения кабеля по мощности указан в таблицах:

Для проводника с алюминиевыми жилами.

Для проводника с медными жилами.

Как видно из таблиц, свои данные имеют значения для каждого определенного вида кабеля, потребуется лишь найти ближайшее из значений мощности и посмотреть соответствующее сечение жил.

На примере расчет сечения кабеля по мощности выглядит так:

Допустим, что в квартире суммарная мощность всех приборов составляет 13 кВт. Необходимо полученное значение умножить на коэффициент 0,8, в результате это даст 10,4 кВт действительной нагрузки. Затем подходящее значение нужно найти в колонке таблицы. Ближайшая цифра 10,1 при однофазной сети (220В напряжение) и при трехфазной сети цифра 10,5. Значит останавливаем выбор сечения при однофазной сети на 6-милимметровом проводнике или при трехфазной на 1,5-милимметровом.

Расчет сечения кабеля по токовой нагрузке.

Более точный расчет сечения кабеля по току, поэтому пользоваться им лучше всего. Суть расчета аналогична, но в данном случает необходимо только определить какая будет токовая нагрузка на электропроводку. Сначала нужно рассчитать по формулам силу тока для каждого из электроприборов.

Средняя мощность бытовых электроприборов

Пример отображения мощности электроприбора (в данном случае ЖК телевизор)

Для расчета необходимо воспользоваться такой формулой, если в квартире однофазная сеть:

I=P/(U×cosφ)

Когда же сеть трехфазная, то формула будет иметь такой вид:

I=P/(1,73×U×cosφ) , где P – электрическая мощность нагрузки, Вт;

  • U – фактическое напряжение в сети, В;
  • cosφ – коэффициент мощности.

Далее суммируются все токи и нужно выбрать сечение кабеля по току по табличным значениям.

Следует учесть, что значения табличных величин будут зависеть от условий прокладки проводника. Мощность и токовые нагрузки будут значительно большими при монтаже открытой электропроводки, чем если прокладка проводки будет в трубе.

Полученное суммарное значение токов для запаса рекомендуется умножить в 1,5 раза, ведь со временем в квартиру могут приобретаться более мощные электроприборы.

Расчет сечения кабеля по длине.

Также можно по длине рассчитать сечение кабеля. Суть таких вычислений заключается в том, каждый из проводников имеет свое сопротивление, которое способствует потерям тока с увеличением протяженности линии. Необходимо выбирать проводник с жилами покрупнее, если величина потерь превысит 5%.

Вычисления происходят следующим образом:

  • Рассчитывается суммарная мощность всех электроприборов и сила тока.
  • Затем рассчитывается сопротивление электропроводки по формуле : удельное сопротивление проводника (p) * длину (в метрах).
  • Необходимо разделить получившееся значение на выбранное поперечное сечение кабеля:

R=(p*L)/S, где p — табличная величина

Следует обратить внимание на то, что должна длина прохождения тока умножаться в 2 раза, так как изначально ток идет по одной жиле, а назад возвращается по другой.

  • Производится расчет потери напряжения: сила тока умножается на рассчитанное сопротивление.
  • Далее определяется величина потерь: потери напряжения делятся на напряжение в сети и умножаются на 100%.
  • Анализируется итоговое число. Если полученное значение меньше 5%, то выбранное сечение жилы можно оставить, но если больше, то необходимо выбрать проводник более «толстый».

Таблица удельных сопротивлений.

Обязательно нужно производить расчет с учетом потерь по длине, если протягивается линия на довольно протяженное расстояние, иначе существует высокая вероятность выбрать сечение кабеля неправильно.

Калькулятор сечения кабеля (провода) по длине, мощности и току / калькулятор / элек.ру

S=0,8D.

Небольшая поправка. — является округленным коэффициентом. Точная расчетная формула:

В электропроводке и электромонтаже в 90 % случаях применяется медный провод. Медный провод по сравнению с алюминиевым проводом, имеет ряд преимуществ. Он более удобен в монтаже, при такой же силе токе имеет меньшую толщину, более долговечен. Но чем больше диаметр (площадь сечения), тем выше цена медного провода. Поэтому, несмотря на все преимущества, если сила тока превышает значение 50 Ампер, чаще всего используют алюминиевый провод. В конкретном случае используется кабель, имеющий алюминиевую жилу 10 мм и более.

В квадратных миллиметрах измеряют площадь сечения проводов. Наиболее чаще всего на практике (в бытовой электрике), встречаются такие площади сечения: 0,75; 1,5; 2,5; 4 мм .

Существует иная система измерения площади сечения (толщины провода) — система AWG, которая используется, в основном в США. Ниже приведена таблица сечений проводов по системе AWG, а так же перевод из AWG в мм .

Выделяют, три основные принципа, при выборе сечения провода.

1.    Для прохождения электрического тока, площадь сечения провода (толщина провода), должна быть достаточной. Понятие достаточно означает, что когда проходит максимально возможный, в данном случае, электрический ток, нагрев провода будет допустимый (не более 600С).

2.    Достаточное сечение провода, что бы падение напряжения не превышало допустимого значения. В основном это относится к длинным кабельным линиям (десятки, сотни метров) и токам большой величины.

3.    Поперечное сечение провода, а также его защитная изоляция, должна обеспечивать механическую прочность и надежность.

Для питания, например люстры, используют в основном лампочки с суммарной потребляемой мощностью 100 Вт (ток чуть более 0,5 А).

Выбирая толщину провода, необходимо ориентироваться на максимальную рабочую температуру. Если температура будет превышена, провод и изоляция на нем будут плавиться и соответственно это приведет к разрушению самого провода. Максимальный рабочий ток для провода с определенным сечением ограничивается только максимально его рабочей температурой. И временем, которое сможет проработать провод в таких условиях.

Далее приведена таблица сечения проводов, при помощи которой в зависимости от силы тока, можно подобрать площадь сечения медных проводов. Исходные данные – площадь сечения проводника.

Максимальный ток для разной толщины медных проводов. Таблица 1.

Сечение токо-проводящей жилы, мм2

Ток, А, для проводов, проложенных

открыто

в одной трубе

одного двух жильного

одного трех жильного

0,5

11

0,75

15

1

17

15

14

1,2

20

16

14,5

1,5

23

18

15

2

26

23

19

2,5

30

25

21

3

34

28

24

4

41

32

27

5

46

37

31

6

50

40

34

8

62

48

43

10

80

55

50

16

100

80

70

25

140

100

85

35

170

125

100

50

215

160

135

70

270

195

175

95

330

245

215

120

385

295

250

Выделены номиналы проводов, которые используются в электрике. «Один двужильный» — кабель, имеющий два провода. Один Фаза, второй – Ноль – это считается однофазное питание нагрузки. «Один трехжильный» — используется при трехфазном питании нагрузки.

Таблица помогает определиться, при каких токах, а также в каких условиях эксплуатируется провод данного сечения.

Например, если на розетке написано «Мах 16А», то к одной розетке можно проложить провод сечением 1,5мм . Необходимо защитить розетку выключателем на ток не более чем 16А, лучше даже 13А, или 10 А. Эту тему раскрывает статья «Про замену и выбор защитного автомата».

Из данных таблицы видно, что одножильный провод – означает, что вблизи (на расстоянии менее 5 диаметров провода), не проходит более никаких проводов. Когда два провода рядом, как правило, в одной общей изоляции – провод двужильный. Здесь более тяжелый тепловой режим, поэтому меньше максимальный ток. Чем больше собрано в кабеле или пучке проводов, тем меньше должен быть максимальный ток отдельно для каждого проводника, из-за возможности перегрева.

Однако, эта таблица не совсем удобна с практической стороны. Зачастую исходный параметр – это мощность потребителя электроэнергии, а не электрический ток. Следовательно, нужно выбирать провод.

Определяем ток, имея значение мощности. Для этого, мощность Р (Вт) делим на напряжение (В) – получаем ток (А):

Расчет сечения медных проводов и проводов.

После подсчёта нагрузки и определения материала (в данном случае – медь), проведём расчёт сечения провода по мощности. В качестве примера расчёт будет проводиться для двухкомнатной квартиры.

Вся нагрузка делится на силовую и осветительную группы. Пусть основной силовой нагрузкой будут обладать розеточные группы, установленные в ванной и на кухне. Там всегда устанавливается самая мощная техника (электрочайник, холодильник, стиральная машина, микроволновка и т. д.).

При условии, что силовая нагрузка будет распределена по разным розеткам, используем провод с сечением 2.5 мм2. Что это означает? К примеру, на кухне, чтобы подключить всю бытовую технику одновременно, нужно будет 3-4 розетки. Если же там будет присутствовать только 1 розетка, то будет необходимо использовать медный провод, имеющий сечение 5-6 мм2.

В жилых помещениях для питания розеток можно использовать провод сечением 1.5 мм2. Однако, окончательный выбор нужно делать после проведения необходимых расчётов.

Для питания осветительной нагрузки можно использовать провод сечением 1.5 мм2.

Нужно понимать, что мощность тока на разных участках электропроводки будет отличаться. Наибольшая нагрузка приходится на вводный в квартиру участок. Это происходит из-за того, что через него проходит вся нагрузка. Рекомендуемое сечение вводного питающего провода составляет 4-6 мм2.

При монтаже домашней электропроводки чаще всего применяются провода и провода марки ПВС, ВВГ, ППВ, АППВ.

Наиболее распространенные марки проводов и кабелей:

•      ППВ – плоский медный провод с одинарной изоляцией, для которого используются провода с двумя или тремя жилами. Данный провод используется для прокладки скрытой или неподвижной электропроводки;

•      АППВ — плоский алюминиевый провод с одинарной изоляцией, для которого используются провода с двумя или тремя жилами. Данный провод используется для прокладки скрытой или неподвижной электропроводки;

•      ПВС – круглый медный провод с двойной изоляцией, имеющий от трёх до пяти жил в проводе. Используется для прокладки открытой или скрытой проводки;

•      ШВВП – круглый медный и гибкий провод, имеющий скрученные жилы и двойную изоляцию. Используется для подключения бытовых приборов к источникам питания;

•      ВВГ – круглый медный провод, имеющий до четырёх жил. Используется для прокладки в земле;

Таблица потребляемой мощности электроприборов

Распространенным способом определения необходимого сечения провода является методика расчета по пиковой мощности. Для того чтобы узнать нагрузку, можно воспользоваться стандартной таблицей, в которой сведены параметры мощности и пикового значения потребляемого тока для бытовых приборов.

Тип устройстваМощность, кВтПиковый ток, АРежим потребления
Стандартная лампа накаливания0,251,2Постоянный
Чайник с электрическим нагревателем2,09,0Кратковременный до 5 минут
Электрическая плита с 2-4 конфорками6,060,0Зависит от интенсивности эксплуатации
СВЧ-печь2,210,0Периодический
Мясорубка с электрическим приводомАналогичноАналогичноЗависит от интенсивности эксплуатации
Тостер1,57,0Постоянный
Электрическая кофемолка1,58,0Зависит от интенсивности эксплуатации
Гриль2,09,0Постоянный
Кофеварка1,58,0Постоянный
Отдельная электрическая духовка2,09,0Зависит от интенсивности эксплуатации
Машина для мытья посуды2,09,0Периодический (на период работы нагревателя)
Стиральная машина2,09,0Аналогично
Сушильная машина3,013,0Постоянный
Утюг2,09,0Периодический (на период работы спирали нагрева)
ПылесосАналогичноАналогичноЗависит от интенсивности эксплуатации
Обогреватель масляный3,013,0Аналогично
Фен1,58,0Аналогично
Кондиционер воздуха3,013,0Аналогично
Системный блок компьютера0,83,0Аналогично
Инструменты с приводом от электрического двигателя2,513,0Аналогично

Ток будут потреблять холодильник, электроприборы в дежурном состоянии (телевизоры, радиотелефоны), зарядные устройства. Суммарное значение потребления мощности устройствами считается в пределах 0,1 кВт.

При подключении всех имеющихся бытовых приборов ток может достигать 100-120 А. Такой вариант подсоединения маловероятен, поэтому при расчетах нагрузки учитывают распространенные комбинации подключения.

Например, в утреннее время могут использоваться:

  • электрический чайник — 9,0 А;
  • печь СВЧ — 10,0 А;
  • тостер — 7 А;
  • кофемолка или кофеварка — 8 А;
  • прочая бытовая техника и освещение — 3 А.

Итоговое потребление приборов может достигать: 9+10+7+8+3=37 А. Также имеются калькуляторы, которые позволяют рассчитывать ток по потребляемой мощности и напряжению.

Многожильные проводники

С многожильными проводниками все не так просто. Хотя многие источники приводят для многожильных кабелей точно такую же формулу, что и для одножильных, на самом деле это неправильно, так как в многожильном проводнике приходится рассчитывать суммарную площадь сечения через площади сечения маленьких жилок, а эквивалентный диаметр – через диаметр отдельных жилок, уложенных по принципу плотной упаковки. Например, для 7-жильного кабеля диаметр проводника геометрически равен трем диаметрам жил, для 19-жильного – 5 диаметрам, а для промежуточных отношений диаметр рассчитывается через промежуточный коэффициент.

Понятно, что целое значение коэффициента (причем всегда нечетное) будет только при строго определенном количестве жил в проводнике. Для 7-жильного это коэффициент 3, для 19-жильного – 5, для 37 – 7, для 61 – 9. Рассчитать такие «правильные» конфигурации несложно:

1 + 6 = 7

1 + 6 + 12 = 19

1 + 6 + 12 + 18 = 37

1 + 6 + 12 + 18 + 24 = 61

1 + 6 + 12 + 18 + 24 + 30 = 91

и т.д.

Но в реальной жизни для очень_много_жильных проводников используются и «неправильные» количества жил, и тогда приходится определять фактический диаметр жилы эмпирическим путем.

В таблице, приводимой далее, диаметр отдельной жилы рассчитан по той же формуле, что и для одножильных проводников, затем рассчитано сечение жилы, затем суммарное сечение всех жил в проводнике, а затем для «правильных» конфигураций дан расчетный диаметр. Самый правый столбец – фактический диаметр, его еще в некоторых источниках называют «приведенным». Как видите, разница между теоретическим и фактическим диаметрами не так уж велика.

AWGКол-во жилAWG жилыДиаметр жилы, ммСечение жилы, кв. ммСуммарное сечение жил, кв. ммРасчетный диаметр, ммФактический диаметр, мм
4/0259210.7230.410106.31413.259
4/0427230.5730.258110.23113.259
3/0259220.6440.32684.31111.786
3/0427240.5110.20587.41711.786
2/0133200.8120.51868.84110.516
2/0259230.5730.25866.86210.516
1/0133210.7230.41054.5949.347
1/0259240.5110.20553.0249.347
1817300.2550.05141.6058.331
12109340.1600.02042.4798.331
2259260.4050.12933.3477.417
2665300.2550.05133.8657.417
21333330.1800.02533.8567.417
22646360.1270.01333.5187.417
4133250.4550.16221.5935.898
4259260.4050.12933.3475.898
41666360.1270.01321.1045.898
6133270.3610.10213.5804.674
6259300.2550.05113.1894.764
61050360.1270.01313.3014.674
849250.4550.1627.9553.734
8133290.2860.0648.5413.734
8655360.1270.0138.2973.734
1037260.4050.1294.7642.8342.920
1065280.3210.0815.2632.950
10105300.2550.0515.3472.950
127200.8120.5183.6232.4352.440
1219250.4550.1623.0852.2732.360
1265300.2550.0513.3102.410
12165340.1600.0203.3232.410
147220.6440.3262.2791.9311.850
1419260.4050.1292.4462.0241.850
1442300.2550.0512.1391.850
14105340.1600.0202.1151.850
167240.5110.2051.4331.5321.520
1619290.2860.0641.2201.4301.470
1626300.2550.0511.3241.500
1665340.1600.0201.3091.500
16105360.1270.0131.3301.500
187260.4050.1290.9011.2151.220
1816300.2550.0510.8151.2731.200
1819300.2550.0510.9681.2731.240
1842340.1600.0200.8461.200
1865360.1270.0130.8231.200
207280.3210.0810.5670.9630.890
2010300.2550.0510.5091.1370.890
2019320.2020.0320.6091.0100.940
2026340.1600.0200.5240.914
2042360.1270.0130.5320.914
2272400.0800.0050.3610.762
2219340.1600.0200.3830.8010.787
2226360.1270.0130.3290.762
247320.2020.0320.2240.6060.610
2410340.1600.0200.2010.7150.584
2419360.1270.0130.2410.6350.610
2442400.0800.0050.2100.584
267340.1600.0200.1410.4800.483
2610360.1270.0130.1270.5670.553
2619380.1010.0080.1510.5040.508
277350.1430.0160.1120.4280.457
287360.1270.0130.0890.3810.381
2819400.0800.0050.0950.3990.406
307380.1010.0080.0560.3020.305
3019420.0630.0030.0600.3170.305
327400.0800.0050.0350.2400.203
3219440.0500.0020.0380.2510.229
347420.0630.0030.0220.1900.191
367440.0500.0020.0140.1510.153

Надеемся, что эти таблицы содержат все необходимые вам значения :).

Как определить сечение для многожильного провода?

Многожильного типа медные провода — это проводники, сечение которых представлено несколькими жилами, которые в некоторых марках кабельного изделия переплетаются между собой. Сечение любого многожильного провода вычисляется по стандартной формуле S = π × d²/4.

Оценка нагрузочной способности многожильного провода может быть выполнена без замеров диаметра каждого отдельного проводника.

В этом случае нужно измерить общий диаметр кабельного многожильного изделия, а затем использовать в формуле стандартный повышающий коэффициент 0,91.

Диаметр медных жил можно измерить посредством штангенциркуля или микрометром.

Максимальная гибкость и высокий уровень эластичности отмечается в медных проводниках, жилы которого сплетены в плотную нить.

В результате применения специальных клемм, соединение многожильных проводников приобретает высокую надежность и меньшее токовое сопротивление, но в высокочастотных электрических цепях использование таких кабельных изделий ограничено.

Критерий для выбора сечения – нагрузка

На что ориентироваться, выбирая кабель для электропроводки? Официальный документ, который полезно изучить – ПУЭ. В нём указаны стандарты, которые поддерживает государство. Следуя этим правилам можно создать безопасную проводку. Возможности не ограниченны.

Доступно несколько вариантов.

Выбрать надёжный кабель, не переплатив при этом ни копейки, легко, если при его оценке отталкиваться от такого критерия, как потребляемая мощность. Сколько приборов будет работать в квартире или доме, много ли они электроэнергии потребляют – вот в чём вопрос.

В наше время всё больше техники используется. Вошло в привычку жить так. Электроприборы самые разные дарят невероятный комфорт.

Возможности у техники постоянно возрастают. Стала сложней стиральная машина, миксер, фен. Увеличивается и мощность.

Каждый современный электроприбор устроен таким образом, чтобы энергопотребление было сведено к минимуму, но всё равно они создают большую нагрузку и нужен такой кабель, который её будет выдерживать.

Подсчитать приблизительную нагрузку на электросеть легко: следует изучить техпаспорт, коробки или надписи на корпусе всех электроприборов, которые есть в квартире, доме. Нужно суммировать их.

Подбор сечения кабеля – задача простая на самом деле, но требует внимательности. Если неправильно рассчитать, какой нужен запас по мощности, можно в последствие столкнуться с рядом неприятностей при покупке и использовании новых, интересных, практичных электроприборов. Если же купить кабель с большим запасом, можно переплатить, что тоже нежелательно.

Полезно знать

Для частных домов и квартир, где применяется линейное напряжение 0,4 кВ и соответственно фазное 220 В чаще всего применяется провод сечением от самого минимального значения: 2,5 — алюминий и 1,5 мм.кв. медь. В основном такие стандартные токоведущие жилы подходят для цепей освещения.

Все остальные сечения и соответственно их диаметры зависят от мощности и, естественно, тока в цепях бытового электрооборудования. Для определения сечения, необходимого для монтажа электропроводки ниже приведена таблица. По ней, зная суммарную мощность электрических приборов, подключаемых к данной сети, с легкостью можно найти нужный размер жил.

При этом рекомендуется все же выбирать сечение немного с запасом, то есть ближайшее большее стандартное значение. Например, напряжение в сети однофазное 220 Вольт и у владельца помещения есть необходимость запитать приборы мощностью, допустим, 7 кВт. Согласно таблице нет такой мощности, а есть 5,9 и 8,3 кВт. Для медной проводки понадобится кабель с сечением жилы 4 мм2. Если бюджет ограничен и стоит задача выполнить проводку из алюминия, то ближайший больший указный в таблице параметр будет 7,9 кВт, что соответствует жиле 6 мм2.

Также можно комбинировать провода разного сечения, например от вводного автомата до распределительной коробки больше, а потом когда происходит разводка по группам электропотребителей или же по светильникам, то можно проложить провод меньшего размера. Главное, нужно помнить о правилах соединения алюминиевой и медной проводки, в случае появившейся такой необходимости.

На производстве мощности электрооборудования значительно выше чем в быту, да и напряжение в высоковольтных сетях это 6 кВ, 10 кВ, 35 кВ и т.д. Именно поэтому здесь стандартные сечения проводов и кабелей разнообразнее. Эта величина высчитывается с большим запасом, так как основные самые мощные приёмники электроэнергии — это электродвигатели, а они во время запуска могут усиливать ток в питающих их силовых цепях в 5–7 раз выше номинального.

Однако, для питания осветительной аппаратуры и цепей вторичной коммутации, осуществляемых контрольными кабелями, широко применяются всё те же провода 1,5–2,5 мм2 и их вполне хватает.

Для силовых цепей 6 кВ часто применяется алюминиевая кабельная продукция от 120 мм2. Если такого сечения кабеля не хватает, то пускают две линии, подключенные параллельно друг другу, тем самым разделяя нагрузку на каждый из них. В быту такие приёмы нецелесообразны. Встречается для особо мощного оборудования монтаж цепей с четырьмя или даже шестью, параллельно подключенными проводниками.

Бывают случаи, когда и для низковольтных цепей необходимы кабели с довольно большим сечением жил, как, например, в случае организации сварочных работ.

Выбор сечения провода очень важен и индивидуален, поэтому на производстве этим занимаются целые проектировочные бюро или же отдельные компании, в состав которых входят опытные инженеры проектировщики.

Напоследок рекомендуем просмотреть полезное видео по теме:

Надеемся, предоставленные стандартные сечения кабелей и проводов, а также таблицы, с помощью которых можно выбрать подходящий размер жил, помогли вам полностью разобраться с данным вопросом!

Будет полезно прочитать:

  • Как перевести ватты в киловатты
  • Отличие кабеля ГОСТ от ТУ
  • Как составить схему электропроводки
  • Как выбрать автоматический выключатель

Опубликовано:
15.11.2017
Обновлено: 15.11.2017

Расчет сечения кабеля по мощности

Основные показатели, определяющие сечение провода для электропроводки в квартире:

  • Металл, из которого изготовлены токопроводящие жилы
  • Потребляемая мощность (кВт), токовая нагрузка (А)
  • Рабочее напряжение (В)

Прохождение тока по проводнику всегда сопровождается выделением тепла (нагревом), которое прямо пропорционально мощности, рассеиваемой на участке электропроводки. Неправильно подобранные провода по сечению и силе тока, без соответствия нагрузке, могут нагреваться, перегорать и приводить к коротким замыканиям, что напрямую ставит под угрозу пожаробезопасность помещений. Нельзя выбирать меньшее сечение, даже с целью экономии. А применение проводов большего сечения, чем это необходимо, приведет к дополнительным трудностям при монтаже и ненужным затратам на материалы.

В электропроводке квартиры оптимально использование: для розеточной разводки — силовых групп медного провода с сечением жил 2,5 мм2; для осветительных групп – 1,5 мм2; для электроприборов повышенной мощности (электроплиты, электродуховки, варочные панели) — 4-6 мм2.

Медные провода сечением 1,5 мм2 держат нагрузку 4,1 кВт (по току 19А), 2,5 мм2 – 5,9 кВт (27А), 4 и 6 мм2 – свыше 8 и 10 кВт. К тому же это обеспечивает некоторый резерв на случай увеличения мощности токовой нагрузки.

На расчет сечения жил проводов и кабелей влияет и рабочее напряжение. Так, при одинаковой мощности потребления, токовая нагрузка на жилы питающих кабелей или проводов электроприборов, рассчитанных на однофазное напряжение 220 В будет выше, чем для приборов, работающих от 380 В.

Для расчета сечения проводов по допустимой длительной токовой нагрузке необходимо знать номинальный ток, который должен проходить по проектируемой электрической проводке. Зная номинальный ток, сечение провода находят по таблице. К примеру: при номинальном токе 50 А, сечение медной жилы провода должно быть 6 мм2.

Принцип простой — чем больше потребляемая величина тока электроприборами, тем больше должно быть сечение жил проводов в кабеле (округляют значение при расчетах в большую сторону).

Площадь поперечного сечения (S) кабеля вычисляется по формуле S = (Pi * D2)/4, где Pi = 3,14, D – диаметр.

В многожильном проводе вместе свиты множество одножильных проволочек, и чтобы определить сечение, сначала определяют сечение одной проволочки и умножают на количество. Можно приблизительно определить сечение многожильного провода в кабеле измерением общего диаметра всех свитых проволочек, с учетом, что между круглыми проволочками есть воздушные зазоры. Для исключения площади зазоров, полученный результат умножают на коэффициент 0,7854.

Таблица соответствия стандартных сечений жил проводов их диаметрам

Стандартный ряд сечений жил провода, мм2

0,35

0,5

0,75

1,0

1,2

1,5

2,0

2,5

3,0

4,0

5,0

6,0

8,0

10,0

16,0

25,0

30,0

Диаметр, соответствующий сечению жилы, мм

0,67

0,80

0,98

1,1

1,2

1,4

1,6

1,8

2,0

2,3

2,5

2,7

3,2

3,6

4,5

5,6

6,2

Если есть провод меньшего чем необходимо сечения, то проводку можно сделать из двух и более проводов, соединяя их параллельно. Сумма сечений каждого из них должна быть не меньше расчетной.

Заниженное сечение провода — в чем опасность?

Итак, рассмотрим опасности, которые поджидают нас при использовании в быту проводов низкого качества. Понятно, что токовые характеристики токоведущих жил снижаются прямо пропорционально уменьшению их сечения. Нагрузочная способность провода из-за заниженного сечения падает. Согласно стандартам рассчитан ток, который может пропустить через себя провод. Он не разрушится, если по нему пройдет меньший ток.

Сопротивление между жилами уменьшается, если слой изоляции более тонкий, чем требуется. Тогда в аварийной ситуации при повышении питающего напряжения в изоляции может возникнуть пробой. Если наряду с этим сама жила имеет заниженное сечение, то есть не может пропустить тот ток, который по стандартам она должна пропускать, тонкая изоляция начинает постепенно расплавляться. Все эти факторы неизбежно приведут к короткому замыканию, а потом и к пожару. Пожар возникает от искр, появляющихся в момент короткого замыкания.

Приведу пример: трехжильный медный провод (например, сечением 2,5 кв. мм.) согласно нормативной документации может длительно пропускать через себя 27А, обычно, считают 25А.

Но попадающиеся мне в руки провода, выпущенные согласно ТУ, на самом деле имеют сечение от 1,8 кв. мм. до 2 кв. мм. (это при заявленном 2.5 кв.мм.). Исходя из нормативной документации провод сечением 2 кв. мм. может длительно пропускать ток 19А.

Поэтому случись такая ситуация, что по выбранному вами проводу, который якобы имеет сечение 2,5 кв. мм., потечет рассчитанный на такое сечение ток, провод перегреется. А при длительном воздействии произойдет оплавление изоляции, затем и короткое замыкание. Контактные соединения (например, в розетке) очень быстро разрушаться, если такие перегрузки будут происходить регулярно. Поэтому сама розетка, а также вилки бытовых приборов также могут подвергнуться оплавлению.

А теперь представьте последствия всего этого! Особенно обидно, когда сделан красивый ремонт, установлена новая техника, например, кондиционер, электрический духовой шкаф, варочная панель, стиральная машинка, электрический чайник, микроволновка. И вот вы поставили печься булочки в духовку, запустили стиральную машину, включили чайник, да еще и кондиционер, так как стало жарко. Этих включенных приборов достаточно, чтобы пошел дым из распределительных коробок и розеток.

Потом вы услышите хлопок, который сопровождается вспышкой. А после этого пропадет электричество. Все еще хорошо закончится, если у вас имеются защитные автоматы. А если они низкого качества? Тогда хлопком и вспышкой вы не отделаетесь. Начнется пожар, который сопровождается искрами от проводки, горящей в стене. Проводка будет гореть в любом случае, даже если она замурована наглухо под плиткой.

Описанная мной картина дает ясно понять, насколько ответственно нужно выбирать провода. Ведь вы будете использовать их в своем жилище. Вот что значит, следовать не ГОСТам, а ТУ.

Три основных способа определения диаметра провода.

Способов есть несколько, но в основе каждого из них лежит определение диаметры жилы с последующими вычислениями окончательных результатов.

Способ первый. С помощью приборов. На сегодня есть ряд приборов, которые помогают измерить диаметр провода или жилы провода. Это микрометр и штангенциркуль, которые бывают как механическими, так и электронными (смотрите ниже).

Этот вариант в первую очередь подойдет для профессиональных электриков, которые постоянно занимаются монтажом электропроводки. Наиболее точные результаты можно получить с помощью штангенциркуля. Эта методика имеет преимущества в том, что возможно проводить измерения диаметра провода даже на участке работающей линии, например, в розетке.

После того, как вы измерили диаметр провода, необходимо провести подсчеты по следующей формуле:

Необходимо помнить, что число «Пи» составляет 3,14, соответственно, если мы разделим число «Пи» на 4, то сможем упростить формулу и свести вычисления к умножению 0,785 на диаметр в квадрате.

Способ второй. Используем линейку. Если вы решили не тратить деньги на прибор, что логично в данной ситуации, то можете использовать простой проверенный способ для измерения сечения провода или провода?. Вам понадобится простой карандаш, линейка и проволока. Зачищаете жилу от изоляции, плотно накручиваете ее на карандаш, и после этого линейкой измеряете общую длину намотки (как показано на рисунке).

Затем длину намотанной проволоки делите на количество жил. Полученное значение и будет диаметром сечения провода.

Но при этом необходимо учитывать следующее:

  • чем больше жил вы намотаете на карандаш, тем более точный будет результат, количество витков должно быть не меньше 15;
  • витки прижимайте плотно к друг другу, чтобы между ними не оставалось свободного пространства, это значительно уменьшит погрешность;
  • проведите замеры несколько раз (меняйте при этом сторону замера, направление линейки и др.). Несколько полученных результатов поможет вам опять же избежать большой погрешности.

Обратите внимание и на минусы данного способа измерения:

1.    Измерить можно только сечение тонких проводов, так как толстый провод вам с трудом удастся намотать на карандаш.

2.    Для начала вам нужно будет приобрести маленький кусочек изделия, прежде чем делать основную покупку.

Формула, о которой говорили выше, подходит для всех измерений.

Способ третий. Пользуемся таблицей. Чтобы не проводить расчеты по формуле, вы можете использовать специальную таблицу, в которой указан диаметр провода? (в миллиметрах) и сечение проводника (в миллиметрах квадратных). Готовые таблицы дадут вам более точные результаты и значительно сэкономят ваше время, которое вам не придется тратить на вычисления.

Материал проводника

В настоящее время изготавливается порядка трёх сотен марок и несколько тысяч разновидностей проводника, различающихся по типу материала и другим техническим характеристикам.

Алюминий

Алюминий является мягким и легким, серебристо-белого цвета металлом, широко применяемым в производстве кабельных изделий. К наиболее значимым достоинствам алюминиевой проводки относятся:

  • небольшой вес материала, что особенно актуально при необходимости выполнить монтаж линий электрической передачи на протяжении нескольких километров;
  • доступная широкому кругу потребителей стоимость качественного кабельного изделия;
  • устойчивость к окислению под негативным воздействием открытого воздуха и атмосферных явлений;
  • наличие защитного слоя, возникающего на алюминии в процессе эксплуатации.

Алюминий не лишен и некоторых недостатков, ограничивающих сферы использования проводов такого типа. К минусам материала относится высокий уровень удельного сопротивления и предрасположенность к нагреву с ослаблением контакта. Пленка, образуемая на поверхности алюминия, снижает токовую проводимость, а сам металл в результате частого перегрева приобретает излишнюю хрупкость.

Как показывает практика использования алюминиевой электрической проводки, стандартный эксплуатационный ресурс составляет около четверти века, после чего требуется в обязательном порядке выполнить замену такой сети.

Медь

Электропроводка в жилых помещениях или промышленных зданиях чаще всего предполагает установку многожильных медных проводов.

Очень хорошо зарекомендовали себя кабельные изделия ВВГ, имеющие двойную ПВХ-изоляцию.

Также специалисты рекомендуют обратить внимание на медные проводники в резиновой КГ-изоляции. Такой вариант отличается хорошей гибкостью и удобством эксплуатации

Такой вариант отличается хорошей гибкостью и удобством эксплуатации.

Медные провода на порядок дороже алюминиевого кабеля, но такая электропроводка надежнее и значительно долговечнее. Кроме того, к преимуществам медных проводов относятся высокий уровень прочности и мягкость, что минимизирует риск поломки на сгибах и контактных соединениях, устойчивость к вредным коррозийным изменениям, а также отличную токовую проводимость.

Медные бронированные кабельные изделия ВБбШв характеризуются сдвоенной ПВХ-изоляцией и устойчивостью к возгоранию, благодаря чему такая проводка очень востребована в наружных работах.

Важность правильного выбора

Почему столь важно иметь точную информацию о сечении провода. Вот главные причины:

  1. Оно подбирается согласно потребляемой мощности, и указано в электропроекте.
  2. Несоблюдение этого требования может привести к пожару, или выходу электропроводки из строя.

Важность правильного подбора можно ярко проиллюстрировать на одном примере. Предположим, что вы купили брюки, по словам продавца, хорошего качества, сшитые крепкими нитками

Прогуливаясь в этих брюках, вы присели, и почувствовали, как они расходятся по швам. Какое у вас мнение по поводу ниток, которыми сшиты брюки?

А теперь представьте, что брюки – это ваша электросистема, а нитки – провод. Возникла дополнительная нагрузка (включили стиральную машину, электродуховку, утюг), и «нитки» оплавились. Что делать? Еще раз покупать, штробить стены и менять всю электропроводку (по крайней мере, ее силовую часть). Независимо от того, будете менять старый провод или только недавно уложенный плохого качества, новый должен соответствовать указанному сечению.

Расчет по мощности электроприборов

Для каждого кабеля есть определенная величина тока (мощности), которую он способен выдержать при работе электроприборов. Если ток (мощность), потребляемый всеми приборами, будет превышать допустимую величину для токопроводящей жилы, то в скором времени аварии не избежать.

Чтобы самостоятельно рассчитать мощность электроприборов в доме, необходимо на лист бумаги выписать характеристики каждого прибора отдельно (плиты, телевизора, светильников, пылесоса и т.д.). После этого все значения суммируются, и готовое число используется для выбора кабеля с жилами с оптимальной площадью поперечного сечения.

Формула расчета имеет вид:

Pобщ = (P1+P2+P3+…+Pn)*0.8,

Где: P1..Pn–мощность каждого прибора, кВт

Обращаем Ваше внимание на то, что получившееся число необходимо умножить на поправочный коэффициент – 0,8. Этот коэффициент обозначает, что из всех электроприборов одновременно работать будет только 80%

Такой расчет более логичный, потому что, к примеру, пылесосом либо феном Вы точно не будете пользоваться в течение длительного времени без перерыва.

Таблицы выбора сечения кабеля по мощности:

Это приведенные и упрощенные таблицы, более точные значения вы можете найти в ПУЭ п.1.3.10-1.3.11.

Как вы видите, для каждого определенного вида кабеля табличные значения имеют свои данные. Все что Вам нужно, это найти ближайшее значение мощности и посмотреть соответствующее сечение жил.

Чтобы Вы наглядно поняли, как правильно рассчитать кабель по мощности, приведем простой пример:

Мы подсчитали, что суммарная мощность всех электроприборов в квартире составляет 13 кВт. Данное значение необходимо умножить на коэффициент 0,8, что в результате даст 10,4 кВт действительной нагрузки. Далее в таблице ищем подходящее значение в колонке. Нас устраивает цифра «10,1» при однофазной сети (напряжение 220В) и «10,5», если сеть трехфазная.

Это значит, что нужно выбрать такое сечение жил кабеля, который будет питать все расчётные приборы – в квартире, комнате или каком-либо другом помещении. То есть такой расчёт нужно проводить для каждой розеточной группы, запитанной от одного кабеля, или для каждого прибора, если он запитан напрямую от щитка. В примере выше, мы привели расчет площади поперечного сечения жил вводного кабеля на весь дом или квартиру.

Итого, выбор сечения останавливаем на 6-миллиметровом проводнике при однофазной сети либо 1,5-миллиметровом при трехфазной сети. Как вы видите, все довольно просто и даже электрик-новичок справится с таким заданием самостоятельно!

Список источников

  • www.calc.ru
  • samelectrik.ru
  • www.icsgroup.ru
  • www.stroikaural.ru
  • www.stroitelstvosovety.ru
  • strojka-gid.ru
  • razvodka.net
  • proprovoda.ru
  • electricvdome.ru

Поделитесь с друзьями!

Расчет сечения провода и кабеля

Перед многими покупателями встает вопрос, какого сечения нужен провод или кабель, для выполения определенной задачи?


Расчёт сечения провода, кабеля

Материал изготовления и сечение проводов является, пожалуй, главными критериями, которыми следует руководствоваться при выборе проводов и силовых кабелей.

Напомним, что площадь поперечного сечения (S) кабеля вычисляется по формуле S = (Pi * D2)/4, где Pi – число пи, равное 3,14, а D – диаметр.

Почему так важен правильный выбор сечения проводов? Прежде всего, потому, что используемые провода и кабели – основные элементы электропроводки вашего дома или квартиры. А она должна отвечать всем нормам и требованиям надёжности и электробезопасности.

Главным нормативным документом, регламентирующим площадь сечения электрических проводов и кабелей являются Правила Устройства Электроустановок (ПУЭ).

Основные показатели, определяющие сечение провода:

— Металл, из которого изготовлены токопроводящие жилы.

— Рабочее напряжение, В.

— Потребляемая мощность, кВт и токовая нагрузка, А.

Так, неправильно подобранные по сечению провода, не соответствующие нагрузке потребления, могут нагреваться или даже сгореть, просто не выдержав нагрузки по току, что не может не сказаться на электро- и пожаробезопасности вашего жилья. Случай очень частый, когда в целях экономии или по каким-либо другим причинам используется провод меньшего, чем это необходимо сечения.

Руководствоваться при выборе сечения провода поговоркой «кашу маслом не испортишь» тоже не стоит. Применение проводов большего, чем это действительно нужно сечения приведёт лишь к большим материальным затратам (ведь по понятным причинам их стоимость будет больше) и создаст дополнительные сложности при монтаже.

Так, говоря об электропроводке дома или квартиры, будет оптимальным применение: для «розеточных» — силовых групп медного кабеля или провода с сечением жил 2,5 мм² и для осветительных групп – с сечением жил 1,5 мм². Если в доме имеются приборы большой мощности, напр. эл. плиты, духовки, электрические варочные панели, то для их питания следует использовать кабели и провода сечением 4-6 мм2.

Предложенный вариант выбора сечений для проводов и кабелей является, наверное, наиболее распространенным и популярным при монтаже электропроводки квартир и домов. Что, в общем-то, объяснимо: медные провода сечением 1,5 мм² способны «держать» нагрузку 4,1 кВт (по току – 19 А), 2,5 мм² – 5,9 кВт (27 А), 4 и 6 мм² – свыше 8 и 10 кВт. Этого вполне хватит для питания розеток, приборов освещения или электроплит. Более того, такой выбор сечений для проводов даст некоторый «резерв» в случае увеличения мощности нагрузки, например, при добавлении новых «электроточек».

При использовании алюминиевых проводов следует иметь в виду, что значения длительно допустимых токовых нагрузок на них гораздо меньше, чем при использовании медных проводов и кабелей аналогичного сечения. Так, для жил алюминиевых проводов сечением 2, мм² максимальная нагрузка составляет чуть больше 4 кВт (по току это – 22 А), для жил сечением 4 мм² – не более 6 кВт.

Не последний фактор в расчете сечения жил проводов и кабелей – рабочее напряжение. Так, при одинаковой мощности потребления электроприборов, токовая нагрузка на жилы питающих кабелей или проводов электроприборов, рассчитанных на однофазное напряжение 220 В будет выше, чем для приборов, работающих от напряжения 380 В.

Кабели и провода нашего завода полностью соответствует заявленному сечению!

Сечение кабеля от длины и мощности формула. Способ прокладки кабеля. Этапы расчёта сечения

Выбору площади поперечного сечения проводов (иначе говоря, толщины) уделяется большое внимание на практике и в теории.

В этой статье попробуем разобраться с понятием «площадь сечения» и проанализируем справочные данные.

Расчет сечения провода

Строго говоря, понятие «толщина» для провода используется в разговорной речи, а более научные термины — диаметр и площадь сечения. На практике толщину провода всегда характеризуют площадью сечения.

S = π (D/2) 2
, где

  • S
    — площадь сечения провода, мм 2
  • π
    — 3,14
  • D
    — диаметр токопроводящей жилы провода, мм. Его можно измерить, например, штангенциркулем.

Формулу площади сечения провода можно записать в более удобном виде: S = 0,8 D²
.

Поправка. Откровенно говоря, 0,8 — округленный коэффициент. Более точная формула: π (1
/2) 2
= π / 4 = 0,785. Спасибо внимательным читателям 😉

Рассмотрим только медный провод
, поскольку в 90% в электропроводке и электромонтаже применяется именно он. Преимущества медных проводов перед алюминиевыми — удобство в монтаже, долговечность, меньшая толщина (при том же токе). Но с ростом диаметра (площади сечения) высокая цена медного провода съедает все его преимущества, поэтому алюминий в основном применяют там, где ток превышает значение 50 Ампер. В данном случае используют кабель с алюминиевой жилой 10 мм 2 и толще.

Площадь сечения проводов измеряется в квадратных миллиметрах. Самые распространенные на практике (в бытовой электрике) площади сечения: 0,75, 1,5, 2,5, 4 мм 2

Есть и другая единица измерения площади сечения (толщины) провода, применяемая в основном в США, — система AWG
. На Самэлектрике есть и перевод из AWG в мм 2 .

По поводу подбора проводов — я обычно пользуюсь каталогами интернет-магазинов, вот пример медного . Там самый большой выбор, какой я встречал. Ещё хорошо, что всё подробно описывается — состав, применения, и т.д.

Рекомендую почитать также мою статью там много теоретических выкладок и рассуждений о падении напряжения, сопротивлении проводов для разных сечений, и какое сечение выбрать оптимальнее для разных допустимых падений напряжения.

В таблице одножильный провод
— означает, что рядом (на расстоянии менее 5 диаметров провода) не проходит больше никаких проводов. Двужильный провод
— два провода рядом, как правило, в одной общей изоляции. Это более тяжелый тепловой режим, поэтому максимальный ток меньше. И чем больше проводов в кабеле или пучке, тем меньше должен быть максимальный ток для каждого проводника из-за возможного взаимного нагрева.

Эту таблицу я считаю не совсем удобной для практики. Ведь чаще всего исходный параметр — это мощность потребителя электроэнергии, а не ток, и исходя из этого нужно выбирать провод.

Как найти ток, зная мощность? Нужно мощность Р (Вт) поделить на напряжение (В), и получим ток (А):

Как найти мощность, зная ток? Нужно ток (А) умножить на напряжение (В), получим мощность (Вт):

Эти формулы — для случая активной нагрузки (потребители в жилах помещениях, типа лампочек и утюгов). Для реактивной нагрузки обычно используется коэффициент от 0,7 до 0,9 (в промышленности, где работают мощные трансформаторы и электродвигатели).

Предлагаю вам вторую таблицу, в которой исходные параметры — потребляемый ток и мощность
, а искомые величины — сечение провода и ток отключения защитного автоматического выключателя.

Выбор толщины провода и автоматического выключателя, исходя из потребляемой мощности и тока

Ниже — таблица выбора сечения провода, исходя из известной мощности или тока. А в правом столбце — выбор автоматического выключателя, который ставится в этот провод.

Таблица 2

Макс. мощность,

кВт
Макс. ток нагрузки,

А
Сечение

провода, мм 2

Ток автомата,

А
14.514-6
29.11.510
313.62.516
418.22.520
522.7425

627.3432
731.8432
836.4640

940.9650
1045.51050
1150.01050
1254.51663
1359.11663
1463.61680
1568.22580
1672.72580
1777.32580

Красным цветом выделены критические случаи, в которых лучше перестраховаться и не экономить на проводе, выбрав провод потолще, чем указано в таблице. А ток автомата — поменьше.

Глядя в табличку, можно легко выбрать сечение провода по току
, либо сечение провода по мощности
.

А также — выбрать автоматический выключатель под данную нагрузку.

В этой таблице данные приведены для следующего случая.

  • Одна фаза, напряжение 220 В
  • Температура окружающей среды +30 0 С
  • Прокладка в воздухе или коробе (в закрытом пространстве)
  • Провод трехжильный, в общей изоляции (кабель)
  • Используется наиболее распространенная система TN-S с отдельным проводом заземления
  • Достижение потребителем максимальной мощности — крайний, но возможный случай. При этом максимальный ток может действовать длительное время без отрицательных последствий.

Если температура окружающей среды будет на 20 0 С выше, или в жгуте будет несколько кабелей, то рекомендуется выбрать большее сечение (следующее из ряда). Особенно это касается тех случаев, когда значение рабочего тока близко к максимальному.

Вообще, при любых спорных и сомнительных моментах, например

  • возможное в будущем увеличение нагрузки
  • большие пусковые токи
  • большие перепады температур (электрический провод на солнце)
  • пожароопасные помещения

нужно либо увеличивать толщину проводов, либо более детально подойти к выбору — обратиться к формулам, справочникам. Но, как правило, табличные справочные данные вполне пригодны для практики.

Толщину провода можно узнать не только из справочных данных. Существует эмпирическое (полученное опытным путем) правило:

Правило выбора площади сечения провода для максимального тока

Подобрать нужную площадь сечения медного провода исходя из максимального тока можно, используя такое простое правило:

Необходимая площадь сечения провода равна максимальному току, деленному на 10.

Это правило дается без запаса, впритык, поэтому полученный результат необходимо округлять в большую сторону до ближайшего типоразмера. Например, ток 32 Ампер. Нужен провод сечением 32/10 = 3,2 мм 2 . Выбираем ближайший (естественно, в бОльшую сторону) — 4 мм 2 . Как видно, это правило вполне укладывается в табличные данные.

Важное замечание. Это правило работает хорошо для токов до 40 Ампер
. Если токи больше (это уже за пределами обычной квартиры или дома, такие токи на вводе) — надо выбирать провод с ещё большим запасом — делить не на 10, а на 8 (до 80 А)

То же правило можно озвучить для поиска максимального тока через медный провод при известной его площади:

Максимальный ток равен площади сечения умножить на 10.

И в заключение — опять про старый добрый алюминиевый провод.

Алюминий пропускает ток хуже, чем медь. Этого знать достаточно, но вот немного цифр. Для алюминия (того же сечения, что и медный провод) при токах до 32 А максимальный ток будет меньше, чем для меди всего на 20%. При токах до 80 А алюминий пропускает ток хуже на 30%.

Для алюминия эмпирическое правило будет таким:

Максимальный ток алюминиевого провода равен площади сечения умножить на 6.

Считаю, что знаний, приведенных в данной статье, вполне достаточно, чтобы выбрать провод по соотношениям «цена/толщина», «толщина/рабочая температура» и «толщина/максимальный ток и мощность».

Вот в принципе и всё что хотел рассказать про площадь сечения проводов
. Если что-то не понятно или есть что добавить — спрашивайте и пишите в комментариях. Если интересно, что я буду публиковать на блоге СамЭлектрик дальше — Таблица выбора защитного автомата для разного сечения проводов

Как видно, немцы перестраховываются, и предусматривают большой запас по сравнению с нами.

Хотя, возможно, это от того, что таблица взята из инструкции из «стратегического» промышленного оборудования.

По поводу подбора проводов — я обычно пользуюсь каталогами интернет-магазинов, вот пример медного . Там самый большой выбор какой я встречал. Ещё хорошо, что все подробно описывается — состав, применения, и т.д.

Качество проведения электромонтажных работ оказывает воздействие на безопасность целого здания. Определяющим фактором при проведении таких работ является показатель сечения кабеля. Для осуществления расчета нужно выяснить характеристики всех подключенных потребителей электричества. Необходимо провести расчет сечения кабеля по мощности. Таблица нужна, чтобы посмотреть требуемые показатели.

Качественный и подходящий кабель обеспечивает безопасную и долговечную работу любой сети

Оптимальная площадь сечения кабеля позволяет протекать максимальному количеству тока и при этом не нагревается. Выполняя проект электропроводки, важно найти правильное значение для диаметра провода, который бы подходил под определенные условия потребляемой мощности. Чтобы выполнить вычисления, требуется определить показатель общего тока. При этом нужно выяснить мощность всего оборудования, которое подключено к кабелю.

Перед работой вычисляется сечение провода и нагрузка. Таблица поможет найти эти значения. Для стандартной сети 220 вольт, примерное значение тока рассчитывается так, I(ток)=(Р1+Р2+….+Рn)/220, Pn – мощность. Например, оптимальный ток для алюминиевого провода – 8 А/мм, а для медного – 10 А/мм.

В таблице показано, как проводить расчеты, зная технические характеристики

Расчет по нагрузке

Даже определив нужное значение, можно произвести определенные поправки по нагрузке. Ведь нечасто все приборы работают одновременно в сети. Чтобы данные были более точными, необходимо значение сечения умножить на Кс (поправочный коэффициент). В случае, если будет включаться всё оборудование в одно и то же время, то данный коэф-т не применяется.

Чтобы выполнить вычисления правильно применяют таблицу расчетов сечения кабеля по мощности. Нужно учитывать, что существует два типа данного параметра: реактивная и активная.

В электрических сетях протекает ток переменного типа, показатель которого может меняться. Активная мощность нужна, чтобы рассчитать среднее показатели. Активную мощность имеют электрические нагреватели и лампы накаливания. Если в сети присутствуют электромоторы и трансформаторы, то могут возникать некоторые отклонения. При этом и формируется реактивная мощность. При расчетах показатель реактивной нагрузки отражается в виде коэффициента (cosф).

Полезная информация!
В быту среднее значение cosф равняется 0,8. А у компьютера такой показатель равен 0,6-0,7.

Расчет по длине

Вычисления параметров по длине необходимы при возведении производственных линий, когда кабель подвергается мощным нагрузкам. Для расчетов применяют таблицу сечения кабеля по мощности и току. При перемещении тока по магистралям проявляются потери мощности, которые зависят от сопротивления, появляющегося в цепи.

По техническим параметрам, самое большое значение падения напряжения не должно быть больше пяти процентов.

Использование таблицы сечения проводов по мощности

На практике для проведения подсчетов применяется таблица. Расчет сечения кабеля по мощности осуществляется с учетом показанной зависимости параметров тока и мощности от сечения. Существуют специальные стандарты возведения электроустановок, где можно посмотреть информацию по нужным измерениям. В таблице представлены распространенные значения.

Чтобы подобрать кабель под определенную нагрузку, необходимо провести некоторые расчеты:

  • рассчитать показатель силы тока;
  • округлить до наибольшего показателя, используя таблицу;
  • подобрать ближайший стандартный параметр.

Статья по теме:

Видео пошагового монтажа позволит всю работу произвести самостоятельно без обращения к специалистам. Что нужно подготовить для работы и как избежать ошибок мы и расскажем в статье.

Формула расчетов мощности по току и напряжению

Если уже имеются какие-то кабели в наличии, то чтобы узнать нужное значение, следует применить штангенциркуль. При этом измеряется сечение и рассчитывается площадь. Так как кабель имеет округлую форму, то расчет производится для площади окружности и выглядит так: S(площадь)= π(3,14)R(радиус)2. Можно правильно определить, используя таблицу, сечение медного провода по мощности.

Важная информация!
Большинство производителей уменьшают размер сечения для экономии материала. Поэтому, совершая покупку, воспользуйтесь штангенциркулем и самостоятельно промеряйте провод, а затем рассчитайте площадь. Это позволит избежать проблем с превышением нагрузки. Если провод состоит из нескольких скрученных элементов, то нужно промерить сечение одного элемента и перемножить на их количество.

Какие есть примеры?

Определенная схема позволит вам сделать правильный выбор сечения кабеля для своей квартиры. Прежде всего, спланируйте места, в которых будут размещаться источники света и розетки. Также следует выяснить, какая техника будет подключаться к каждой группе. Это позволит составить план подсоединения всех элементов, а также рассчитать длину проводки. Не забывайте прибавлять по 2 см на стыки проводов.

Определение сечения провода с учетом разных видов нагрузки

Применяя полученные значения, по формулам вычисляется значение силы тока и по таблице определяется сечение. Например, требуется узнать сечение провода для бытового прибора, мощность которого 2400 Вт. Считаем: I = 2400/220 = 10,91 А. После округления остается 11 А.

Чтобы определить точный показатель площади сечения применяются разные коэффициенты. Особенно данные значения актуальны для сети 380 В. Для увеличения запаса прочности к полученному показателю стоит прибавить еще 5 А.

Стоит учитывать, что для квартир применяются трехжильные провода. Воспользовавшись таблицами, можно подобрать самое близкое значение тока и соответствующее сечение провода. Можно посмотреть какое нужно сечение провода для 3 кВт, а также для других значений.

У проводов разного типа предусмотрены свои тонкости расчетов. Трехфазный ток применяется там, где нужно оборудование значительной мощности. Например, такое используется в производственных целях.

Для выявления нужных параметров на производствах важно точно рассчитать все коэффициенты, а также учесть потери мощности при колебаниях в напряжении. Выполняя электромонтажные работы дома, не нужно проводить сложные расчеты.

Следует знать о различиях алюминиевого и медного провода. Медный вариант отличается более высокой ценой, но при этом превосходит аналог по техническим характеристикам. Алюминиевые изделия могут крошиться на сгибах, а также окисляются и имеют более низкий показатель теплопроводности. По технике безопасности в жилых зданиях используется только продукция из меди.

Основные материалы для кабелей

Так как переменный ток передвигается по трем каналам, то для монтажных работ используется трехжильный кабель. При установке акустических приборов применяются кабели, имеющие минимальное значение сопротивления. Это поможет улучшить качество сигнала и устранить возможные помехи. Для подключения подобных конструкций применяются провода, размер которых 2*15 или 2*25.

Подобрать оптимальный показатель сечения для применения в быту помогут некоторые средние значения. Для розеток стоит приобрести кабель 2,5 мм2, а для оформления освещения – 1,5 мм2. Оборудование с более высокой мощностью требует сечения размером 4-6 мм2.

Специальная таблица окажет помощь, если возникают сомнения при расчетах. Для определения точных показателей нужно учитывать все факторы, которые оказывают влияние на ток в цепи. Это длина отдельных участков, метод укладки, тип изоляции и допустимое значение перегрева. Все данные помогают увеличить производительность в производственных масштабах и более эффективно применять электрическую энергию.

Расчет сечения кабеля и провода по мощности и току, для подключения частного дома (видео)

Вся жизнь современного общества построена на практически непрерывном потреблении электроэнергии. Промышленность и сельское хозяйство, транспорт и личное жилье постоянно нуждаются в электричестве. Для того, чтобы энергия поступала бесперебойно и безаварийно, необходимо правильно рассчитать сечение проводов .

Вся жизнь современного общества построена на практически непрерывном потреблении электроэнергии. Промышленность и сельское хозяйство, транспорт и личное жилье постоянно нуждаются в электричестве. Для того, чтобы энергия поступала бесперебойно и безаварийно, необходимо правильно рассчитать сечение проводов электропроводки.
Рассчитайте общую длину электропроводки. Это можно сделать двумя способами: измерив расстояния между щитками, розетками, выключателями на монтажной схеме и умножив результат на масштаб схемы, или проведя измерения непосредственно на месте, где будет прокладываться электропроводка. Поскольку провода будут соединяться между собой, сделайте поправку на соединение и удлините каждый отрезок не менее чем на 100 мм. Рассчитайте общую нагрузку потребляемой электроэнергии. Для этого суммируйте номинальные мощности всех электроприборов, которые сейчас находятся в эксплуатации, и подумайте, какие еще приборы, возможно, будут использоваться в будущем. Расчет нужно проводить с запасом прочности и надежности. Полученную сумму умножьте на коэффициент одновременности, равный 0,7.

Сечение провода для электропроводки
рассчитывается по двум параметрам: допустимой длительной токовой нагрузке и потере напряжения. Потеря напряжения происходит в проводах, соединяющих источник тока и потребителя. Если вы рассчитываете электропроводку для отдельного помещения и приборов небольшой мощности, этот показатель можете не учитывать, поскольку потери напряжения будут пренебрежимо малы.

Расчёт сечения провода, кабеля

Материал изготовления и сечение проводов (правильнее будет площади сечения проводов) является, пожалуй, главными критериями, которыми следует руководствоваться при выборе проводов и силовых кабелей.

Напомним, что площадь поперечного сечения (S) кабеля вычисляется по формуле S = (Pi * D2)/4, где Pi — число пи, равное 3,14, а D — диаметр.

Почему так важен правильный выбор сечения проводов? Прежде всего, потому, что используемые провода и кабели — основные элементы электропроводки вашего дома или квартиры. А она должна отвечать всем нормам и требованиям надёжности и электробезопасности.

Главным нормативным документом, регламентирующим площадь сечения электрических проводов и кабелей являются Правила Устройства Электроустановок (ПУЭ). Основные показатели, определяющие сечение провода:

Металл, из которого изготовлены токопроводящие жилы
Рабочее напряжение, В
Потребляемая мощность, кВт и токовая нагрузка, А

Так, неправильно подобранные по сечению провода, не соответствующие нагрузке потребления могут нагреваться или даже сгореть, просто не выдержав нагрузки по току, что не может не сказаться на электро- и пожаробезопасности вашего жилья. Случай очень частый, когда в целях экономии или по каким-либо другим причинам используется провод меньшего, чем это необходимо сечения.

Руководствоваться при выборе сечения провода поговоркой «кашу маслом не испортишь» тоже не стоит. Применение проводов большего, чем это действительно нужно сечения приведёт лишь к большим материальным затратам (ведь по понятным причинам их стоимость будет больше) и создаст дополнительные сложности при монтаже.

Расчет площади сечения медных жил проводов и кабелей

Так, говоря об или квартиры, будет оптимальным применение: для «розеточных» — силовых групп медного кабеля или провода с сечением жил 2,5 мм2 и для осветительных групп — с сечением жил 1,5 мм2. Если в доме имеются приборы большой мощности, напр. эл. плиты, духовки, электрические варочные панели, то для их питания следует использовать кабели и провода сечением 4-6 мм2.

Предложенный вариант выбора сечений для проводов и кабелей является, наверное, наиболее распространенным и популярным при монтаже электропроводки квартир и домов. Что, в общем-то, объяснимо: медные провода сечением 1,5 мм2 способны «держать» нагрузку 4,1 кВт (по току — 19 А), 2,5 мм2 — 5,9 кВт (27 А), 4 и 6 мм2 — свыше 8 и 10 кВт. Этого вполне хватит для питания розеток, приборов освещения или электроплит. Более того, такой выбор сечений для проводов даст некоторый «резерв» в случае увеличения мощности нагрузки, например, при добавлении новых «электроточек».

Расчет площади сечения алюминиевых жил проводов и кабелей

При использовании алюминиевых проводов следует иметь в виду, что значения длительно допустимых токовых нагрузок на них гораздо меньше, чем при использовании медных проводов и кабелей аналогичного сечения. Так, для жил алюминиевых проводов сечением 2, мм2 максимальная нагрузка составляет чуть больше 4 кВт (по току это — 22 А), для жил сечением 4 мм2 — не более 6 кВт.

Не последний фактор в расчете сечения жил проводов и кабелей — рабочее напряжение. Так, при одинаковой мощности потребления электроприборов, токовая нагрузка на жилы питающих кабелей или проводов электроприборов, рассчитанных на однофазное напряжение 220 В будет выше, чем для приборов, работающих от напряжения 380 В.
Длину провода (кабеля) рассчитывают по монтажной схеме. Для этого на схеме измеряют расстояния между соседними местами расположения щитков, штеп-сельных розеток, выключателей, ответвительных коробок и т. п. Затем, пользуясь масштабом, в котором вы-ерчена схема, вычисляют длину отрезков проводов кабеля; к длине каждого отрезка прибавляют не менее 100 мм (учитывается необходимость присоединения жил).
Длину провода (кабеля) можно рассчитать также, измеряя непосредственно на щитках, панелях, стенах, потолках и т. п. отрезки линий, вдоль которых должны быть проложены провода (кабели).
Сечение провода (кабеля) рассчитывают по потере напряжения и допустимой длительной токовой нагрузке. При проектировании небольших электроустановок, например электроустановок отдельных помещений, самодельных приборов и т. п., потерей напряжения в проводах можно пренебречь, так как она очень мала.
Для расчета сечения проводов по допустимой длительной токовой нагрузке необходимо знать номинальный ток, который должен проходить по проектируемой электрической проводке. Зная номинальный ток, сечение провода находят по таблице. Пример: номинальный ток равен 50 а; сечение медной жилы провода должно быть 6 мм2,

Важной частью электроустановок является электрическая проводка (электропроводка). Она состоит из проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями.
Открытые электропроводки монтируют непосредственно на поверхностях конструктивных элементов зданий и помещений или прокладывают в трубах, предварительно укрепленных на этих поверхностях.
Скрытые электропроводки прокладывают в пустотах перекрытий, в специальных каналах, бороздах и канав-ках, вырубаемых предварительно в стенах, а также в изоляционных и стальных трубах, расположенных внутри конструктивных частей зданий.
Для монтажа электропроводок применяют установочные и монтажные провода и кабели.
Токоведущая часть провода называется жилой. Жилы делают из меди, алюминия или стали. Жила может быть однопроволочной или многопроволочной. Жилы имеют стандартные сечения, в мм2: 0,5; 0,75; 1; 1,5; 2,5,; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400 и др.
Жилы покрыты изолирующей оболочкой из резины, полихлорвинила, поливинилхлорида.
Изолирующая оболочка у многих проводов защищена от внешних механических воздействий хлопчатобумажной оплеткой.

Для пересчёта сечения провода в значение диаметра могу рекомендовать программу: PL_SECH.exe для работы с программой распакуйте zip-архив и кликните на exe-файле мышкой. Программа работает в 32-бит Системах DOS & WINDOWS 97/XP/7 в сеансе командной строки. На этой странице есть эта и другие полезные программы.

Вам понадобится

Калькулятор, строительная рулетка, таблица расчета сечения провода

Рассчитайте общую длину электропроводки. Это можно сделать двумя способами: измерив расстояния между щитками, розетками, выключателями на монтажной схеме и умножив результат на масштаб схемы, или проведя измерения непосредственно на месте, где будет прокладываться электропроводка. Поскольку провода будут соединяться между собой, сделайте поправку на соединение и удлините каждый отрезок не менее чем на 100 мм.

Рассчитайте общую нагрузку потребляемой электроэнергии. Для этого суммируйте номинальные мощности всех электроприборов, которые сейчас находятся в эксплуатации, и подумайте, какие еще приборы, возможно, будут использоваться в будущем. Расчет нужно проводить с запасом прочности и надежности. Полученную сумму умножьте на коэффициент одновременности, равный 0,7.

Для предотвращения аварий на электрической линии на вводной кабель необходимо поставить автоматический выключатель. В жилых помещениях используется однофазный ток напряжением 220 В. Подсчитанную общую нагрузку разделите на величину напряжения (220 В) и получите ток, который будет проходить через вводной автомат. Если в продаже нет автомата с таким номиналом, покупайте с близкими параметрами, но с запасом по токовой нагрузке.

Сечение провода рассчитывается по двум параметрам: допустимой длительной токовой нагрузке и потере напряжения. Потеря напряжения происходит в проводах, соединяющих источник тока и потребителя. Если вы рассчитываете электропроводку для отдельного помещения и приборов небольшой мощности, этот показатель можете не учитывать, поскольку потери напряжения будут пренебрежимо малы.

Кабель должен быть трехжильным, поскольку один проводник используется для заземления. Лучше выбирать медный провод, поскольку электрические показатели меди лучше, чем алюминия. Определитесь, какой тип электромонтажа вы будете использовать — закрытый или открытый. Теперь, когда вы знаете расчетный ток, выбрали тип кабели и вариант проводки, в таблице найдите необходимое сечение провода.

Вид электрического тока

Вид тока зависит от системы электроснабжения и подключаемого оборудования.

Выберите вид тока
: Выбрать Переменный ток Постоянный ток

Материал проводников кабеля

Материал проводников определяет технико-экономические показатели кабельной линии.

Выберите материал проводников:

Выбрать Медь (Cu) Алюминий (Al)

Суммарная мощность подключаемой нагрузки

Мощность нагрузки для кабеля определяется как сумма потребляемых мощностей всех электроприборов, подключаемых к этому кабелю.

Введите мощность нагрузки: кВт

Номинальное напряжение

Введите напряжение: В

Только для переменного тока

Система электроснабжения: Выбрать Однофазная Трехфазная

Коэффициент мощности cosφ определяет отношение
активной энергии к полной. Для мощных потребителей значение указано в
паспорте устройства. Для бытовых потребителей
cosφ принимают равным 1.

Коэффициент мощности cosφ:

Способ прокладки кабеля

Способ прокладки определяет условия теплоотвода и влияет на максимальную допустимую нагрузку на кабель.

Выберите способ прокладки:

Выбрать Открытая проводка Скрытая проводка

Количество нагруженных проводов в пучке

Для постоянного тока нагруженными считаются все провода, для переменного однофазного — фазный и нулевой, для переменного трехфазного — только фазные.0

Рассчитанное значение представляет собой минимально допустимое значение фактического сечения кабеля. Значительная часть реализуемой в магазинах кабельной продукции не соответствует маркировке и имеет заниженное сечение проводника. Проверяйте фактическое сечение проводников кабеля перед применением!

Рассчитанное значение сечения кабеля является ориентировочным и не может использоваться в проектах систем электроснабжения без профессиональной оценки и обоснования в соответствии с нормативными документами!

В теории и практике, выбору площади поперечного сечения провода по току
(толщине) уделяется особое внимание. В данной статье, анализируя справочные данные, познакомимся с понятием «площадь сечения».

Расчет сечения проводов.

В науке не используется понятие «толщина» провода. В литературных источниках используется терминология — диаметр и площадь сечения. Применимо к практике, толщина провода характеризуется площадью сечения
.

Довольно легко рассчитывается на практике сечение провода
. Площадь сечения вычисляется с помощью формулы, предварительно измерив его диаметр (можно измерить с помощью штангенциркуля):

S = π (D/2)2 ,

  • S — площадь сечения провода, мм
  • D- диаметр токопроводящей жилы провода. Измерить его можно с помощью штангенциркуля.

Более удобный вид формулы площади сечения провода:

S=0,8D.

Небольшая поправка — является округленным коэффициентом. Точная расчетная формула:

В электропроводке и электромонтаже в 90 % случаях применяется медный провод. Медный провод по сравнению с алюминиевым проводом, имеет ряд преимуществ. Он более удобен в монтаже, при такой же силе токе имеет меньшую толщину, более долговечен. Но чем больше диаметр (площадь сечения
), тем выше цена медного провода. Поэтому, несмотря на все преимущества, если сила тока превышает значение 50 Ампер, чаще всего используют алюминиевый провод. В конкретном случае используется провод, имеющий алюминиевую жилу 10 мм и более.

В квадратных миллиметрах измеряют площадь сечения проводов
. Наиболее чаще всего на практике (в бытовой электрике), встречаются такие площади сечения: 0,75; 1,5; 2,5; 4 мм.

Существует иная система измерения площади сечения (толщины провода) — система AWG, которая используется, в основном в США. Ниже приведена таблица сечений
проводов по системе AWG, а так же перевод из AWG в мм.

Рекомендовано прочитать статью про выбор сечения провода для постоянного тока. В статье приведены теоретические данные и рассуждения о падении напряжения, о сопротивлении проводов для разных сечений. Теоретические данные сориентируют, какое сечение провода по току наиболее оптимально, для разных допустимых падений напряжения. Также на реальном примере объекта, в статье о падении напряжения на трехфазных кабельных линиях большой длины, приведены формулы, а также рекомендации о том, как уменьшить потери. Потери на проводе прямо пропорциональны току и длине провода. И являются обратно пропорциональными сопротивлению.

Выделяют, три основные принципа, при выборе сечения провода
.

1. Для прохождения электрического тока, площадь сечения провода (толщина провода), должна быть достаточной. Понятие достаточно означает, что когда проходит максимально возможный, в данном случае, электрический ток, нагрев провода будет допустимый (не более 600С).

2. Достаточное сечение провода, что бы падение напряжения не превышало допустимого значения. В основном это относится к длинным кабельным линиям (десятки, сотни метров) и токам большой величины.

3. Поперечное сечение провода, а также его защитная изоляция, должна обеспечивать механическую прочность и надежность.

Для питания, например люстры, используют в основном лампочки с суммарной потребляемой мощностью 100 Вт (ток чуть более 0,5 А).

Выбирая толщину провода, необходимо ориентироваться на максимальную рабочую температуру. Если температура будет превышена, провод и изоляция на нем будут плавиться и соответственно это приведет к разрушению самого провода. Максимальный рабочий ток для провода с определенным сечением ограничивается только максимально его рабочей температурой. И временем, которое сможет проработать провод в таких условиях.

Далее приведена таблица сечения проводов, при помощи которой в зависимости от силы тока , можно подобрать площадь сечения медных проводов. Исходные данные — площадь сечения проводника.

Максимальный ток для разной толщины медных проводов. Таблица 1.

Сечение токопроводящей жилы, мм 2

Ток, А, для проводов, проложенных

открыто

в одной трубе

одного двух жильного

одного трех жильного

Выделены номиналы проводов, которые используются в электрике. «Один двужильный» — провод, имеющий два провода. Один Фаза, второй — Ноль — это считается однофазное питание нагрузки. «Один трехжильный» — используется при трехфазном питании нагрузки.

Таблица помогает определиться, при каких токах, а также в каких условиях эксплуатируется провод данного сечения
.

Например, если на розетке написано «Мах 16А», то к одной розетке можно проложить провод сечением 1,5мм. Необходимо защитить розетку выключателем на ток не более чем 16А, лучше даже 13А, или 10 А. Эту тему раскрывает статья «Про замену и выбор защитного автомата».

Из данных таблицы видно, что одножильный провод — означает, что вблизи (на расстоянии менее 5 диаметров провода), не проходит более никаких проводов. Когда два провода рядом, как правило, в одной общей изоляции — провод двужильный. Здесь более тяжелый тепловой режим, поэтому меньше максимальный ток. Чем больше собрано в проводе или пучке проводов, тем меньше должен быть максимальный ток отдельно для каждого проводника, из-за возможности перегрева.

Однако, эта таблица не совсем удобна с практической стороны. Зачастую исходный параметр — это мощность потребителя электроэнергии, а не электрический ток. Следовательно, нужно выбирать провод.

Определяем ток, имея значение мощности. Для этого, мощность Р (Вт) делим на напряжение (В) — получаем ток (А):

I=P/U.

Для определения мощности, имея показатель тока, необходимо ток (А) умножить на напряжение (В):

P=IU

Данные формулы используют в случаях активной нагрузки (потребители в жилых помещениях, лампочки, утюги). Для реактивной нагрузки в основном используется коэффициент от 0,7 до 0,9 (для работы мощных трансформаторов, электродвигателей, обычно в промышленности).

В следующей таблице предложены исходные параметры — потребляемый ток и мощность, а определяемые величины — сечение провода и ток отключения защитного автоматического выключателя.

Исходя из потребляемой мощности и тока — выбор площади поперечного сечения провода
и автоматического выключателя.

Зная мощность и ток, в нижеприведенной таблице можно выбрать сечение провода
.

Таблица 2.

Макс. мощность,
кВт

Макс. ток нагрузки,
А

Сечение
провода, мм 2

Ток автомата,
А

Критические случаи в таблице выделены красным цветом, в этих случаях лучше перестраховаться, не экономя на проводе, выбрав более толстый провод, нежели указано в таблице. А ток автомата наоборот поменьше.

По таблице можно без труда выбрать сечение провода по току
, или сечение провода по мощности
. Под заданную нагрузку выбрать автоматический выключатель.

В данной таблице все данные приведены для следующего случая.

  • Одна фаза, напряжение 220 В
  • Температура окружающей среды +300С
  • Прокладка в воздухе либо коробе (находится в закрытом пространстве)
  • Провод трехжильный, в общей изоляции (провод)
  • Используется наиболее распространенная система TN-S с отдельным проводом заземления
  • В очень редких случаях потребитель достигает максимальную мощность. В таких случаях, максимальный ток может действовать длительно без отрицательных последствий.

Рекомендовано выбирать большее сечение
(следующее из ряда), в случаях, когда температура окружающей среды будет на 200С выше, либо в жгуте будет несколько проводов. Это особо важно в тех случаях, если значение рабочего тока, приближено к максимальному.

В сомнительных и спорных моментах, таких как:

большие пусковые токи; возможное в будущем увеличение нагрузки; пожароопасные помещения; большие перепады температур (например, провод находится на солнце), необходимо увеличить толщину проводов. Либо же для достоверной информации, обратиться к формулам и справочникам. Но в основном, табличные справочные данные применимы для практики.

Также толщину провода можно узнать эмпирическим (полученным опытным путем) правилом:

Правило выбора площади сечения провода для максимального тока.

Нужную площадь сечения для медного провода
, исходя из максимального тока, можно подобрать применяя правило:

Необходимая площадь сечения провода равна максимальному току, деленному на 10.

Расчеты по этому правилу без запаса, поэтому полученный результат нужно округлить в большую сторону до ближайшего типоразмера. Например, нужен провод сечением мм
, а ток 32 Ампер. Необходимо брать ближайший, конечно, в большую сторону — 4 мм. Видно, что данное правило вполне укладывается в табличные данные.

Следует заметить, что данное правило хорошо работает для токов до 40 Ампер. Если же токи больше (за пределами жилого помещения, такие токи на вводе) — нужно выбирать провод с еще большим запасом, и делить уже не на 10, а на 8 (до 80 А).

Это же правило и для поиска максимального тока через медный провод , если известна его площадь:

Максимальный ток равен площади сечения, умножить на 10.

Про алюминиевый провод.

В отличие от меди, алюминий хуже пропускает электрический ток. Для алюминия (провод такого же сечения
, что и медный), при токах до 32 А, максимальный ток будет меньше, чем для меди на 20 %. При токах до 80 А алюминий пропускает хуже ток на 30%.

Эмпирическое правило для алюминия
:

Максимальный ток алюминиевого провода равен площади сечения
, умножить на 6.

Имея знания, полученные в данной статье, можно выбрать провод по соотношениям «цена/толщина», «толщина/рабочая температура», а также «толщина/максимальный ток и мощность».

Основные моменты про площадь сечения проводов освещены, если же что-то не понятно, либо есть, что добавить — пишите и спрашивайте в комментариях. Подписывайтесь в блоге СамЭлектрик, для получения новых статей.

К максимально току в зависимости от площади сечения провода, немцы относятся несколько иначе. Рекомендация по выбору автоматического (защитного) выключателя, расположена в правом столбце.

Таблица зависимости электрического тока защитного автомата (предохранителя) от сечения. Таблица 3.

Данная таблица взята из «стратегического» промышленного оборудования, возможно поэтому может создаться впечатление, что немцы перестраховываются.

Расчет сечения кабеля по мощности: таблицы и формулы | Стройка/Ремонт (своими руками)

Электросети являются потенциальным источником пожарной опасности. Чтобы свести к минимуму возможность аварии, монтаж внутридомовой проводки осуществляется в строгом соответствии с установленными техническими нормативами. Рассмотрим правила правильного выбора необходимого материала, таблицу сечения кабелей по мощности, нюансы расчета нагрузки на электросети.

Для чего нужен расчёт сечения кабеля

Основное требование, предъявляемое к линиям электропередач – безопасность их эксплуатации. Поэтому, с особой внимательностью следует подходить к выбору сечения кабеля по току. Если оно окажется чересчур маленьким, проводка будет греться из-за большой нагрузки. Это, в свою очередь, способно привести к расплавлению изоляционной оплётки, короткому замыканию с последующим пожаром.

Использование проводов слишком большого сечения обезопасит дом от возгорания, но приведёт к неоправданному перерасходу денежных средств. Самый рациональный вариант при прокладке проводки – подобрать кабеля с оптимальным сечением жилы. Точные рекомендации по правильному подбору проводки даны в гл. №1.3 «Правил установки электрооборудования».

Выбор площади поперечного сечения проводника производится в соответствии со следующими параметрами:

  • Сила тока (А).
  • Мощность тока (кВт).
  • Материал изготовления проводки (медь или алюминий).
  • Количество фаз (1 или 3).

Выбираем сечение по мощности

Выбор сечения провода в зависимости от мощности тока начинается с проведения небольших расчётов. Для этого следует сложить общую мощность электрических устройств, которые будут одновременно включаться в квартире. На каждом приборе обычно указывается его мощность в ваттах или киловаттах. В будущем возможно приобретение новых бытовых электроприборов, поэтому к полученной суммарной мощности нужно прибавить ещё 1-2 киловатта.

Для устройства внутридомовой электропроводки рекомендуется использовать медные кабели. Они, хотя и стоят дороже алюминиевых, но обладают большей гибкостью, долговечностью и лучшей электропроводностью. Ниже представлены таблицы выбора сечения кабеля по мощности и силе тока для медной проводки.

Таблица 1. Вычисление мощности медной однофазной проводки напряжением в 220 вольтТаблица 2. Подбор сечения кабеля для медной трёхфазной проводки напряжением в 380 вольт.

Таблица сечения проводки в зависимости от силы и мощности тока для алюминиевых проводов выглядит иначе. В представленных выше таблицах приведены показатели соотношения сечение – ток, в зависимости от его мощности и силы.

Сила тока, проходящего по проводнику, не является постоянной величиной, и может изменяться в зависимости от следующих показателей:

  • Длина провода.
  • Размера сечения.
  • Показатель удельного сопротивления материала, из которого он сделан.
  • Температура проводника. С нагревом проводки сила тока падает.

Ниже показаны соотношения «сила тока – сечение провода» для различных вариантов прокладки. Основные цифры отдельно указаны для медных и алюминиевых проводов.

Таблица 3. Подбор сечения кабеля по мощности для алюминиевой однофазной проводки напряжением в 220 вольт.Таблица 4. Подбор сечения кабеля для алюминиевой трёхфазной проводки напряжением 380 вольт.

Как рассчитать по току

В представленных выше таблицах приведены показатели соотношения сечение – ток, в зависимости от его мощности и силы. Сила тока, проходящего по проводнику, не является постоянной величиной, и может изменяться в зависимости от следующих показателей:

  • Длина провода.
  • Размера сечения.
  • Показатель удельного сопротивления материала, из которого он сделан.
  • Температура проводника. С нагревом проводки сила тока падает.

В таблицах ниже приведены соотношения «сила тока – сечение провода» для различных вариантов прокладки. Основные цифры отдельно указаны для медных и алюминиевых проводов.

Таблица 5. Соотношение силы тока и сечение алюминиевой проводки.Таблица 6. Соотношение силы тока и сечение медной проводки.

Расчёт сечения кабеля по мощности и длине

Из-за сопротивления материала происходит некоторая потеря напряжения при прохождении тока сквозь проводник. Чем длиннее проводка, тем большая величина этих потерь. Однако, ощутимые потери могут возникнуть на линиях электропередач протяжённостью, измеряемой километрами. Для бытовой проводки они столь несущественны, что ими можно вполне пренебречь.

Рассчитываются основные показатели электротока по следующим формулам:

  • Сила тока: I = Р / (U cos ф), где:
    I — искомая сила тока.
    Р — мощность.
    U — напряжение.
    cos ф — коэффициент, применяемый для бытовой проводки. Обычно принимается за единицу.
  • Сопротивление провода: Rо=р L / S, где:
    Rо — удельное сопротивление проводника.
    р — удельное сопротивление материала, из которого он изготовлен (медь или алюминий).
    L — длина проводки.
    S — площадь сечения провода.

Открытая и закрытая прокладка проводов

При расчёте нагрузки на кабель принимается во внимание и особенности прокладки электрической линии. Существует два способа её размещения — закрытый и открытый. В стенах, изготовленных из негорючих стройматериалов – бетона, кирпича, – применяют закрытую прокладку, в специально проделанных канавках-штробах.

В деревянных зданиях проводка прокладывается открытым способом, в защитных кабель-каналах или в гофрированных трубах. Для закрытого способа монтажа используют плоские провода, а для открытой-округлые.

Источник: https://vodatyt.ru/elektrika/raschet-secheniya-kabelya.html

Вам была полезна эта статья? Ставьте палец вверх! Подпишитесь на мой канал и давайте общаться в комментариях!

С уважением, Пётр Андреевич.

Как рассчитать нагрузку на кабель?

Для чего необходимо проводить расчет нагрузки на кабель?




Один из основных параметров, определяющих стоимость кабеля – его сечение. Чем оно больше, тем выше его цена. Но если купить недорогой провод, сечение которого не соответствует нагрузкам в контуре, повышается плотность тока. Из-за этого увеличивается сопротивление и выделение тепловой энергии при прохождении электричества. Потери же электроэнергии возрастают, а эффективность системы снижается. На протяжении всего срока эксплуатации потребитель оплачивает значительные потери электроэнергии.

Но это не единственный минус установки кабеля с неправильно выбранным сечением. Из-за повышенного выделения тепла чрезмерно нагревается изоляция проводов – это сокращает срок использования проводов и нередко становится причиной короткого замыкания.

Расчет нагрузки на кабель позволяет:

Уменьшить счета за электроэнергию;

Увеличить срок службы проводки;

Снизить риск возникновения короткого замыкания.

Какие потери возникают при прохождении электрического тока?


При выполнении расчета нагрузки на кабель нужно учитывать:


1. Потери электрического тока при прохождении по проводам


Перемещение электричества от генератора тока к приемникам (бытовой технике, электрооборудованию, осветительным приборам) сопровождается высвобождением тепловой энергии. Этот физический процесс не приносит пользы. Выделяющееся тепло нагревает изоляционные оболочки, что приводит к сокращению срока их службы. Они становятся более хрупкими и быстро разрушаются. Нарушение целостности изоляции может стать причиной короткого замыкания при соприкосновении проводов друг с другом, а при контакте с человеком – опасной травмы.


Превращение электрической энергии в тепловую происходит из-за сопротивления, которое увеличивается по мере роста плотности проходящего тока. Эта величина рассчитывается по формуле:


Ј = I/S а/мм2


где

  • I – сила тока;
  • S – поперечное сечение провода.


При монтаже внутренней электропроводки плотность тока должна быть не выше 6 А/мм2. Для других работ расчет сечения кабеля по току производится на основании таблиц, содержащихся в Правилах устройства и технической эксплуатации электроустановок (ПУЭ и ПТЭЭП).


Если рассчитанное значение плотности больше рекомендованного необходимо купить кабель с большим сечением провода. Несмотря на увеличение стоимости проводки, такое решение оправдано с экономической точки зрения. Выбор кабеля для проводки с оптимальным размером сечения в несколько раз увеличит ее срок безопасной эксплуатации и сократит потери электричества при прохождении по проводам.


2. Потери, возникающие из-за электрического сопротивления материалов


Сопротивление материалов, возникающее в процессе передачи электрического тока, приводит не только к выделению тепловой энергии и нагреву проводов. Также происходят потеря напряжения, что негативно сказывается на работе электрооборудования, бытовой техники и осветительных приборов.


При монтаже электропроводки необходимо рассчитать и величину сопротивления линии (Rл). Она рассчитывается по формуле:


Rл = ρ(l/S)


где

  • ρ – удельное сопротивление материала, из которого изготовлен провод;
  • l – длина линии;
  • S – поперечное сечение провода.


Падение напряжения определяется как ΔUл = IRл, и его величина должна составлять не более 5% от исходного, а для осветительных нагрузок – не более 3%. Если же она больше, необходимо выбрать кабель с большим сечением или изготовленный из другого материала, с меньшим удельным сопротивлением. В большинстве случаев и с технической, и с экономической точки зрения целесообразно увеличить площадь сечения кабеля.

Выбор материала кабеля


Наш каталог кабельной продукции в Бресте включает большой выбор кабелей, изготовленных из различных материалов:


Медь имеет очень низкое удельное сопротивление (ниже только у золота), поэтому проводимость медных проводов значительно выше, чем у алюминиевых. Она не окисляется, что существенно увеличивает срок эффективной эксплуатации. Металл очень гибкий, кабель можно многократно складывать и сворачивать. Благодаря высокой пластичности возможно изготовление более тонких жил (изготавливаются медные жилы й от 0,3 мм2, минимальный размер алюминиевой жилы – 2,5 мм2).


Более низкое удельное сопротивление позволяет уменьшить выделение тепловой энергии при прохождении тока, поэтому при прокладке внутренней проводки в жилых помещениях разрешается использовать только медные провода.


Удельное сопротивление алюминия выше, чем у золота, меди и серебра, но ниже, чем у других металлов и сплавов.


Главное преимущество алюминиевого кабеля перед медным – его цена в несколько раз ниже. Также он значительно легче, что облегчает монтаж электросетей. При монтаже электросетей большой протяженностью эти характеристики имеют решающее значение.


Алюминий не подвержен коррозии, но при контакте с воздухом на его поверхности образовывается пленка. Она защищает металл от воздействия атмосферной влаги, но практически не проводит ток. Эта особенность осложняет соединение кабелей.

Основные виды расчета сечения


Расчет нагрузок на провод должен быть выполнен по всем значимым характеристикам:

По мощности


Определяется суммарная мощность всех приборов, потребляющих электроэнергию в доме, квартире, в производственном цеху. Потребляемая мощность бытовой техники и электрооборудования указывается производителем.


Также необходимо учесть электроэнергию, потребляемую осветительными приборами. Все электроприборы в домашних условиях редко работают одновременно, но расчет сечения кабеля по мощности выполняется с запасом, что позволяет сделать электропроводку более надежной и безопасной. Для промышленных объектов выполняется более сложный расчет с использованием коэффициентов спроса и одновременности.

По напряжению


Расчет сечения кабеля по напряжению производится исходя из вида электрической сети. Она может быть однофазной (в квартирах многоэтажных домов и большинстве индивидуальных коттеджей) и трехфазной (на предприятиях). Напряжение в однофазной сети составляет 220 В, в трехфазной – 380 В.


Если суммарная мощность электроприборов в квартире равна 15 кВт, то для однофазной проводки этот показатель и будет равен 15кВт, а для трехфазной он будет в 3 раза меньше – 5 кВт. Но при монтаже трехфазной проводки используется кабель с меньшим сечением, но содержащий не 3, а 5 жил.

По нагрузке


Расчет сечения кабеля по нагрузке также требует подсчета суммарной мощности электрооборудования. Желательно увеличить эту величину на 20-30%. Проводка выполняется на длительный срок, а количество бытовой техники в квартире или оборудования в цеху может увеличиться.


Затем следует определить, какое оборудование может быть включено одновременно. Этот показатель может существенно отличаться в разных домах. У одних большое количество бытовой техники или электрооборудования, которым пользуются несколько раз в месяц или в год. У других в доме – только необходимые, но часто используемые электроприборы.


В зависимости от величины коэффициента одновременности мощность может как незначительно, так и в несколько раз отличаться от нагрузки.















Установленная мощность (кВт) для кабелей, прокладываемых открыто

Сечение жил, мм2

Кабели с медными жилами

Кабели с алюминиевыми жилами

Напряжение 220 В

Напряжение 380 В

Напряжение 220 В

Напряжение 380 В

0,5

2,4

-

-

-

0,75

3,3

-

-

-

1

3,7

6,4

-

-

1,5

5

8,7

-

-

2

5,7

9,8

4,6

7,9

2,5

6,6

11

5,2

9,1

4

9

15

7

12

5

11

19

8,5

14

10

17

30

13

22

16

22

38

16

28

25

30

53

23

39

35

37

64

28

49













Установленная мощность (кВт) для кабелей, прокладываемых в штробе или трубе

Сечение жил, мм2

Кабели с медными жилами

Кабели с алюминиевыми жилами

Напряжение 220 В

Напряжение 380 В

Напряжение 220 В

Напряжение 380 В

1

3

5,3

-

-

1,5

3,3

5,7

-

-

2

4,1

7,2

3

5,3

2,5

4,6

7,9

3,5

6

4

5,9

10

4,6

7,9

5

7,4

12

5,7

9,8

10

11

19

8,3

14

16

17

30

12

20

25

22

38

14

24

35

29

51

16

-

По току


Для расчета номинального тока используется величина суммарной мощности нагрузки. Зная ее, максимально разрешенную нагрузку по току рассчитывают по формуле:


I = P/U*cosφ


где

  • I – номинальн. ток;
  • P – суммарн. мощность;
  • U – напряжение;
  • cosφ – коэфф-т мощности.


На основании полученной величины находим оптимальный размер сечение кабеля в таблицах.















Допустимые токовые нагрузки для кабеля с медными жилами прокладываемого скрыто

Сечение жил, мм

Медные жилы, провода и кабели

Напряжение 220 В

Напряжение 380 В

1,5

19

16

2,5

27

25

4

38

30

6

46

40

10

70

50

16

85

75

25

115

90

35

135

115

50

175

145

70

215

180

95

260

220

120

300

260

Важные нюансы для правильного расчета нагрузки на кабель


При работе с таблицей, следует обращать внимание, для какого вида электропроводки она составлена (однофазной или трехфазной), для открытой или скрытой проводки, для медного или алюминиевого кабеля.


При выборе и заказе провода важно различать такие характеристики как сечение и диаметр. Если диаметр провода 8 мм2, его сечение равно S = (π/4) х D² = 50 мм2.


Для расчета сечения многожильного провода, применяется формула:


S = N *(D²/1.27)


где

  • N – количество жил.


Чтобы заказать кабельную продукцию или задать вопросы относительно ее характеристик и особенностей выбора, звоните по телефонам: +375 (162) 44-66-60.

онлайн-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курс.

Russell Bailey, P.E.

Нью-Йорк

«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, P.E.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова . Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком

с подробной информацией о Канзасе

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент, оставивший отзыв на курсе

материалов до оплаты и

получает викторину «

Арвин Свангер, П.Е.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил много удовольствия «.

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

в режиме онлайн

курса.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

.

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, П.Е.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании каких-то неясных раздел

законов, которые не применяются

«нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор

.

организация.

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

и онлайн-формат был очень

доступный и простой

использовать. Большое спасибо ».

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Джозеф Фриссора, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

.

обзор текстового материала. Я

также оценил просмотр

фактических случаев предоставлено.

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.

испытание потребовало исследований в

документ но ответы были

в наличии »

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за то, что у вас есть широкий выбор.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курса со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курса. Процесс прост, и

намного эффективнее, чем

приходится путешествовать «

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

.

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от.

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теории.

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

пониженная цена

на 40%.

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правил. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

.

при необходимости дополнительных

сертификация. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материалы были краткими, а

хорошо организовано.

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна.

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими.

хорошо подготовлены. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор где угодно и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Тщательно

и комплексное.

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили курс

поможет по моей линии

работ.»

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я обязательно воспользуюсь этим сайтом снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Никакой путаницы при прохождении теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличное освежение ».

Luan Mane, P.E.

Conneticut

«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

Вернись, чтобы пройти викторину.

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях .

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродская, П.Е.

Нью-Джерси

«Веб-сайт прост в использовании, вы можете скачать материалы для изучения, а затем вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат . Спасибо за создание

процесс простой ».

Фред Шейбе, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и закончил

один час PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилась возможность скачать документы для проверки содержания

и пригодность, до

имея платить за

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

сертификат. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по

.

много разные технические зоны за пределами

по своей специализации без

приходится путешествовать.»

Гектор Герреро, П.Е.

Грузия

Расчет прочности кабеля на разрыв

Совет: расчет прочности кабеля на разрыв

Второй закон Ньютона
F = ma, где

  • F = сила в Ньютонах (кгм / с 2 )
  • m = масса в кг
  • a = ускорение в м / с 2

Мы хотим, чтобы ускорение равнялось единице силы тяжести земли, равной 9.8 м / с 2 .
Для решения этой проблемы:

  • преобразуйте массу (100 тонн) в кг, умножив на 1000 (1 тонна равна 1000 кг), поэтому
    масса 100000 кг. Подставив это в формулу, мы получим ответ в виде
F = (100000 кг) (9,8 м / с 2 ) = 980000 N
  • прочность кабеля обычно выражается в килоньютонах (кН).Разделять
    ответ выше от 1000
F = 980 кН

Рапель на горе. Буффало, Австралия

Насколько велика эта сила? На самом деле он довольно большой. Веревка для скалолазания
очевидно, довольно прочный и обычно имеет диаметр 12,5 мм (1/2 дюйма). Как это
прочность по сравнению с некоторыми другими материалами, которые можно использовать для кабеля? Стол
ниже перечислены некоторые характерные свойства различных кабелей:

Материал

Разрывная нагрузка (кН)
12.Диаметр 5 мм (1/2 дюйма)

Масса (г / м)
Нержавеющая сталь 95 3000
Кевлар 65 60
Нейлоновая веревка для скалолазания 40 100

В то время как десять стальных тросов диаметром 12,5 мм могли бы почти выдержать эту силу, это
Совершенно очевидно, что это не оставит запаса прочности.Вообще в некритических
приложений, требуется коэффициент безопасности от 5 до 10 раз. В критическом
приложения (пассажиры умирают, если кабель обрывается), потребуется 20 или более раз в качестве
коэффициент безопасности. Очевидно, что о стали не может быть и речи. Чтобы получить это
необходимая сила будет огромной массой. Кевлар гораздо более вероятно
выбор. Нейлон не будет использоваться, потому что, хотя он достаточно прочный, он
огромная растяжка (вот почему она фактически используется для скалолазания, так как вызывает
гораздо меньший шок в случае падения).

Мы можем рассчитать размер кабеля, необходимого для выдерживания силы 980 кН, с 20
кратный коэффициент безопасности следующим образом. Требуемый запас прочности на разрыв =
(20) (980 кН) = 19600 кН. Прочность кабеля на разрыв напрямую зависит от его
площадь поперечного сечения. Если предположить, что кабель круглый, то его поперечное сечение
площадь r 2 , поэтому кабель большего размера
будет иметь площадь поперечного сечения R 2 (где R — радиус второго кабеля).Это означает, что
Прочность на разрыв двух кабелей — это отношение их радиусов (или диаметров) в квадрате.
Следующая формула может быть использована для расчета необходимого диаметра кабеля.

где:

  • f и d — меньший кабель
  • F и D — кабель большего размера

прочность на разрыв и диаметр соответственно

Масса кабеля также увеличивается пропорционально квадрату диаметров.Поскольку прочность увеличивается пропорционально квадрату диаметра кабеля, кабель не
должны действительно увеличиваться в размерах на большое количество. Эта информация
Обобщено в этой таблице:

Материал

Диаметр, необходимый для стойки
19600 кН Усилие (мм)

Масса кабеля длиной 500 м
(кг)

Нержавеющая сталь 180 310000
Кевлар 220 9000
Нейлоновая веревка для скалолазания 280 24500

Совершенно очевидно, что стальной трос совершенно непрактичен.Масса
достаточно прочный кабель был бы более чем в 3 раза по массе космического корабля!

Эластичность: напряжение и деформация | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Закон штата Гука.
  • Объясните закон Гука, используя графическое представление между деформацией и приложенной силой.
  • Обсудите три типа деформаций, такие как изменение длины, сдвиг в сторону и изменение объема.
  • Опишите на примерах модуль Юнга, модуль сдвига и объемный модуль.
  • Определите изменение длины с учетом массы, длины и радиуса.

Теперь мы переходим от рассмотрения сил, влияющих на движение объекта (таких как трение и сопротивление), к тем, которые влияют на форму объекта. Если бульдозер втолкнет машину в стену, машина не сдвинется с места, но заметно изменит форму. Изменение формы из-за приложения силы — это деформация .Известно, что даже очень небольшие силы вызывают некоторую деформацию. При малых деформациях наблюдаются две важные характеристики. Во-первых, объект возвращается к своей исходной форме, когда сила снимается, то есть деформация является упругой для небольших деформаций. Во-вторых, размер деформации пропорционален силе, то есть при малых деформациях соблюдается закон Гука. В форме уравнения Закон Гука определяется как

F = k Δ L ,

, где Δ L — величина деформации (например, изменение длины), вызванная силой F , а k — константа пропорциональности, которая зависит от формы и состава объекта, а также направления движения. сила.Обратите внимание, что эта сила является функцией деформации Δ L — она ​​не постоянна, как кинетическая сила трения. Переставляем это на

[латекс] \ displaystyle \ Delta {L} = \ frac {F} {k} [/ latex]

дает понять, что деформация пропорциональна приложенной силе. На рисунке 1 показано соотношение по закону Гука между удлинением Δ L пружины или человеческой кости. Для металлов или пружин область прямой линии, к которой относится закон Гука, намного больше.Кости хрупкие, эластичная область небольшая, а перелом резкий. В конце концов, достаточно большое напряжение материала приведет к его разрушению или разрушению.

Закон Гука

F = kΔL ,

, где Δ L — величина деформации (например, изменение длины), вызванная силой F , а k — константа пропорциональности, которая зависит от формы и состава объекта, а также направления движения. сила.

[латекс] \ displaystyle \ Delta {L} = \ frac {F} {k} [/ latex]

Рис. 1. График деформации ΔL в зависимости от приложенной силы F. Прямой сегмент — это линейная область, где соблюдается закон Гука. Наклон прямой области [латекс] \ frac {1} {k} [/ latex]. Для больших сил график изогнут, но деформация остается упругой — ΔL вернется к нулю, если сила будет устранена. Еще большие силы деформируют объект до тех пор, пока он не сломается.Форма кривой возле трещины зависит от нескольких факторов, в том числе от того, как прикладывается сила F . Обратите внимание, что на этом графике наклон увеличивается непосредственно перед трещиной, указывая на то, что небольшое увеличение F дает большое увеличение L рядом с трещиной.

Константа пропорциональности k зависит от ряда факторов для материала. Например, гитарная струна из нейлона растягивается при затягивании, а удлинение Δ L пропорционально приложенной силе (по крайней мере, для небольших деформаций).Более толстые нейлоновые струны и струны из стали меньше растягиваются при одной и той же приложенной силе, что означает, что они имеют большее значение k (см. Рисунок 2). Наконец, все три струны возвращаются к своей нормальной длине, когда сила снимается, при условии, что деформация мала. Большинство материалов будут вести себя таким образом, если деформация будет меньше примерно 0,1% или примерно 1 часть на 10 3 .

Рис. 2. Одна и та же сила, в данном случае груз (w), приложенная к трем различным гитарным струнам одинаковой длины, вызывает три различных деформации, показанные заштрихованными сегментами.Левая нить из тонкого нейлона, посередине — из более толстого нейлона, а правая — из стали.

Растянись немного

Как бы вы измерили константу пропорциональности k резиновой ленты? Если резинка растянулась на 3 см, когда к ней была прикреплена 100-граммовая масса, то насколько она растянулась бы, если бы две одинаковые резинки были прикреплены к одной и той же массе — даже если их соединить параллельно или, наоборот, если связать вместе последовательно?

Теперь мы рассмотрим три конкретных типа деформаций: изменение длины (растяжение и сжатие), сдвиг в сторону (напряжение) и изменения объема.Все деформации считаются небольшими, если не указано иное.

Изменение длины — растяжение и сжатие: модуль упругости

Изменение длины Δ L происходит, когда к проволоке или стержню прилагается сила, параллельная ее длине L 0 , либо растягивая (растяжение), либо сжимая. (См. Рисунок 3.)

Рис. 3. (a) Напряжение. Стержень растягивается на длину ΔL , когда сила прилагается параллельно его длине. (б) Сжатие.Тот же стержень сжимается силами той же величины в противоположном направлении. Для очень малых деформаций и однородных материалов ΔL примерно одинаково для одинаковой величины растяжения или сжатия. При больших деформациях площадь поперечного сечения изменяется при сжатии или растяжении стержня.

Эксперименты показали, что изменение длины (Δ L ) зависит только от нескольких переменных. Как уже отмечалось, Δ L пропорциональна силе F и зависит от вещества, из которого изготовлен объект.Кроме того, изменение длины пропорционально исходной длине L 0 и обратно пропорционально площади поперечного сечения проволоки или стержня. Например, длинная гитарная струна растягивается больше, чем короткая, а толстая струна растягивается меньше, чем тонкая. Мы можем объединить все эти факторы в одно уравнение для Δ L :

[латекс] \ displaystyle \ Delta {L} = \ frac {1} {Y} \ text {} \ frac {F} {A} L_0 [/ latex],

, где Δ L — изменение длины, F — приложенная сила, Y — коэффициент, называемый модулем упругости или модулем Юнга, который зависит от вещества, A — площадь поперечного сечения, и L 0 — исходная длина.В таблице 1 перечислены значения Y для нескольких материалов. Говорят, что материалы с большим Y имеют большую прочность на разрыв , потому что они меньше деформируются при заданном растяжении или сжатии.

Таблица 1. Модули упругости
Материал Модуль Юнга (растяжение-сжатие) Y (10 9 Н / м 2 ) Модуль сдвига S (10 9 Н / м 2 ) Модуль объемной упругости B (10 9 Н / м 2 )
Алюминий 70 25 75
Кость — напряжение 16 80 8
Кость — компрессия 9
Латунь 90 35 75
Кирпич 15
Бетон 20
Стекло 70 20 30
Гранит 45 20 45
Волосы (человеческие) 10
Твердая древесина 15 10
Чугун литой 100 40 90
Свинец 16 5 50
Мрамор 60 20 70
нейлон 5
Полистирол 3
Шелк 6
Паутинка 3
Сталь 210 80 130
Сухожилие 1
Ацетон 0.7
Этанол 0,9
Глицерин 4,5
Меркурий 25
Вода 2,2

Модули Юнга не указаны для жидкостей и газов в таблице 1, потому что они не могут быть растянуты или сжаты только в одном направлении. Обратите внимание, что предполагается, что объект не ускоряется, поэтому на самом деле существуют две приложенные силы величиной F , действующие в противоположных направлениях.Например, струны на Рисунке 3 тянут вниз силой величиной w и удерживаются за потолок, который также оказывает силу величиной w .

Пример 1. Растяжение длинного кабеля

Подвесные тросы используются для перевозки гондол на горнолыжных курортах. (См. Рис. 4). Рассмотрим подвесной трос, длина которого без опоры составляет 3 км. Рассчитайте степень растяжения стального троса. Предположим, что кабель имеет диаметр 5,6 см и максимальное натяжение, которое он может выдержать, равно 3.0 × 10 6 Н.

Рис. 4. Гондолы перемещаются по подвесным тросам на горнолыжном курорте Гала Юдзава в Японии. (Источник: Руди Херман, Flickr)

Стратегия

Сила равна максимальному натяжению, или F = 3,0 × 10 6 Н. Площадь поперечного сечения π r 2 = 2,46 × 10 –3 м 2 . Уравнение [latex] \ displaystyle \ Delta {L} = \ frac {1} {Y} \ text {} \ frac {F} {A} L_0 [/ latex] можно использовать для определения изменения длины.{2}} \ right) \ left (\ text {3020 m} \ right) \\ & = & \ text {18 m}. \ End {array} [/ latex]

Обсуждение

Это довольно большая длина, но только около 0,6% от длины без опоры. В этих условиях влияние температуры на длину может быть важным.

Кости в целом не ломаются от растяжения или сжатия. Скорее они обычно ломаются из-за бокового удара или изгиба, что приводит к срезанию или разрыву кости. Поведение костей при растяжении и сжатии важно, потому что оно определяет нагрузку, которую кости могут нести.Кости классифицируются как несущие конструкции, такие как колонны в зданиях и деревья. Несущие конструкции обладают особенностями; колонны в здании имеют стальные арматурные стержни, а деревья и кости — волокнистые. Кости в разных частях тела выполняют разные структурные функции и подвержены разным нагрузкам. Таким образом, кость в верхней части бедренной кости расположена в виде тонких пластин, разделенных костным мозгом, в то время как в других местах кости могут быть цилиндрическими и заполненными костным мозгом или просто твердыми.Люди с избыточным весом имеют тенденцию к повреждению костей из-за длительного сжатия костных суставов и сухожилий.

Другой биологический пример закона Гука встречается в сухожилиях. Функционально сухожилие (ткань, соединяющая мышцу с костью) должно сначала легко растягиваться при приложении силы, но обеспечивать гораздо большую восстанавливающую силу для большего напряжения. На рисунке 5 показана зависимость напряжения от деформации человеческого сухожилия. Некоторые сухожилия имеют высокое содержание коллагена, поэтому деформация или изменение длины относительно невелико; другие, например, опорные сухожилия (например, в ноге) могут изменять длину до 10%.Обратите внимание, что эта кривая напряжения-деформации является нелинейной, поскольку наклон линии изменяется в разных областях. В первой части растяжения, называемой областью пальца, волокна сухожилия начинают выравниваться в направлении напряжения — это называется uncrimping . В линейной области фибриллы будут растянуты, а в области разрушения отдельные волокна начнут разрываться. Простую модель этой взаимосвязи можно проиллюстрировать параллельными пружинами: разные пружины активируются при разной длине растяжения.Примеры этого приведены в задачах в конце этой главы. Связки (ткань, соединяющая кость с костью) ведут себя аналогичным образом.

Рис. 5. Типичная кривая «напряжение-деформация» для сухожилия млекопитающих. Показаны три области: (1) область пальца ноги (2) линейная область и (3) область разрушения.

В отличие от костей и сухожилий, которые должны быть прочными и эластичными, артерии и легкие должны быть легко растяжимыми. Эластичные свойства артерий важны для кровотока. Когда кровь выкачивается из сердца, давление в артериях увеличивается, и стенки артерий растягиваются.Когда аортальный клапан закрывается, давление в артериях падает, и артериальные стенки расслабляются, чтобы поддерживать кровоток. Когда вы чувствуете свой пульс, вы чувствуете именно это — эластичное поведение артерий, когда кровь хлынет через каждый насос сердца. Если бы артерии были жесткими, вы бы не почувствовали пульс. Сердце также является органом с особыми эластичными свойствами. Легкие расширяются за счет мышечного усилия, когда мы вдыхаем, но расслабляемся свободно и эластично, когда мы выдыхаем. Наша кожа особенно эластична, особенно для молодых.Молодой человек может подняться от 100 кг до 60 кг без видимого провисания кожи. С возрастом снижается эластичность всех органов. Постепенное физиологическое старение за счет снижения эластичности начинается в начале 20-х годов.

Пример 2. Расчет деформации: насколько укорачивается нога, когда вы стоите на ней?

Вычислите изменение длины кости верхней части ноги (бедренной кости), когда мужчина весом 70,0 кг поддерживает на ней 62,0 кг своей массы, при условии, что кость эквивалентна стержню равном 40 мм.0 см в длину и 2,00 см в радиусе.

Стратегия

Сила равна поддерживаемому весу, или F = мг = (62,0 кг) (9,80 м / с 2 ) = 607,6 Н, а площадь поперечного сечения равна π r 2 = 1,257 × 10 –3 м 2 . Уравнение [latex] \ displaystyle \ Delta {L} = \ frac {1} {Y} \ text {} \ frac {F} {A} L_0 [/ latex] можно использовать для определения изменения длины.

Решение

Все величины, кроме Δ L , известны.{-5} \ text {m.} \ End {array} [/ latex]

Обсуждение

Это небольшое изменение длины кажется разумным, поскольку, по нашему опыту, кости жесткие. Фактически, даже довольно большие силы, возникающие при напряженных физических нагрузках, не сжимают и не сгибают кости в больших количествах. Хотя кость более жесткая по сравнению с жиром или мышцами, некоторые из веществ, перечисленных в таблице 1, имеют более высокие значения модуля Юнга Y . Другими словами, они более жесткие и обладают большей прочностью на разрыв.

Уравнение изменения длины по традиции перестраивается и записывается в следующем виде:

[латекс] \ displaystyle \ frac {F} {A} = Y \ frac {\ Delta {L}} {L_0} [/ latex].

Отношение силы к площади, [латекс] \ frac {F} {A} [/ latex], определяется как напряжение (измеряется в Н / м 2 ), а отношение изменения длины к длина, [латекс] \ frac {\ Delta {L}} {L_0} [/ latex], определяется как деформация (безразмерная величина). Другими словами, напряжение = Y × деформация.

В этой форме уравнение аналогично закону Гука с напряжением, аналогичным силе, и деформацией, аналогичной деформации. Если снова переписать это уравнение к виду

[латекс] \ displaystyle {F} = YA \ frac {\ Delta {L}} {L_0} [/ latex],

мы видим, что он совпадает с законом Гука с константой пропорциональности

[латекс] \ displaystyle {k} = \ frac {YA} {L_0} [/ latex].

Эта общая идея о том, что сила и вызываемая ею деформация пропорциональны небольшим деформациям, применима к изменениям длины, боковому изгибу и изменениям объема.

Напряжение

Отношение силы к площади, [латекс] \ frac {F} {A} [/ latex], определяется как напряжение, измеренное в Н / м 2 .

Штамм

Отношение изменения длины к длине, [латекс] \ frac {\ Delta {L}} {L_0} [/ latex], определяется как деформация (безразмерная величина). Другими словами, напряжение = Y × деформация.

Боковое напряжение: Модуль сдвига

На рисунке 6 показано, что подразумевается под боковым напряжением или сдвигающей силой .Здесь деформация называется Δ x , и она перпендикулярна L 0 , а не параллельна, как при растяжении и сжатии. Деформация сдвига аналогична растяжению и сжатию и может быть описана аналогичными уравнениями. Выражение для деформации сдвига : [латекс] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex], где S — модуль сдвига ( см. Таблицу 1) и F — сила, приложенная перпендикулярно к L 0 и параллельно площади поперечного сечения A .Опять же, чтобы объект не ускорялся, на самом деле есть две равные и противоположные силы F , приложенные к противоположным граням, как показано на рисунке 6. Уравнение логично — например, легче согнуть длинный тонкий карандаш (маленький A ), чем короткие толстые, и оба гнуть легче, чем аналогичные стальные стержни (большие S ).

Рис. 6. Сила сдвига прилагается перпендикулярно длине L 0 и параллельно области A , создавая деформацию Δx.Вертикальные силы не показаны, но следует иметь в виду, что в дополнение к двум силам сдвига, F , должны существовать поддерживающие силы, препятствующие вращению объекта. Искажающие эффекты этих поддерживающих сил игнорируются при этом лечении. Вес объекта также не показан, поскольку он обычно незначителен по сравнению с силами, достаточно большими, чтобы вызвать значительные деформации.

Деформация сдвига

[латекс] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex],

, где S — модуль сдвига, а F — сила, приложенная перпендикулярно к L 0 и параллельно площади поперечного сечения A .

Изучение модулей сдвига в таблице 1 выявляет некоторые характерные закономерности. Например, для большинства материалов модули сдвига меньше модулей Юнга. Кость — замечательное исключение. Его модуль сдвига не только больше, чем модуль Юнга, но и такой же, как у стали. Это одна из причин того, что кости могут быть длинными и относительно тонкими. Кости могут выдерживать нагрузки, сопоставимые с бетонными и стальными. Большинство переломов костей возникает не из-за сжатия, а из-за чрезмерного скручивания и изгиба.

Позвоночный столб (состоящий из 26 позвоночных сегментов, разделенных дисками) обеспечивает основную опору для головы и верхней части тела. Позвоночник имеет нормальную кривизну для стабильности, но это искривление может быть увеличено, что приведет к увеличению силы сдвига на нижних позвонках. Диски лучше выдерживают силы сжатия, чем силы сдвига. Поскольку позвоночник не вертикальный, вес верхней части тела влияет на обе части. Беременным женщинам и людям с избыточным весом (с большим животом) необходимо отвести плечи назад, чтобы поддерживать равновесие, тем самым увеличивая искривление позвоночника и тем самым увеличивая сдвигающий компонент напряжения.Увеличенный угол из-за большей кривизны увеличивает поперечные силы вдоль плоскости. Эти более высокие усилия сдвига увеличивают риск травмы спины из-за разрыва дисков. Пояснично-крестцовый диск (клиновидный диск под последними позвонками) особенно подвержен риску из-за своего расположения.

Модули сдвига для бетона и кирпича очень малы; они слишком изменчивы, чтобы их можно было перечислить. Бетон, используемый в зданиях, может выдерживать сжатие, как в колоннах и арках, но очень плохо противостоит сдвигу, который может возникнуть в сильно нагруженных полах или во время землетрясений.Современные конструкции стали возможны благодаря использованию стали и железобетона. Почти по определению жидкости и газы имеют модуль сдвига, близкий к нулю, потому что они текут в ответ на сдвигающие силы.

Пример 3. Расчет силы, необходимой для деформации: гвоздь не сильно изгибается под нагрузкой

Найдите массу картины, висящей на стальном гвозде, как показано на рисунке 7, учитывая, что гвоздь изгибается только на 1,80 мкм. (Предположим, что модуль сдвига известен с двумя значащими цифрами.)

Рис. 7. Гвоздь, вид сбоку, на котором висит изображение. Гвоздь очень слабо прогибается (показан намного больше, чем на самом деле) из-за срезающего воздействия поддерживаемого веса. Также показано направленное вверх усилие стенки на гвоздь, иллюстрирующее равные и противоположные силы, приложенные к противоположным поперечным сечениям гвоздя. См. Пример 3 для расчета массы изображения.

Стратегия

Сила F на гвоздь (без учета собственного веса гвоздя) — это вес изображения w .Если мы сможем найти w , то масса изображения будет просто [latex] \ frac {w} {g} [/ latex]. Уравнение [латекс] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex] может быть решено для F .

Решение

Решая уравнение [латекс] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex] для F , мы видим, что все остальные величины могут быть найдены :

[латекс] \ displaystyle {F} = \ frac {SA} {L_0} \ Delta {x} [/ latex]

S находится в таблице 1 и составляет S = 80 × 10 9 Н / м 2 .{-6} \ text {m} \ right) = 51 \ text {N} [/ latex]

Эта сила 51 Н составляет вес w изображения, поэтому масса изображения [латекс] m = \ frac {w} {g} = \ frac {F} {g} = 5.2 \ text {kg} [ /латекс].

Обсуждение

Это довольно массивное изображение, и впечатляет тот факт, что гвоздь прогибается всего на 1,80 мкм — величину, которую невозможно обнаружить невооруженным глазом.

Изменения объема: модуль объемной упругости

Объект будет сжиматься во всех направлениях, если внутренние силы приложены равномерно ко всем его поверхностям, как показано на рисунке 8.Относительно легко сжимать газы и чрезвычайно сложно сжимать жидкости и твердые тела. Например, воздух в винной бутылке сжимается, когда она закупорена. Но если вы попытаетесь закупорить бутылку с полными краями, вы не сможете сжать вино — некоторые из них необходимо удалить, если нужно вставить пробку. Причина такой разной сжимаемости заключается в том, что атомы и молекулы разделены большими пустыми пространствами в газах, но плотно упакованы в жидкостях и твердых телах. Чтобы сжать газ, вы должны сблизить его атомы и молекулы.Чтобы сжать жидкости и твердые тела, вы должны действительно сжать их атомы и молекулы, и очень сильные электромагнитные силы в них препятствуют этому сжатию.

Рис. 8. Внутренняя сила на всех поверхностях сжимает этот куб. Его изменение в объеме пропорционально силе на единицу площади и его первоначальному объему и связано со сжимаемостью вещества.

Мы можем описать сжатие или объемную деформацию объекта уравнением. Во-первых, отметим, что сила, «приложенная равномерно», определяется как имеющая одинаковое напряжение или отношение силы к площади [латекс] \ frac {F} {A} [/ латекс] на всех поверхностях.Произведенная деформация представляет собой изменение объема Δ V , которое, как было обнаружено, ведет себя очень аналогично сдвигу, растяжению и сжатию, рассмотренным ранее. (Это неудивительно, поскольку сжатие всего объекта эквивалентно сжатию каждого из его трех измерений.) Связь изменения объема с другими физическими величинами определяется выражением [latex] \ displaystyle \ Delta {V} = \ frac {1} {B} \ frac {F} {A} V_0 [/ latex], где B — модуль объемной упругости (см. Таблицу 1), V 0 — исходный объем, а [латекс] \ frac {F} {A} [/ latex] — это сила на единицу площади, равномерно приложенная внутрь ко всем поверхностям.Обратите внимание, что объемные модули для газов не приводятся.

Какие есть примеры объемного сжатия твердых тел и жидкостей? Одним из практических примеров является производство алмазов промышленного качества путем сжатия углерода с чрезвычайно большой силой на единицу площади. Атомы углерода перестраивают свою кристаллическую структуру в более плотно упакованный узор алмазов. В природе аналогичный процесс происходит глубоко под землей, где чрезвычайно большие силы возникают из-за веса вышележащего материала. Еще один естественный источник больших сжимающих сил — давление, создаваемое весом воды, особенно в глубоких частях океанов.Вода воздействует на все поверхности погружаемого объекта и даже на саму воду. На больших глубинах вода ощутимо сжата, как показано в следующем примере.

Пример 4. Расчет изменения объема с деформацией: насколько вода сжимается на глубинах Великого океана?

Рассчитайте частичное уменьшение объема [латекс] \ left (\ frac {\ Delta {V}} {V_0} \ right) [/ latex] для морской воды на глубине 5,00 км, где сила на единицу площади составляет 5,00 × 10 7 Н / м 2 .

Стратегия

Уравнение [латекс] \ displaystyle \ Delta {V} = \ frac {1} {B} \ frac {F} {A} V_0 [/ latex] является правильным физическим соотношением. Все величины в уравнении, кроме [latex] \ frac {\ Delta {V}} {V_0} [/ latex], известны.

Решение

Решение неизвестного [латекса] \ frac {\ Delta {V}} {V_0} [/ latex] дает [latex] \ displaystyle \ frac {\ Delta {V}} {V_0} = \ frac {1} {B } \ frac {F} {A} [/ латекс].

Замена известных значений значением модуля объемной упругости B из таблицы 1,

[латекс] \ begin {array} {lll} \ frac {\ Delta {V}} {V_0} & = & \ frac {5.2} \\ & = & 0.023 = 2.3 \% \ end {array} [/ latex]

Обсуждение

Хотя это можно измерить, это не является значительным уменьшением объема, учитывая, что сила на единицу площади составляет около 500 атмосфер (1 миллион фунтов на квадратный фут). Жидкости и твердые вещества чрезвычайно трудно сжимать.

И наоборот, очень большие силы создаются жидкостями и твердыми телами, когда они пытаются расшириться, но не могут этого сделать, что эквивалентно их сжатию до меньшего, чем их нормальный объем.Это часто происходит, когда содержащийся в нем материал нагревается, поскольку большинство материалов расширяются при повышении их температуры. Если материалы сильно ограничены, они деформируют или ломают контейнер. Другой очень распространенный пример — замерзание воды. Вода, в отличие от большинства материалов, расширяется при замерзании, и она может легко сломать валун, разорвать биологическую клетку или сломать блок двигателя, который встанет у нее на пути.

Другие типы деформаций, такие как кручение или скручивание, ведут себя аналогично рассмотренным здесь деформациям растяжения, сдвига и объемной деформации.

Сводка раздела

  • Закон Гука определяется выражением [латекс] F = k \ Delta {L} [/ latex], где [latex] \ Delta {L} [/ latex] — величина деформации (изменение длины), F — это приложенная сила, а k — константа пропорциональности, которая зависит от формы и состава объекта, а также от направления силы. Связь между деформацией и приложенной силой также может быть записана как [latex] \ displaystyle \ Delta L = \ frac {1} {Y} \ frac {F} {A} {L} _ {0} [/ latex] , где Y — это модуль Юнга , который зависит от вещества, A — это площадь поперечного сечения, а [латекс] {L} _ {0} [/ latex] — исходная длина.
  • Отношение силы к площади, [латекс] \ frac {F} {A} [/ latex], определяется как напряжение , измеренное в Н / м 2 .
  • Отношение изменения длины к длине, [латекс] \ frac {\ Delta L} {{L} _ {0}} [/ latex], определяется как деформация (безразмерная величина). Другими словами, [латекс] \ текст {напряжение} = Y \ times \ text {напряжение} [/ латекс].
  • Выражение деформации сдвига [латекс] \ displaystyle \ Delta x = \ frac {1} {S} \ frac {F} {A} {L} _ {0} [/ latex], где S — модуль сдвига и F — это сила, приложенная перпендикулярно [латексу] {L} _ {\ text {0}} [/ latex] и параллельно площади поперечного сечения A .
  • Связь изменения объема с другими физическими величинами определяется выражением [latex] \ displaystyle \ Delta V = \ frac {1} {B} \ frac {F} {A} {V} _ {0} [/ latex ], где B — объемный модуль, [latex] {V} _ {\ text {0}} [/ latex] — исходный объем, а [latex] \ frac {F} {A} [/ latex] — сила на единицу площади, равномерно приложенная внутрь ко всем поверхностям.

Концептуальные вопросы

  1. Эластичные свойства артерий важны для кровотока. Объясните важность этого с точки зрения характеристик кровотока (пульсирующего или непрерывного).
  2. Что вы чувствуете, когда щупаете пульс? Измерьте частоту пульса в течение 10 секунд и 1 минуты. Есть ли разница в 6 раз?
  3. Изучите различные типы обуви, включая спортивную обувь и шлепанцы. С точки зрения физики, почему нижние поверхности устроены именно так? Какие различия будут иметь для этих поверхностей сухие и влажные условия?
  4. Ожидаете ли вы, что ваш рост будет отличаться в зависимости от времени суток? Почему или почему нет?
  5. Почему белка может спрыгнуть с ветки дерева на землю и убежать целой, а человек может сломать кость при таком падении?
  6. Объясните, почему беременные женщины часто страдают от растяжения спины на поздних сроках беременности.
  7. Уловка старого плотника, чтобы не допустить сгибания гвоздей при забивании их в твердый материал, заключается в том, чтобы крепко удерживать центр гвоздя плоскогубцами. Почему это помогает?
  8. Когда стеклянная бутылка, полная уксуса, нагревается, и уксус, и стекло расширяются, но уксус расширяется значительно больше с температурой, чем стекло. Бутылка разобьется, если наполнить ее до плотно закрытой крышки. Объясните, почему, а также объясните, как воздушный карман над уксусом предотвратит разрыв.(Это функция воздуха над жидкостями в стеклянных контейнерах.)

Задачи и упражнения

  1. Во время циркового номера один артист качается вверх ногами, висит на трапеции, держа другого, также перевернутого, за ноги. Если восходящая сила, действующая на более низкую спортсменку, в три раза превышает ее вес, насколько растягиваются кости (бедра) в ее верхних конечностях? Вы можете предположить, что каждый из них эквивалентен одинаковому стержню длиной 35,0 см и радиусом 1,80 см. Ее масса 60.0 кг.
  2. Во время схватки по борьбе борец весом 150 кг ненадолго встает на одну руку во время маневра, призванного сбить с толку его и без того умирающего противника. Насколько укорачивается длина кости плеча? Кость может быть представлена ​​однородным стержнем длиной 38,0 см и радиусом 2,10 см.
  3. (a) «Грифель» в карандашах представляет собой состав графита с модулем Юнга примерно 1 × 10 9 Н / м 2 . Вычислите изменение длины грифеля в автоматическом карандаше, если постучите им прямо по карандашу с силой 4.0 Н. Шнур диаметром 0,50 мм и длиной 60 мм. б) разумен ли ответ? То есть согласуется ли это с тем, что вы наблюдали при использовании карандашей?
  4. антенна телевещания — самые высокие искусственные сооружения на Земле. В 1987 году физик весом 72,0 кг разместил себя и 400 кг оборудования на вершине одной антенны высотой 610 м для проведения гравитационных экспериментов. Насколько была сжата антенна, если считать ее эквивалентом стального цилиндра радиусом 0,150 м?
  5. (a) По тому, сколько стоит 65.Альпинист весом 0 кг натягивает нейлоновую веревку диаметром 0,800 см, когда она висит на 35,0 м ниже скалы? б) Соответствует ли ответ тому, что вы наблюдали для нейлоновых веревок? Имел бы смысл, если бы веревка была на самом деле эластичным шнуром?
  6. Полый алюминиевый флагшток высотой 20,0 м по жесткости эквивалентен твердому цилиндру диаметром 4,00 см. Сильный ветер изгибает полюс так же, как горизонтальная сила в 900 Н. Насколько далеко в сторону прогибается верхняя часть шеста?
  7. По мере бурения нефтяной скважины каждая новая секция бурильной трубы выдерживает собственный вес, а также вес трубы и бурового долота под ней.Рассчитайте растяжение новой стальной трубы длиной 6,00 м, которая поддерживает 3,00 км трубы, имеющей массу 20,0 кг / м, и буровое долото 100 кг. Труба эквивалентна по жесткости сплошному цилиндру диаметром 5 см.
  8. Рассчитайте усилие, которое настройщик рояля применяет для растяжения стальной рояльной струны на 8,00 мм, если изначально проволока имеет диаметр 0,850 мм и длину 1,35 м.
  9. Позвонок подвергается действию силы сдвига 500 Н. Найдите деформацию сдвига, принимая позвонок в виде цилиндра 3.00 см в высоту и 4,00 см в диаметре.
  10. Диск между позвонками в позвоночнике подвергается действию силы сдвига 600 Н. Найдите его деформацию сдвига, принимая, что модуль сдвига равен 1 × 10 9 Н / м 2 . Диск эквивалентен сплошному цилиндру высотой 0,700 см и диаметром 4,00 см.
  11. При использовании ластика для карандашей вы прикладываете вертикальное усилие 6,00 Н на расстоянии 2,00 см от соединения ластика с твердой древесиной. Карандаш имеет диаметр 6,00 мм и держится под углом 20 °.0º к горизонтали. а) Насколько дерево прогибается перпендикулярно своей длине? б) Насколько он сжат в продольном направлении?
  12. Чтобы рассмотреть влияние проводов, подвешенных на столбах, мы возьмем данные из рисунка 9, на котором было рассчитано натяжение проводов, поддерживающих светофор. Левая проволока образовывала угол 30,0 ° ниже горизонтали с вершиной своего столба и выдерживала натяжение 108 Н. Полый алюминиевый столб высотой 12,0 м по жесткости эквивалентен твердому цилиндру диаметром 4,50 см.а) Насколько он наклонен в сторону? б) Насколько он сжат?

    Рисунок 9. Светофор подвешен на двух тросах. (б) Некоторые из задействованных сил. (c) Здесь показаны только силы, действующие на систему. Также показана схема свободного движения светофора. (d) Силы, проецируемые на вертикальную ( x ) и горизонтальную ( x ) оси. Горизонтальные составляющие натяжения должны компенсироваться, а сумма вертикальных составляющих натяжений должна равняться весу светофора.{-2} [/ латекс]). Какую силу на единицу площади вода может оказывать на емкость при замерзании? (В этой задаче допустимо использовать объемный модуль упругости воды.) (B) Удивительно ли, что такие силы могут разрушать блоки двигателя, валуны и тому подобное?

  13. Эта проблема возвращается к канатоходец изученного на рисунке 10, который создал натяжение 3,94 × 10 3 N в проводе, составляющем угол 5. 2 \ end {array} [/ latex],

    , где C — коэффициент сопротивления, A — площадь объекта, обращенная к жидкости, а ρ — плотность жидкости.

    Закон Стокса: F s = 6 πrη v , где r — радиус объекта, η — вязкость жидкости, а v — величина объекта. скорость.

    Решения проблем и упражнения

    1. 1.90 × 10 −3 см

    3. (а) 1 мм; (б) Это кажется разумным, поскольку кажется, что поводок немного сжимается, когда вы на него нажимаете.

    5. (а) 9 см; (б) Это кажется разумным для нейлоновой веревки для лазания, поскольку она не должна сильно растягиваться.

    7. 8,59 мм

    9. 1.49 × 10 −7 м

    11. (а) 3.99 × 10 −7 м; (б) 9,67 × 10 −8 м

    13. 4 × 10 6 Н / м 2 . Это примерно 36 атм, больше, чем может выдержать обычная банка.

    15. 1,4 см


    Кабель для улучшения дома

    Площадь поперечного сечения кабеля для обустройства дома как выбрать

    Выбор размера поперечного сечения кабеля должен основываться на максимальном потреблении электроэнергии в жилом помещении, при этом можно установить максимальный ток проводника и кабеля.Люди обычно рассчитывают потребление электроэнергии в жилых домах, в соответствии с архитектурным кодом проектирования рассчитывается в соответствии с площадью 40-50 Вт на квадратный метр. Это более чем на 90 метров над домом может быть, на 50-60 квадратных метров жилые не могут соответствовать требованиям. Таким образом, деньги на ремонт дома должны сначала спланировать потребление электроэнергии в доме, а затем выбрать сечение провода. Если включена общая бытовая техника, в том числе кондиционеры, холодильники.Стиральные машины, телевизоры, микроволновые печи, водонагреватели, компьютеры и многое другое, оставляя маржу развития всего на несколько лет.

    Корпус теперь обычно на 4 мм2 в линии меди, поэтому в то же время открытие бытовой техники не должно превышать 25 А или 5500 Вт.

    Потребляемая мощность относительно крупных бытовых приборов: Потребляемая мощность кондиционера Big 3 около 3000 Вт (около 14 А), (1,2 фунта, 5А, электрический водонагреватель 10А, микроволновая печь 4А, рисоварка 4А, посудомоечная машина 8А, с функцией сушки Стирка машина 10А, электрический водогрейный котел 4А, 90% возгорания от источника питания вызвано нагревом разъема, поэтому все разъемы должны быть спаяны, а бесконтактные компоненты, которые не могут быть спаяны, должны быть заменены в течение 5 дней. -10 лет (например, розетки, воздушные выключатели и т. Д.)).

    GB допускает длительный ток: 4 квадрата — 25-32 А, 6 квадратов — 32-40 А. Фактически, это теоретические значения безопасности, предельное значение даже больше этих. 2,5 квадратных медных провода допускается использовать, максимальная мощность составляет 5500 Вт, 4 квадратных 8000 Вт, 6 квадратных 9000 Вт без проблем. Выбор технических характеристик домашней электропроводки должен основываться на общей мощности бытовой техники для расчета, а затем выбрать соответствующий провод и кабель в соответствии с максимальной допустимой нагрузкой по току для различных технических характеристик провода, требуемая допустимая нагрузка по току должна быть рассчитана в соответствии с следующая формула: Где:

    I = w / uxk

    I-line для максимальной требуемой токовой нагрузки, в A

    WA Общая мощность бытовой электрической энергии, единица w

    U номинальное напряжение домашнего хозяйства в V

    K коэффициент безопасности по перенапряжению, значение общего взятия 1.2-1,3

    В соответствии с приведенной выше формулой для расчета пропускной способности по току бытовой электроэнергии максимальный ток потребления, а затем в соответствии с различной поверхностью провода может выдержать максимальную мощность, чтобы выбрать соответствующий отрезок провода:

    1. Во-первых, рассчитайте общую нагрузку цепи (общую мощность) — это полная мощность оконечного оборудования.

    2. Определить электрическую схему жадеита, гражданскую серию на 220 / 380В двух категорий как У, блок В

    3.Вычислите общий ток цепи, как I, I = P / U, единица A.

    4 Выберите тип провода (обычно для домашнего ремонта и мелких работ, в основном, медный провод / алюминий, который делится на одножильный многожильный. сердечник)

    5. Прямо из текущей емкости этого типа провода (прямой доступ к инструкциям по проводам или отчету об испытаниях) как X

    6. Сечение проводника = IX, если есть десятичная точка в соответствии с метод расчета, если модельный провод в соответствии с выбором модели высокого

    Вот пример:

    Например, для жилого контура рассчитывается общая нагрузка (P) 6 кВт (схема, подключаемая к источнику питания устройства = = оборудование может быть добавлено) Напряжение цепи 220В (тогда U: общий ток (I) = 6000Вт / 220В = 27.27A В схеме используется одножильный медный провод, проходящий через провод через токовую нагрузку около 6 мм2 (X), тогда в схеме следует использовать площадь поверхности провода I / X = 27,27 / 6 = 4,545 мм2 Согласно закону Использование 5 мм2 доступ к проводу через провод без 5мм2, характеристики близкие к моделям 4мм2 и 6мм2, в соответствии с принципом высокого на цепи должен быть провод 6мм2.

    Ампер на фунт

    Идея выбора размера кабеля для уменьшения потерь энергии при распределении не является чем-то новым и рассматривалась в течение многих лет, но благодаря конкурентным тендерам на работу и постоянному поиску способов снижения затрат (также известному как « инжиниринг стоимости ») современный дизайн Электроустановка пытается сократить количество используемых материалов до минимума.

    Медь всегда была относительно дорогой и в целом продолжает дорожать, поэтому попытка уменьшить размер используемых кабелей всегда имела экономическую привлекательность при первоначальном проектировании установки — не говоря уже о том, что кабели меньшего размера легче устанавливать и поддержка, эффективно давая двойную экономию.

    Однако у каждого кабеля есть сопротивление: когда ток течет по кабелю, это приводит к рассеиванию мощности (I 2 R), и в течение времени работы схемы происходит потеря энергии.Таким образом, в наше время энергосбережения и глобального потепления, энергоэффективность и минимизация потерь энергии являются полезной стратегией, которую следует учитывать.

    В новом Приложении 17 к BS 7671: 2018 Energy Efficiency это кратко комментируется в пункте 17.4:

    .

    Увеличение площади поперечного сечения проводов снизит потери энергии, но увеличит начальные затраты на установку. Решение о том, следует ли это делать, следует принимать путем оценки как экономии в рамках временной шкалы, так и дополнительных затрат из-за увеличения размера.Практические ограничения, такие как размер выводов, также будут влиять на размер проводов.

    В 1990 году Дэвид Латимер из IET и Ричард Парр, консультант ERA Technology, подготовили документ под названием А на фунт (фунт стерлингов), в котором рассматривался выбор подходящих типов кабеля для установки и капитальные затраты / энергия. потери таких кабелей. В этой статье мы актуализируем рассмотрение потерь энергии в кабелях.

    Традиция?

    Традиционный подход к выбору размера кабеля заключался в максимальном использовании материалов кабеля.Чтобы добиться этого, производители кабелей стремились производить кабели, которые будут удовлетворительно работать при все более высоких температурах, с правилами безопасной установки в BS 7671, основанными на таких температурах. Кроме того, для достижения минимальных начальных капитальных затрат международные правила электромонтажа теперь допускают более высокие значения падения напряжения, чем это было раньше.

    В 1888 году 2-е издание Правил и положений по предотвращению пожарных рисков, связанных с электрическим освещением , опубликованных Обществом инженеров-телеграфистов и электриков (теперь, после нескольких изданий, известных как BS 7671 Требования к электроустановкам , опубликованный IET) установил ограничения на рабочую температуру нагруженных проводников таким образом, что, если проводник пропускает удвоенный номинальный ток, температура проводника должна повышаться не более чем до 65 ° C.Первое конкретное упоминание о падении напряжения было в пятом издании, опубликованном в 1907 году, которое допускало 2% для схем освещения. Со временем в последующих редакциях Правил этот показатель вырос до «2% плюс один вольт», «3% плюс один вольт» (во время Второй мировой войны), снова снизился до «2% плюс один вольт», а затем до «2,5%». % »и« 4% »- окончательно остановившись на« 3% для освещения и 5% для других целей »в текущем 18-м издании BS 7671. Это позволяет увеличить потери энергии в проводниках, которые в некоторой степени могут быть компенсированы лучшее рафинирование меди с годами, что обеспечивает более низкое удельное сопротивление материала проводника.

    Альтернатива?

    Вопреки намерению максимального использования проводников, можно продемонстрировать, что есть серьезные экономические и практические причины для отхода от простого выбора наименьшего допустимого сечения проводника и наименьшей начальной стоимости установки. Действительно, подход с минимальными первоначальными затратами вполне может превратиться в нежелательное финансовое бремя в течение всего срока службы установки. Стоимость энергии продолжает расти, и, помимо увеличения первоначальных затрат на топливо, существуют экологические и социальные факторы, влияющие на обеспечение и стоимость производства и распределения, все они подталкивают к более эффективному использованию энергии и сокращению отходов и потерь.Разумно признать, что истинная стоимость установки должна включать рассмотрение будущих эксплуатационных расходов: таким образом, анализ стоимости жизненного цикла должен быть основным фактором принятия решений. [1]

    Поэтому мы задаем вопрос: должна ли промышленность требовать, чтобы все энергопотребляющее оборудование и системы котировались следующим образом?

    Стоимость оборудования с доставкой на площадку с вводом в эксплуатацию £ XXXX
    Стоимость электромонтажных работ £ XXXX
    Стоимость энергии, потребленной за N лет (согласованная формула) £ XXXX
    Стоимость обслуживания в течение N лет (согласованная формула) £ XXXX
    Общая стоимость за N лет £ XXXX

    Кроме того, могут быть указаны суммарная энергия и выбросы углерода за весь срок службы.

    Затраты на электроэнергию и техническое обслуживание должны быть рассчитаны по стандартным формулам, согласованным в отрасли (подходящим для продукта), включая часы работы, процентные нагрузки, цену на топливо и оплату труда. Остается надеяться, что ответственные производители качественной продукции возьмут на себя инициативу.

    Подобная форма сравнительного представления может быть принята для различных систем, таких как распределение электроэнергии, отслеживание горячей воды, освещение и средства управления освещением, когда их использование рассматривается или предлагается.Сколько людей, сделавших такой выбор, на самом деле знают относительную общую стоимость, как указано выше? Все мы, инженеры и дизайнеры, должны это делать. Основополагающим требованием для инженеров является наличие и признание наличия всестороннего понимания и знаний, необходимых для профессионального выполнения своих обязанностей.

    Расчет затрат

    Латимер и Парр очень подробно рассмотрели стоимость владения и эксплуатации установки и рассмотрели первоначальные капитальные затраты на методы прокладки кабеля, а также эксплуатационное потребление энергии при установке.Эта статья обязательно краткая и может рассматривать только несколько образцов кабелей, размеров и нагрузок, но основная теория будет верна для всех установок, и есть надежда, что она послужит иллюстрацией возможных «скрытых» затрат, связанных с срок службы установки.

    Можно утверждать, что все затраты, используемые в следующих примерах, являются приблизительными и что подрядчик или владелец установки могут иметь лучшую покупательную способность. Расчеты всегда можно переработать под конкретную предлагаемую установку с точными данными о стоимости и эксплуатации; Однако выводы неизбежны.

    В таблице в таблице 1 показаны предполагаемые капитальные и эксплуатационные затраты на определенные однофазные и трехфазные бронированные кабели, проложенные в открытом воздухе и рассчитанные в соответствии с данными, приведенными в Приложении 4 стандарта BS 7671. Стоимость кабеля была взята из свободно доступных подходящие данные о затратах [2] и текущие затраты на электроэнергию были приняты равными 16 пенсов за кВтч, с ежегодным увеличением на 2% и годовым уровнем инфляции 3%.

    Для простоты предполагается, что за потребленную энергию оплачивается только один раз в год, в конце года.Кроме того, широко известно, что при инфляции сумма денег, потраченная в будущем, имеет меньшую ценность, чем эквивалентная сумма, потраченная сейчас, поэтому существует «приведенная стоимость», которую необходимо рассчитать для будущей стоимости энергии, чтобы можно было провести сравнение с текущие затраты («будущая стоимость»). Ожидается, что затраты на электроэнергию будут расти в течение срока службы установки, поэтому следует также учитывать ежегодное увеличение затрат на электроэнергию. Наконец, для расчета должен существовать конечный срок службы установки: было выбрано десять лет, но в действительности установки могут работать намного дольше, что приводит к увеличению затрат на ненужную энергию.(В более долгосрочной перспективе это может быть разумным предложением перенастроить установку с использованием того же оборудования, просто для снижения затрат на электроэнергию).

    Базовая приведенная стоимость будущей стоимости суммы может быть рассчитана по формулам:

    Однако, чтобы учесть дополнительное ежегодное увеличение стоимости энергии на 2% и совокупные затраты за десятилетний период, формулы изменены на:

    Для простых примеров далее будут рассмотрены три однофазных и пять трехфазных нагрузок.Из таблицы 2 видно, что как в однофазном, так и в трехфазном случае наиболее экономичная установка происходит, когда капитальные затраты на прокладку кабеля и эксплуатационные затраты на энергию в течение всего срока службы фактически равны. При однофазной установке затраты снижаются, и ожидается, что кабель 10 кв. Мм будет оптимальным. В трехфазной модели минимум находится где-то между кабелем 35 кв. Мм и 50 кв. Мм, и окончательный выбор необходимо будет уточнить расчетом с использованием конкретных данных для конкретной установки.

    Однако любой выбор более крупных проводников также приведет к увеличению затрат, связанных с большей защитной оболочкой, кожухами и т. Д., И это необходимо будет подробно рассматривать для каждой установки.

    Заключение

    Как отмечалось ранее, эта статья носит исключительно иллюстративный характер. При любом проектировании необходимо учитывать более подробные факторы, применимые к конкретной установке. Однако расчет ясно показывает, что кабель меньшего размера не всегда является наиболее экономичным выбором.В трехфазном примере установка кабеля меньшего размера 10 кв. Мм, который мог бы выдерживать нагрузку, может стоить владельцу установки примерно на 2400 фунтов стерлингов больше эксплуатационных расходов, чем первоначальная установка кабеля 35 кв. Мм в течение десятилетнего срока службы — и это всего за один кабель!

    Необходимо также провести дополнительное исследование текущих затрат, поскольку необходимо отметить, что цифры, приведенные в таблицах номинальных характеристик кабелей в Приложении 4 стандарта BS 7671, предполагают сопротивление проводника при полном номинальном токе кабеля, в то время как более крупный проводник несет меньше чем полный номинальный ток позволит проводнику охладиться, и, следовательно, сопротивление будет меньше (расчет ниже очень актуален).

    См. Пункт 6.1 приложения 4 стандарта BS 7671 для получения дополнительной информации.

    Благодарности

    [1] Грэм Мэнли, президентское обращение к Сертифицированному институту инженеров по обслуживанию зданий (CIBSE), 2004 г.

    [2] При содействии Гэри Маккафферти, помощника менеджера, Cleveland Cables.

    Спасибо также доктору Иэну Броку, Шахиду Кану (ECA) и персоналу Технического регламента IET за их полезные комментарии.

    Калькулятор потерь кабеля распределенной акустической системы

    Этот калькулятор поможет вам определить потери в кабеле в распределенных акустических системах (также известных как 100- или 70-вольтовые акустические системы).Введя размер и длину кабеля, а также количество и подробную информацию о динамиках, он рассчитает потери в SPL (дБ), напряжении и ваттах. Он даже вычисляет результирующий уровень звукового давления в дБ для целевой аудитории. Все, что вам нужно сделать, это заполнить белые ячейки в калькуляторе.

    Сначала выберите единицы измерения : «Метры и мм²» или «Футы и AWG». В большинстве стран используется метрическая система, то есть длина кабеля измеряется в метрах, а размер кабеля — в мм². В США метрика не используется, поэтому выберите «Feet & AWG» — длина кабеля будет в футах, и появится дополнительное поле, позволяющее выбрать толщину кабеля в AWG.

    Затем двигайтесь вниз по верхней таблице:

    Общее количество динамиков, подключенных в кабельной трассе.

    Настройки ответвлений на динамиках : Большинство динамиков для распределенных акустических систем имеют способ выбора различных ответвлений или мощности для динамика. Обычно это выражается в ваттах.

    Чувствительность динамика : это необязательно, но используется для расчета уровня звукового давления в целевой аудитории. Обычно это можно найти в технических характеристиках динамиков.Например, в характеристиках потолочного динамика может быть указано «Чувствительность: 90 дБ (1 Вт / 1 м)»

    Расстояние от говорящего до целевой аудитории : это также необязательно и используется для расчета потерь SPL в воздухе от говорящего до целевой аудитории. Для потолочного динамика расстояние от потолка до стоящего человека может составлять всего 1 метр или около того. Для динамика на открытом воздухе это может быть 10-20 метров и более.

    Общая длина кабеля : общая длина кабеля от усилителя до последнего динамика.

    Длина подводящего кабеля к первому динамику не требует пояснений. Это длина кабеля от усилителя до первого динамика. Калькулятор предполагает, что количество динамиков равномерно распределено по оставшейся длине кабеля.

    Распределенная система максимальное напряжение около усилителя. Его выходная мощность будет 100 вольт, или 70 вольт, или, возможно, 50 или 25 вольт.

    Кабель c.s.a : Это важный показатель, поскольку все расчеты сопротивления кабеля основаны на площади поперечного сечения (ок.s.a.) кабеля. Это удобно для пользователей с метрической системой измерения, поскольку кабели классифицируются в соответствии с их c.s.a. Для других пользователей, которые привыкли сортировать свои кабели в соответствии с их номером AWG, калькулятор вставляет c.s.a за вас (на основе выбранного номера AWG).

    После ввода всех этих входных данных сразу же вычисляются результаты (фактически, они рассчитываются после каждого ввода или изменения). См. Примечания ниже, если вам нужна помощь в интерпретации результатов. Для тех, кому нужно знать математику, лежащую в основе этого калькулятора, это объяснено в конце этой статьи.

    Скачать калькулятор
    в виде файла Excel
    Цены в долларах США

    Что означают результаты

    Результаты этого калькулятора потерь в кабеле распределенной акустической системы в основном говорят вам о том, что если вы не используете слишком много динамиков и они не потребляют много энергии, вам не нужно слишком беспокоиться о размере кабеля. Однако, если у вас длинные кабели, много динамиков или мощные динамики, вам нужно обратить внимание на эти результаты.

    Общая нагрузка динамиков и кабеля показывает общую нагрузку на усилитель в омах. Затем рассчитывается соответствующая мощность усилителя. Это число будет меньше, чем при простом вычислении количества динамиков, умноженного на мощность каждого динамика. Это связано с тем, что сопротивление кабеля увеличивает импеданс динамика, что снижает ток от усилителя, что снижает общую выходную мощность усилителя. Усилитель должен выдерживать эту общую нагрузку.Хорошая практика подсказывает, что вы используете усилитель, который на 20-25% больше, чем общая нагрузка.

    Общее сопротивление кабеля приведено только для информации.

    Максимальный ток в питающем кабеле полезен, чтобы определить, способен ли выбранный кабель пропускать этот ток.

    Разница в уровне звукового давления между первым и последним динамиком поможет определить, нужно ли вам использовать кабель большего размера. Многие системы справятся с разницей до 6 дБ (+/- 3 дБ).Любая разница, превышающая 6 дБ, станет заметна для многих пользователей.

    Затем результаты для различных выступающих заносятся в таблицу. Спикер №1 — первый спикер. Результаты также показаны для последнего динамика и среднего динамика. Хотя номер среднего динамика можно изменить, чтобы увидеть результаты любого выступающего между первым и последним выступающим.

    Максимальный уровень звукового давления определяется чувствительностью динамика, потерями звукового давления в воздухе между говорящим и целевой аудиторией плюс усиление динамика более 1 ватта.

    Наконец, показан график, показывающий рассчитанные потери в кабелях распределенной акустической системы.

    Предположения для данного калькулятора потерь в кабеле распределенной акустической системы

    Этот калькулятор делает несколько предположений:

    • Калькулятор предполагает, что удельное сопротивление медного кабеля составляет 1,724 x 10 -8 Ом · м. Это может немного измениться между одножильным или многожильным кабелем. Также не весь медный кабель — это чистая медь, которая немного изменяет удельное сопротивление, как и температуру.Хотя на практике эти различия мало повлияют на результаты.
    • Калькулятор предполагает, что динамики распределены равномерно по длине кабеля (после кабеля питания). Если динамики распределены неравномерно, в большинстве случаев опять же будет небольшая разница в результатах.
    • Расчет потерь звукового давления в воздухе между говорящим и целевой аудиторией предполагает наличие неотражающего пространства (например, на улице). Для помещений с отражающими стенами потери могут быть на 6 дБ меньше.Однако потери по динамикам будут относительно одинаковыми.
    • В этом калькуляторе потерь в кабелях распределенной акустической системы предполагается, что все динамики настроены на одно и то же ответвление (ватт), и на всем протяжении кабеля используется кабель одного размера. Изменение этих предположений выходит за рамки этого калькулятора.

    Дополнительная информация

    Для получения дополнительной информации о распределенных акустических системах, также известных как 100-вольтовые акустические системы или 70-вольтовые акустические системы, прочтите статью Общие сведения о распределенных акустических системах

    Расчеты, используемые в калькуляторе потерь в кабелях распределенной акустической системы

    Вам нужно прочитать это только в том случае, если вам нравится разбираться в математике или вам интересны принципы используемых вычислений.Расчет потерь в кабеле любой цепи выполняется в несколько этапов.

    Расчет сопротивления кабеля

    Первый шаг включает расчет сопротивления каждой секции кабеля. Сопротивление любого кабеля определяется длиной кабеля, толщиной кабеля и удельным сопротивлением кабеля.

    Площадь поперечного сечения (с.п.а) кабеля является мерой толщины кабеля. В метрической системе кабели классифицируются по их c.s.a. Например: 0,75 мм 2 или 2,5 мм 2 .

    Компания c.s.a. неметрического кабеля преобразуется из его номера AWG (номер калибра) в 2 мм по следующей формуле:

    c.s.a в мм 2 = 0,012668 × 92 (размер 36) / 19,5

    Сопротивление — это сопротивление, присущее любому материалу. Для меди удельное сопротивление составляет 1,724 x 10 -8 Ом · м. Для практических расчетов потерь в кабеле просто умножьте удельное сопротивление на 10, а затем разделите его на c.s.a. (в мм 2 ), чтобы получить сопротивление на тысячу метров. Например: допустим, сечение медного кабеля составляет 2 мм 2 :

    1,724 x 10 = 17,24 деленное 2 = 8,62 Ом на тысячу метров.

    Если длина кабеля составляет 100 метров, то сопротивление кабеля 2 мм 2 будет 8,62 Ом, разделенное на 10 (100 метров — это 1/10 от 1000 метров). То есть: сопротивление 100 метров кабеля 2 мм 2 равно 8,62, деленное на 10 = 0,862 Ом

    Важно отметить, что это сопротивление кабеля относится к одиночному медному проводнику.Акустические кабели имеют два провода, поэтому для правильных расчетов это сопротивление необходимо удвоить. Получив сопротивление кабеля любой длины, вы можете рассчитать потери в нем.

    Расчет потерь в кабеле

    Есть два способа рассчитать потери в кабеле. Оба способа требуют, чтобы вы знали полное сопротивление цепи. Давайте для начала рассмотрим простую эквивалентную схему: усилитель с выходным напряжением 10 В, динамик с сопротивлением 8 Ом и кабель с общим сопротивлением 2 Ом

    Из приведенной выше диаграммы видно, что общая нагрузка на усилитель составляет 10 Ом (8 + 2).Закон Ома позволяет нам рассчитать ток в этой цепи, разделив напряжение на сопротивление. То есть, если разделить 10 вольт на 10 Ом, через цепь будет протекать 1 ампер.

    Теперь, когда известен ток, вы можете использовать закон Ома для расчета потерь напряжения в кабеле и результирующего напряжения на динамике.

    Для этого просто умножьте ток (1 ампер) на сопротивление. Таким образом, потери в кабеле будут 1 x 2 = 2 вольта, а напряжение на динамике будет 8 вольт.Это напряжение указано в таблице как «Максимальное напряжение на динамике».

    Еще один способ легко вычислить потери напряжения в кабеле и / или напряжение динамика — использовать коэффициенты. Напряжение на динамике можно получить, используя отношение импеданса динамика к общему сопротивлению цепи. Для нашего примера, приведенного выше, соотношение составляет 8:10, или 4: 5, или 4/5, или 0,8. Следовательно, напряжение на динамике будет 10 вольт x 0,8, что равно 8 вольт. Этот метод используется в калькуляторе потерь в кабелях распределенной акустической системы.Как видите, оба метода дают одинаковый результат, однако второй метод не требует расчета тока в каждой цепи.

    Расчет максимальной мощности на динамике

    Максимальную мощность на каждом динамике можно легко рассчитать, поскольку теперь известно напряжение на динамике и импеданс динамика.

    Динамик Мощность = квадрат напряжения, деленный на импеданс

    В нашем простом примере напряжение на динамике составляет 8 вольт.Импеданс — 8 Ом. Таким образом, максимальная мощность, доступная на динамике, равна 8 умноженным на 8 (64), разделенным на 8 = 8 Вт. В калькуляторе потерь в кабеле распределенной акустической системы это значение, указанное для каждого динамика в качестве «максимальной мощности на динамике».

    Расчет потерь в дБ

    Потери в децибелах (дБ) в громкоговорителе из-за потерь в кабеле являются расчетом соотношений. Можно использовать либо отношение сопротивлений, либо отношение напряжений, поскольку оба отношения одинаковы.

    Формула для вычисления децибел может показаться сложной, но для современных калькуляторов она не слишком сложна — для этого нужна только функция «log».Калькуляторы на большинстве смартфонов и компьютеров имеют доступную функцию журнала, хотя вам может потребоваться вызвать опцию научного калькулятора.

    Потери в децибелах в динамике = 20 логарифм (коэффициент)

    В нашем простом примере отношение напряжения динамика к общему напряжению (или импеданса динамика к общему сопротивлению) составляет 0,8. Используя калькулятор, логарифм 0,8 = -0,0969 умножить на 20 = -1,9 дБ. В калькуляторе потерь в кабеле распределенной акустической системы это значение, указанное для каждого динамика для «потерь звукового давления из-за кабеля».Это потери звукового давления динамика по сравнению со схемой без потерь в кабеле.

    Расчеты для нескольких динамиков

    Хотя приведенный выше пример прост, он демонстрирует принципы определения потерь в кабеле с одним или несколькими динамиками. Для каждого дополнительного динамика требуются те же вычисления, что и выше. Есть два основных отличия. Во-первых, начальное напряжение для следующего динамика будет рассчитанным напряжением для предыдущего динамика.

    Второе отличие состоит в том, как определить общее сопротивление для каждого расчета.Как видно на приведенной выше диаграмме, определить полное сопротивление непросто. По этой причине общее сопротивление в цепи принято определять исходя из общей нагрузки динамиков. То есть, если есть 20 динамиков, каждый по 30 Вт, общая нагрузка составит 600 Вт. Используя закон Ома, общий импеданс 100-вольтного усилителя можно рассчитать как 16,67 Ом (квадрат напряжения, деленный на мощность).

    В качестве альтернативы можно рассчитать полное сопротивление одного динамика, равное 333.33 Ом (снова напряжение (100 вольт) в квадрате, разделенное на мощность (30 Вт)). Общий импеданс динамиков 16 x 333,33 Ом, подключенных параллельно, можно рассчитать как 16,67 Ом.

    Это число можно использовать для расчета тока в кабеле, идущего к первому динамику, и, следовательно, потерь напряжения в кабеле и напряжения на динамике. Однако ток (и потери напряжения) будут уменьшаться для каждого динамика по мере уменьшения количества динамиков. Таким образом, ток в кабеле, идущем ко второму динамику, будет определяться сопротивлением остальных 19 динамиков, включенных параллельно.Ток третьего кабеля будет определяться сопротивлением остальных 18 динамиков, включенных параллельно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *